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ABSTRACT
The rapid growth of the worldwide web and accompanied opportunities of web
applications in various aspects of life have attracted the attention of organizations,
governments, and individuals. Consequently, web applications have increasingly
become the target of cyberattacks. Notably, cross-site scripting (XSS) attacks on
web applications are increasing and have become the critical focus of information
security experts’ reports. Machine learning (ML) technique has significantly advanced
and shown impressive results in the area of cybersecurity. However, XSS training
datasets are often limited and significantly unbalanced, which does not meet well-
developed ML algorithms’ requirements and potentially limits the detection system
efficiency. Furthermore, XSS attacks have multiple payload vectors that execute in
different ways, resulting in many real threats passing through the detection system
undetected. In this study, we propose a conditional Wasserstein generative adversarial
network with a gradient penalty to enhance the XSS detection system in a low-
resource data environment. The proposed method integrates a conditional generative
adversarial network and Wasserstein generative adversarial network with a gradient
penalty to obtain necessary data from directivity, which improves the strength of
the security system over unbalance data. The proposed method generates synthetic
samples of minority class that have identical distribution as real XSS attack scenarios.
The augmented data were used to train a new boosting model and subsequently
evaluated themodel using a real test dataset. Experiments on two unbalancedXSS attack
datasets demonstrate that the proposed model generates valid and reliable samples.
Furthermore, the samples were indistinguishable from real XSS data and significantly
enhanced the detection of XSS attacks compared with state-of-the-art methods.
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INTRODUCTION
Over the last decade, the worldwide web has grown exponentially, and web applications
are increasingly being deployed to provide sustainable and accessible services to the public.
These have attracted the attention of governments, companies, and individuals. Similarly,
cyberattacks on web applications are increasing; consequently, increasing the severity of
web applications and users’ risks. Cross-site scripting (XSS) attack is one of the prevalent
and growing attacks on web applications. Successful XSS attacks lead to various degrees
of consequences for users, governments, and businesses. For the user, XSS attacks can
be used to steal sensitive user information such as user credentials and session tokens or
impersonate the user to carry out authorized actions on behalf of the user. For businesses
and governments, XSS attacks can be used to change the appearance or behavior of target
websites and steal confidential information. These authorities may face dire consequences,
including loss of reputation, legal battles, and financial losses (Deepa & Thilagam, 2016).
Cybercriminals exploit security vulnerabilities within web applications often caused by
several factors, including the level of application programmers’ experience in security
and inheriting vulnerabilities from open-source and third-party packages. These security
vulnerabilities could allow cybercriminals to inject malicious content into the HTML
trusted pages displayed to end-users (Sarmah, Bhattacharyya & Kalita, 2018).

State-of-the-art XSS attack detection systems are applied on the server-side, client-side,
or both. The analysis methods used to distinguish between malignant and benign payload
could be static, dynamic, or hybrid (Sarmah, Bhattacharyya & Kalita, 2018). However, these
methods have limitations, such as low detection rate (DR), high false positive (FP)/negative
rates, and often not scalable over time (Mitropoulos & Spinellis, 2017). Therefore, they are
inefficient, especially with emerging techniques and evolving forms of XSS payloads
developed continuously by cybercriminals (Lekies et al., 2017; Zhou &Wang, 2019).

In 2019, XSS attacks became the most widespread attack vectors. Approximately
40% of cyberattacks have been attributed to XSS attacks, according to Precise Security
research (Precise Security, 2020), which is expected to increase in the future significantly.
Furthermore, the overall number of new XSS vulnerabilities in 2019 (2,023) increased by
79.20% compared with that in 2017 (1,129) as per the National Vulnerabilities Database
(National Institute of Standards and Technology, 2020). Additionally, there are various
reports and warnings from information security experts in Industrial Control Systems
Vulnerabilities Statistics (Andreeva et al., 2016). Many studies in related literature used FP
as metrics to measure model accuracy instead of DR, which reveals the effect of unbalanced
data and can be expensive in the cybersecurity domain (Elkan, 2001). Technically, the DR
represents the effective detection of attacks and is a critical factor in detection systems.
When the DR is not clearly defined, it raises concerns about the cybersecurity system’s
effectiveness. Consequently, there is an increase in the number of major risks unidentified
by various tools/models (Deepa & Thilagam, 2016; Lekies et al., 2017).

Existing machine learning (ML) techniques are proven to be highly efficient in handling
security challenges. The algorithms are trained using data of previously known behaviors
(supervised learning), and each class of behavior is recognized to be either anomalous or
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legitimate. However, web pages are a mixture of multiple languages such as JavaScript
and HTML, which were formally unstandardized, enabling the use of various coding
techniques that are susceptible to attacks. Therefore, XSS attacks have peculiar and
irregular characteristics; further, the volume of labeled data on XSS attacks with up-to-date
cases is limited and highly unbalanced (Obimbo, Ali & Mohamed, 2017; Nunan et al., 2012;
Mokbal et al., 2019).

Consequently, applying most standardML algorithms to XSS data in the straightforward
are unsuitable and challenging compared with other well-developed clean data domains
(Vluymans, 2019;Mokbal et al., 2019). To our best knowledge, the limited and unbalanced
data of XSS cyber-attack based on ML learning have not been addressed in the literature,
which is worth to study. The detection system is invariably affected by the class imbalances
problem. Specifically, ML algorithms focus on maximizing accuracy, which technically
means that all misclassified errors are handled equally and uniformly, implying that
the algorithms do not handle unbalanced datasets even if they are accurate and clean
(Vluymans, 2019). A learning algorithm may discard instances of the minority class in the
dataset in such a problem. The attack samples are often of the minority class and handled
as noise while recognizing only samples of the majority class (Buda, Maki & Mazurowsk,
2018). Therefore, the ML-based model design should consider the dataset’s weight and
evaluation criteria (Vluymans, 2019).

The traditional methods for addressing the challenges of limited and unbalanced data
that could be used are oversampling the minority class or undersampling the majority
class. Yet, each method has its limitations. Oversampling can lead to overfitting, whereas
undersampling may discard useful data, which subsequently leads to loss of information
(Vluymans, 2019).

To mitigate the challenges of limited and highly unbalanced XSS attack dataset, we
proposed a data augmentation method based on the conditional GAN and Wasserstein
GAN with a gradient penalty (C-WGAN-GP). Our proposed method aims to achieve the
minority class’s oversampling using a more robust generative approach to rebalancing
the training dataset by adding identical and valid samples to the minority class. Samples
generated based on the minority class’s overall distribution are generalized using the C-
WGAN-GP generative network instead of local information as the traditional methods do.

The generative adversarial network (GAN) (Goodfellow et al., 2014) is considered a
potential solution to the challenges described above. It is a type of a deep generative model
that aims to learn the joint probability distribution of samples and labels from training
data, which can be further used for several applications such as predictor training, classifier,
and data augmentations (Pan et al., 2019).

The main contributions of this study can be summarized as the following:

• We proposed the WGAN-based adversarial training with conditional minority class
(attack labels) to generate valid and indistinguishable samples of real XSS attack data.
To preserve various features covering the data space range and enable the generator
to learn the original data space distribution, we pass the upper and lower data space
to the conditional generator. Furthermore, the augmented data are not added to the
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real training data arbitrarily; the process is performed only if the generated sample x̃
satisfies the critic. Thus, it ensures that the added samples are identical to the real data
and improving the training data.
• We further propose a boosting classificationmodel using the XGBoost algorithm trained
on the augmented training dataset generated by C-WGAN-GP, which significantly
improved the attack detection efficiency.
• The proposedmethod is evaluated with two real and large unbalance XSS attack datasets.
Experiments show that our proposed augmentation framework generates valid samples
indistinguishable from real XSS data and outperformed state-of-the-art methods with
XSS attacks detection. Although we presented the proposed framework formally for XSS
attack detection, it can be generalized and extended to other applications areas.

The rest of this study is presented as follows: In ‘RelatedWork’, we gave the most related
literature. In ‘Proposal and experimental methodology’, we introduced the model design
and the methodology of experiments. We presented the results and discussion in ‘Results
and Discussion’. ‘Conclusions’ is the conclusion and future work.

RELATED WORK
Web applications have become part of our everyday lives and have achieved significant
success and substantial financial gains for organizations; consequently, ML-based XSS
attacks detection has gained much attention from the research community. However, there
are challenges in using ML-based methods, including finding or designing an adequate,
accurate, and balanced dataset designed for ML algorithms usage. Unfortunately, there is
no public and standard dataset intended for this purpose (Obimbo, Ali & Mohamed, 2017;
Nunan et al., 2012; Mokbal et al., 2019), where researchers can create their datasets based
on their requirements and orientation.

The authors (Rathore, Sharma & Park, 2017) proposed a classifier model against XSS
attacks for social sites using their dataset, which consists of 100 samples collected from
XSSed, Alexa, and Elgg. They applied multiple algorithms and achieved the best results
by using the random forest algorithm. However, the dataset used to train the algorithm is
small, possibly selective, and may not reflect the real attacks. Moreover, the DR score of
0.949 was considered inadequate.

Wang et al. (2017) proposed a hybrid analysis method to detect malicious web pages by
extracting and using three sets of features: URL, HTML, and JavaScript. The reported DR
was 88.20%, implying that the method fails to detect 11.80% of real threats.

Another research work (Wang, Cai & Wei, 2016) proposed a deep learning model
(stacked denoising autoencoder) to detect malicious codes. They used sparse random
projections to reduce the dimensions of the data. Despite the model’s complexity, the DR
score was 0.9480, which is inadequate for detecting malicious attacks. Moreover, the model
has a high FP rate of 4.20% with a high computational cost.

Wang et al. (2014) used an ensemble learning method (ADTree and AdaBoost) to
detect XSS attacks. However, the DR score of 0.941 is inadequate, with a high FP rate of
4.20%. Mokbal et al. (2019) proposed a scheme based on dynamic feature extraction and
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deep neural network to detect XSS attacks. Using their developed dataset, they achieved an
estimated DR of 98.35%. However, the model is a deep neural network, which has potential
high computational costs.

Multiple studies (López et al., 2013; Haixiang et al., 2017) have thoroughly investigated
the problem of unbalanced data. The problem can be mitigated at two levels: first, at
the model level, by modifying existing algorithms to focus more on the minority class,
such as embedding cost-sensitive methods with an ensemble learning algorithm, and
second, at the data level, by preprocessing data before it is fed into the algorithm (López
et al., 2013). The data-level approach uses either the undersampling or the oversampling
method. Undersampling mitigates class imbalance by randomly removing some samples
from the majority class in the training dataset. Conversely, oversampling mitigates the class
imbalance by duplicating some minority class samples in the training dataset. However,
these methods can result in the loss of important information and overfitting, respectively.
Kovács et al. (2002) proposed the synthetic minority oversampling technique (SMOTE)
as an oversampling method for the minority class. However, this method generates an
equal number of synthetic samples for each real sample from the minority class without
considering neighbor samples.

Consequently, the overlap between class increases with the potential generation of
noisy samples (Vluymans, 2019). Adaptive versions of SMOTE have been proposed,
including borderline SMOTE and DBSMOTE. Borderline SMOTE (Han, Wang & Mao,
2002) concentrates synthetic samples along the borderline within classes. Cluster-based
algorithm DBSMOTE (Bunkhumpornpat, Sinapiromsaran & Lursinsap, 2012) assembles
data samples into clusters using DBSCAN clustering and adaptive synthetic sampling (He
et al., 2008). However, these methods are based on local information instead of on the
overall-minority class distribution (Douzas & Bacao, 2018).

PROPOSAL AND EXPERIMENTAL METHODOLOGY
This section presents the different generative networks, including GAN, CGAN, WGAN,
andWGAN-GP, in addition to our proposed model. The model architecture, experimental
methodology design, XGBoost attack detector, and datasets are also presented as follows.

GANs
GAN is recently introduced as a novel approach to train a generative model, which has
achieved success in different fields, including images and natural language processing
(Goodfellow et al., 2014). The network comprises two adversarial models: first, the
generative model G for learning the distribution of data and, second, the discriminator D,
which estimates the probability that a sample is from the real training data instead of G.
Both models G and D in the network compete to outsmart the other where G and D can be
a nonlinear mapping function, such as a multilayer perceptron. The generator G learns the
distribution pg over data x and constructs a mapping function from noise space of uniform
dimension pz(z) to data space asG(z,θg ). The discriminatorD(x,θd) returns a single scalar
to estimate the probability that an instance x came from the real data distribution rather
than pg .
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Both G and D are trained together, such that the parameters for G are adjusting to
minimize log (1−D(G(z))) and parameters for D are adjusting to minimize logD(X),
similarly to the two-player minimax game accompanied by value function V (G,D) as in
Eq. (1).

min
G

max
D

V (G,D)= Ex∼Pr
[
logD(x)

]
+E∼x∼Pg

[
log (1−D(G(z)))

]
(1)

A CGAN extends GAN by adding space y to both theG andD to control data generation.
The additional space y could be supplied from real data (class label) or data from other
sources (Mirza & Osindero, 2014). The training phase of both CGAN and GAN is similar,
and the minimax objective function of D and G is as shown in Eq. (2).

min
G

max
D

V (G,D)= Ex∼Pr
[
logD

(
x|y
)]
+E∼x∼Pg

[
log
(
1−D

(
G
(
z |y
)
,y
))]

(2)

where pr is the real data distribution and pg is the CGAN model distribution implicitly
defined as x̃ =

(
z,y
)
,z ∼ p(z),y ∼ p(y), where y and noise z are combined as input to the

hidden layer.
The CGAN and GAN use Jensen–Shannon (JS) divergence shown in Eq. (3) to measure

generative samples.

JS
(
pr ,pg

)
=KL(pr ||pm)+KL(pg ||pm),

{
kl is ullback−Leibler divergence
pm= (pr+pg )/2

(3)

However, both GAN and CGAN have unstable training (vanishing gradients) and mode
collapse problems (Pan et al., 2019). To overcome these problems, the WGAN optimizes
the original GAN objective using Wasserstein-1 distance, also known as the earth-mover
distance (EMD) instead of JS (Arjovsky, Chintala & Bottou, 2017), where EMDmeasures the
distance between the actual distribution of the data and the distribution of the generative
model as in Eq. (4).

W
(
pr ,pg

)
=
inf
γ ∈

∏
(pr ,pg )

E(x,y)∼γ
[∣∣∣∣x−y∣∣∣∣] (4)

where
∏
(pr ,pg ) represents all possible joint distribution sets (x,y) of pr and pg of real

and generated data distribution, respectively. Such that, for each feasible joint distribution
γ , a real instance x and a generated instance y can be sampled, and the instance distance
[||x−y||] is calculated. Therefore, the expected value γ E(x,y)∼γ [||x−y||] of the instance
to the distance under the joint distribution γ can be calculated.

The value function of WGAN was obtained by utilizing Kantorovich–Rubinstein duality
(Villani, 2009), as shown in Eq. (5).

min
G

max
D∈F

V (G,D)= E
x∼pr

[D(x)]− E
∼
x∼pg

[
D
(
∼
x
)]

(5)

where F is the set of 1-Lipschitz functions restricted by k,
∣∣F (x)−F (y)≤ k

∣∣x−y|, and
pg i is the model distribution. The value function is minimized concerning G determined
by x̃ =G(z),z ∼ p(z). Therefore, the discriminator called a critic minimizes theW (pr ,pg ).
Nevertheless, the WGAN still faces gradient extinction or gradient explosion because of
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weight clipping in the discriminator. The gradient penalty (GP) was added to the total loss
function in the WGAN distance discriminator to achieve training stability (Gulrajani et al.,
2017). The new objective value function is adjusted, as shown in Eq. (6).

min
G

max
D

V (G,D)= E
x∼pr

[D(x)]− E
∼
x∼pg

[
D
(
∼
x
)]
−λEx̂∼px̂

[
(∇x̂D(x̂)||2−1)2

]
(6)

where x̂ = εx+ (1−ε),x̃ is a convex function combination of real data distribution pr(x)
and the model data distribution pg (z), ε∼ unform[0,1], whereas λ is the gradient penalty
parameter.

C-WGAN-GP model
This study proposes using data augmentation based on a GAN that takes real samples as
inputs and outputs adversarial samples. The learning algorithm of our proposed model is
based on CGAN (Mirza & Osindero, 2014) and WGAN-GP (Gulrajani et al., 2017), where
both networks are integrated. Precisely, we used the WGAN-GP optimization approach to
optimize CGAN. The integrated generative network is called C-WGAN-GP. Our goal is to
generate synthetic samples of attack class (minority) with identical distribution to real XSS
attack scenarios.

The primary idea is to use the learning of the joint probability distribution over x
samples and y labels from the training data to perform data augmentation only if the
generated sample x̃ satisfy the critic. The problem of unbalanced data can be mitigated by
using an augmented data in the classification tasks, therefore improving the robustness
and performance of the XSS attack detection for unbalanced data. A well-trained generator
with joint distributions set (x,y) of pr and pg of real and generated data distribution
optimized using GP should be able to generate (x̃,y) samples within the tolerated latent
space and identical to the original data of (x,y), therefore providing valuable information
to the detector as additional training data. To ensure that only useful instances are added
to augment the training dataset, only generated cases that satisfy the critic are added to the
original data.

The y labels of the minority class, which are XSS attacks in our case, are used as a
conditional parameter. Passing the upper and lower real data space to the generator
provides the generator with additional auxiliary information to define the latent space. The
latent space establishes the scope of samples in the data variance. Therefore, the generator
using the auxiliary latent space generates samples within the tolerated latent space identical
to the real data. Consequently, the discriminator distinguishes the synthetic samples as real
within small feedback loops needed to train the generator, reducing computational cost
while providing high-quality generated data.

In the discriminator D, the pr and pg are linked with y in a joint hidden layer
representation, whereas in generator G, the y is combined with p(z) in the same manner.
The objective minimax function of models D and G is as shown in Eq. (7), whereas Eqs.
(8) and (9) represent the loss reduction functions of D and G, respectively.

min
G

max
D∈F

V (G,D)= E
x∼pr

[
D(x|y)

]
− E
∼
x∼pg

[
D
(
∼
x |y
)]
−λEx̂∼px̂

[
(∇x̂D

(
x̂|y
)
||2−1)2

]
(7)
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min L(D)= E
∼
x∼pg

[
D
(
∼
x |y
)]
− E

x∼pr

[
D
(
x|y
)]
+λ.Ex̂∼px̂

[
(∇x̂D

(
x̂|y
)
||2−1)2

]
(8)

min L(G)=− E
∼
x∼pg

[
D
(
∼
x |y
)]

(9)

Generative model design
Generative networks have gained popularity in image data; however, we are interested
in digital datasets. Therefore, the technique used is similar but differs in design and
implementation. In our model, we did not apply convolutional layers.

In the generator model G, the concatenate input layer equal to (z + c), where z is
the vectors of noise set within the range of batch size and data dimension. The c is the
conditioning variable’s dimension that equals 1. The model has three hidden layers of
the neural network—the number of units in hidden layers equal to 128, 256, and 512,
respectively. The output layer equal to z and the concatenate layer is equal to the input
layer (z + c).

In the discriminator (critic) D, the same architecture is used but in descending order of
hidden layers, which equal to 512, 256, 128, respectively. The third layer is a linear activation
function that equals to 1. The batch size and numbers of epochs for the network are 128
and 4000, respectively. The activation function used for the generator and discriminator
is the rectified linear unit. The C-WGAN-GP is fitted using Adam optimizer with α, β1,
and β2 parameters calibrated to le-4, 0.5, and 0.99, respectively. The alpha or (α) for
short refers to the learning rate, while beta1 (β1) and beta2 (β2) refer to the exponential
decay rate for the first-moment and second-moment estimates, respectively. The value of
the GP coefficient λ for C-WGAN-GP is set to 10. The parameter k of D is tuned to 4,
whereas k of G is tuned to 1. A conditional critic neural network is trained to approximate
the EMD using the minority class for control mode up to 4000 training steps. Note that
the parameters are defined empirically, whereas the performance reduces significantly by
changing the parameters.

The other different hyperparameters not mentioned are consistent with those originally
reported. During the testing phase, the generated samples added to the real dataset are
the samples approved by the critic. Algorithm 1 presents the generative approach for XSS
attack data. Note that the other generator network architectures are similar, with negligible
differences, which may be necessary for the implementation.

Mokbal et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.328 8/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.328


Box 1. The C-WGAN-GP algorithm.

Algorithm 1: C-WGAN-GP

Required: Batch size m =128, n-critic =4, penalty parameter =10 and Adam optimizer parameters (𝜆
)𝑙𝑟 = 0.0001,𝛽1 = 0.5, 𝛽2 = 0.99

1:  for ►𝑖𝑛𝑡𝑖𝑚𝑎𝑙 𝑣𝑎𝑙𝑖𝑢𝑚𝑠 𝑐𝑟𝑖𝑡𝑖𝑐 𝑎𝑛𝑑 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟:
2:         𝑠𝑒𝑡 𝜃𝑐 = 0 , 𝜃𝑔 = 0 

   3: 𝑤ℎ𝑖𝑙𝑒  𝜃 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑  𝑑𝑜
6:         ►𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑛 𝑐𝑟𝑖𝑡𝑖𝑐 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑡𝑒𝑝𝑠 𝑓𝑜𝑟 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 (𝑐𝑟𝑖𝑡𝑖𝑐 )
7:           𝑓𝑜𝑟 𝑡 = 1,…, 𝑛_𝑐𝑟𝑖𝑡𝑖𝑐 𝑑𝑜
8:                  𝑓𝑜𝑟 𝑖 = 1,…, 𝑚   𝑑𝑜
9:                          𝑆𝑎𝑚𝑝𝑙𝑒 {(𝑥𝑖,𝑦𝑖)} 𝑚𝑖 = 1~Ɗ 𝑎 𝑏𝑎𝑡𝑐ℎ 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑚 𝑜𝑓 𝑟𝑒𝑎𝑙 𝑑𝑎𝑡𝑎 𝑤𝑖𝑡ℎ 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙 𝑦𝑖  
10:                        𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑛𝑜𝑖𝑠𝑒 {(𝑧𝑖)} 𝑚𝑖 = 1~𝑝𝑧(𝑧), 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝜀~ 𝕌[0,1] 

11:                        ►𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎 𝑓𝑎𝑘𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑋𝑖 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑚𝑖 𝑟𝑒𝑎𝑙 𝑙𝑎𝑏𝑒𝑙 𝑦𝑖
12:                        𝑋𝑖←𝐺(𝑧𝑖|𝑦𝑖,𝜃𝑔)

13:                         ►𝐶𝑜𝑚𝑝𝑢𝑡 𝑝𝑒𝑛𝑎𝑙𝑡𝑟𝑦 𝐺𝑝 𝑎𝑛𝑑 𝑙𝑜𝑠𝑠 𝑓𝑜𝑟 𝑐𝑟𝑖𝑡𝑖𝑐 
14:                        𝑥𝑖←𝜀𝑥𝑖 + (1 ‒ 𝜀)𝑥𝑖 
15:                        𝐺𝑝(𝜃𝑐)← 1𝑚∑𝑚𝑖 = 1[𝑚𝑎𝑥(‖∇𝑥 �ℱ(𝑥𝑖|𝑦𝑖,𝜃𝑐)||2 ‒ 1)

2]
15:                         𝔼(𝜃𝑐)←∇𝜃𝑐[

1𝑚∑𝑚𝑖 = 1
ℱ(𝑥𝑖|𝑦𝑖,𝜃𝑐) ‒ 1𝑚∑𝑚𝑖 = 1

ℱ(𝑥𝑖|𝑦𝑖,𝜃𝑐)] + 𝜆.𝐺𝑝(𝜃𝑐)

16:                 𝑒𝑛𝑑𝑓𝑜𝑟
17:                 𝜃𝑐←𝐴𝑑𝑎𝑚(𝔼𝜃𝑐,𝜃𝑐,𝛼,𝛽1,𝛽2)

18:          𝑒𝑛𝑑𝑓𝑜𝑟
19:         ►𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝐺 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑡𝑒𝑝
20:          𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 {𝑦𝑖} 𝑚𝑖 = 1~Ɗ 𝑎 𝑏𝑎𝑡𝑐ℎ 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑚 𝑜𝑓 𝑟𝑒𝑎𝑙 𝑙𝑎𝑏𝑒𝑙 𝑦𝑖 
21:          𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑛𝑜𝑖𝑠𝑒 {𝑧𝑖} 𝑚𝑖 = 1~𝑝𝑧(𝑧)
22:          ►𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝐺 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
23:          𝔼(𝜃𝑔)←∇𝜃𝑔[

1𝑚∑𝑚𝑖 = 1
ℱ(𝑔(𝑧𝑖|𝑦𝑖,𝜃𝑔)|𝑦𝑖,𝜃𝑐)

24:          𝜃𝑔←𝐴𝑑𝑎𝑚( ‒ 𝔼𝜃𝑔,𝜃𝑐,𝛼,𝛽1,𝛽2)

25:  𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒
26: 𝑙𝑜𝑎𝑑 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑡𝑒𝑝 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑛𝑒𝑡
27: 𝑑𝑎𝑡𝑎_ 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 [ ]
28: 𝑤ℎ𝑖𝑙𝑒  𝜃 ℎ𝑎𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑  𝑑𝑜  
29          ►𝑔𝑒𝑛𝑒𝑟𝑎𝑡 𝑋𝑖 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
30:         for each 𝑠𝑎𝑚𝑝𝑙𝑒 𝑋𝑖 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑟𝑒𝑎𝑙 𝑙𝑎𝑏𝑒𝑙 𝑦𝑖   𝑑𝑜  
31:               𝑖𝑓 𝑋𝑖 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑡ℎ𝑒 𝑐𝑟𝑖𝑡𝑖𝑐    𝑡ℎ𝑒𝑛
32:                     𝑑𝑎𝑡𝑎_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑.𝑎𝑝𝑝𝑒𝑛𝑑 [𝑋𝑖]
33:        𝑒𝑛𝑑 𝑓𝑜𝑟
34: 𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒
35: 𝐽𝑜𝑖𝑛 𝑑𝑎𝑡𝑎_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑋𝑖 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑥𝑖
36: 𝑡𝑟𝑒𝑎𝑡𝑖𝑛𝑔 𝑎 𝑛𝑒𝑤 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 𝑚𝑜𝑑𝑒𝑙

1
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Experimental methodology
This study proposed generativemodel C-WGAN-GP, an oversampling solution ofminority
class to solve unbalanced XSS attack data. We trained the detector (XGBoost) using the
real training dataset and test it using the test dataset before without augmented data, and
then the results were recorded for comparison. Subsequently, we trained each of the GANs
models using real training dataset to generate synthetic data. We repeated the training of
the detector using the augmented data and test it using the test dataset. The results of each
model were recorded for comparison. Similarly, traditional oversampling methods were
trained and tested.

The C-WGAN-GP generator performance was evaluated in two directions. First, we
assessed the performance of the C-WGAN-GP generative adversarial network against the
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other four GANs. Second, we compared our C-WGAN-GP model with two traditional
oversampling methods include SMOTE (Han, Wang & Mao, 2002) and adaptive synthetic
(ADASYN) (Bunkhumpornpat, Sinapiromsaran & Lursinsap, 2012). The systemic flowchart
of the proposal is shown in Fig. 1.

Detector
We use an external model to evaluate the quality of the data generated by our proposed
method and other methods. The XGBoost boosting model was used for all experiments to
assess the augmented data’s quality on XSS attack detection performance. The XGBoost is a
state-of-the-art boosting algorithm that is simple to apply and interpret, is highly efficient,
does not require advanced data preparation, and has many advanced functions (Chen &
Guestrin, 2016). The algorithm’s learning rate, tree size, and tree number hyperparameters
tuned to 0.3, 4, and 100, respectively.

Datasets
To our knowledge, there is only one public dataset for intrusion detection that includes XSS
attacks that we were able to find called CICIDS2017 designed by the Canadian Institute of
Cybersecurity (Sharafaldin, HabibiLashkari & Ghorbani, 2018). The released CICIDS2017
dataset contains 80 features that include regular traffic and recent common attacks. To
provide attack features, we used a CICFlowMeter tool to extract features from PCAPs files
and used Selenium with Damn Vulnerable Web Application to run automatic XSS attacks.
However, there are only 652 XSS attacks traffic, and over 140,008 regular traffic, making it
a highly unbalanced dataset.
We have added another dataset proposed in our previous work (Mokbal et al., 2019). The
dataset includes 67 features with labels that are categorized based on three groups, including
HTML, JavaScript, and URL. We extracted 1,000 XSS attack samples and 100,000 benign
samples as a second dataset.

We applied data preprocessing to each dataset. In both datasets, all samples have two
classes, XSS attack and benign, which are set to [1, 0], respectively. The two datasets
were split randomly into training and test sets with a 70% and 30% ratio, respectively,
where data augmentation was performed only on the training dataset. Missing and infinite
values in CICIDS2017 were updated using their features’ mean values, whereas the zero
features and duplicate rows were omitted. The number of features with clean data in the
CICIDS2017 dataset is 78, and the number of features with clean data in the second dataset
is 67. Subsequently, the data’s scale within the range [0, 1] was applied using the minimax
function for both datasets. The class-level distribution of datasets is shown in Table 1. The
datasets are available at https://doi.org/10.6084/m9.figshare.13046138.v4.

Performance evaluation criteria
Althoughmany performancemetrics have been introduced, GANs do not have an objective
measure of the generatormodel, as there is no consensus on the bestmetric that captures the
strength/limitations of the model and should be used for a fair comparison betweenmodels
(Borji, 2019). We used precision, detectionRate (DR)/ recall, and F1−score, which are proven
and widely adopted methods for quantitatively estimating the quality of discriminative
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Figure 1 Systemic flowchart of C-WGAN-GP.
Full-size DOI: 10.7717/peerjcs.328/fig-1

Table 1 The class-level distribution of the datasets.

ID Dataset #Samples #Attributes Minority
class

Majority
class

#Minority
samples

#Majority
samples

1 CICIDS2017 (Sharafaldin, HabibiLashkari & Ghorbani,
2018)

140,660 77 Attack Benign 652 140,008

2 MLPXSS (Mokbal et al., 2019) 101,000 67 Attack Benign 1000 100,000

models suggested by Google Brain research (Lucic et al., 2018). Precision measures the
generated instances similarity to the real ones on average.Whenever the instances generated
are similar to the real instances, the precision is high. In GANs, the recall (detection rate)
measures diversity. A high recall indicates the generator can generate any instances found
in the training dataset. For cybersecurity detection sys, the recall/detection rate denotes the
ability of sys to detect the real attacks. The F-score reflects the harmonic mean of precision
and recall. Further, the area under the curve (AUC) measure that demonstrates a detector’s
ability to distinguish between classes and summarizes the detector’s performance is also
collected. The measurements are defined as follows.

Precision=
TP

(TP+FP)
(10)

DR=
TP

(TP+FN )
(11)
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F−Score= 2
(
(Recall×Precision)
(Recall+Precision)

)
(12)

AUC =
1
2

(
TP

TP+FN
+

TN
TN +FP

)
(13)

RESULTS AND DISCUSSION
The C-WGAN-GP-based data augmentation approach was implemented in Python 3.7
using the TensorFlow framework on Linux operating system. The proposed method was
implemented alongside four other GAN-based generative methods and two traditional
generative methods (SMOTE and ADASYN). All the methods were validated using 10-fold
cross-validation. To demonstrate how the attack DR decreased as the gap between normal
and malicious classes increased, we injected different ratios of the majority class in the
training data to train the XGBoost detector model using AUC and DR criteria. The model
tested on the fixed test dataset size of 30% each time. During the attack detection test, the
results show that DR decreased from 96.59% with an injected ratio of 2% of the majority
class to approximately 91.00% with an injected ratio of 100% of the majority class. These
results are shown in Table 2.

Using our generative approach, we injected the generated data into a real training dataset
to create a new augmented training dataset. The augmented data were used to train the
XSS attack detector, which is different from the generative framework to judge the data
quality. The detector was tested using the real test dataset. This experiment mechanism
was applied to all of the methods we used, and results were reported for each scenario.

The average results reported in each trial on the CICIDS2017 dataset are shown in
Table 3 (Sharafaldin, HabibiLashkari & Ghorbani, 2018). Using the same mechanism, we
repeated the experiments using the dataset extracted from our previous work (Mokbal et
al., 2019), and the results are shown in Table 4.

Notably, using augmented data generated by the proposed method significantly
improved the XSS attacks detection compared with state-of-the-art baseline methods.
The results in Tables 3 and 4 show that the DR increased up to 98.95% in the CICIDS2017
dataset and up to 96.67% in the second dataset. That is, our generative model able to
generate any sample found in the XSS attack training dataset. The precision measure is also
high, which equals 0.99333 on the first dataset and 0.989761 on the second dataset. The
precision results imply that the proposed generative model generated samples look similar
to the real XSS attack samples on average. Concerning F-Score, the proposed generative
model was superior to other generative methods. It achieved the result score of 0.990382
in the first data set and the score of 0.978078 in the second dataset. The AUC measure of
the proposed generative model is also continued to be outperformed the other methods in
both datasets with a significant margin.
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Table 2 The collapse of the detection rate as the unbalanced classes’ gap increased.

Ratio Train-auc
mean

Train-auc
std

Train-recall
mean

Train-recall
std

Test-auc
mean

Test-auc
std

Test-recall
mean

Test-recall
std

2% 0.998624 0.000345 0.976264 0.004189 0.995596 0.004673 0.965895 0.008869
5% 0.997947 0.001006 0.966985 0.003804 0.994683 0.001888 0.954185 0.007851
14% 0.991259 0.004218 0.946233 0.003984 0.985622 0.009439 0.937748 0.023061
40% 0.966395 0.002146 0.927482 0.003458 0.965025 0.010199 0.922232 0.022333
100% 0.965471 0.001782 0.923503 0.005247 0.965422 0.007108 0.910094 0.011817

Table 3 Detection results using data augmented generated through different methods on the CICIDS2017 dataset.

Criteria None ADASYN SMOTE GAN CGAN WGAN WGAN-GP C-WGAN-GP

DR (sensitivity) 0.883333 0.98667 0.96000 0.92667 0.96333 0.97333 0.97833 0.987452
Specificity 0.929967 0.99983 0.99980 0.99993 0.99993 0.99987 0.99996 0.99993
Precision 0.90513 0.98339 0.97959 0.99286 0.99313 0.98649 0.98949 0.99333
F-score 0.894099 0.98502 0.96970 0.95862 0.97800 0.97987 0.983878 0.990382
AUC 0.917548 0.99325 0.97990 0.9633 0.98163 0.9866 0.989148 0.993691

Table 4 Detection results using data augmented generated through different methods on the second dataset.

Criteria None ADASYN SMOTE GAN CGAN WGAN WGAN-GP C-WGAN-GP

DR (sensitivity) 0.873333 0.956667 0.943343 0.932983 0.933333 0.94667 0.951211 0.966667
Specificity 0.979967 0.999833 0.999933 0.989867 0.999867 0.99973 0.999933 0.9999
Precision 0.956198 0.982877 0.992982 0.985915 0.985915 0.97260 0.977864 0.989761
F-score 0.912889 0.969595 0.967527 0.958719 0.958904 0.95945 0.964353 0.978078
AUC 0.92665 0.97825 0.970138 0.961425 0.9666 0.9732 0.975572 0.983283

The results for ADASYN, WGAN-GP, WGAN, SMOTE, and CGAN showed improved
DR performance, respectively, with varying proportions. The effects of the additional
samples on the XSS attack DR under the condition of acceptance by the discriminator on
the CICIDS2017 dataset are shown in Fig. 2 along with standard deviation. The standard
deviation of the C-WGAN-GP is overall small compared to other methods; it also decreases
as training steps increase.While the standard deviation of CGAN andWGAN is not smooth
and shows more variation. The standard deviation of WGAN-GP was smoother than GAN
and WGAN but less smooth and more varied than C-WGAN-GP. This fact indicates the
stability of C-WGAN-GP training to some extent. The results suggest that the C-WGAN-GP
significantly outperformed CGAN, WGAN and WGAN-GP.

The superiority of the C-WGAN-GP over the rest of the GANs is due to the fact that the
model is enhanced with the characteristics of two generative networks, CGAN andWGAN-
GP. The C-WGAN-GP used minority class labels that act as an extension to the latent space
z to generate and discriminate instances well, which inspired from CGAN. Consequently,
the model can learn a multi-modes mapping from inputs to outputs by feeding it with
different contextual auxiliary information. The C-WGAN-GP optimized usingWasserstein
distance with gradient penalty inspired by WGAN-GP. The training process is more stable
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Figure 2 Effects of the data augmentation on the XSS attack detection rate over the baseline for
GAN,WGAN,WGAN-GP, and C-WGAN-GP. (A) CGAN detection rate, (B) WGAN detection rate, (C)
WGAN-GP detection rate, and (D) C-WGAN-GP detection rate. The red horizontal dashed line indicates
the baseline estimate of each generative model.

Full-size DOI: 10.7717/peerjcs.328/fig-2

and less sensitive to model design and configurations of hyperparameter. Further, the loss
of the critic is related to the quality of instances created by the generator.

Precisely, the lower the critic’s loss when evaluating the instances generated, the higher
the expected quality of the instances generated. This criterion is crucial because unlike
other GANs that seek stability by finding a balance between two models, WGAN seeks
convergence and minimizes generator loss. Furthermore, adding the generated samples of
CGAN, WGAN, and WGAN-GP that satisfied the discriminator’s acceptance condition
(critic) adds value to the augmented training dataset, which increases detector ability and
efficiency.

The loss of generated data for C-WGAN-GP compared with that of the other four GAN
methods is shown in Fig. 3. It is quite clear that the loss curve of C-WGAN-GP decreased
regularly and continuously compared to all other generative methods. The loss curves of
GAN and CGAN are unstable, and the models went to collapse mode during the generating
phase. The WGAN and WGAN–GP loss curves decreased regularly; however, it is high
compared with C-WGAN-GP. Note that GAN and CGAN are using JS divergence, whereas
WGAN and C-WAN-GP are using the Wasserstein distance or EMD.

Similarly, in the loss curve of real data, the GAN and CGAN face difficulty learning
the training data distribution. In contrast, the WGAN and WGAN–GP losses decreased
regularly; however, it is high compared with C-WGAN-GP. The C-WGAN-GP seems to
learn the training data distribution better than all other generative methods, as shown in
Fig. 4.

To estimate the proposed method’s generalization ability, we investigated the
Wasserstein critic, in which the distance between actual and generated data losses is
calculated. This estimate demonstrates how much the data generated by the proposed
model and real data are identical. The difference in distance between the real and generated
data distribution ofWGAN,WGAN-GP, and C-WGAN-GP that generativemodels learn to
minimize is shown in Fig. 5. The distance between generated and real data of C-WGAN-GP
is close to zero. That is, The C-WGAN-GP generated samples that are identical to real data
distribution; further, the training stability of the proposed generative model is adequate.

For further clarification, the XGBoost classification accuracy trained on the five different
generative methods’ data is shown in Fig. 6. The XGBoost accuracy curve of C-WGAN-GP
data is higher than that of other models, which indicates the quality of the data generated
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Figure 3 The loss of generated data.
Full-size DOI: 10.7717/peerjcs.328/fig-3
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Figure 4 The loss of real data.
Full-size DOI: 10.7717/peerjcs.328/fig-4

by the proposed model. Figure 7 shows a general visualization example of the data quality
generated by C-WGAN-GP compared with other generative methods and displays the
collapse mode of GAN and CGAN between 2500 and 4000 of training steps in the second
dataset. In addition to the beginning of the gradient extinction ofWGAN at 4000 of training
steps.

CONCLUSIONS
This study proposed a conditional critic neural network with a gradient penalty called C-
WGAN-GP to improve the XSS attack detection on unbalanced datasets. The C-WGAN-GP
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Figure 5 Difference between critic (EM distance estimate) loss on generated and real samples.
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Figure 6 The detector loss function over various generated data.
Full-size DOI: 10.7717/peerjcs.328/fig-6

is trained to approximate the EM distance with an auxiliary of minority class for control
mode to generate valid and reliable synthetic samples with identical distribution to real XSS
attack scenarios. We trained a new boosting model using the augmented dataset to improve
theXSS attack detection system andmitigate an unbalanced dataset problem.We conducted
experiments to compare the proposed method with GAN, CGAN, WGAN, WGAN-GP,
SMOTE, and ADASYNusing two real-world XSS attack datasets. Experimental results show
that the proposed method can train a generator model with improved training stability.
The proposed method enhanced the detection of XSS attacks and prevented adversarial
examples that have been widely used to target AI cyber defense systems. Furthermore, the
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Figure 7 (A-PP) General visualization of sample generation for C-WGAN-GP compared to other gen-
erative methods.

Full-size DOI: 10.7717/peerjcs.328/fig-7

C-WGAN-GPmethod can be extended to other forms of attacks and other fields, including
the medical field, where datasets are highly unbalanced.

For future work, we will investigate network training stability to generate data using
various designs over different network architectures. It is a significant problem worthy of
further research.
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