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ABSTRACT
In the realm of personalized cultural and creative product design, the capacity for
nuanced semantic expression and refined style modulation in image content exerts a
pivotal influence on user experience and the perceived creative value. Addressing the
limitations of current generative models—particularly in maintaining stylistic
coherence and accommodating individualized preferences—this article introduces a
novel image synthesis framework grounded in a synergistic mechanism that
integrates text-driven guidance, adaptive style modulation, and evolutionary
optimization: Evolutionary Adaptive Generative Aesthetic Network (EAGAN).
Anchored in the Stable Diffusion architecture, the model incorporates a semantic text
encoder and a style transfer module that will realize the image style transfer,
augmented by the Adaptive Instance Normalization (AdaIN) mechanism, to enable
precise manipulation of stylistic attributes. Concurrently, it embeds an evolutionary
optimization component that iteratively refines cue phrases, stylistic parameters, and
latent noise vectors through a genetic algorithm, thereby enhancing the system’s
responsiveness to dynamic user tastes. Empirical evaluations on benchmark
datasets demonstrate that EAGAN surpasses prevailing approaches across a suite of
metrics—including Fréchet inception distance (FID), CLIPScore, and Learned
Perceptual Image Patch Similarity (LPIPS)—notably excelling in the harmonious
alignment of semantic fidelity and stylistic expression. Ablation studies further
underscore the critical contributions of the style control and evolutionary
optimization modules to overall performance gains. This work delineates a robust
and adaptable technological trajectory with substantial practical promise for the
intelligent, personalized generation of cultural and creative content, thus fostering
the digital and individualized evolution of the creative industries.

Subjects Adaptive and Self-Organizing Systems, Artificial Intelligence, Data Mining and Machine
Learning, Data Science, Social Computing
Keywords Personalized generation, Cultural creativity, Diffusion model, Style transfer,
Evolutionary optimization

INTRODUCTION
Amid the backdrop of increasingly diversified cultural consumption, personalized cultural
and creative products have emerged as a vital conduit bridging traditional heritage with
contemporary aesthetics. These products serve not only as vessels of regional identity,
historical memory, and national symbolism, but also as expressions of individual taste and
aesthetic sensibility. Conventionally, the design of such artifacts has relied heavily on the
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subjective intuition and experiential knowledge of professional designers—a process often
marked by extended production cycles and limited customization—rendering it
inadequate for addressing the nuanced and varied expressive needs of users across diverse
cultural and situational contexts. As consumers place growing emphasis on cultural value
and unique experiential resonance, market demand for personalized cultural and creative
offerings continues to escalate, thereby catalyzing a paradigm shift in design philosophy
from mass-oriented production to individualized customization. The design domain is
thus compelled to explore new generative frameworks and methodological innovations to
actualize this transition. The evolution of personalized cultural and creative design not
only signifies a transformation in the modalities of cultural articulation, but also represents
a constructive response to the heightened user agency characteristic of the digital era
(Zhang, 2021). Today’s users increasingly eschew passive consumption in favor of active
participation, seeking to assert self-identity and cultural preference through tailored design
engagements. This emergent trend not only drives service innovation within the cultural
and creative industry value chain but also imposes heightened demands on the intelligence
and adaptability of design technologies. Against this backdrop, the imperative to
construct a system endowed with autonomous creative capabilities—capable of
interpreting linguistic input and generating visually diverse content imbued with cultural
coherence—has become central to enhancing the efficiency, accessibility, and
personalization of creative production (Li & Wang, 2022). Accordingly, research into
personalized image generation within cultural and creative domains is not only of
significant theoretical import but also holds substantial promise for industrial application.

In recent years, the rapid advancement of artificial intelligence—particularly the
widespread deployment of deep learning across vision, language, and generative
domains—has profoundly reshaped the pathway toward personalized design. Whereas
traditional design methodologies have historically depended on human expertise and
manual rendering, contemporary intelligent design systems are now capable of
autonomously translating user input into visual representations. Personalization modeling
has thus emerged as a pivotal research frontier within artificial intelligence, with its
principal objective being the generation of content outputs that align closely with
individual aesthetic preferences, behavioral patterns, or contextual nuances (Hui, 2021). In
this transformative process, deep learning technologies occupy a central role, having
achieved remarkable breakthroughs especially in image synthesis and style transfer. On the
front of image generation, models such as generative adversarial network (GAN),
variational autoencoders (VAE), and diffusion models have seen rapid development and
now underpin high-fidelity image creation. Diffusion models, in particular, have become a
cornerstone of text-to-image generation due to their exceptional stability and fine-grained
detail reproduction. Concurrently, techniques such as style-based GAN architecture
(StyleGAN) and Adaptive Instance Normalization (AdaIN) have significantly advanced
the controllability of image stylization, enabling the same semantic content to be rendered
in a multitude of culturally resonant visual languages. Moreover, the advent of multimodal
frameworks such as CLIP (Contrastive Language-Image Pretraining) has facilitated deep
semantic alignment between textual and visual modalities, rendering the automatic
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translation of linguistic expressions into coherent imagery both feasible and effective. The
confluence of these technological trajectories not only provides a robust theoretical and
algorithmic foundation for user-centric content generation, but also unlocks a vast horizon
of possibilities for the intelligent creation of cultural and creative artifacts (Li & Wang,
2022).

In the domain of personalized cultural and creative design, the integration of text-to-
image (TIG) generation and style transfer technologies offers a highly efficient and
imaginative paradigm. TIG empowers users to synthesize image content aligned with
semantic intent solely through natural language descriptions, eliminating the prerequisite
for manual illustration skills. Style transfer, on the other hand, enables the transformation
of generated imagery into culturally resonant artistic forms, thereby facilitating the visual
reinterpretation of content within specific cultural frameworks (Han, Shi & Shi, 2022).
This generation–transformation mechanism is particularly well-suited to the demands of
cultural and creative design, where the confluence of semantic precision and stylistic
authenticity is paramount, substantially enhancing both creative autonomy and
controllability.

Nevertheless, prevailing methodologies often exhibit limited responsiveness to
user-specific preferences, resulting in outputs that lack sufficient personalization.
Furthermore, existing models frequently struggle to reconcile the inherent trade-off
between visual fidelity and stylistic expressiveness, thus impeding the harmonious
alignment of semantic accuracy and aesthetic cohesion. In response, this article introduces
the Evolutionary Adaptive Generative Aesthetic Network (EAGAN)—a personalized
generation framework that fuses textual semantic modeling, style-adaptive modulation,
and an evolutionary optimization strategy. By jointly optimizing text prompts, style
vectors, and generative parameters through evolutionary algorithms, EAGAN achieves a
dynamic synthesis of semantic intent and stylistic form.

The principal contributions of this work are threefold:

(1) A style-adaptive generative architecture is proposed, integrating a diffusion-based
backbone with multi-style AdaIN, enabling the resultant imagery to preserve semantic
content while supporting personalized stylistic articulation

(2) An evolutionary optimization module is incorporated, employing iterative genetic
search to enhance the model’s adaptability across varying user preference inputs

(3) A comprehensive multi-source evaluation framework is established, comprising both
quantitative metrics and subjective assessments across open benchmarks focused on
semantic fidelity and style control, which collectively substantiate the superior
performance of the proposed method across multiple evaluation dimensions

The remainder of this article is structured as follows: ‘Related Works’ reviews related
works on text-based image generation and style transfer. ‘Materials and Methods’ presents
the proposed EAGAN framework in detail. ‘Experiment Result and Analysis’ outlines the
experimental setup and provides a comprehensive analysis of the results. ‘Discussion’
offers an in-depth discussion, and the concluding remarks are provided in the final section.
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RELATED WORKS
Text generation image study
In the field of text-to-image generation, GANs have been widely adopted to facilitate
multimodal synthesis by generating visual content conditioned on textual descriptions.
However, conventional GANs often suffer from instability during training, which can
result in mode collapse and suboptimal image quality. To address these challenges,
researchers have proposed hierarchical generation architectures. Notably, the Stacked
GAN introduced a two-stage generation process to sequentially refine image resolution
and detail, with each stage operating independently (Tominaga & Seo, 2022). Building on
this concept, Zhang et al. (2019) presented StackGAN++, which restructured the
generation pipeline into a tree-like, end-to-end framework comprising multiple generators
and discriminators for enhanced feature refinement. Expanding upon stacked
architectures, attention-based GANs emerged to improve the semantic alignment between
text and image. Among these, Attentional GAN by Xu et al. (2020) and Rich Feature GAN
by Cheng et al. (2020) introduced attention mechanisms to selectively emphasize
word-level semantics during image synthesis. Further advancements include Deep Fusion
GANs proposed by Tao et al. (2022), Semantic GANs and Semantic-Spatial Aware GANs
introduced by Liao et al. (2022), and Recurrent Affine Transformation GANs developed by
Ye et al. (2024), all of which employed conditional affine transformations to achieve deeper
integration of textual and visual modalities. Experimental evaluations demonstrate that
even single-level architectures utilizing such transformations can produce photorealistic
outputs that rival or surpass those generated by complex multi-stage models. However, the
omission of word-level semantic granularity in these models often leads to a deficiency in
fine-detailed image features.

To overcome this limitation, Tan et al. (2023) introduced a fine-grained semantic
evaluation metric known as Semantic Similarity Distance, which inspired further
development in contrastive pretraining methods. Based on this principle, CLIP model was
proposed (Radford et al., 2021), laying the groundwork for the Parallel Deep Fusion GAN
(PDF-GAN). PDF-GAN leverages multi-level semantic integration, employing a
discriminator capable of simultaneously evaluating global coherence and local detail,
thereby enhancing the fidelity and semantic richness of the generated images.

Image style transfer study
CariGANs, proposed by Cao, Liao & Yuan (2020) leverage neural networks in conjunction
with principal component analysis to learn a mapping from facial keypoints in real
photographs to those in caricature counterparts, thereby facilitating deformation based on
structural correspondence. However, the exaggeration effect in this approach is rigidly
anchored to the input image, constraining the generative diversity of resulting caricatures.
Nonetheless, the tight coupling between stylization and deformation modules hinders its
adaptability across varied application contexts (Hou et al., 2021).

Turja et al. (2022) further explored caricature deformation by predicting a deformation
field from paired image data. Although effective in capturing artist-guided exaggeration,
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this method is heavily reliant on labor-intensive, high-quality supervision and treats
caricature generation as a deterministic one-to-one mapping task, thus failing to produce
diverse outputs. In contrast, Hou et al. (2021) incorporated latent encoding strategies to
enrich the diversity of exaggeration patterns. While this approach offers potential for
varied deformations, the absence of robust supervision introduces challenges in
controllability and frequently leads to unstable or inconsistent distortions. To address
these limitations, styleCariGAN (Jang et al., 2021) enhances shape exaggeration by
embedding dedicated exaggeration blocks into pre-trained StyleGAN layers (Bermano
et al., 2022). Despite its innovative architecture, the model predominantly emphasizes
texture manipulation and struggles with achieving meaningful structural distortion, such
as ironic or satirical deformation. Complementarily, Men et al. (2022) devised a segment-
based, database-driven matching technique wherein user-assisted segmentation is
employed to isolate hairstyles and facial regions. These segmented elements are then
matched with stylized samples from a curated database, which are recombined to
synthesize the final caricatured output (Men et al., 2022).

The aforementioned research underscores the growing maturity of cross-modal analysis
and style transfer methodologies grounded in deep learning, particularly within the
domain of artistic creation. Consequently, in the context of personalized cultural and
creative product development, the application of deep learning and cross-modal generative
technologies offers substantial potential to shorten production cycles and fulfill the
demands of intelligent, user-centric customization. Building upon traditional text-to-
image diffusion models, this study incorporates a style transfer module to accommodate
more diverse generative requirements and employs a tailored planning algorithm to
expand the range of design aesthetics. These advancements hold significant promise for the
future of personalized product creation, marking a pivotal step toward efficient, adaptive,
and culturally resonant design innovation.

MATERIALS AND METHODS
Text vector and diffusion-based image generation
The image generation module serves as the central component of the proposed system,
tasked with translating text-based semantic vectors and style preference vectors into
coherent visual representations. In this work, the module employs a generation framework
built upon a diffusion-based architecture—specifically, Stable Diffusion—which
reconstructs images through an iterative denoising process, thereby enhancing both visual
clarity and semantic alignment, while preserving considerable generative flexibility. Given
the integral role of user input in the personalized design of cultural and creative products,
Stable Diffusion is adopted as the backbone of the image generation module. This model,
grounded in the latent diffusion model, achieves high-fidelity image synthesis with
superior computational efficiency (Du et al., 2023). Unlike earlier diffusion approaches
that operate directly in pixel space, Stable Diffusion performs transformations within a
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lower-dimensional latent space, substantially reducing the computational burden
associated with training and inference. The overarching architecture is illustrated in Fig. 1.

Stable Diffusion uses a text encoder in a pre-trained CLIP model to extract the semantic
representation of the input text. The input text T is tokenized and fed into the
Transformer, which outputs the embedding vector c 2 Rd . This semantic vector is fed into
the attention module of UNet as conditional information that guides the semantic
direction of image generation. Its main direction is represented by Eq. (1):

c ¼ CLIPtextðTÞ: (1)

While the other way of encoding results in the image x 2 RH�W�3. It is encoded by
VAE as potential representation z 2Rh�w�c, where h � H;w � W, to reduce the
arithmetic burden. The representation result of its main encoder z and decoder x is given
in Eqs. (2) and (3):

z ¼ Encf xð Þ (2)

x
^ ¼ DechðzÞ: (3)

After the feature extraction of the two-way network is completed, the forward process
adds the latent variable z to the Gaussian noise to construct the training samples:

zt ¼ ffiffiffiffi
at

p
z0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� at

p � �; � � Nð0; IÞ: (4)

Let t denote the discrete time step, and at the noise attenuation factor determined by the
scheduler. We denote by zt the noisy latent representation at step t, by ε the Gaussian noise
sample to be removed, and by ccc the textual condition embedding provided by the
encoder. The conditional UNet network is trained to predict the noise component ε from
(zt, t, c), thereby learning to iteratively denoise the latent representation under text
guidance:

�
^
h zt; t; cð Þ ¼ UNeth zt; t; cð Þ: (5)

The cross-modal attention mechanism is introduced in UNet for fusing textual
semantics, and the time step t is added to the network as an additional condition through
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Figure 1 The framework for the stable diffusion. Full-size DOI: 10.7717/peerj-cs.3288/fig-1
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time coding. So far the final loss function is obtained in the form of MSE whose diffusion
loss is shown in Eq. (6):

Ldiffusion ¼ Ez0;t;� �� �
^
hðzt; t; cÞ2

h i
: (6)

Finally, after completing the corresponding training, for a given present description T ,
the condition vector c is generated, a latent variable zT � N 0; Ið Þ is sampled from a
Gaussian distribution, and the denoising is iterated step by step:

zt�1 ¼ DenoiseStep zt; �
^
h zt; t; cð Þ

� �
: (7)

The final iteration is completed to get the reconstructed image as:

x
^ ¼ Dechðz0Þ: (8)

In this study, the image generation module functions as a foundational platform upon
which adaptive control mechanisms and evolutionary strategies are integrated, enabling
the synthesis of images that are diverse, semantically coherent, and stylistically distinct. As
a central architectural element, it plays a critical role in facilitating personalized image
generation, effectively aligning output aesthetics with user-defined preferences and
contextual demands.

AdaIN-based image style transfer
The style adaptive module is designed to enable controllable and personalized modulation
of image styles by incorporating external style representations—such as exemplar images
or user-defined preference vectors—to align the visual output with specific cultural
aesthetics or individual taste profiles (Gu & Ye, 2021). In this work, we employ AdaIN as
the core mechanism for style regulation, owing to its efficiency and differentiability in
facilitating image style transfer. AdaIN achieves style adaptation by normalizing the
feature statistics of the content image—specifically, by adjusting its channel-wise mean and
variance—and replacing them with those of the target style image. This operation alters the
image’s textural and stylistic characteristics while preserving its underlying structural
semantics. Formally, for an input image, AdaIN can be expressed as:

AdaINðfc; fsÞ ¼ rðfsÞ � fc � lðfcÞ
rðfcÞ

� �
þ lðfsÞ (9)

where fc 2 RC�H�W : represents the feature map of the content image on a certain layer;

fs 2 RC�H�W : represents the feature map of the style image; and for l �ð Þ;r �ð Þ represents
the mean and standard deviation calculation function on the channel dimension. The
generation of the style-transferred image is ultimately completed through a decoding
process. In this study, the style adaptive module serves as a key mechanism for aligning
visual output with users’ personalized aesthetic preferences. By enabling explicit style
control, it ensures that the generated images not only maintain semantic fidelity to the
input text but also embody stylistic characteristics that reflect cultural traditions or
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individual tastes. This capability constitutes one of the core components in achieving truly
personalized cultural and creative expression.

The establishment for the evolutionary adaptive generative aesthetic
network (EAGAN)
To enhance the adaptability of the generated multi-style images to a broader spectrum of
product design requirements, this study introduces a genetic algorithm (GA)-based
optimization strategy. This approach targets three critical elements within the model
pipeline: the textual prompts in the diffusion model training phase, the style content
vectors during style transfer, and the latent noise inputs in the final decoding stage. Serving
as a pivotal mechanism for adaptive refinement, this module leverages population-based
evolution—encompassing fitness evaluation, crossover, and mutation operations—to
iteratively improve the quality, diversity, and personalization of the generated outputs.

Construct the initial population P0 ¼ P1;P2; . . . ;PNf g, each individual is a set of
generative configurations, where Pi is shown in Eq. (10):

Pi ¼ t0i; si; zi
� �

: (10)

Three of the parameters represent the text embedding vector, style vector and noise
variable, and the individual assessment fitness function defined based on the above three
elements is shown in Eq. (11):

F Pið Þ ¼ a � CLIPScore xi;Tið Þ þ b � StyleSim xi; suð Þ þ c � PrefScore xið Þ (11)

where CLIPScore: semantic consistency; StyleSim: style match (with user preference
vectors); PrefScore: from the rating prediction model. StyleSim is implemented as the
cosine similarity between CLIP image embeddings of the generated output and the style
reference. This embedding-based metric captures both visual appearance and higher-level
stylistic cues, offering a more semantically grounded measure than handcrafted features or
Gram-matrix correlations. Then it is selected, poorer as well as mutated accordingly to
generate a new population for the next generation as follows:

Ptþ1 ¼ Generate Pselected
t ;Crossover;Mutation

	 

: (12)

Keep iterating the algorithm until the corresponding requirement is finally satisfied. In
this article, the overall structure flow of EAGAN, which is finally built by integrating the
above text image generation, style transfer and adaptive iterative optimization, is shown in
Fig. 2.

The proposed network, driven by user-provided textual input, integrates a
diffusion-based generation mechanism, style transfer technology, and a genetic
optimization strategy to construct a multi-module collaborative framework for the
personalized creation of cultural and creative products. The process begins with the user
articulating their creative intent via natural language, which is encoded into semantic
vectors by the text encoding module. These vectors are then fed into a Stable
Diffusion-based architecture, initiating image synthesis within a compact latent space.
Simultaneously, user-supplied style references—whether in the form of exemplar images
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or abstract preference vectors—are incorporated through the Style transfer Module, which
employs the AdaIN mechanism to modulate feature representations and infuse stylistic
attributes. Following initial image generation, the system conducts an evaluation of the
output using a multidimensional fitness function that accounts for semantic alignment,
style coherence, and subjective aesthetic congruence. Based on this assessment, a genetic
algorithm iteratively refines the textual prompts, style vectors, and latent noise parameters,
enabling adaptive optimization across successive generations. Through multiple
evolutionary cycles, the system progressively converges on outputs that exhibit high
semantic fidelity, distinctive stylistic traits, and strong personalization. To achieve
multimodal alignment, both textual and visual features are projected into a shared
embedding space. Specifically, we adopt the CLIP encoder (ViT-L/14 variant), which
jointly encodes text and images into semantically aligned vector representations through
contrastive pretraining. Text prompts and user preference vectors are processed by the
CLIP text encoder, while images and generated outputs are embedded using the CLIP
vision encoder. Semantic consistency is enforced by measuring cosine similarity within
this shared space, which also serves as the basis for optimization in the Evolutionary
Module. This design ensures that the generated imagery aligns not only with the textual
description but also with the encoded stylistic and preference cues, providing a robust
multimodal bridge for both training and evaluation. Abstract concepts such as tension,
fantasy, or urgency are not modeled through explicit rules but are implicitly captured by
the CLIP text encoder, which aligns them with recurring visual patterns in large-scale
training data. These embeddings guide the generator toward corresponding stylistic or
compositional features, though the mapping remains indirect and may introduce
ambiguity in certain cases.

This comprehensive framework embodies a synergistic and iterative co-evolution across
four key dimensions—text, image, style, and optimization—offering a robust, scalable, and
user-adaptive solution for creative ideation and customized content generation.

The proposed model, EAGAN, is built upon the Stable Diffusion architecture and
designed to enable personalized image generation guided by semantic and stylistic
preferences. The input data consisted of paired text prompts and cultural image content,

Text input

Image generation

Text vector 

Stable diffusion

Style transfer

GA
updates Result

Text inputText input

Image generation

Text vector 

Stable diffusion

Style transfer

GA
updates Result

Figure 2 The framework for the evolutionary adaptive generative aesthetic network.
Full-size DOI: 10.7717/peerj-cs.3288/fig-2
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sourced from benchmark datasets relevant to cultural and creative product design. During
data preprocessing, all images were resized to a consistent resolution, and the
corresponding text prompts were tokenized and encoded using a pre-trained semantic text
encoder. Image normalization was applied to ensure consistency across visual inputs. Style
references were also collected and standardized to feed into the AdaIN-based modulation
module for effective style conditioning. The evolutionary component required encoding
user preferences into cue phrases and latent vectors, which were initialized randomly and
then iteratively evolved through a genetic algorithm.

Evaluation method
To assess the effectiveness of EAGAN, a comprehensive evaluation strategy was employed.
Comparative analysis was conducted against state-of-the-art generative models, including
baseline diffusion-based and transformer-based architectures. Ablation experiments were
performed to isolate the individual contributions of the adaptive style modulation and
evolutionary optimization modules. In these experiments, key components were selectively
removed to observe performance degradation. Application-based evaluation was also
conducted to determine the model’s practical utility in real-world design scenarios by
generating culturally inspired product concepts and assessing stylistic relevance and
personalization through expert review panels. This multifaceted evaluation approach
helped establish both the technical robustness and creative applicability of the model.

Assessment metrics
The performance of EAGAN was measured using a suite of quantitative metrics. Fréchet
inception distance (FID) was used to evaluate the visual quality and realism of generated
images by measuring the distributional distance between generated and real image
features. CLIPScore was employed to assess semantic alignment between generated images
and their corresponding text prompts, reflecting how accurately the model captures textual
intent. Learned Perceptual Image Patch Similarity (LPIPS) was used to evaluate perceptual
differences between generated outputs and ground truth images, thereby indicating the
fidelity of style transfer and fine detail retention. These metrics collectively provided a
balanced evaluation of semantic accuracy, visual quality, and stylistic coherence.

EXPERIMENT RESULT AND ANALYSIS
Dataset and experiment setup
Given that this study encompasses both text-to-image generation and style transfer, we
employ subsets from the WikiArt, BAM, and LAION datasets to support comprehensive
evaluation. The WikiArt dataset comprises over 80,000 paintings produced by artists
worldwide, encompassing more than 20 canonical artistic styles such as Impressionism,
Cubism, and Realism, and includes rich metadata on styles and creators. For this research,
we selected 100 representative images from each of the ten most prominent styles,
constructing a 1,000-image subset to assess the model’s style control capabilities (Eichler,
Eichler & Del Pino, 2023). In contrast, the BAM dataset (Froehlich & Koeppl, 2024)
emphasizes modern design and illustration, featuring approximately 65,000 art images
with clearly annotated style labels. Its categories—such as digital painting, graphic design,
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and hand-drawn line art—align more closely with the practical aesthetic requirements of
the cultural and creative industries. Similarly, we extracted 100 samples from each of ten
styles within BAM and integrated them with theWikiArt subset to establish a consolidated
benchmark dataset for evaluating style adaptability and control.

In order to evaluate the model’s performance on text–image semantic consistency, we
further utilized the LAION-5B dataset (Schuhmann et al., 2022). From this large-scale
collection, we extracted a dedicated evaluation subset consisting of 1,000 high-quality
image–text pairs. The curation process combined keyword-based filtering with manual
inspection: candidate samples were first selected through thematic keyword queries, and
then carefully reviewed to ensure that the associated textual descriptions not only captured
the central thematic content but also included stylistic indicators. To maintain consistency
and reduce noise across samples, several preprocessing steps were applied. All images were
standardized to a fixed resolution of 512 × 512 pixels, and samples exhibiting low visual
quality, vague or incomplete textual descriptions, or clear semantic mismatches between
text and image were systematically excluded. This multi-stage filtering procedure ensured
that only coherent and representative pairs were retained.

The final evaluation set was structured into two complementary subsets:
Stylistic expressiveness subset (sourced from WikiArt and BAM), focusing on artistic

attributes, visual style, and expressive qualities.
Semantic alignment subset (sourced from LAION), emphasizing accurate

correspondence and fidelity between textual descriptions and visual content.
Together, these curated subsets enable a robust, multi-dimensional evaluation protocol.

By balancing stylistic control with semantic fidelity, the dataset supports comprehensive
validation and comparative analysis of the proposed model’s performance. Importantly,
compared with the raw large-scale datasets, the curated subsets underwent stricter quality
control and noise reduction, thereby enhancing the reliability and stability of the
evaluation outcomes.

To ensure reproducibility and minimize evaluation bias, the dataset was divided into
training and validation subsets following an 80/20 split, stratified across both the stylistic
(WikiArt/BAM) and semantic (LAION) partitions to preserve representativeness. The
validation set was kept entirely disjoint from training data to avoid information leakage.
For user preference modeling, stylistic indicators were encoded using categorical
embeddings, while semantic alignment cues were represented by normalized dense vectors
derived from CLIP text embeddings; these preference vectors served as control signals
during model conditioning. All experiments were conducted with fixed random seeds to
guarantee reproducibility, and repeated runs yielded stable results with minimal variance.
To mitigate potential evaluation bias, sample selection was balanced across categories,
manual curation was cross-validated by multiple annotators, and reported metrics
represent averaged performance across subsets rather than relying on isolated cases.

To comprehensively evaluate the performance of the proposed model in cultural and
creative image generation, this study constructs a multidimensional evaluation framework
encompassing four key dimensions: image quality, semantic consistency, style control, and
personalized adaptability.
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For image quality, two widely adopted metrics are employed: FID and Inception Score
(IS). FID quantifies the distributional distance between generated and real images in the
feature space, with lower values indicating higher realism. IS simultaneously considers
image diversity and clarity, offering a complementary perspective on generative fidelity.

In terms of semantic consistency, the study uses CLIPScore, which computes the cosine
similarity between the CLIP-encoded embeddings of the input text and the generated
image. This metric reflects the model’s ability to accurately capture and visually represent
user intent as expressed through natural language input.

To assess style control ability, LPIPS distance and GramMatrix similarity are employed.
LPIPS evaluates perceptual differences in visual style, while Gram Matrix similarity
captures correlations of feature activations related to texture, brushstroke, and color. Since
style transfer tasks preserve semantic structure and only modulate visual appearance, IS is
excluded from this component of the evaluation.

For personalized adaptability, the model’s performance is gauged by its responsiveness
to varying user preferences through iterative optimization, reflected in improved scores
across the above dimensions under evolving input constraints.

To benchmark the effectiveness of the proposed framework, a suite of representative
models is selected for comparison:

. Stable Diffusion (Du et al., 2023): a high-fidelity, text-driven baseline with strong
semantic preservation capabilities.

. VQGAN+CLIP (Crowson et al., 2022): a hybrid model known for its abstract, expressive
generation through joint optimization of image and text embeddings.

. StyleGAN-NADA (Gal et al., 2022): a semantically guided style transfer model,
well-suited for direct comparison with the proposed style transfer module.

These models encompass the prevailing paradigms in generative AI and provide diverse,
challenging baselines for comparative analysis. The experimental environment used for
training and evaluation—including hardware specifications, software versions, and
configuration details—is summarized in Table 1.

The genetic algorithm was configured with a population size of 30, a mutation rate of
0.2, and a crossover rate of 0.5, employing a tournament selection strategy. The number of
iterations was fixed at 20, as preliminary convergence analysis showed that performance
improvements largely stabilized beyond this point. To assess the robustness of our results,
all experiments were repeated with three random seeds, and we report the average
performance along with the corresponding standard deviation. This procedure ensures
that the improvements observed in FID, CLIPScore, LPIPS, and Style Similarity are not
due to seed-specific effects. The results show stable trends across runs, with small
variances, indicating that the gains of EAGAN over baselines are statistically reliable.

Method comparison and result analysis
Following the completion of model construction, we conducted comprehensive testing
using the two constructed datasets. The performance of the proposed model was evaluated
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across the primary metrics outlined earlier. The corresponding results—covering image
quality, semantic consistency, and style control—are visually presented in Figs. 3 and 4,
respectively, demonstrating the effectiveness of the model under varying input conditions
and across multiple evaluation dimensions.

Figure 3 presents the comparative results of image generation performance across
various methods on the LAION-5B dataset. Evaluated along three key metrics—FID, IS,
and CLIPScore—the proposed EAGAN model demonstrates superior performance across
all dimensions. Specifically, EAGAN achieves the lowest FID score (21.3), indicating that
its generated images exhibit the highest resemblance to real image distributions. It also
records the highest CLIPScore (0.78), evidencing strong semantic alignment between the

Table 1 The experiment environment information.
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Figure 3 The method comparison results on LAION-5B datasets. Full-size DOI: 10.7717/peerj-cs.3288/fig-3
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generated visuals and their corresponding textual descriptions. In terms of generative
diversity and visual fidelity, EAGAN attains an IS of 8.5, outperforming baseline models
and validating the effectiveness of its integrated evolutionary optimization and style
regulation mechanisms.

Figure 4 illustrates the comparative performance of various methods in style transfer
tasks on the BAM and WikiArt datasets. The proposed EAGAN model demonstrates
consistently superior results across all evaluated metrics. Notably, EAGAN achieves the
lowest FID score (20.5) and lowest LPIPS distance (0.15), indicating that its generated
images maintain high visual quality and preserve intricate details while undergoing style
transformation. In addition, the model attains the highest Style Similarity score (0.81),
substantially outperforming StyleGAN-NADA (0.73) and other baseline approaches.
These results highlight EAGAN’s enhanced capacity for style expression and alignment,
effectively validating the impact of its evolutionary optimization strategy and adaptive style
regulation module.

Ablation experiment and application analysis
After benchmarking EAGAN against existing models, we further evaluated its
evolutionary optimization performance, specifically the impact of the GAmodule, through
a series of ablation experiments. The results of these analyses are presented in Figs. 5 and 6,
which highlight the performance differences with and without GA integration. These
comparisons reveal the critical role of the evolutionary component in enhancing semantic
fidelity, style precision, and overall image quality, thereby confirming its effectiveness in
driving adaptive and personalized generation.

Figure 5 demonstrates the impact of the evolutionary optimization module on model
performance, with AGAN representing the ablation version of the model without GA
integration. The comparison clearly shows that the full EAGAN model surpasses AGAN
across all three key metrics—FID, IS, and CLIPScore. In particular, EAGAN achieves a
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notably lower FID, indicating a substantial reduction in the distributional gap between
generated and real images. Simultaneously, the higher CLIPScore reflects enhanced
semantic alignment between textual prompts and generated visuals. These improvements
validate the effectiveness of the GA module in adaptively exploring and refining the
parameter space, thus reinforcing its crucial role in optimizing image quality and semantic
fidelity.

Figure 6 presents the results of the ablation experiments focused on the style transfer
task using the BAM andWikiArt datasets. When compared to AGAN—the variant lacking
the evolutionary optimization module—the complete EAGAN model demonstrates
superior performance across all evaluated metrics. Specifically, EAGAN records lower FID
and LPIPS values, indicating the generation of higher-quality images with smoother and
more coherent style transitions. Furthermore, its Style Similarity score approaches 0.85,
significantly outperforming AGAN and underscoring the effectiveness of the genetic
algorithm in enhancing style alignment. These findings affirm the pivotal role of the
evolutionary optimization module in strengthening both the consistency of stylistic
expression and the overall visual fidelity of the generated results.

Figure 7 illustrates the impact of varying the number of GA iteration rounds on model
performance across both datasets. The results reveal that as the number of GA iterations
increases, EAGAN consistently improves in terms of FID and LPIPS, reflecting enhanced
image quality and better style fidelity through evolutionary refinement. On the LAION-5B
dataset, both CLIPScore and IS reach their peak between 15 and 25 iterations, after which a
slight decline suggests the emergence of a search equilibrium. In contrast, on the BAM +
WikiArt datasets, Style Similarity continues to rise steadily with more iterations until it
stabilizes, indicating a progressive enhancement in stylistic alignment.

Overall, these findings highlight the significant influence of GA iteration count on
generative performance. Based on the observed trends, the model achieves its optimal
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Figure 6 The ablation experiment results on BAM + WikiArt datasets.
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multidimensional results at 20 iterations, which is selected as the default configuration for
this study.

Following the quantitative analysis, subjective human perception—an essential factor in
evaluating personalized generative models—was assessed through a user study. Volunteers
were asked to rate, on a 10-point scale, the visual quality and stylistic relevance of
text-based images generated under varying GA iteration counts. As shown in Fig. 8, user
scores exhibit a clear upward trajectory as the number of GA iterations increases, followed
by a plateau. At the 5th iteration, the outputs were relatively unrefined, yielding an average
score of 7.7, suggesting that early-stage evolutionary optimization was insufficient.
However, between the 15th and 20th iterations, marked improvements in semantic
accuracy and stylistic expression were observed, with the 20th iteration achieving the peak
average score of 8.8. Beyond this point, user ratings fluctuate slightly but remain
consistently high, indicating convergence in perceived quality. These results confirm that
the GA module significantly enhances the aesthetic appeal, style alignment, and
personalization of generated images. Moreover, the convergence trend supports the
conclusion that a moderate iteration count effectively balances visual quality with
computational efficiency for practical deployment scenarios.

DISCUSSION
The EAGAN proposed in this study integrates four key components—text semantic
understanding, image generation, style transfer, and evolutionary optimization—to
construct a highly collaborative framework for personalized image synthesis. In contrast to
conventional text-to-image generation models such as Stable Diffusion or VQGAN+CLIP,
EAGAN introduces two novel and synergistic modules: Style Adaptive Module and the
Evolutionary Optimization Module, which significantly enhance its flexibility and
generative precision. The Style Adaptive Module, built on the AdaIN mechanism, enables
dynamic modulation of stylistic attributes by incorporating user-supplied style references
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Figure 7 The results for different GA iterations on both datasets. Full-size DOI: 10.7717/peerj-cs.3288/fig-7
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or preference vectors. This allows the model to maintain semantic integrity while achieving
customized stylistic expression, effectively addressing diverse aesthetic expectations.
Simultaneously, the Evolutionary Optimization Module employs a genetic algorithm to
perform a global search and multi-round iterative refinement over prompt representations,
style parameters, and latent noise vectors. This enables continuous enhancement of image
quality, semantic alignment, and personalized fit—far surpassing the capabilities of
traditional models constrained by static parameter sets. By coupling self-adaptive style
regulation with evolution-driven optimization, EAGAN overcomes key limitations in
controllability and expressiveness faced by existing approaches. Experimental evaluations
across multiple benchmarks consistently demonstrate EAGAN’s superior performance in
FID, CLIPScore, and Style Similarity—especially in tasks demanding high fidelity in
semantic consistency and style transfer—underscoring the robustness, adaptability, and
innovation of its structural design. Although our evaluation highlights improvements in
image fidelity and semantic alignment over baseline models, we acknowledge that the
comparison does not systematically assess controllability of stylistic attributes or
responsiveness to user preferences. These dimensions are critical for personalized
generation but remain difficult to benchmark due to the absence of standardized protocols.
While qualitative results suggest that EAGAN provides finer style modulation and more
adaptive preference alignment than prior approaches, future work will focus on developing
structured evaluation methods—potentially combining user studies with automatic
metrics—to more rigorously validate these advantages.

The EAGAN model demonstrates substantial application potential in the personalized
design of cultural and creative products, addressing the growing demand for user-driven
customization as the industry shifts away from standardized production. In an era where
creative output must integrate cultural depth, distinctive visual style, and individual
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expression, EAGAN offers an intelligent, automated solution that seamlessly translates
natural language input and user preferences into richly styled, semantically meaningful
imagery. By fusing text semantics with adaptive style modulation, EAGAN enables the
efficient generation of culturally resonant and aesthetically refined content. This capability
is particularly valuable in scenarios such as digital collectibles, themed illustrations,
stationery and packaging design, fashion pattern generation, and more. For instance, a
designer or casual user can simply input prompts like “Dunhuang-style flying apsara” or
“ink-style cat”, and the system will produce visually compelling, stylistically aligned
artwork—effectively lowering the creative entry barrier. Moreover, the GA-based
evolutionary module allows for real-time, iterative refinement based on user feedback,
enabling outputs to dynamically converge toward personalized aesthetic preferences. This
interactive loop enables a genuine “human–machine co-creation” experience, in which
creativity is not fully automated but instead adaptively guided by user input and iteratively
refined through the model’s feedback. Interactivity is modeled through a learned
preference-adaptive mechanism: user adjustments to prompts, style vectors, or reference
images are encoded and dynamically integrated into the generation process, allowing the
system to respond in real time to evolving intentions. For animation or scene dynamics,
the framework currently employs a hybrid strategy—rule-based temporal interpolation for
smooth visual transitions, combined with learned feature modulation to maintain
semantic and stylistic consistency across frames.

Beyond individual use, EAGAN can be embedded into cultural and creative platforms
or interactive design tools, supporting applications such as assisted concept development,
customized design generation, and cultural content reinterpretation. In this way, it not
only improves design efficiency but also broadens participation in creative processes by
providing an intelligent, personalized, and adaptive design partner. In the current
implementation, our framework does not explicitly incorporate a visual attention
mechanism. Instead, semantic–visual alignment is primarily achieved through the use of
pretrained CLIP encoders and the evolutionary optimization strategy, which iteratively
adjusts prompts, style vectors, and latent codes to improve coherence between text and
image features. This design choice reflects our focus on preference-driven optimization
and style adaptivity, rather than token-level attention modeling. That said, we
acknowledge that integrating visual attention modules could further strengthen
fine-grained text–image correspondence, particularly in complex scenes where localized
alignment is critical. For example, cross-attention mechanisms between text tokens and
image regions, as employed in recent diffusion-based models, may enhance controllability
over object placement and region-specific styling. Exploring the integration of such
attention-based strategies into our framework represents an important direction for future
work.

CONCLUSION
In this article, we introduced EAGAN, a novel framework for personalized cultural and
creative image generation that integrates semantic alignment, style adaptivity, and
preference-aware optimization. By combining the generation strengths of Stable Diffusion,

Hu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3288 18/22

http://dx.doi.org/10.7717/peerj-cs.3288
https://peerj.com/computer-science/


the flexible transformation capabilities of AdaIN, and the adaptive search properties of
evolutionary algorithms, EAGAN enables a unified system for controllable and
user-responsive image synthesis. The proposed Style Adaptive Module effectively injects
stylistic cues from user-provided references or encoded preference vectors, while the
Evolutionary Optimization Module iteratively refines prompt formulations and latent
parameters to enhance semantic coherence and personalization. Experimental results on
datasets such as LAION-5B, BAM, and WikiArt show consistent improvements over
baseline methods (Stable Diffusion, VQGAN+CLIP, and StyleGAN-NADA) on widely
adopted metrics including FID, CLIPScore, LPIPS, and Style Similarity. Ablation studies
further highlight the contribution of both the style control mechanism and the
evolutionary optimization strategy to these gains.

At the same time, we acknowledge several limitations of the present study. The user
study design and participant selection were limited in scale and diversity, constraining the
generalizability of subjective evaluations. Moreover, while benchmark results demonstrate
promising performance, further in-depth error analysis and statistical validation are
needed to more rigorously establish significance. Finally, although EAGAN shows strong
adaptability, broader testing across additional cultural domains and creative contexts
remains necessary.

Looking ahead, future work will focus on conducting larger and more systematic user
studies, incorporating robust statistical analysis, and extending the framework to
encompass richer modalities of user interaction and cultural specificity. By addressing
these directions, we aim to further strengthen the reliability and applicability of EAGAN in
supporting personalized, culturally grounded visual content creation.
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