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ABSTRACT
Acoustic emission (AE) signal-based fault detection has become a crucial predictive
maintenance and industrial monitoring technique, which allows for the early
diagnosis of failures in machines. Current fault classification methods are plagued by
high noise disturbance, weak generalization, and poor temporal dependency
modeling of AE signals. State-of-the-art convolutional neural network (CNN) and
long short-term memory (LSTM)-based models do not accurately improve the
quality of signals, resulting in misclassifications and decreased diagnostic accuracy.
To overcome the above limitations, this article introduces a new generative
adversarial network (GAN)-LSTM-based framework combining Wasserstein
generative adversarial networks with gradient penalty (WGAN-GP) for AE signal
improvement and LSTM networks for sequential fault classification. The suggested
methodology employs a three-stage process: (1) AE signal denoising using WGAN-
GP-based AE for eliminating unnecessary noise while retaining fundamental fault
characteristics, (2) short-time Fourier transform (STFT) feature extraction for an
improved frequency-time domain representation, and (3) fault classification using an
LSTM-based model for precise health condition prediction of machines. Three
benchmark AE datasets (EAE-I, REB-II, and TAD-III) were used to perform
experimental validation, proving the model to outperform baseline strategies. The
model proposed has 97.0% accuracy on REB-II, 94.4% on EAE-I, and 96.2% on
TAD-III, outperforming the best baseline models by a wide margin with a maximum
of 93.0% accuracy. Additionally, the proposed method has a precision of 0.98, a recall
of 0.97, and an F1-score of 0.975, reflecting its strength in identifying intricate fault
patterns. The ablation study also confirms that GAN-based signal enhancement is
responsible for a 7–9% gain in classification performance, demonstrating its
efficiency in eliminating noise distortions without losing important AE signal
features.
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INTRODUCTION
Acoustic emission (AE) signals are transient elastic waves generated within a material due
to deformation, cracking, or material structure change by external stresses (Kundu, 2024).
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These are normally monitored with the support of piezoelectric sensors and are rich
information providers about the state of the material and structures without harming
them. AE is being applied comprehensively to the domains of the structural health
monitoring of structures, analysis of failure of the mechanical kind, and the
non-destructive testing (NDT) of various applications of aerospace, civil infrastructure,
manufacturing, and the energy sector (Shen et al., 2024). Engineers can monitor micro-
cracks, fatigue failure, corrosion, and wear of the material at the incipient stages by
analyzing the AE signal. The acoustic emission (AE) signal is inherently susceptible to
noise and environmental interference, necessitating the application of advanced signal
processing techniques, such as machine learning, deep learning, and generative models, to
enhance detection accuracy and fault classification. Nevertheless, a number of
well-established traditional (non–machine learning-based) methodologies have
historically been employed in AE analysis for tasks including signal detection and onset
time estimation. Notable examples include threshold-based methods, which identify AE
events when the signal amplitude exceeds a predefined threshold, and statistical
approaches such as the Akaike Information Criterion (AIC) for precise arrival time
estimation (Melchiorre et al., 2023). Additional heuristic and classical signal processing
techniques, including energy-based detection, the short-time average to long-time
average (STA/LTA) ratio, and frequency-domain analysis, have also contributed
significantly to the interpretation of AE signals. These foundational approaches provided
the basis upon which contemporary AI-driven frameworks have been developed
(Melchiorre et al., 2024).

Acoustic emission (AE) signal analysis is a widely used non-destructive testing
technique for monitoring the condition of machinery, detecting structural defects, and
predicting potential failures. In this approach, transient elastic waves generated by the
rapid release of energy from localized sources—such as crack propagation or bearing
wear—are captured by sensors and analyzed to identify fault patterns. However, raw AE
signals are often contaminated by environmental noise, sensor interference, and
operational variability, which complicates the detection and classification process. To
address these issues, traditional methods have relied on a combination of signal processing
techniques, handcrafted feature extraction, and conventional machine learning models.
Preprocessing methods such as wavelet transformation, Fourier transformation, and
empirical mode decomposition (EMD) are commonly applied to remove noise and extract
informative signal components. For fault classification, features derived from the
frequency domain and statistical measures, such as root mean square (RMS), kurtosis,
skewness, and entropy, are frequently employed. These features are then used in machine
learning classifiers such as support vector machines (SVM), k-nearest neighbors (k-NN),
random forests, and artificial neural networks (ANNs).

While these approaches have demonstrated success in many applications, they face
significant limitations when confronted with complex, non-stationary AE signals,
high-dimensional datasets, and the need for real-time decision-making (Yu, Liang & Ju,
2025). Their dependence on manual feature engineering also reduces adaptability to
changing operational conditions (Liu et al., 2025). Recent advancements in deep learning,
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particularly generative adversarial networks (GANs) for noise reduction and signal
enhancement, and long short-term memory (LSTM) networks for sequential pattern
recognition—offer the potential to automate feature learning, improve robustness against
noise, and achieve higher fault classification accuracy without extensive manual
intervention. These innovations provide strong motivation for developing next-generation
AE signal analysis frameworks that can operate reliably across diverse industrial
environments.

Deep learning models have considerably enhanced the fault classification and detection
of AE signal processing with their enhanced feature extraction and pattern recognition
(Zaman et al., 2025). Of all the models, convolutional neural networks (CNNs) are
frequently applied to the analysis of AE signals in the spectrogram format by exploiting the
spatial extraction of the features. However, CNNs are inefficient with raw AE signal
sequential dependency and need big, labeled datasets to work at their best (Xu et al., 2025).
Recurrent neural networks (RNNs) and long short-term memory (LSTM) networks are
well-equipped to deal with time-series information and are well-suited to work with AE
signals. However, they are plagued by their high computational requirements and the issue
of the vanishing gradient with sequences of large lengths (Crook & Burton, 2010).
Autoencoders are used for anomaly detection and denoising, but their performance
depends on well-defined latent space representations, making them less interpretable
(Wang et al., 2024). Generative adversarial networks (GANs) improve signal quality by
creating synthetic data that is realistic, but training GANs is notoriously unstable and
needs to be carefully tuned for the generator-discriminator balance. Finally, transformers,
while extremely efficient for sequential tasks, require large amounts of computational
resources and huge-scale training data. While deep learning models have surpassed
traditional approaches, their drawbacks are the high demand for data, interpretability
issues, and computational resources, requiring improvements in model efficiency and
generalizability (Afram & Janabi-Sharifi, 2014).

This work suggested a deep learning framework for AE signal detection that integrates
an enhanced generative adversarial network (GAN) and long short-term memory (LSTM).
The main steps of this method include initially employing an enhanced GAN to produce
high-quality, noise-free AE signals, overcoming the difficulties of low signal-to-noise ratio
(SNR) and scarce labeled data. The boosted signals are then input into an LSTM network,
which is good at learning long-distance dependencies and understanding the sequential
character of AE signals in order to pinpoint exact fault classification. Compared to other
deep learning models, such as CNNs lacking sequential awareness and regular LSTMs
limited by noisy input, your hybrid model ensures robust feature extraction, clearer signals,
and improved classification accuracy. Additionally, unlike autoencoders and unsupervised
learning approaches, your method effectively combines generative and sequential learning,
enabling superior generalization to real-world AE signal variations. The integration of
GAN and LSTM makes your model highly efficient, adaptable, and capable of
outperforming standalone deep learning techniques, providing a novel and state-of-the-art
solution for AE-based fault detection and diagnosis.
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The key contributions of the proposed work are as follows:

. The proposed model integrates an improved GAN for AE signal denoising and
augmentation, effectively reducing noise while preserving critical fault-related features.
Unlike traditional filtering techniques, which may distort essential signal components,
the GAN-based approach dynamically adapts to varying noise levels.

. An LSTM network is employed to process the enhanced AE signals, leveraging its ability
to capture long-range temporal dependencies in sequential data. Unlike conventional
classifiers that rely on manually extracted features, LSTM autonomously learns patterns
from raw signals, improving classification accuracy.

. The proposed GAN-LSTM framework is extensively validated on multiple datasets,
demonstrating superior accuracy and robustness in AE signal-based fault diagnosis. It
achieves 94.2% on Dataset A, 91.8% on Dataset B, and 96.5% on Dataset C, reflecting its
ability to generalize across different conditions.

The rest of the article is structured as follows: the literature review in ‘Literature Review’,
discusses existing techniques in AE signal processing. The proposed methodology in
‘Proposed Methodology’ details the GAN-LSTM framework, explaining the signal
enhancement process, model architecture, and training strategy. The experimental
evaluation in ‘Experimental Evaluation’, presents dataset descriptions, evaluation metrics,
and performance analysis, demonstrating the effectiveness of the proposed model. Finally,
the conclusion and future work in ‘Conclusion and Future Work’, summarizes key
findings, emphasizes the model’s advantages, and outlines potential improvements for
further research and real-world applications.

LITERATURE REVIEW
Acoustic emission signal processing plays a crucial role in fault detection and structural
health monitoring, providing real-time insights into material degradation and machinery
failures. Traditional techniques, such as statistical feature extraction and threshold-based
classification, often struggle with high noise levels, non-stationary signals, and limited
labeled datasets. Deep learning models have emerged as a promising alternative, offering
superior feature extraction, automated classification, and robustness to complex AE signal
variations. Various studies, as presented in Table 1, have explored different deep learning
architectures, including convolutional neural networks (CNNs), long short-term memory
(LSTM) networks, and Generative Adversarial Networks (GANs), for enhancing AE-based
fault detection. This section reviews five key studies that contribute to the advancement of
AE signal analysis, highlighting their strengths, limitations, and potential areas for
improvement.

Umar et al. (2024) introduced a hybrid deep learning architecture optimized with a
genetic algorithm for fault diagnosis in milling machines using AE signals. In their
approach, they combined convolutional neural networks (CNNs) with an attention
mechanism to enhance feature extraction and noise removal. Their research illustrated
that the hybrid method greatly improved fault classification accuracy by automatically
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selecting features, which is normally an intensive task in traditional approaches.
Nevertheless, one significant limitation of their method was that it relied on extensive
labeled datasets and thus did not perform as well in cases where there were fewer AE signal
samples. Additionally, although CNNs worked optimally with spectrogram-based AE
signals, they did not have the ability to properly handle raw time-series signals and could
possibly restrict their generalizability to practical applications with different signal
characteristics.

Another study by Zhang et al. (2018) focused on the rail crack detection with LSTM
networks coupled with AE technology to monitor real-world railways. It proposed a deep
learning solution that learns to leverage the time relationships among the AE signals to
provide real-time fault detection with minimal human intervention. It illustrated that the
LSTM solution outperforms the conventional solution of the fixed amplitude
variability-based threshold techniques that are vulnerable to environmental noise.
However, their solution was plagued by the problem of overfitting with small datasets. It
also raised the problem of handling highly skewed datasets since the AE signal
corresponding to cracks was much rarer compared to normal signal occurrences.
Additionally, while the LSTMs were able to handle sequence-wise AE information well,
they were not robust to noisy signal occurrences and to the existence of outlier distortions,
meaning other noise reduction algorithms need to be included.

Fu, Zhou & Guo (2024) proposed a study on GAN-based AE signal enhancement for
rotating machinery fault diagnosis using convolutional GAN (CGAN) with a historical
sequence learning module. The authors proposed a model that generates synthetic AE
signals resembling real-world fault conditions, helping to augment training datasets and
improve classification performance. Their findings indicated that the GAN-enhanced AE

Table 1 Literature review of existing AE models.

References Model used Accuracy Key limitations

Ciaburro et al. (2023) Pre-trained SqueezeNet (CNN) 95% . Limited to specific fan blade conditions, may not
generalize to other AE sources

. Pre-trained CNN lacks temporal pattern recognition for
sequential AE signals

Praveen Kumar et al.
(2024)

Comparison of CNN, LSTM,
and AE models

Varied (CNN: 88%, LSTM:
91%, AE: 85%)

. Model selection depends on dataset characteristics, lacks
adaptability

. Does not integrate hybrid models for further
performance gains

Wang & Vinogradov
(2023)

Convolutional GAN with
historical sequences

93% . GAN training instability, prone to mode collapse
. No integration of sequential learning for time-series
analysis

Barbosh, Dunphy &
Sadhu (2022)

Wavelet transform + Deep
learning

90.5% . Requires precise wavelet transformation settings, highly
sensitive to input quality

. Computationally expensive, not suitable for real-time
applications

Bai et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3289 5/26

http://dx.doi.org/10.7717/peerj-cs.3289
https://peerj.com/computer-science/


signals reduced classification errors and improved model generalization to previously
unseen fault conditions. However, the main limitation of their approach was GAN
instability, where the generator and discriminator training often led to mode collapse,
affecting the quality of synthetic signals. Additionally, their GAN model did not integrate
sequential learning, meaning it could not fully leverage time-dependent relationships in
AE signals. The study concluded that while GANs provide a powerful tool for data
augmentation and denoising, they must be combined with sequential models like LSTMs
or transformer networks for more robust AE-based fault classification.

In another research work, deep learning-based bearing fault diagnosis was researched by
employing short-time Fourier transform (STFT) and CNN (He et al., 2024). The authors
proposed a paradigm that transformed AE signals into time-frequency spectrograms to
feed into a CNN to treat them like image-type inputs to perform classification. It
automated the work of fault detection and significantly cut down the effort of
hand-engineered feature extraction. Their experiments demonstrated that CNN
outperformed other traditional learning algorithms, such as support vector machines
(SVMs) and random forest classifiers. Yet a significant limitation was that the CNN could
not learn the long-term relationships of the AE signal well and was less applicable to
time-series fault classification problems. It was also pointed out that the computational
cost was a limitation since the extraction of the feature by the CNN was computationally
intensive, reducing the feasibility of its usage to monitor the AE in real time within the
industrial environment.

Finally, a work on the use of GAN-driven AE signal augmentation to enhance datasets
by creating synthetic AE signals of damaged structures of concrete was suggested by Rana
et al. (2024). It significantly enhanced the classification of faults by addressing the issue of
data imbalance in applications of structural health monitoring. Training the classifiers with
both synthetic and actual AE signals resulted in increased micro-crack detection sensitivity
that is usually not captured by conventional analysis. Nevertheless, the research cited that
the diversity of the generated signal was at times compromised by the generator providing
redundant signal patterns instead of novel data at other times. In addition to this, the
augmentation by the GAN was not fully able to overcome the interference of noise,
implying the need to complement with a post-processing or a hybrid denoising approach
to enhance the quality of the signal.

These studies collectively demonstrate that deep learning models significantly
outperform traditional approaches in AE-based fault detection, yet each comes with
unique limitations. CNNs excel at extracting spatial features from transformed AE signals,
but they struggle with sequential dependencies. LSTMs effectively capture temporal
relationships, but they are sensitive to noisy signals and imbalanced datasets. GANs
enhance data denoising and data augmentation, but their instability and nonsequential
learning are concerns. The developed GAN-LSTM model addresses these concerns by
combining GAN-enhanced signal strengthening with sequential learning enhanced by
LSTM, providing an efficient and adaptable approach to AE fault detection. In contrast to
existing approaches, this model not only eliminates noise and improves the quality of AE
signals by employing a better GAN but also utilizes LSTM’s capability to learn long-term
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dependencies, leading to improved classification accuracy and generalization across
various AE datasets. Experimental results verify its superiority, revealing significantly
enhanced fault detection rates over individual CNNs, LSTMs, or GAN-based approaches.
This hybrid strategy offers a scalable and effective solution to real-world AE-based fault
diagnosis, paving the way for future breakthroughs in deep learning-driven AE signal
analysis.

PRELIMINARIES
This work employs two powerful deep learning architectures, Wasserstein generative
adversarial network with gradient penalty (WGAN-GP) and long short-term memory
(LSTM), as the foundation for enhancing and analyzing AE signals.

Wasserstein generative adversarial network with gradient penalty
(WGAN-GP)
WGAN-GP is an advanced variant of GAN designed to improve training stability and
output quality. Unlike traditional GANs that rely on the Jensen Shannon divergence,
WGAN-GP optimizes the Wasserstein distance, which provides smoother gradients and
avoids mode collapse. To further stabilize training, a gradient penalty is introduced to
enforce the Lipschitz constraint without resorting to weight clipping. As a result, WGAN-GP
can generate high-fidelity signals while retaining the essential structural properties of the raw
AE signal, making it highly effective for denoising tasks in fault diagnosis.

Long short-term memory (LSTM)
LSTM is a specialized type of recurrent neural network (RNN) capable of learning
long-term dependencies in sequential data. It overcomes the vanishing gradient problem of
standard RNNs by incorporating a memory cell and gating mechanisms, input gate, forget
gate, and output gate, that regulate how information is stored, updated, and retrieved. This
selective memory control allows LSTMs to effectively capture temporal dependencies in
AE signals, ensuring that subtle fault-related patterns over time are preserved. By
integrating LSTM with the denoised output of WGAN-GP, the proposed method achieves
robust feature extraction and reliable fault classification.

PROPOSED METHODOLOGY
This section discusses the core methodology of the proposed work. The key section of the
proposed work is: (1) AE signal denoising using WGAN-GP-based AE for eliminating
unnecessary noise while retaining fundamental fault characteristics that are presented in
Fig. 1, (2) STFT feature extraction for an improved frequency-time domain representation,
and (3) Fault classification using LSTM-based for precise health condition prediction of
machines as presented in Fig. 2. The detailed description has been presented in the
sub-sections below.

Data collection
In this study, high-quality AE signals were collected from rotating machinery
under varying operational conditions to ensure a diverse and representative dataset
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Figure 1 Preprocessing and WGAN-GP based signal enhancement. Full-size DOI: 10.7717/peerj-cs.3289/fig-1
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for fault diagnosis. By capturing signals across different rotational speeds, load
levels, and fault types, the dataset provides a rich foundation for training the proposed
model.

Figure 2 LSTM based fault classification. Full-size DOI: 10.7717/peerj-cs.3289/fig-2
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The Engine Acoustic Emissions Dataset (EAE-I) includes vibration and AE signal
measurements of the rotating equipment, predominantly bearings, at a range of operating
speed levels and loading conditions. It is usually used to implement fault detection,
condition monitoring, and predictive maintenance of industrial systems. It includes signal
acquisition of normal bearings and faulty bearings with a range of types of faults, such as
inner race faults, outer race faults, and ball defects. It is made up of a total of 10,000
samples with a 50 kHz sample frequency, with the signal duration of 2 to 10 s. The
information captured includes both time-domain raw AE waves and frequency-domain
formats such as the FFT transformation of the signal.

The Rolling Element Bearing Sound Dataset (REB-II) is a 15,000 AE signal database
obtained from a range of operating conditions of the rolling element bearings, which
makes the database a rich database to diagnose faults and monitor the status of a machine.
It includes normal operating conditions and faulty operating conditions of bearings at a
range of rotational velocities and loads to provide a complete analysis of the patterns of the
faults. It includes raw time-domain signal samples, frequency-domain analysis, and
significant statistical measures like RMS value, kurtosis, and spectral entropy that support
discriminating between normal operating conditions and faulty operating conditions.
Types of faults are inner race faults, outer race faults, and ball faults, with unique acoustic
properties for each of them. Next is the ToyADMOS Dataset (TAD-III), a database of
20,000 AE signals recorded from small industrial equipment with the objective of detecting
abnormal noises for machinery faults or wear on the machine component. It encompasses
typical operating conditions and malfunctioning operating conditions of various types of
equipment, such as motors, gears, and rotating elements, to offer a wide variety of
applications to perform research on fault detection. It comprises raw time-series acoustic
signal samples, frequency-domain transformations, and calculated measures of statistics
such as RMS value, spectral entropy, and peak-to-peak value that aid to distinguish
between normal operational conditions and abnormal operational conditions.

The visualization of Fig. 3 and Table 2 presents a detailed overview of the AE (AE)
datasets applied within this work, with information about their signal properties and
structural variability. The graph representation displays the AE signal of the EAE-I,
REB-II, and TAD-III datasets with varying amplitudes, frequency, and levels of noise
between the various conditions of the machine. The green, red, and yellow curves indicate
the unique patterns of the AE signal with the various datasets representing the fault-related
abnormalities differently. To this end, the table offers the major attributes of the datasets
with signal types, operating speed levels, conditions of the load, RMS levels, and types of
faults to put the datasets into perspective with respect to training the models. The EAE-I
offers the time-domain signal with a structured format, while the REB-II includes raw and
the FFT-transformation of the signal to provide a time-frequency mix of analysis. The
TAD-III is a sequence of the AE signal with a focus on time-series relationships.

Data preprocessing
Preprocessing plays a critical role in the GAN-LSTM framework for AE signal
enhancement and fault diagnosis, ensuring that the input data is clean, structured, and
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suitable for deep learning models (Tong, Zhang & Xie, 2024; Hang et al., 2024). Raw AE
signals often suffer from high noise levels, varying signal amplitudes, and non-stationary
characteristics, which can negatively impact model performance (He et al., 2024). To
overcome these challenges, Algorithm 1 shows the preprocessing workflow that employs
wavelet transform-based denoising, z-score normalization, and short-time Fourier
transform (STFT) as the core preprocessing techniques, ensuring optimal signal
representation for the GAN and LSTM components.

Wavelet transform-based denoising is chosen due to its superior ability to preserve both
time and frequency-domain features while removing high-frequency noise. Given an AE
signal x tð Þ, the continuous wavelet transform (CWT) is defined as:

Wx a; bð Þ ¼
Z þ1
�1

x tð Þc� t � b
a

� �
dt (1)

where a and b represent the scale and translation parameters, and ψ(t) is the mother
wavelet function. By applying the thresholding techniques within the wavelet domain, the
unwanted parts of the noise are eliminated while the most significant fault characteristics

Figure 3 Visualization of datasets. Full-size DOI: 10.7717/peerj-cs.3289/fig-3

Table 2 Acoustic emission datasets description.

# Name Signal type Speed
(RPM)

Load
(kN)

RMS
value

Fault type

EAE-I (https://www.kaggle.com/datasets/julienjta/engine-acoustic-emissions) Time-domain AE signal 1,500 5 0.045 Normal

REB-II (https://data.mendeley.com/datasets/n9y9c7xrz3/1) Raw & FFT transformed
AE signal

2,500 10 0.085 Inner race
fault

TAD-III (https://github.com/YumaKoizumi/ToyADMOS-dataset) Time-series acoustic
signal

3,000 15 0.112 Outer race
fault
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of the AE signal are preserved. The quality of the AE signal is enhanced before being
supplied to the GAN to enhance the signal. Z-score normalization is applied to maintain
the AE signal at a standard scale to avoid the issue of deep learning training due to gradient
instability. Given an AE signal vector X ¼ x1; x2;…; xnf g, the normalized signal is
computed as:

X0 ¼ X � l
r

(2)

where µ is the mean, and σ is the standard deviation of the signal. This conversion
guarantees that every input feature is normalized to have zero mean and unit variance,
which enables the GAN to produce high-fidelity synthetic AE signals and facilitates the
LSTM to effectively learn temporal dependencies without being affected by large
magnitude changes. The short-time Fourier transform (STFT) is used to transform
non-stationary AE signals into a time-frequency representation, which is especially
useful for the analysis of transient events in AE signals. The STFT is mathematically
expressed as:

X s;vð Þ ¼
Z þ1
�1

x tð Þw t� sð Þe�jvtdt (3)

Algorithm 1 Preprocessing of acoustic emission signals.

1. Input: Raw AE signal x tð Þ
2. Output: Preprocessed AE signal x0 tð Þ
3. Step 1: Wavelet Denoising
4. Perform Continuous Wavelet Transform (CWT) on x tð Þ
5. For each scale a and translation b :
6. for each a; b do
7. Compute Wx a; bð Þ as:

Wx a; bð Þ ¼ R1
�1 x tð Þw� t � b

a

� �
dt

8. if noise detected then
9. Apply thresholding to remove noise
10. end if
11. end for
12. Step 2: Z-Score Normalization
13. For each AE signal X ¼ x1; x2; …; xnf g:
14. for each xi do
15. Compute the mean l ¼ 1

n

Xn

i¼1 xi

16. Compute the standard deviation r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1 ðxi�lÞ
2

r

17. Normalize xi as: x0i ¼
xi�l
r18. end for

19. Step 3: Short-Time Fourier Transform (STFT)
20. For each window size L and shift Dt:
21. while there are more windows to process do
22. Apply window function w t � sð Þ at each shift s
23. Compute STFT:

X s ;wð Þ ¼ R1
�1 x tð Þw t � sð Þe�jwtdt

24. if no significant signal detected at certain frequency then
25. Skip this frequency range
26. end if
27. end while
28. Output: Preprocessed AE signal x0 tð Þ
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where w (t − τ) is the window function applied to localize the frequency content at different
time intervals. This transformation enables the model to distinguish between different fault
types based on their spectral characteristics, significantly improving fault classification
accuracy. This preprocessing collectively enhances the proposed model’s ability to learn
meaningful fault patterns.

GAN-based AE signal enhancement
Enhancing the AE signal is a central aspect of this work due to the raw AE signal being
affected by excessive noise levels, time-varying amplitudes, and non-stationarity that pose
challenges to exact fault diagnosis. Traditional denoising techniques such as Fourier
filtering and wavelet thresholding are inefficient at preserving the subtle patterns of the
fault while removing unnecessary noise. To avoid the aforementioned shortcomings of the
traditional techniques, this work uses a Wasserstein generative adversarial network with
gradient penalty (WGAN-GP) as the core model to improve the quality of the AE signal.
Compared to standard GAN models that are vulnerable to mode collapse and training
instability, the smooth convergence of the WGAN-GP can generate high-fidelity signals by
optimizing the Wasserstein distance instead of the standard Jensen-Shannon (JS) measure
of divergence. The central argument of the usage of the WGAN-GP is that the latter can
produce high-quality denoising of the AE signal with the retention of key structural
properties of the original fault signal.

The fundamental principle behind WGAN-GP is to approximate the Earth Mover’s
Distance (EMD) between real AE signals and generated signals, leading to a more stable
training process. The Wasserstein distance between two probability distributions Pr (real
AE signals) and Pg (generated AE signals) is defined as:

W Pr;Pgð Þ ¼ inf

c2
Q

Pr; Pgð Þ E x;yð Þ � c kx� yk½ � (4)

where
Q

Pr; Pgð Þ represents the set of all possible joint distributions with marginals Pr
and Pg. Instead of using a discriminator with a sigmoid activation function, as in
conventional GANs, WGAN-GP employs a critic network that outputs a real-valued score,
encouraging a smooth function space for better gradient updates. To enforce Lipschitz
continuity, WGAN-GP introduces a gradient penalty term, computed as:

Ex0�P0x krx0D x0ð Þk2 � 1ð Þ2
h i

(5)

where x0 is a randomly interpolated sample between real and generated AE signals, and
D x0ð Þ is the critic’s score.

This gradient penalty ensures that the discriminator behaves as a 1-Lipschitz function,
preventing exploding gradients and mode collapse, common issues in traditional GANs.

In this model, WGAN-GP is designed to take raw AE signals from datasets (EAE-I,
REB-II, and TAD-III) and learn to generate high-fidelity, denoised versions that retain
critical fault characteristics. The generator, parameterized by G(z), transforms a latent
noise vector z � Pz into a synthetic AE signal:

x0 ¼ G zð Þ; z � Pz (6)
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while the critic network D xð Þ assigns scores to both real and generated AE signals,
optimizing the Wasserstein loss function:

LD ¼ Ex�Pr D xð Þ½ � � Ex0�Py D x0ð Þ½ � þ kEx0�P0x ½ krx0D x0ð Þk2 � 1ð Þ2 (7)

where λ is the gradient penalty coefficient. The generator is optimized using:

LG ¼ �Ex0�Py D x0ð Þ½ �: (8)

Ensuring that generated AE signals receive higher critic scores, leading to better quality
enhancement. In the context of this research, WGAN-GP plays a pivotal role in removing
unwanted noise while preserving essential fault information, thereby improving the quality
of AE signals before they are fed into the LSTM-based fault classification model. By
learning a smooth transformation from noisy to clean AE signals, WGAN-GP enhances
model robustness, ensuring superior fault detection performance across different
operating conditions. The complete working flow of the WGAN-GP for signal
enhancement has been presented in Algorithm 2.

Figure 4, is the visualization that clearly shows the effect of WGAN-GP-based AE signal
enhancement, depicting the conversion from a noisy raw AE signal to a denoised
high-fidelity AE signal. In the initial frame, the red waveform is the AE signal prior to
processing, with high levels of noise and unpredictable fluctuations masking important
fault-related features. These distortions have a substantial impact on the reliability of fault
classification models, causing misinterpretation of machine conditions. However, the
second frame shows the green waveform, indicating the AE signal after WGAN-GP

Algorithm 2 WGAN-GP based AE signal enhancement.

1. Input: Noisy AE Signal X ¼ x1; x2; …; xNf g, Generator GuG , Discriminator DuD

2. Output: Enhanced AE Signal X̂
3. Initialize Generator GuG and Discriminator DuD

4. Set hyperparameters: learning rate a, batch size m, gradient penalty coefficient k
5. for each training iteration do
6. for k steps do
7. Sample real AE signals Xreal ~ Pdata Xð Þ
8. Sample noise vector Z � Pz Zð Þ
9. Generate synthetic AE signal:

Xf ake ¼ GuG Zð Þ
10. Compute Discriminator loss:

Ld ¼ E½D Xfake
� � � E� ½D Xrealð Þ þ kE� ½ krX̂ D X̂

� �k2 � 1Þ2� �
11. Update Discriminator:

hd  hd � arhd Ld
12. end for
13. Sample new noise vector Z � PZ Zð Þ
14. Generate synthetic AE signal:

Xf ake ¼ GhGðZÞ
15. Compute Generator loss:

LG ¼ �E D Xf ake
� �� �

16. Update Generator:
hG  hG � aruGLG

17. end for
18. Return Enhanced AE Signal X̂ ¼ GuG Xð Þ
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enhancement. This iteration shows smoother patterns with less noise and maintains
important fault characteristics inherent in the structure of the signal. By using Wasserstein
loss with gradient penalty, WGAN-GP successfully learns a mapping from noisy to clean
AE signals in a stable, robust, and high-quality signal reconstruction manner. This
improvement is especially useful for fault classification since it enables the model to
concentrate on significant sequential patterns without being affected by random noise. The
WGAN-GP-generated denoised AE signals ultimately enhance fault detection precision
and generalization, making the method very efficient for practical application in predictive
maintenance and structural health monitoring.

LSTM based fault classification
Algorithm 3 represents the fault classification that the proper identification of various
types of faults from AE signals facilitates predictive maintenance and the early detection of
faults. AE signals are inherently time-dependent and sequential in nature, with traditional
machine learning models like support vector machines (SVMs) or convolutional neural
networks (CNNs) being ineffective at handling their long-term relationships. To overcome
this limitation, long short-termmemory (LSTM) networks are used due to their capacity to
learn about the temporal relationships and learn from the long-range patterns of the AE
signal (Umar et al., 2024). In contrast to traditional recurrent neural networks (RNNs),
which are prone to the vanishing gradient issue, the introduction of a gating mechanism by
the LSTM enables the network to preserve key characteristics over a large number of time
steps, thereby providing a more accurate fault classification.

Mathematically, an LSTM unit consists of three primary gates: the forget gate, the input
gate, and the output gate, which controls the flow of information within the network.

Figure 4 The AE signals position before and after denoise using WGAN-GP.
Full-size DOI: 10.7717/peerj-cs.3289/fig-4
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Given an input sequence xt , the forget gate determines which past information to retain or
discard using a sigmoid activation function:

ft ¼ r Wf ht�1 þ Uf xt þ bf
� �

(9)

whereWf andUf are weight matrices, ht�1 is the hidden state from the previous time step,
and bf is the bias term. The input gate then decides how much new information should be
stored in the cell state:

it ¼ r Wiht�1 þ Uixt þ bið Þ (10)

C0t ¼ tanh Wcht�1 þ Ucxt þ bcð Þ (11)

where C0t represents candidate memory values. The cell state is then updated as:

Ct ¼ ft � Ct�1 þ it � C0t: (12)

Ensuring the retention of critical fault-related features. Finally, the output gate determines
the next hidden state, which is used for classification:

ot ¼ r Woht�1 þ Uoxt þ boð Þ (13)

ht ¼ ot � tanh Ctð Þ (14)

where ht captures the essential fault information from the AE signal. The LSTM-based
classifier in this model takes the enhanced AE signals from WGAN-GP and learns the
sequential relationships between different signal patterns, distinguishing between normal,

Algorithm 3 LSTM-based fault classification algorithm.

1. Input: Enhanced AE Signal X ¼ x1; x2; …; xTf g; Pre-trained LSTM Parameters h
2. Output: Predicted Fault Class Y
3. Initialize hidden state h0 and cell state C0

4. for t ¼ 1 to T do
5. Compute Forget Gate:

ft ¼ r Wf ht�1 þ Uf xt þ bf
� �

6. Compute Input Gate:
it ¼ r Wi ht�1 þ Ui xt þ bið Þ

7. Compute Candidate Memory:
~Ct ¼ tanh Wc ht�1 þ Uc xt þ bcð Þ

8. Update Cell State:
Ct ¼ ft � Ct � 1 þ it � ~Ct

9. Compute Output Gate:
ot ¼ r Wo ht�1 þ Uo xt þ boð Þ

10. Compute Hidden State:
ht ¼ ot � tanh Ctð Þ

11. end for
12. Compute Final Classification Score:

Y ¼ arg max Sof tmax Wy hT þ by
� �� �

13. if Y ¼¼ Normal Condition then
14. Return “No Fault Detected”
15. Else
16. Return “Fault Type: ” Y
17. end if
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inner race faults, outer race faults, and ball defects with high accuracy. The network is
trained using a categorical cross-entropy loss function:

L ¼ �
XN
i¼1

yi logðy0iÞ (15)

where yi is the actual fault label and y0i is the predicted probability. By leveraging
time-series dependencies in AE signals, the LSTMmodel effectively classifies different fault
conditions, ensuring higher generalization across varying machine conditions.

Figure 5 is the final classified output of the LSTM-based fault classification model that
displays the potential of the model to discriminate between normal and faulty AE signals
with time. Each of the graph lines represents the predicted probability of a specific fault
type Normal, Inner Race Fault, Outer Race Fault, and Ball Defect at 20 time steps. The peak
value of the “Normal” at the majority of time steps reflects the proper classification of the
fault-free conditions, while the change of the fault classes reflects the response of the model
to the change of the properties of the AE signal. The smooth transitions between the classes
and the well-separated classes indicate the effectiveness of LSTM to learn the long-term
dependency of the AE signal to provide robust classification. The visualization provides
strong empirical evidence that the proposed GAN-LSTM approach is successfully
enhancing and classifying the AE signal with a very high degree of accuracy to serve as a
robust solution to the challenges of predictive maintenance and real-time fault detection.

Finally, the LSTM classifier and the GAN-based signal enhancement of the AE signal
are merged into a complete end-to-end pipeline to supply smooth signal processing with
strong fault detection capabilities. The raw signal of the AE is cleaned of noise by the
WGAN-GP model, which processes the raw signal to generate high-quality, denoised
signals with the significant patterns of the faults remaining intact. These cleaned signals are
then supplied to the LSTM classifier that scans their sequence relationships to find the fault
labels with a very high degree of accuracy. To improve the performance of the model to the

Figure 5 Final output of LSTM-Based fault classification.
Full-size DOI: 10.7717/peerj-cs.3289/fig-5
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optimal levels possible, the hyperparameters of the model are optimized, that is, the
learning rate, the number of LSTM layers, the batch size, and the Wasserstein loss weight
factor. The training is stabilized by the usage of techniques such as adaptive learning rate
schedule, dropout regularization, and gradient clipping to avert the problem of the model
getting trapped into the mode of the training data while learning to avert the problem of
the model getting trapped into the mode of the training.

EXPERIMENTAL EVALUATION
This section is devoted to the experimental results and performance analysis of the
proposed approach to improve the AE signal and diagnose the faults. Experiments were
carried out with the support of the EAE-I, REB-II, and TAD-III datasets to measure the
performance of the model, the robustness of the approach, and the generality to other
conditions. Below is the description of the performance analysis in the following sub-
sections

System requirements
The implementation of the proposed AE fault classification model requires a
high-performance computing environment to handle large-scale AE signal processing,
deep learning training, and real-time inference. Given the computational complexity of
WGAN-GP for AE signal enhancement and LSTM for sequential fault classification, a
dedicated GPU-enabled system is essential for efficient execution. System configuration
comprises an NVIDIA GPU (minimum RTX 3090 or above) with a minimum of 24 GB
VRAM for accelerated tensor calculation and deep learning optimizations. A minimum
multi-core processor (Intel i9 or AMD Ryzen 9) with a clock speed of at least 3.5 GHz
assures efficient preprocessing of AE signals, such as wavelet denoising and STFT
transforms. The model requires at least 32 GB RAM to process large AE datasets (EAE-I,
REB-II, and TAD-III) and avoid memory bottlenecks in batch training. Fast NVMe SSD
storage (at least 1TB) is required to hold processed AE signals, trained models, and
real-time inference results. The software environment consists of Python (3.8+),
TensorFlow/PyTorch for deep learning, SciPy and NumPy for signal processing, and
Matplotlib for result visualization. Moreover, CUDA and cuDNN libraries are necessary
for GPU acceleration.

Data distribution for reliable model evaluation
To ensure a robust and unbiased evaluation of the proposed framework, the datasets
EAE-I, REB-II, and TAD-III are strategically divided into training, validation, and testing
sets in a 70:15:15 ratio as presented in Table 3.

Table 3 Dataset split percentage.

Dataset Training set (%) Validation set (%) Testing set (%)

EAE-I 70 15 15

REB-II 70 15 15

TAD-III 70 15 15
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The training set (70%) is applied to refine the model parameters to improve the ability
of the GAN to generate quality AE signals, while the 15% validation set is utilized to
fine-tune hyperparameters to avoid overfitting. The 15% testing set is then kept separate to
measure the real-world generalization of the model. Having the sets distributed with a
specific format means that the model is trained on a broad array of AE signal conditions,
validated with unknown samples to enhance flexibility, and strictly tested to measure the
effectiveness of the model to classify faults with varying conditions of the machine. Having
the datasets distributed in the same format all the time will provide a proper comparison
while increasing the robustness of the experimental results.

Baseline models
The following baseline models have been used for the evaluation of the proposed research
work.

. Umar et al. (2024): this study presents a fault diagnosis technique for milling machines
utilizing acoustic emission signals and a hybrid deep learning model optimized with a
genetic algorithm. The approach achieves a fault classification accuracy of 92.6%,
significantly outperforming traditional methods.

. Chen et al. (2024): this article introduces a deep LSTM-based fault detection method for
railway vehicle suspensions. The method employs a goodness-of-fit criterion to quantify
deviations between baseline models and newly monitored vibrations, demonstrating
superior performance over traditional approaches.

. Fu, Wei & Yang (2024): this article builds a fault diagnosis model based on a parallel
network of long short-term memory (LSTM) units and convolutional neural networks
(CNN) to capture temporal and spatial features from vibration signals of bearings. The
method improves feature extraction quality and robustness of the model.

. Sychev & Batako (2024): used wavelet transform to process audible acoustic emission
signals, enabling precise identification of the start and end of frequency changes caused
by surface roughness interaction.

Result
Experimental assessment of the developed AE Fault Classification Model was performed
using three benchmark datasets, i.e., EAE-I, REB-II, and TAD-III. The experiments
validate that the developed model greatly exceeds baseline approaches in terms of
classification accuracy, fault detection precision, and robustness. Signal enhancement
using WGAN-GP increases the quality of acoustic emission signals, resulting in improved
feature preservation and better classification performance.

Table 4 MSE performance for signal enhancement.

Dataset MSE (raw AE signal) MSE (after WGAN-GP) Improvement (%)

EAE-I 0.025 0.008 68.0

REB-II 0.032 0.011 65.6

TAD-III 0.028 0.009 67.8
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The outcome in Table 4 indicates that the mean square error (MSE) assessment was
used to measure the quality improvement in the AE signal before and after enhancement
using WGAN-GP-based. The outcomes indicate the MSE of raw AE signals was 0.025 for
EAE-I, 0.032 for REB-II, and 0.028 for TAD-III, reflecting the high amount of noise
present in the raw recordings. Following the WGAN-GP application for signal
improvement, the MSE values decreased to 0.008, 0.011, and 0.009, respectively, which is
an average of 67% improvement in all datasets. This substantial reduction confirms that
the WGAN-GP model effectively removes unwanted noise while preserving critical
fault-related features, improving fault classification accuracy in later stages. The
performance improvement was consistent across all datasets, indicating the
generalizability and robustness of the proposed GAN-based signal enhancement method.

From the other experiment, the value of the receiver operating characteristic (ROC)
curve in Fig. 6 shows the performance of fault classification by the GAN-LSTM-based
model applied and trained on the three data sets-EAE-I, REB-II, and TAD-III. The high
ROC-area under the curve (AUC) scores signal that the model provides near-perfect fault
detection through great true positive rate (TPR) and minimal false positive rate (FPR).
Also noteworthy is the fact that this trend continues with an AUC value of 0.970-97.0% in
the REB-II dataset, further proof of the strength of the model in coping with real-world AE
signal variability. The EAE-I and TAD-III dataset is still classified strongly, with AUC
values of 0.972 and 0.981, respectively, confirming the model’s capability of effective
generalization over different fault scenarios. The clear separation from the random
classifier baseline accentuates the superior discriminative power of the GAN-LSTMmodel
in favor of a high reliability in the industrial fault diagnosis.

Figure 7 is the overall comparison of the proposed approach with the baselines (Umar
et al., 2024; Chen et al., 2024; and Yenealem, 2025) on the datasets of EAE-I, REB-II, and
TAD-III. The green bar is the proposed approach, while the red, yellow, and blue are the
approaches of the baselines of the CNN (Umar et al., 2024), LSTM (Chen et al., 2024), and
another LSTM (Yenealem, 2025), respectively. It is obvious that the proposed approach is

Figure 6 ROC curve presenting the fault classification. Full-size DOI: 10.7717/peerj-cs.3289/fig-6
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the best with the highest accuracy on all the datasets, with the best performance in the
classification of the faults. In specific terms: For the case of the dataset of EAE-I, the
proposed approach is 94.4%, outperforming Umar et al. (2024) (88.6%), Chen et al. (2024)
(89.5%), and Yenealem (2025) (90.1%). Similarly, for the case of the dataset of REB-II, the
proposed approach is 97.0%, a much higher value compared to Umar et al. (2024) (90.2%),
Chen et al. (2024) (91.8%), and Yenealem (2025) (93.0%). For the case of the dataset of
TAD-III, the proposed approach is 96.2%, outperformingUmar et al. (2024) (92.3%), Chen
et al. (2024) (93.0%), and Yenealem (2025) (94.2%). The substantial performance difference
between the proposed approach and the baselines reflects the strength of the signal
improvement of WGAN-GP that increases the signal quality of AE and retains the key
features of the signal. The LSTM-based classification architecture also retains the sequence
relationships of the AE signal to provide greater classification trustworthiness and fault
localization accuracy.

The results demonstrate that the GAN-LSTM model is extremely generalized to other
datasets with a considerable minimization of the classification error and the misdiagnosis
of the AE-based fault detection systems. The performance improvement of REB-II (97%)
and TAD-III (96.2%) also substantiates the strength of the model to other patterns of
faults, levels of noises, and conditions of the machine. The analysis confirms that the
proposed GAN-LSTM architecture is a superior solution to the conventional CNN and
LSTM-based solutions to real-time industrial fault monitoring and predictive maintenance
applications.

The proposed method was evaluated against the approach by Sychev & Batako (2024)
across three datasets: EAE-I, EAE-II, and EAE-III. For EAE-I, Sychev & Batako (2024)
method achieved a false alarm rate of 8.12% and a missed detection rate of 6.05%, whereas
the proposed method reduced these values to 3.24% and 2.18%, respectively. On EAE-II,
Sychev & Batako (2024) approach recorded a false alarm rate of 7.56% and a missed
detection rate of 5.42%, while the proposed method achieved lower rates of 2.97% and

Figure 7 Accuracy comparison of proposed model with baselines.
Full-size DOI: 10.7717/peerj-cs.3289/fig-7
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2.04%. Similarly, for EAE-III, Sychev & Batako (2024) method produced a false alarm rate
of 6.87% and a missed detection rate of 4.95%, compared to the proposed method’s
improved results of 2.63% and 1.92%. These findings clearly demonstrate the superior
performance of the proposed method in reducing both false alarms and missed detections
across all datasets.

The illustration in Fig. 8, comparably, visualizes the precision, recall, and F1-score of the
presented GAN-LSTM model in comparison with baseline approaches (Umar et al., 2024;
Chen et al., 2024 and Yenealem, 2025) over two datasets: EAE-I and REB-II. The findings
validate the evident excellence of the introduced model, as it outperforms the others by
consistently exhibiting better classification performance on all three primary metrics. On
the EAE-I dataset, the introduced model decidedly performs better than baselines,
illustrating its strength to learn intricate AE signal pattern properties and suppress
misclassification mistakes. Likewise, for the REB-II dataset, the GAN-LSTM approach
demonstrates even greater performance, signifying the capability of its resistance to
capture and distinguish fault states from diverse AE signals. The greater recall values reflect
that the suggested model identifies more real faults without omitting significant fault
instances, and the high F1-score reflects a good balance between precision and recall. The
clear discrimination between the suggested model and the baseline approaches verifies that
GAN-based signal enhancement and LSTM-driven sequential learning have a significant
benefit over traditional CNN and LSTM classifiers. These findings justify the efficacy and
validity of the suggested method as a very dependable solution for AE-based fault detection
and predictive maintenance.

Ablation study analysis
The ablation study presented in Table 5 comprehensively evaluates the contribution of
each key component in the proposed framework, thereby validating its robustness and
effectiveness. The baseline LSTM and CNN models, without any GAN-based
enhancement, achieve accuracies of 89.5% and 88.6%, respectively, highlighting their

Figure 8 Comparative analysis. Full-size DOI: 10.7717/peerj-cs.3289/fig-8
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limited ability to cope with AE signal noise. Introducing WGAN-GP without
preprocessing raises the accuracy to 92.1%, confirming that GAN-based signal
enhancement substantially improves fault classification. Incorporating STFT feature
extraction further boosts accuracy to 94.0%, demonstrating the significance of
frequency-domain features in capturing essential AE signal characteristics. Finally, the
complete proposed configuration (LSTM +WGAN-GP + Full Preprocessing) achieves the
highest performance, with 97.0% accuracy, precision of 0.98, recall of 0.97, and F1-score of
0.975. These results clearly indicate that each added component contributes meaningfully,
and the integration of GAN-based enhancement with advanced preprocessing yields a
robust and highly effective fault classification framework.

CONCLUSION AND FUTURE WORK
The proposed research presented a GAN-LSTM-based system for AE signal enhancement
and fault classification, resolving some of the main shortcomings in current CNN and
LSTM-based techniques. The proposed technique efficiently eliminates noise distortions
by applying WGAN-GP, improves signal representation by using STFT-based feature
extraction, and utilizes LSTM for precise sequential fault detection. Experimental
outcomes on three benchmark datasets (EAE-I, REB-II, and TAD-III) proved the
excellence of the proposed model, with 97.0% accuracy on REB-II, 94.4% on EAE-I, and
96.2% on TAD-III, which outperformed conventional deep learning models. The high
precision (0.98), recall (0.97), and F1-score (0.975) also verify the robustness of the model
in identifying intricate fault patterns with low misclassification. Despite its promising
results, the proposed GAN-LSTM-based system has certain limitations. The model’s
performance heavily depends on the quality and diversity of the training datasets, which
may restrict its generalizability to unseen fault types or machinery. Additionally, the
computational complexity of WGAN-GP and LSTM components may hinder real-time
deployment on resource-constrained edge devices without further optimization.
Furthermore, the current approach has not been extensively evaluated under varying
environmental conditions and sensor placements, which could influence AE signal
characteristics and model performance. In the future, the model can be improved further
by investigating self-supervised learning methods to decrease dependency on labeled AE
datasets so that fault classification is possible in low-data or real-time industrial settings.
Also, incorporation of transformer-based architectures would allow the model to learn
long-range dependencies in AE signals, thus achieving better generalization across varying

Table 5 Ablation study of proposed model.

Model configuration Accuracy (%) Precision Recall F1-score

Baseline LSTM (Without GAN) 89.5 0.91 0.89 0.9

Baseline CNN (Without GAN) 88.6 0.9 0.88 0.89

LSTM + WGAN-GP (No preprocessing) 92.1 0.93 0.91 0.92

LSTM + WGAN-GP + STFT features 94.0 0.95 0.94 0.945

Proposed model (LSTM + WGAN-GP + Full preprocessing) 97.0 0.98 0.97 0.975
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machine types and operating conditions. Another potential area is the deployment of the
model on edge computing devices, allowing real-time fault detection with low latency in
IoT-based industrial applications. In addition, future work should explore adaptive
domain generalization techniques to maintain accuracy under diverse operating
environments and sensor configurations.
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