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ABSTRACT

This article investigates the system recovery problem for a class of multi-input
multi-output (MIMO) nonlinear systems under false data injection attack. Under the
conditions that the attack is norm-bounded and the system has a vector relative
degree and a trivial zero dynamics, the nonlinear system is transformed into a linear
one by means of feedback-linearizing design. Then, a high-gain approximate
differentiator is adopted to obtain the system states with any arbitrary accuracy. After
that, by using a technique of replacing real-time with a small time delay, a recursive
attack-compensation input signal is constructed and added into the system input to
almost fully compensate for the impact of the attack on the system’s transient
performance. At this time, the input of the nonlinear system includes two parts:
desired input (or called reference input), which is designed according to the nominal
model, and additional attack-compensation input. Theoretical analysis shows for the
first time that the system can be almost fully recovered in the sense of the mapping
relationship between the desired input and nonlinear system states, i.e., the
aforementioned mapping is almost the same as the one in the nominal system.
Finally, a simulation on a near-space vehicle is provided for verifying the theoretical
results.

Subjects Algorithms and Analysis of Algorithms, Data Science
Keywords System recovery, Cyber-physical system, Attack-compensation, False data injection
attack, Nonlinear systems, Feedback-linearization

INTRODUCTION

The integration of computation, communication and control units has led to the birth
and rapid development of a new generation of intelligent systems (Khan et al., 2025b;
Alsinai et al., 2025), i.e., the cyber-physical systems (CPSs), which have been
increasingly used in transportation systems, smart grids, power systems, remote
surveillance and other fields (Cheng, Shi ¢ Sinopoli, 2017). Due to the openness of
information exchange and the complexity of physical dynamics, the long-time running of
CPSs may cause security problems (Alrslani et al., 2025). Security vulnerabilities of CPSs
provide the malicious attackers with the opportunity to implement them with ulterior
motives (Khan et al., 2025a).

Generally, the cyberattacks can be broadly categorized as three main categories: denial-
of-service (DoS) attacks, replay attacks and false data injection (FDI) attacks. DoS attackers
obstruct the communication between networked agents (Wang et al., 2025). Relay
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attackers record and cover the communication data to degrade the system performances
(Markantonakis et al., 2024). Different from them, FDI attacks, which intend to tamper
transmitted data packages causing false feedback information, are more dangerous and
complicated (Li, Shi & Chen, 2018). For this reason, the researches on CPSs under FDI
attacks recently become one of the main topics.

In the past decade, fruitful results have been made for CPSs under attacks on attack
strategy design (Zhang ¢ Ye, 2020b; Zhang, Ye ¢ Shi, 2022), attack detection (Alfriehat
et al., 2024; Tanyildiz et al., 2025), secure estimation (Sun ¢ Yang, 2025) and secure control
(Yang et al., 2024; Khan et al., 2025c). To name a few, based on self-generated FDI attacks,
Zhang & Ye (2020b) proposed a necessary and sufficient condition for attack parameters
such that FDI attacks can achieve complete stealthiness. Subsequently, they investigated
decentralized FDI attacks that destabilize the estimation error dynamics but eliminate their
influences on the residual in each sensor node. Pasqualetti, Dorfler ¢ Bullo (2013) designed
centralized and distributed attack detection and identification monitors for
continuous-time descriptor systems. In addition, secure estimation and secure control
have also received great attention, especially in recent years. In An ¢» Yang (2019), with the
help of a constrained set partitioning approach, a state estimation scheme was proposed
for discrete-time linear CPSs to relieve the computational complexity on the premise of the
estimation correctness. Besides, they also investigated the secure control problem for
nonlinear interconnected systems against intermittent DoS attacks (An ¢ Yang, 2018a).
Although these approaches proved their efficiency in attack design, attack detection, secure
estimation and secure control, they ignored the impact of the attack on the system itself
and did not consider how to recover the system. Actually, depending on desired precision
and safety criticality of a system, changes in the transient response can be highly
undesirable (Chakrabortty & Arcak, 2007, 2009). This inspired research on performance
recovery (Atassi ¢ Khalil, 1999).

In the past dozen years, performance recovery for nonlinear control has begun to attract
attention in the literature, where the controller recovers the nominal transient trajectory in
the presence of plant uncertainties and external disturbances. Such results for certain
nonlinear control designs were proved in Back ¢» Shim (2007, 2009), Chakrabortty ¢» Arcak
(2007, 2009), where singular perturbation methods are adopted to prove performance
recovery. However, disturbance and its derivative are assumed to be bounded in Back ¢»
Shim (2007, 2009), and the uncertainty is assumed to be a sufficiently smooth function in
Chakrabortty & Arcak (2007, 2009). Additionally, the tracking problem was studied in
Freidovich ¢ Khalil (2008) for a partially feedback linearizable single-input-single-output
(SISO) nonlinear system with stable zero dynamics, where the closed-loop system under
the observer-based controller recovers the performance of the nominal linear model as the
observer gain becomes sufficiently high. However, the disturbance and its derivative are
required to be bounded. An extension of Freidovich ¢ Khalil (2008) to multi-input
multi-output (MIMO) nonlinear systems was presented in Wang, Isidori e Su (2015)
where the system is required to have a well-defined vector relative degree. After that, in
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Table 1 Comparisons between the proposed approach and the existing relevant methods.

Methods Robustness Strengths or weaknesses
Secure control, e.g., Back & Shim (2007, 2009) Enhancing the robustness /

of the controller
Back & Shim (2007, 2009) Performance recovery Disturbance and its derivative are assumed to be bounded
Chakrabortty & Arcak (2007, 2009) Performance recovery Uncertainty is assumed to be a sufficiently smooth function
Freidovich & Khalil (2008) Performance recovery Disturbance and its derivative are required to be bounded
Wang, Isidori & Su (2015), Wu et al. (2019) Performance recovery Uncertainty is required to be a smooth function
Our approach System recovery (enhancing the ~ Only boundedness of the attack is required

robustness of the plant)

order to relax the condition on vector relative degree, Wu et al. (2019) investigated the
performance recovery for MIMO nonlinear systems under the (substantially weak)
assumption of invertibility. One should note that the uncertainty is required to be a
smooth function in Wang, Isidori ¢» Su (2015), Wu et al. (2019). Despite these efforts on
performance recovery for nonlinear systems, a common drawback of them is that the
disturbances or uncertainties are differentiable, even smooth. For the attack signal, it is
deliberately designed by hackers to harm the system. Thus, the attack signal may be a
discontinuous and fast changing signal. This feature makes the existing results on
performance recovery cannot be applied to CPSs under FDI attacks without assumption
on its derivative, and to our knowledge, there is still no result available on system recovery
problem of CPSs under attacks. This motivates the present study.

To more intuitively demonstrate the necessity of researching the system recovery
problem for MIMO nonlinear systems under attack, Table 1 compares the proposed
approach with existing methods.

This article deals with the system recovery problem for a class of MIMO nonlinear
systems subject to FDI attacks without assumption on its derivative. The system under
consideration has a vector relative degree and a trivial zero dynamics, which can be
transformed into a linear one by means of feedback-linearizing design. Then, a recursive
attack-compensation input signal is constructed skillfully and added into the system input
to almost fully compensate the attack, so that the system can be almost fully recovered.
Compared to the existing results, our approach consists of the following main
contributions and advantages: (i) A new perspective is provided for designing attack
compensation scheme by compensating for the state deviation caused by the attack, which
is helpful for designing an attack-compensated signal to recover the system. In fact, unlike
the existing methods that enhance the robustness of control algorithms (e.g., Yang et al.,
2024), the proposed method enhances the robustness of the plant itself; (ii) The existing
results on CPSs mainly focus on attack design, attack detection, state estimation and secure
control, but do not consider the state deviation of the system caused by the attack. In
contrast, this article systematically investigates the recovery of CPSs under attacks for the
first time; (iii) A common limitation of performance recovery for nonlinear system is that
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disturbances or uncertainties are required to be differentiable, even smooth (Back &~ Shim,
2007, 2009; Chakrabortty & Arcak, 2007, 2009; Freidovich ¢ Khalil, 2008; Wang, Isidori ¢
Su, 2015; Wu et al., 2019). Unlike disturbances and uncertainties, the attacks under
consideration are not restricted to be differentiable or smooth.

Notations: Let O(T) represent the infinitesimal of the same order as T. For a matrix A, let
A’ denote its transpose and Amin(A) denote its minimum eigenvalue. Leh(x) = &£ (x) is
called the Lie Derivative of h with respect to f. For any positive integer r, A, denotes a shift
matrix of r x r dimension, B,2[0,...,0,1] € R% and C,£[1,0,...,0] € R"*“. For a

matrix b, the notation b represents the pseudo-inverse.

PROBLEM STATEMENT

Consider the system recovery problem of the following MIMO nonlinear systems under
FDI attack,

X =f(x) +g(x)(u+ua), y=h(x), 1)
where x € R", u € R™ and y € R? denote the state vector, the control input and the
output, respectively. f(x), g(x) = [gi(x), ..., gn(x)] and h(x) = [hi(x), ..., hy(x)]
= [, ..,y are known smooth mappings with f(0) = 0 and h(0) = 0. The vector
u, € R™ denotes the norm bounded FDI attack (Zhang ¢ Ye, 2020b; Zhang, Ye & Shi,
2022), which is injected into the system by a malicious attacker.
Remark 1. Although u, represents an attack in this article, it can also be used to represent
actuator faults, process faults, additive uncertainties, unknown inputs, external
disturbances, or a combination of them (Arab et al., 2025).
Definition 1. (Isidori, 1985) A multivariable nonlinear system of the form Eq. (1) has a
vector relative degree {ry,...,r,} at a point x if the following two conditions hold:

(i) forall1 <j<m, k<r;—1,1<1i<gq, and for all x in a neighborhood of x,, the
following Lie Derivative

Ly Lihi(x) = 0 2)

holds where L}‘h,-(x) éLijlflhi(X)-
(ii) the q X m matrix

LoLf7'hi(x) - Ly L ()
LaLlP 'hy(x) -+ Ly LP 'hy(x)

b= | T T e G)
LoLi hg(x) - Lg, L' 'hy(x)

is row full rank at x = xo.
Assumption 1. The system Eq. (1) has a vector relative degree {ry, ... 4} for all x € R",
and has a trivial zero dynamics.

Under Assumption 1, with the help of the Structure Algorithm (Teel ¢ Praly, 1995;
Freidovich ¢ Khalil, 2008), there exist a diffeomorphism
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_ I’ll (X) -
thl X)

L (x)
d(x) = (4)

hg(x)
Lyhy(x)

_L}q_lhq(x)

which brings the system Eq. (1) to the system modeled by equations of the normal form:

X1i = Xy, V1<i<r —1

iy o= ar(x) 4+ by (x)(u+ uy)

Jy1 = X1

X2i = Xip1, V1I<i<nr -1

kayy = aa(x) 4 by(x) (u + 1)

Y2 = X2

ki = xin, V1<i<rm—1

Kire = ar(x) + be(x) (1 + uq) %)
Yk o = Xk

with k =3,...,9, r + 1, +--- +ry = n, where bi(x) is the k-th row of b(x) and
T I

Assumption 2. There exists a positive constant number by, such that

1) < bmas- (6)

Remark 2. For Assumption 1, some practical systems are capable of meeting it, such as
high-speed train system (Zhang et al., 2024; Xie et al., 2025) and near-space vehicle system
(Yao, Tao & Jiang, 2016). In addition, Assumption 2 can be found in Back ¢ Shim (2007),
Freidovich & Khalil (2008), Wang, Isidori & Su (2015), and this assumption is necessary to
ensure the boundness of the signal b(x)u, which is injected into the nominal system by the
attacker.

By feedback linearization, the input u of the system Eq. (5), which is also the input of the
system Eq. (1), is designed against the attack as

u=">b"(x)[—alx) +v+v]=b"(x)[—alx) +v] +b"(x)v (7)
——
uy U
with a(x) = [a1(x),...,aq(x)]’, where uy denotes the desired input (or called reference

input) which is designed according to the nominal model, and u, is the
attack-compensation signal which is added into the system input and will be designed
skillfully to almost fully compensate the attack u,.
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Under the above system input Eq. (7), the input-output model Eq. (5) will be
transformed into the following linear one

é:A§+B[v+(vc+a)], y = C¢, (8)

where a= b(x)tg, EZ[X1 1,y X1y - JXg 1y ,qu,q]/, AZ=blkdiag(A, , ... A
B£blkdiag(By,, . . . ,B,,), C=blkdiag(C,,.,.. ., C, ), and the operator blkdiag(-) builds a
block diagonal matrix from its argument. Furthermore, one can check that a is bounded
under Assumption 2.

For convenience of expression, let x,, &, and y, denote the nominal values of x, £ and y
respectively (i.e., the values in the attack-free system or called the values in the nominal
system). That is, x,,, £, and y satisfy

Xn :f(xn) +g(xn)u7 én = Aén + BV> Yn = Cén (9)

with x,(tg) = x(tp) and &,(ty) = &(t).

Design objective: The purpose of this article is to design the additional
attack-compensation input u, in Eq. (7) for the MIMO nonlinear system Eq. (1) such that
the mapping relationship between the desired input u; and system states x is almost the
same as the one in the nominal system. In other words, the attack is almost fully
compensated such that the system under consideration is almost recovered.

For the linear system Eq. (8), since CB = 0 which violates the observer matching
condition (Corless ¢» Tu, 1998), the attack-related term a is hard to be estimated and
compensated effectively by the existing results. Fortunately, this system has another
obvious feature which makes it possible to almost completely compensate for the
attacks-related terrr(1] a. That is, all states of the linear system Eq. (8) are derivatives of the

output, i.e., X;j = y; Y forall i = 1,...,gand j=1,...,r. Many approaches (e.g.,
high-gain approximate differentiators (Kalsi et al., 2010) and sliding mode exact
differentiator (Floquet, Edwards ¢ Spurgeon, 2007)) have been proposed to obtain the
estimation of system states. As in Kalsi et al. (2010), the following lemma is established to
obtain the system states with any arbitrary accuracy.

Lemma 1. (Kalsi et al., 2010) Consider the linear system Eq. (8). For the following high-gain
observer Eq. (10) under Assumptions 1-2 and the boundness of &, there exist a positive
constant 5; and a finite time T;(e) such that ||(;|| < ;€ for t > to + T;(e) where ty denotes

the start time of the system Eq. (1). Moreover, lim Ti(e) = 0.
£—0

Xin = Awxin+Bv+L(vi—yin) (10)

Yin = GCXip

with 2 [0/, ..., o, /€], where Xin= [Xivhy .- ,Xir.n] denotes the estimation of
X = [xig, . ,xiyri]/, & € (0,1) and a;; are selected such that the roots of

s+ 018" 4o+ oy, = 0 have negative real part. {; = (i1, .. ., Cim.]/ is defined with
Cij = (xij — xign) /",

Obviously, one can see easily from Lemma 1 that x;; can be replaced by x;;, with any
arbitrary accuracy. For this reason and the convenience of description, it is reasonable to
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Figure 1 Block diagram of the proposed system recovery strategy.
Full-size k&) DOT: 10.7717/peerj-cs.3280/fig-1

assume that ¢ is available for system recovery design. Also, the system input Eq. (7) can be
rewritten as

u="b"(®71(&))[—a(® (&) + v] + b7 (2 (E))v. (11)

h
Uq Ue

where ®~!(-) represents the inverse operator of ®(-).

In order to show the proposed system recovery strategy more clearly, its block diagram
is drawn in Fig. 1. The proposed attack-compensation strategy has the following obvious
feature: it is an inner-loop controller so that it can be added on the existing closed-loop
system working in harmony with a pre-designed outer-loop controller.

SYSTEM RECOVERY DESIGN IN A RECURSIVE FASHION

Define an auxiliary variable n = [, ..., nq]/ with
n =0y + fzgz)/,m +- 1+ Ei,r,-fl)/i(ri_Z) +}’,§ri_1), (12)
forall 1 <i < g, where the parameters ¢, ;, . .., ¢;,_; are selected such that the roots of the

equation £;; + ;25 + -+ + £ ;15" 2 4+ s"! = 0 have negative real parts.
Obviously, # can be rewritten as
n=L¢ (13)

where L=blkdiag(Ly, ... ,Lg) with L& Wity lir—1,1].
According to the knowledge of calculus, # meets

t
n(t) = Le*(t — to)&(to) + / Le* I B[v(7) + ve(r) + a(r)lde (14)
fo
where £, denotes the start time of the system under consideration.
Before analyzing the impact of attacks on the original nonlinear system Eq. (1), we first
analyze the impact of attacks on auxiliary variable 1 which will provide great convenience
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for analyzing the original system. So let’s start now. If v¢(f) can fully compensate for the
impact of the attack on the auxiliary variable 7, the following condition must be satisfied
obviously.

t
/ Le* "By (1) 4 a(z)]dt = 0,Vt > 1 (15)
to
that is, v.(t) + a(t) = 0,Vt > t;. In other words, a(t) is required to be known in
real-time a priori. Nevertheless, this condition is too strict for many practical systems, and
thus, the following problem will naturally be encountered: whether the impact of the attack
on the auxiliary variable 7 can be compensated by removing the aforementioned
restriction? The answer happens to be yes, and we will show that the impact of the attack
on 71 can almost completely compensated by a skillfully designed attack-compensation
input signal v,(t).

The design process of the attack-compensation input signal includes the following two
steps.

Step 1: Removing the strict requirements of real-time.

In order to eliminate the strict requirement of real-time, small time-delay will be
adopted to replace real-time. In details, for the auxiliary variable n in Eq. (14), we divide
the whole time-domain of the right-hand side into interval segments with period T >0, as
follows

nT+ty nT+t
n(nT +ty) = LeA("T)/f(to) + / LeA("THO*T)Bv(T)dI -+ / LeA("T“"*T)B[vC(r)
ty fo

nT+ty
+ a(1)]dr = LeAD E(ty) + / LeA"TH0o—%) By (1) dr
to

2T+t

T+t
+ / LeAT+0=%) By (1)dr + / LT+~ By (1)dr + - - -
fo T+t
(k+1) T+t nT+ty
+ / LeATHIBy (D)dr + - + / LT+ By, (1)dt
kT+t (n—=1)T+t
2T+t

T+t
+ / LT+ Bg(1)dt + / LT+~ Bg(t)dr 4 - - -
to T

+to

(k+1)T+ty nT+t,
+ / LeA(”T”O*T)Ba(r)dT + e+ / LeA(”T““*T)Ba(r)dr (16)
kT+to (n—=1)T+1,

where n represents any positive integer and the positive constant T is called the period of
compensation signal. Also, T is a small positive constant which denotes the small time-
delay.

To remove the strict requirement of real-time, one way is to adopt v.(¢) in the interval
t € [kT + to, (k+ 1)T + to) for compensating the impact of a(t) on auxiliary variable # in
the interval t € [(k — 1)T + to, kT + t,) (please see Fig. 2). Obviously, by choosing a small
T, the attack can still be compensated timely to avoid the continuous impact of the attack
on the auxiliary variable #. According to this design thinking, Vk € {0,1,2,---}, let
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Figure 2 Block diagram of the attack-compensation strategy based on a small time-delay.
Full-size K&l DOT: 10.7717/peerj-cs.3280/fig-2

(k+1)T+t, kT+t,
/ LeA(nTthofr)Bvc(T)dT 4 / LeA(nT+t07T)Ba(T)dT = 0. (17)
KT+t (k—=1)T+to

Under Eq. (17), one has
nT+ty

nT+ty
n(nT—I—to):LeA(”T)é(t0)+/ LeA(”T+t°T)BV(T)dr+/ LA T+ g (1) dr. (18)
f (n—1)T+ty

Obviously, when T is small enough, n(nT + ty) ~ Le*"T (1) + f;”t" LeAtT+o—1)
Bv(t)dz. One can see that, at time instants t = nT + to, Vn € N, the auxiliary variable 1 is
almost the same as the one in the nominal system (when the system is not attacked). Thus,
at time instants t = nT + fy, Vn € N, the attack-compensation input signal v.(¢) defined
in Eq. (17) can almost eliminate the impact of a(t) on the auxiliary variable # with a small
time-delay T. It should be pointed out that the same result can be guaranteed for the
interval (nT + to, (n + 1)T + o), Vn € N which will be proved in the next section.

By some mathematical calculation, Eq. (17) can be rewritten for all k € {0,1,2,...} as

(k+1) T+t KT+
eA(”_k)T/ LeA(kT“O_T)BvC(r)dr + eA("_k)T/ LeA(kT”"_T)Ba(r)dr =0 (19)
kT4t (k—1)T+ty

which is equivalent to

T KT+t
/ Le By (kT + to + 1)dt + / LeAKTH0=") By (1)dr = 0. (20)

0 (k—1) T+t

Let v.(kT + to + 1) = —B'e A"L'v(k), 7 € (0, T). By substituting it into Eq. (20), one

has
T / =1 kT+t
ve(k) = — (/ Le**BBe™ TL’dr) / LeAT+0=%) Ba(1)dr (21)
0 (k—1)T+to

where we have used the fact that fOT Le *"BB'e~*"L'dr is invertible since the pair (A, B) is
controllable and L is row full rank. Therefore, it is pretty easy to obtain for all
ke {0,1,2,...} and 7 € (0, T) that

T =1 kT+t
ve(kT+ty+1)=—Be AL (/ Le_ATBB’e_A/TL’dT) / LeAKT+0=) By (1) d1 (22)
0 (k—=1)T+to

which is equivalent to
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T =1 kT+1
ve(1) = —BX kT H—a) </ LeATBB'eA/TL’dT> / LeAKTH0—)Bg(1)dr (23)
0 (k—1)T+to
holds for all k € {0,1,2,...} and v € (kT + to, (k + 1)T + to). Unfortunately,

fkT+t0
(k—1)T+to

is unknown. In the following Step 2, we will propose an alternative approach to solve the

LeAkT+6=")Bg(1)dr in Eq. (23) is not directly implementable if the attack signal

above problem.

Step 2: An alternative approach for solving the term f(lfjg‘} T LeAKT+00=7) Bg(1)dx.

It is easy to get from Eq. (8) that

kT+ty
/(k | LeAKT+0=0Ba(1)dt = LE(KT + to) — Le*TE((k — 1)T + to)
—1) T+t

KT+t
_ / LeAKTH—) Bly(c) 4+ v,(1)de (24)
(k—1)T+t
With the help of Steps 1-2, and by combining Eqs. (23) and (24), one can obtain the
following causal and implementable recursive attack-compensation input signal

T -1
ve(t) = — B kTHot) ( / LeA’BB’eA/’L'dr> [LE(KT +to) — Le*TE((k—1)T + to)
0

KT+,
—/ LT B(y (1) + v.(1))dr (25)
(

k—1)T+ty

which holds for all k € {0,1,2,...} and t € (kT +to,(k+1)T + to).

Remark 3. The term of fOT Le 4"BB'e~*"L'dt is an infinitesimal of the same order as T.
Thus, ill-conditioned matrix inversion will not be occurred in the calculation process of
(Ji LeA"BBeA"L'dr) .

Remark 4. One can see from Eq. (23) that v.(t) = 0 when a(t) = 0, which implies

that u. = 0 when u, = 0. Therefore, the attack-compensation input signal will be
disappeared and doesn’t change any system dynamics when the system is not

attacked. This reflects one of the merits of the proposed method: it is easy to implement
in practical systems.

Note that, the boundness of £ is required to be satisfied a priori of the high-gain observer
Eq. (10) in Lemma 1. This condition is quite easy to satisfy, as will be proved in the
following.

Theorem 1. Consider the linear system Eq. (8), and the attack-compensation

input signal Eq. (25). Under the assumptions that the FDI attack signal is
norm-bounded and v stabilizes the following system Eq. (28), then & and v, are both
uniformly bounded.

Proof On the one hand, for t € (kT + t, (k+ 1)T + t;), one can see from Eq. (23) that
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' , -1
[ve(t)|| < max ||B'e™ fL'H{TminremHLe*AfBB’e*A fL'H} T max || Le*"B]|
€[0,T] €[0,T]

X max la(t)]|
1€[(k—1)T+to,kT+to)

_ maxre[o’T]HB’e_A/TL’H X MaX,cfo 1] |Le**B||

max la(®)| (26)

min,cjo 71||Le~A*BB'e~A7L|| €[(k—1) T+t ,kT-+1o]
which implies that the signal v.(¢) is uniformly bounded. Also, one can further check that

lim min ||Le 4"BB'e™"L'|| = 1. (27)
T—01€(0,T]

On the other hand, let’s consider the linear system Eq. (8), which can be rewritten as

E=AE+Bv+d (28)

where the pair (A, B) is controllable, and d = B(v, + a) is bounded since v, and a are both
bounded. Thus, according to Lyapunov stability theorem, it is pretty easy to see that ¢ is
uniformly bounded when v stabilizes the system Eq. (28).

STABILITY ANALYSIS
In this section, the stability of the original nonlinear system Eq. (1) with the system input
Eq. (11) will be established.

Let n,, denote the nominal value of the signal #. That is,

N, = L&, (29)

with 17,,(fo) = n(to).

Now, let us analyze the impact of the attacks on the auxiliary variable #.
Theorem 2. Consider the linear system Eq. (8), and the attack-compensation input signal
Eq. (25). Under Assumptions 1-2 and the assumption that v stabilizes the system Eq. (28),
then there exists an upper bound of ||7](t)|| which is an infinitesimal of the same order as T,
where ij(t) =n(t) — n,(t) denotes the deviation caused by the attack. Also, 7j(t) can be
arbitrary small when a small enough period T is selected.

Proof The proof is divided into the following two cases: (1) t = kT + ty; and
(2) t € (kT + to, (k+ 1)T + o).

Case 1: t = kT + ty. It is quite natural to obtain from Egs. (8), (9), (14) and (29) that

) KT+t
LD E (1) 1 / LeART+0-9) B (1) dr

(k—1)T+t,

11(KT + to)|| =

kT+ty
/ LK T+00=%) Ba(1)dr
(

k—1)T+ty

< T x max ||Le*"B|| x max lla(t)]| (30)
7€(0,T] t€((k—1) T+t ,kT+to)

where féé —¢,.
Case 2: t € (kT + ty,(k+ 1)T + ty). One can see from Eqs. (14) and (29) that
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ii(t) = LA E(1y) + / tLeA(’_T)B[vC(I) + a(t)]dt

ty

fo+T (k+1) T+t
:/ Le*t =Y By(1)dt + - - +/ L By (t)dt
to k

T+t

(k+1)T+to T+t
—/ LeA(tf)Bvc(r)dr—l—/ Le*"=Ba(t)dt 4 - -
t to

kT+t, t
+/ Le*""Ba(z )dr—i—/ Le*% Ba(t)dr
(k—1)T+ty kT+t,
t

(k+1)T+to
— _/ LeA(t_T)Bvc(r)dr~l—/ Le* "9 Ba(1)dr (31)
t k

T+
Therefore, with the help of Eq. (23), the deviation 7(t) satisfies

(k+1)T+to t
()] < / Le*"9 By (1)d1|| + ‘/ Le*~% Ba(t)dt
t KT+t
(k+1)T+ty
< / LAty (t)de|| + Tmax |[Le”B| x ~ max  |la(x)] (32)
t 7€[0,T] t€[kT+to,(k+1) T+t

where the first term on the right-hand side of the above inequality for
t € (kT + to, (k+ 1)T + t) obeys that

(k+1)T+ty
/ Le* 9By (1)d1|| =
t

T ) =1 kT+t
X </ Le A*BBe™ TUdr) / LeA(kT”"_TZ)Ba(rz)drzdrl
0 (

k—1)T+ty
T —1
< / Le—ATBB’e—A’fL’dr>
0

(k4+1)T-+to
/ LeA(t*TI)BB/eA/(kTth()*‘EI)Ll
t

(k+1) T+t
S/ "LeA(t_TI)BB/eA/(kT+tO_TI)LlHd‘Cl
t

X

KT+t
/ LeA(kT“"*“)Ba(rz)d‘cz
(k=1)T-+to

< max ||Le " BB _A'“L’H max ||LeATB||

71,72€[0,T]
X max la(z)||T? / Le *BB'e " L'dz||~ (33)
t€[(k—1)T+to KT+t,] 0
Combining Eqgs. (32) and (33), one can conclude that
()] < T x max IILeATBII X max la(z)|| + T*A™(T)
t€[kT+to,(k+1) T+to)
X max ||Le—AleB’ A/ x max ||LeAfB|| max la(x)||  (34)
T1 ‘526[0 T] E[(k—l)T+t0 kT+t0
holds for t € (kT + to, (k + 1)T + to), where A(T) £|| fo Le *"BB'e4"L'd1||.

To sum up, one can conclude from Cases 1-2 that the deviation 7)(t) satisfies
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i) <T Le*B|| x T2A(T)™"
()] < Tmax |LeB x| max a(e)] + TPA(T)
X max |[Le4"BBe AL/ x max||LeAT | max la(z)]|
71,12€[0,T] elo,T t€((k—1) T+to,kT+to)
= O(T) (35)

where we have used the fact that A(T) = O(T), and a = b(x)u, is bounded under
Assumption 2. The right-hand side of the above inequality is an infinitesimal of the same
order as T, and thus 7(¢) can be arbitrary small when a small enough period T is chosen.
Hence, the proof is completed.

In the sequel, let us analyze the impact of attacks on the linear system Eq. (8).
Theorem 3. Consider the linear system Eq. (8), and the attack-compensation input signal
Eq. (25). Under assumptions of Theorem 2, then there exists an upper bound of ||%;;(t)||
which is an infinitesimal of the same order as T, where X;;(t) = x;;(t) — xi;,(t) denotes the
state deviation caused by the attack and x;;,(t) represents the nominal value of x;(t) (i.e.,
the value in the attack-free system). Also, ||X;j(t)|| can be arbitrary small when a small
enough T is selected.

Proof It is can be seen easily form Egs. (9), (12) and (29) that

()2 015:() + 6oy () + -+ 177 @) + 5777V (0) (36)

holds for 1 < i < g, where y(’)( N y,(J (t) — y,(l])l(t) = X;j1(t) with ym(to) 0.
Also, Eq. (36) can be rewritten as

(1) 01 0 7 (1) 0
~(1) 0 0 1 0 (1)
d| y () . yi (1)
- . = : : : . : ) + (1) (37)
dt P 0 0 0 1 :
~(ri—2) o ~(ri—2) 1
N0 T 1 %7 O Ny
i Bi
where A; is Hurwitz since ¢;1, ..., 4;,_ are selected such that the roots of the equation

iy +lias+ ...+ Ly 15”72 + sl = = 0 have negative real parts. One can see from Eq.
(37) that [yi(t), .. ., Y- ft (=7 Bij ;7, 7)dz. Since A; is Hurwitz, it is always exists
an invertible matrix P; such that A; = P;A;P;!, where A; denotes the diagonal matrix with
the eigenvalue of A; on its main diagonal. Thus, one has

1Zi ()« Fiw, (O] = i), 570 (0), - 5y P By (v)de

t _
< 2 11B; max] (1) / ||eAf“—f)Hdr= e O A
0 to Zt to
LB 12
< LB ,0)] = 0(7) (38)

where Amin(A;) denotes the minimum eigenvalue of A; and we have used the fact that

[n(8)]] = O(T).

Furthermore, one can see from Eq. (36) that
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i (8)]] = 17O < O] + 16155(8) + b2 (0) + -+ a7 ()|
< max|[ (O + [ b NIF0), 70, 57 O]

_Amin (A1)
= O(T). (39)

Pi P'il ~
< (o PR gl o

To sum up, it is easy to get that ||x;;(¢)|| is an infinitesimal of the same order as T, and
thus x;;(t) can be arbitrary small when a small enough T is chosen.

Next, let us analyze the impact of attacks on the original nonlinear system Eq. (1).
Theorem 4. Consider the original nonlinear system Eq. (1), and the system input Eq. (11)
with the attack-compensation input signal Eq. (25). Under assumptions of Theorem 2, then
there exists an upper bound of ||x|| which is an infinitesimal of the same order as T, where
X2 x — x, denotes the state deviation caused by the attack. Furthermore, the system is
almost fully recovered when a small enough T is selected.

Proof One can see from Assumption 1 that there exists a diffeomorphism ®(x) such

that

E=d(x), &= O(xn) (40)
and thus

& = @) — @7 (&I < T (41)

where I' denotes the Lipschitz constant of the differentiable function ®~'(-) in the
compact set Q D {&, &, }.

It is worth noting that, E=¢—¢,= X110y Xy e X1y - - ,&q,q]', together with
Theorem 3, one has

1€l = o(T). (42)
Naturally, ||X|| = O(T), which means that the system states under attacks can
approximate the nominal states with arbitrary accuracy when a small enough T is selected.
In addition, let u4, denote the nominal value of the desired input uy = b (®71(¢))
[—a(®71(&)) + v]. That is, ug, = b+ (®71(E,))[—a(®1(E,)) + v. Similarity, based on the
facts that f(x), g(x), h(x) are smooth functions and ||€|| = O(T), it is easy to prove that
g — wan|| = O(T) when T is small enough.
To sum up the above arguments, one can conclude that

%in})(ud,x) = (Udn, Xn)- (43)

Thus, the mapping relationship between the desired input u; and system states x is
almost the same as the one in the nominal system when T is small enough. In other words,
the system is almost fully recovered when T is small enough.

Remark 5. Compared with the existing results on the secure control of CPSs (Deng ¢» Wen,
2020; Xu et al., 2019; Feng & Hu, 2019; Zhang & Ye, 2020a; Yang et al., 2020;
Wang et al., 2020; Yang, Li & Yue, 2020; Zhang, Shen ¢ Han, 2019; Shao ¢ Ye, 2020; An &
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Yang, 2018a; Su & Ye, 2018; Hu et al., 2019; Chen et al., 2021; Wu et al., 2021; Gu et al.,
2021; Huang & Dong, 2020; He et al., 2021; Chen et al., 2022b; Farivar et al., 2019; Chen
et al., 2022a; Lu & Yang, 2017; He et al., 2020; An ¢ Yang, 2018b; Ao, Song & Wen, 2018;
Zhou et al., 2020; Chen et al., 2022b), there are several merits of the proposed system recovery
scheme: (i) the proposed method can be well applied to the existing methods, because the
system can be almost fully recovered; (ii) the proposed approach not only can ensure a good
enough performance, but also does not require any knowledge of attack’s model and other
strict-preconditions; (iii) the proposed approach helps to ensure state performances and state
constraints, since the proposed attack-compensation approach can ensure that the trajectory
of the system states is almost not affected by the attack.

Remark 6. In existing results for nonlinear systems (Back ¢ Shim, 2007, 2009; Chakrabortty
& Arcak, 2007, 2009; Freidovich & Khalil, 2008; Wang, Isidori & Su, 2015; Wu et al., 2019),
performance recovery was investigated for compensating the disturbances or uncertainties. A
common limitation of these results is that the disturbances or uncertainties are required to
be differentiable, even smooth. However, the proposed method is not subject to this
limitation; and unlike the disturbances and uncertainties, the attacks under consideration
are not restricted to be differentiable or smooth. Furthermore, this article systematically
studies the system recovery of CPSs under attacks for the first time.

Remark 7. Generally speaking, the smaller the value of the positive parameter T, the better
the system recovery performance tends to be. In addition, T can be any positive constant,
with zero as its lower bound.

Remark 8. As shown in this article, the proposed approach can nearly completely restore the
attacked system to its attack-free state, ensuring that the original system’s control method
remains effective under attacks. This also means that, unlike the existing methods that
enhance the robustness of control algorithms (e.g., Yang et al., 2024), the proposed method
enhances the robustness of the plant itself. Furthermore, we plan to apply the proposed
method to microgrid systems.

SIMULATION STUDIES

Consider the following attitude dynamic equations of a near-space vehicle at a velocity of
3.16 Mach and at an altitude of 97,167 ft (Yao, Tao ¢ Jiang, 2016):

X =f(x) +g(x)(u+ua), y=h(x), (44)

where x = [x17x27x37x47x57x6]l = [Vl7a)l]l’ Y= [ﬂ,ﬁ, OC]/, w = [P, 9, r]/ and

— 0 r  —q X1

[ EOe _ N

flx) = . QQo)=|—-r 0 p |,h(x)=|x|,
J'Q(w)]w
La —»p O X3
cos(ar) 0O  sin() [ 554486 0 —23002
Z(y) = | sin(e) 0 —cos(a) |,] = 0 1136949 0

0 1 0 | —23002 0 1376852

Liang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3280 15/25


http://dx.doi.org/10.7717/peerj-cs.3280
https://peerj.com/computer-science/

PeerJ Computer Science

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
8 =1 02883 02883 —0.8654 0.8654 0 0.0025 |’ (45)

—0.0857 —0.0857 —0.5263 —0.5263 0.0098 —0.0073
| —0.0959  0.0959 0.2079 —0.2079 —0.0045 —0.0051

and u, B, o, p, q, r represent the bank angle, the sideslip angle, the angle of attack, the roll
rate, the pitch rate and the yaw rate, respectively. It can be verified from Definition 1 that
this system has a vector relative degree {ry,r,,r3} = {2, 2,2}, which means that the
system can be exactly feedback linearized. Define the following diffeomorphism

_ " -
cos(x3)x4 + sin(x3)xe
— *2
®(x) = sin(x3)xy — cos(x3)xe (46)
X3
X5

which brings the system Eq. (1) to the system modeled by Eq. (5), where

ai(x) = [0,0, cos(x3)xs — sin(x3)xq, cos(x3), 0, sin(x3)|f (x)

(
ax(x) = [0, 0, cos(x3)xs + sin(x3)xe, sin(xs), 0, —cos(x3)|f (x)
(

as X) = [07 07 07 07 17 O]f(X) (47)
and
bi(x) = [—0.2883cos(x3) — 0.0959sin(x3), 0.2883cos(x3) + 0.0959sin(x3),

—0.8654c0s(x3) + 0.2079sin(x3), 0.8654cos(x3) — 0.2079sin(x3),
—0.0045sin(x3), 0.0025c0s(x3) — 0.0051sin(x3)]

by(x) = [—0.2883sin(x3) + 0.0959c0s(x3), 0.2883sin(x3) — 0.0959cos(x3), (48)
—0.8654sin(x3) — 0.2079cos(x3), 0.8654sin(x3) + 0.2079cos(x3),
0.0045c0s(x3), 0.0025sin(x3) + 0.0051cos(x3)]

bs(x) = [—0.0857,—0.0857, —0.5263, —0.5263,0.0098, —0.0073].

In the simulation, the parameters are specified as T = 10~*s, x(0) = [2,0.3,5, —3,0.3,
—10], L = [1,1,0,0,0,0;0,0,1,1,0,0;0,0,0,0,1, 1], and the attack signal u,(t) is
randomly selected from [0, 2], V¢ > 0 which is shown in Fig. 3.

The system input u in Eq. (44) is chosen as

u="b"(®71(&))[—a(®7'(&)) + v]+ b7 (27 (E))v. (49)

Uq Ue

where v, is defined in Eq. (25) with v = K¢, where K is chosen as

-1 —-1.7321 O 0 0 0
K=1|0 0 -1 -1.7321 0 0
0 0 0 0 -1 —1.7321

such that A + BK is Hurwitz.
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Figure 3 Profiles of the attack signal u, where u,; represents the i-th element of u,.
Full-size K&l DOTI: 10.7717/peerj-cs.3280/fig-3
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Figure 4 Profiles of system states under the desired input #; and the attack-compensation input ..
Full-size K&l DOT: 10.7717/peerj-cs.3280/fig-4

The simulation results of the nonlinear system, which is jointly controlled by the desired
input u; and the attack-compensation input u,, are demonstrated in Fig. 4. In addition, the
state trajectories of the nonlinear system, which is only controlled by the desired input
ug = b (1) [—a(®1(&)) + v], are depicted in Fig. 5.

It is shown from Fig. 4 that the system states almost converge to zero when the system
controlled by the proposed attack-compensation approach. On the contrary, if the desired
input designed for the nominal model is applied to the system under FDI attack, the
behavior of the system degrades severely, as shown in Fig. 5. The simulation results
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Figure 5 Profiles of system states under the desired input u,.
Full-size 4] DOT: 10.7717/peerj-cs.3280/fig-5
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Figure 6 Desired input u4, in the nominal system and the desired input #; in the actual system.
Full-size K&l DOT: 10.7717/peerj-cs.3280/fig-6

demonstrate that very satisfactory compensation performances are achieved by the
proposed attack-compensation approach for the system even in the presence of the attack,
and much better performances can be achieved than the desired-input-based control,
which verify that the proposed attack-compensation scheme is very effective to cope with
the attack.
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Figure 7 System states in the nominal system controlled by the desired input #,, and the ones in the
actual system controlled by the desired input u; and the attack-compensation input u,.
Full-size Ka] DOT: 10.7717/peerj-cs.3280/fig-7
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Figure 8 Profiles of compensation signal u,. Full-size K&l DOT: 10.7717/peerj-cs.3280/fig-8

To display the effect of system recovery, the desired input and its nominal input are
drawn in Fig. 6, and the actual system state and its nominal state are drawn in Fig. 7.

It can be seen from Figs. 6, 7 that the mapping relationship between the desired input 1,
and system states x is almost the same as u4, and x,, in the nominal system. In other words,
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Table 2 Statistical results of root mean square error (RMSE).
Indices under the proposed approach RSME of i(t) RSME of f(f) RSME of (t) RSME of p(tf) RSME of (t) RSME of 7(t)
Values 1.0608 x 10710 1.7125 x 107! 2.8589 x 10™° 5.4717 x 107°  2.2806 x 10~° 1.0228 x 10~

Indices without the proposed approach RSME of ji(t) RSME of §(t) RSME of 4(t) RSME of p(t) RSME of §(t) RSME of 7#(t)

Values 0.0026 0.0042 1.1961 0.2099 0.0358 0.3036

the system is almost fully recovered (that is because the recursive attack-compensation
input signal added into the system input can almost fully compensate the attack).

In addition, the attack-compensation input signal u.(t) is presented in Fig. 8, which
shows that u.(t) is the same order of magnitude as the attack signal u,.

To provide a more intuitive and clear description of the system recovery performance of
the proposed approach, the root mean squared error (RMSE) index is used. Table 2 lists
the RMSE and mean absolute error (MAE) values for state deviation caused by the attack,
where 12t — i, 2B — B 3(t) 2a(t) — 2(t), () 2p(t) — pa(t), A(1) 2 (1) — u(t)
and 7(t) £ r(t) — r,(t). The results demonstrate that the proposed strategy achieves
superior system recovery performance.

CONCLUSIONS

In this article, the system recovery problem has been studied for MIMO nonlinear systems
under FDI attack. With the help of feedback-linearizing design technique, the nonlinear
system has been transformed into a linear one. In order to obtain the system states, a
high-gain approximate differentiator has been utilized. After that, a recursive
attack-compensation input signal has been skillfully designed and added into the system
input to almost fully recover the system. It has been proved that an upper bound of the
state deviation caused by the attack is an infinitesimal of the same order as the period of the
attack-compensation input signal, and thus the system can be almost fully recovered when
a small enough period is selected.
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