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ABSTRACT
In the rapidly changing field of cybersecurity, strong and efficient Intrusion Detection
Systems (IDS) are essential for spotting malicious activities on the network traffic.
However, traditional IDS models often face challenges such as too many irrelevant
features (high-dimensional data), uneven class distributions (imbalanced datasets), and
constantly evolving threats (shifting attack patterns). To overcome these issues, we
introduce a hybrid framework called WGAN-GP_IMOA_DA_Ensemble. It combines:
(i) a new bio-inspired IndianMillipede Optimization Algorithm (IMOA), based on the
movement and foraging behavior of Indian millipedes, for selecting the most relevant
features; (ii) an enhanced Wasserstein Generative Adversarial Network with Gradient
Penalty (WGAN-GP) that uses attention layers, layer normalization, and skip
connections in the discriminator, producing more realistic synthetic samples for rare
attack types; and (iii) a dynamic attention-based ensemble, DA_Ensemble, which
integrates three deep learning models namely Feedforward Neural Network (FNN),
Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM), and
adaptively weights their predictions in real time, emphasizing the most accurate model
for a specific type of traffic. The model was tested on benchmark datasets such as
UNSW-NB15, H23Q, and CIC-IDS2017 under multiclass and binary settings. In
binary classification, the model achieved 100% “accuracy, precision, recall, and F1-
score” on the UNSW-NB15 dataset, surpassing the best benchmark method,
Optimized Hybrid Deep Neural Network + Enhanced Conditional Random Field
(OHDNN+ECRF), by nearly 2%. On CIC-IDS2017 and H23Q, it attained about 99%
across all four metrics, improving previous baselines by 2% to 3%. In multiclass
classification, it reached 99% in all four metrics on UNSW-NB15 and CIC-IDS2017,
and about 98% on H23Q, demonstrating a steady 2% to 4% improvement over current
leading methods. These results, confirmed through five-fold cross-validation and
ablation studies, show that the proposed approach reliably delivers statistically
significant improvements in both binary and multiclass intrusion detection tasks.
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INTRODUCTION
In the ever-changing landscape of cybersecurity, the robustness and flexibility of Intrusion
Detection Systems (IDS) are essential for safeguarding information systems against
malicious activities and sophisticated cyber threats (Kumar, 2025; Park et al., 2022). The
two main techniques used in traditional intrusion detection are anomaly-based and
signature-based (Park et al., 2022). Signature-based methods excel at identifying known
threats because they recognize specific patterns (Chinnasamy & Subramanian, 2023).
However, they cannot detect new, unknown attacks such as zero-day exploits.
Additionally, anomaly-based techniques can detect unusual behavior, making them more
flexible against new threats (Shankar et al., 2024; Momand, Jan & Ramzan, 2024).
Nevertheless, they often generate many false alarms and have difficulty defining normal
activity in a dynamic network environment (Bella et al., 2024). Furthermore, the success of
these methods largely relies on the quality and completeness of the dataset used for
detection, as well as the amount of training data available, which is often limited or
imbalanced in real-world situations (Lee, Li & Li, 2023; Ahmed et al., 2024).

Deep Learning (DL) and Machine Learning (ML) methods are commonly employed to
enhance IDS (Chinnasamy, Malliga & Sengupta, 2022). However, several ongoing
challenges remain: feature redundancy, dataset imbalance, and the static nature of many
ensemble approaches (Subramani & Selvi, 2023; Rajasoundaran et al., 2024).

Research gap
Despite considerable advancements, existing studies have critical limitations.

. Feature Redundancy: Many systems do not remove irrelevant or overlapping features,
leading to increased computational costs and overfitting. For example, Momand, Jan &
Ramzan (2024) introduced Attention-Based CNN-IDS, which showed strong
performance on Internet of Things (IoT) traffic with about 96% accuracy but had poor
recall of less than 80% for minority classes due to a lack of feature selection.

. Imbalanced Datasets: Rare attack types are consistently under-detected. Park et al.
(2022) employed Generative Adversarial Networks (GANs) for data augmentation on
CIC-IDS2017; however, detection of minority classes, such as infiltration attacks,
remained insufficient, highlighting the limitations inherent in traditional GAN
frameworks.

. Static Ensemble Fusion: Current IDS frameworks often combine multiple models with
fixed weighting schemes, which poorly adapt to changing network traffic. Shankar et al.
(2024) proposed an approach merging optimization techniques with deep learning, but
the static nature of ensemble weighting limited adaptability and caused decreased
performance across diverse datasets.

Collectively, these drawbacks emphasize the importance of IDS architectures that
incorporate efficient feature selection, robust data augmentation strategies, and adaptive
model fusion mechanisms to enhance accuracy, recall, and particularly the detection of
minority classes.
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It is crucial to recognize that the examples given are illustrative; a comprehensive
discussion of related works and additional supporting evidence can be found in the
literature survey section.

Research hypothesis
This study hypothesizes that combining a biologically inspired feature selection method
called Indian Millipede Optimization Algorithm (IMOA), an enhanced Wasserstein
Generative Adversarial Network with Gradient Penalty (WGAN-GP), and a dynamic
attention-based (DA)_ensemble classification model will notably enhance intrusion
detection performance in terms of precision, accuracy, F1-score, and recall, especially in
managing imbalanced datasets and identifying minority attack classes, compared to
existing IDS approaches.

Novelty and advantages over prior work
Previous studies have independently examined GANs, ensemble deep learning, or
optimization-driven feature selection, but significant limitations remain (Park et al., 2022;
Shankar et al., 2024; Momand, Jan & Ramzan, 2024; Lee, Li & Li, 2023). In contrast, our
contributions are threefold.

1. Novel IMOA:
A first-of-its-kind bio-inspired optimizer that models the behavioral patterns of
Anoplodesmus saussurii (Indian millipedes), including seasonal abundance (Usha,
Vasanthi & Esaivani, 2022), obstacle avoidance (Dave & Sindhav, 2025), temperature
response (Aswathy & Sudhikumar, 2022), resource utilization (Ramanathan et al.,
2023), group movement (Anilkumar, Wesener & Moritz, 2022), defensive behavior
(Dave & Sindhav, 2025), and mating behavior (Usha, Vasanthi & Esaivani, 2022). These
behaviors are mathematically modeled to improve the exploration-exploitation balance.
Unlike conventional optimization algorithms such as Genetic Algorithm (GA) (Fang
et al., 2024), Particle Swarm Optimizer (PSO) (Jain et al., 2022), and Grey Wolf
Optimizer (GWO) (Mirjalili, Mirjalili & Lewis, 2014), which primarily rely on
predefined equations for search dynamics, IMOA introduces adaptive strategies that
respond to the current state of search. These biologically inspired adaptations enhance
feature selection efficiency in IDS applications, leading to improved classification
performance.

2. Feature-level discriminator enhancements in WGAN-GP:
While GAN-based data augmentation (Park et al., 2022; Lee, Li & Li, 2023) has
been explored, our approach is the first to implement attention layers, layer
normalization, and skip connections within the WGAN-GP discriminator to
improve the realism of synthetic minority-class data. Unlike traditional
oversampling techniques such as Synthetic Minority Oversampling Technique
(SMOTE) (Meliboev, Alikhanov & Kim, 2022) or oversampling, this research gives
better discrimination between real and generated samples and enhances minority class
recall without overfitting.
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3. DA_Ensemble learning:
This research incorporates a DA_Ensemble mechanism, integrating Convolutional
Neural Network (CNN), Long Short-Term Memory (LSTM), and Feedforward Neural
Network (FNN) models. Unlike fixed-weight ensemble methods (Kumar, 2025; Bella
et al., 2024; Rajasoundaran et al., 2024), this approach dynamically adjusts model
weights in real time, ensuring more accurate predictions across diverse attack categories.

Practical benefits
Beyond theoretical novelty, the proposed framework offers several practical benefits for
real-world IDS deployments, including:

(1) Lightweight deployment for edge devices: The features selected through IMOA reduces
computational overhead. As a result, the model becomes lightweight. So, it is
appropriate for resource-limited settings such as IoT and edge devices.

(2) Improved detection of rare and emerging attacks: WGAN-GP-based data augmentation
ensures balanced training, which helps detect minority class attacks more effectively
and improves security in critical infrastructure.

(3) Context-aware decision making: The dynamic attention mechanism customizes the
decision-making process to individual traffic instances, increasing accuracy in
complex, real-world traffic where static models may fail.

(4) Scalability across datasets: The framework is tested on diverse datasets, including CIC-
IDS2017, UNSW-NB15, and H23Q. It shows robustness and flexibility across different
network environments and traffic patterns.

(5) Better interpretability for analysts: The attention weights can be visualized to indicate
which features or base learners impacted a prediction, aiding human analysts in trust
and decision justification.

(6) Ablation study for model validation: Shows how each part, including IMOA, WGAN-
GP, and attention-based ensemble, contributes to overall system performance,
allowing users to adjust or simplify the model for specific deployment needs without
significant performance loss.

(7) Computational efficiency analysis: Evaluates the model’s ability to deploy in real-world
scenarios, especially on resource-limited edge devices, by providing insights into time
and memory usage and supporting scalability and hardware compatibility decisions.

(8) Comprehensive comparison: Confirms the effectiveness of the WGAN-
GP_IMOA_DA_Ensemble model across various scenarios.

The remainder of this study is arranged in the following manner: The literature review
covers similar studies in the field of IDS. The materials and methods provide the details of
IMOA andWGAN-GP, as well as the proposed DA_Ensemble, including the architectures
of IMOA, WGAN-GP, and the ensemble models leveraged in this research. The Results
section describes the experimental setup, evaluation metrics, and experiment outcomes.
The Discussion section provides details of the classification report and a comprehensive
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comparison with benchmark datasets. Finally, the conclusion covers the summary and
possible further research potential.

LITERATURE SURVEY
The details, such as feature selection methods, classification techniques, datasets used,
advantages, and limitations of some related works, are listed in Table 1. This section offers
a summary of recent research on strategies for handling high-dimensional data, addressing
class imbalance in datasets, and DL based methodologies for developing effective IDS.

Handling high-dimensional data
IDS datasets are often high-dimensional, which may include noise, redundant, and
irrelevant information (Chinnasamy, Malliga & Sengupta, 2022). Dimensionality
reduction and feature selection are approaches employed to handle the problems related to
high-dimensional data and reduce the computational complexity, improve the accuracy,
and avoid overfitting (Ahmed et al., 2024; Fang et al., 2024; Meliboev, Alikhanov & Kim,
2022).

Kareem et al. (2022) proposed GTO-BSA framework that integrates “Gorilla Troops
Optimizer” (GTO) and “Bird Swarm Algorithm” (BSA), using K-Nearest Neighbour for
classification, achieving up to 98.7% accuracy on four datasets. GTO-BSA relies on two
metaheuristics, increasing complexity and limiting scalability for large datasets. It doesn’t
address data imbalance or adaptive classification, restricting use in dynamic environments.
In contrast, the WGAN-GP_IMOA_DA_Ensemble framework uses IMOA-based feature
selection, which retains discriminative features with lower computational overhead. It
integrates data augmentation with enhanced WGAN-GP and adaptive ensemble fusion to
address redundancy, imbalance, and adaptability within a unified framework.

Turukmane & Devendiran (2024) designed a hybrid IDS that uses “Advanced Synthetic
Minority Oversampling Technique” (ASmoT) to tackle the problem of class imbalance.
Additionally, feature extraction is performed by “Modified Singular Value Decomposition”
(M-SVD). Later, essential features are identified using “Opposition-based Northern
Goshawk Optimization algorithm” (ONgO). The system employs a “Mud Ring assisted
multilayer support vector machine” (M-MultiSVM) classifier. The performance
assessment is done by utilizing the CIC-IDS 2018 and UNSW-NB15 datasets. While
effective, the pipeline is computationally demanding and lacks detailed analysis of
minority-class detection or ablation to determine which modules contribute most to
performance. In contrast, the WGAN-GP_IMOA_DA_Ensemble framework uses
WGAN-GP for realistic data balancing and a dynamic attention-based ensemble to
provide both adaptability and explainability.

Hanafi et al. (2023) introduced a hybrid IDS model called IBGJO-LSTM, where the
essential features are identified by the improved Binary Golden Jackal Optimization
(IBGJO). Then, the classification is done by LSTM, which is optimized through
opposition-based learning (OBL) to avoid local optima. NSL KDD and CICIDS2017
datasets are utilized to assess the performance. It does not address class imbalance or the
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Table 1 Related works with details.

Authors Feature selection
methods

Classification methods Datasets used Advantages Limitations

UNSW-NB15 binary (Kareem
et al., 2022)

GTO-BSA K-NN UNSW-NB15,
CICIDS2017,
NSL-KDD,
BoT-IoT

Better convergence,
higher accuracy.

Limited scope, high
cost.

Turukmane & Devendiran
(2024)

Modified
Singular Value
Decomposition
(M-SvD)

M-MultiSVM CSE-CIC-IDS 2018,
UNSWNB-15

High accuracy,
reduced imbalance.

Dataset-bound,
complex model.

Meliboev, Alikhanov & Kim
(2022)

SMOTE for
balancing
classes

CNN+LSTM UNSW-NB15,
KDDCup’99,
NSL-KDD

Balancing the
datasets
significantly
improved model
accuracy and
F-scores across all
benchmarks.

Training recurrent
models requires
higher
computation and
longer epochs
compared to CNN.

Ragab & Sabir (2022) Poor and Rich
Optimization
Algorithm
(PROA) for
hyperparameter
tuning

Hybrid CNN-ALSTM with
attention mechanism

KDDCup’99,
NSL-KDD,
UNSW-NB15,
CICIDS2017

High accuracy,
robust detection.

Complex design,
dataset-dependent.

Altunay & Albayrak (2023) CNN+LSTM UNSW-NB15,
X-IIoTID

High accuracy,
hybrid
effectiveness.

Dataset-specific,
limited
generalization.

Thilagam & Aruna (2023) Hybrid CNN-LSTM with
AES encryption

NSL-KDD,
UNSW-NB15

Strong security, high
accuracy

Complex process,
dataset-limited

Karthic & Kumar (2023) Enhanced
Conditional
Random
Field-based
feature selection

Optimized Hybrid Deep
Neural Network
(OHDNN): Hybrid CNN-
LSTM, optimized using
Adaptive Golden Eagle
Optimization

NSL-KDD,
UNSW-NB15

Improved accuracy,
effective features.

Dataset-limited,
high complexity.

CIIC-IDS2017 Binary
(Hanafi et al., 2023)

IBGJO LSTM CICIDS2017,
NSL-KDD

High accuracy,
effective feature
selection.

Dataset-limited,
reduced efficiency
scaling.

Bowen et al. (2023) Recursive Feature
Elimination
(RFE)

Hybrid CNN + BLSTM CIC-IDS2017,
IoT-23, Bot-IoT,
UNSW-NB15

Strong detection,
hybrid effectiveness

Dataset-dependent,
misses rare attacks

Li, Li & Li (2023) GAN for data
augmentation,
CNN-BiLSTM with
self-attention mechanism

CIC-IDS2017 Handles imbalance,
higher accuracy

High complexity,
dataset-specific

Vishwakarma & Kesswani
(2023)

Naïve Bayes and Elliptic
Envelope

NSL-KDD,
UNSW-NB15,
CIC-IDS2017

High accuracy,
efficient detection.

Multi-phase
complexity,
dataset-bound.
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Table 1 (continued)

Authors Feature selection
methods

Classification methods Datasets used Advantages Limitations

Chinnasamy, Subramanian &
Sengupta (2023a)

HBO ANN CIC-IDS2017 Efficient feature
selection

Dataset limited, class
imbalance issue

UNSW-NB15 multiclass
(Bakro et al., 2024)

Grasshopper
Optimization
Algorithm
(GOA) and GA

Random Forest classifier UNSW-NB15,
CIC-DDoS2019,
CIC Bell DNS
EXF 2021

High accuracy,
improved feature
selection

Complex process,
high computation

Sayegh, Dong & Al-madani
(2024)

Correlation-
Based Feature
Selection (CFS)
Recursive
Feature
Elimination
(RFE)

Random Forest (RF)
Support Vector Machine
(SVM), K-Nearest
Neighbor (KNN),
Naïve Bayes (NB),
Decision Tree (DT)

UNSW-NB15 Improved detection,
handles imbalance

Oversampling risks,
dataset-specific

Sajid et al. (2024) Principal
Component
Analysis (PCA)
and
Information
Gain (IG)

Random Forest (RF)
Gradient Boosting
Machine (GBM),
Logistic Regression (LR),
Naïve Bayes (NB),
Decision Tree (DT),
K-Nearest Neighbors
(KNN)

UNSW-NB15 High detection, low
FAR

Complex design,
dataset-dependent

More et al. (2024) Correlation
Analysis and
Random
Sampling

Logistic Regression,
Decision Tree

UNSW-NB15 Better accuracy,
improved
evaluation

Dataset-specific,
limited
generalization

Yin et al. (2023) Random Forest
Importance,
Recursive
Feature
Elimination
(RFE)

MLP with two hidden layers UNSW-NB15
dataset

Reduced features,
improved accuracy

Dataset-limited,
modest gains

CIC-IDS2017 multiclass
(Yao, Shi & Zhao, 2023)

Bidirectional GAN (BiGAN)
with Wasserstein distance,
Fog-Cloud joint training

UNSW-NB15,
CIC-IDS2017

Scalable detection,
reduced false
alarms

Complex training,
dataset-limited

Bacevicius &
Paulauskaite-Taraseviciene
(2023)

Logistic Regression,
Decision Trees

CIC-IDS2017,
CSE-CIC-
IDS2018

Strong multi-class
performance,
interpretable results

Imbalance persists,
dataset-specific

Aljehane et al. (2024) Golden Jackal
Optimization
Algorithm
(GJOA)

Attention-based
bi-directional long
short-term memory
(A-BiLSTM)

CIC-IDS2017 Better accuracy,
optimized feature
selection

High complexity,
dataset-specific

Ahmed et al. (2024) Consensus Hybrid
Ensemble Model (CHEM):
Voting-based ensemble
with RF, DT, XGBoost,
MLP

Kdd99, NSL-KDD,
CIC-IDS2017,
BoTNeTIoT,
Edge-IIoTset

Adaptive,
interpretable,
strong accuracy

Complex ensemble,
high computation

(Continued)
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adaptive fusion of multiple learners. Our approach instead provides feature selection,
imbalance handling, and dynamic attention for the explainability of the framework.

Chinnasamy, Subramanian & Sengupta (2023a) designed an IDS model that utilizes the
honey badger optimization algorithm (HBO) to identify the essential features.
Additionally, the classification is conducted by the Artificial Neural Network (ANN). But
the system was evaluated using only one dataset and doesn’t tackle the class imbalance
problem. In contrast, our approach tests the framework on CIC-IDS2017, H23Q, and
UNSW-NB15 datasets, tackles the problem of class imbalance with WGAN-GP, and
provides explainability through dynamic attention.

Bakro et al. (2024) designed an IDS for the cloud where feature selection is performed
using a hybrid bio-inspired method that combines GOA and GA. A Random Forest
classifier trained on these features was tested on CIC Bell DNS, CIC-DDoS2019, and
UNSW-NB15 datasets. The framework does not explicitly address class imbalance or offer
mechanisms for adaptive integration of multiple learners. The proposed model mitigates
these limitations by using IMOA for lightweight feature selection, WGAN-GP to balance
classes, and a DA_Ensemble to enhance scalability and generalization across diverse attack
scenarios.

Aljehane et al. (2024) proposed a GJOADL-Intrusion Detection System for Network
Security (IDSNS) model, where the most relevant features are identified by the Golden
Jackal Optimization Algorithm (GJOA). Then, the classification is performed with
Attention-based Bidirectional Long Short Term Memory (A-BiLSTM). Besides,
hyperparameter tuning is performed by the SSA. However, the model didn’t tackle the class
imbalance problem. The proposed framework directly addresses the class imbalance issue
by leveraging WGAN-GP to produce synthetic minority class instances, ensuring balanced
training and improved detection across both majority and minority attack classes.

In summary, researchers have used various bio-inspired optimization algorithms for
identifying the essential features and have employed either ML or DL models for
classification. The feature selection methods tackle the problems of high-dimensional data.

Handling imbalanced data
During IDS development, the dataset has an uneven distribution between attack and
benign classes. Managing this imbalance remains essential. Researchers have suggested
different methods to deal with the problem of class imbalance.

Table 1 (continued)

Authors Feature selection
methods

Classification methods Datasets used Advantages Limitations

Aktar & Nur (2023) Deep Contractive
Autoencoder (DCAE)
with stochastic threshold
selection

CIC-IDS2017,
NSL-KDD,
CIC-DDoS2019

High accuracy,
effective anomaly
detection

Dataset-limited,
high training cost

H23Q dataset (multiclass
classification) (Chatzoglou
et al., 2023)

Shallow and deep learning
techniques (various ML
models)

H23Q Dataset New dataset, real
attack coverage

Early stage, limited
scope
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Meliboev, Alikhanov & Kim (2022) discussed how class imbalance in intrusion detection
datasets may cause low performance, especially in identifying minority attacks. The
SMOTE technique has been used to balance the data. Moreover, DL models like LSTM
and CNN performed significantly better on the balanced datasets compared to the
imbalanced ones. However, the framework did not address the high-dimensionality
problem and lacked interpretability in its results. In contrast, the proposed
WGAN-GP_IMOA_DA_Ensemble addresses the high-dimensionality problem
through feature selection with IMOA and offers interpretability in results with dynamic
attention.

Park et al. (2022) utilized a Boundary Equilibrium Generative Adversarial Network
(BEGAN) with Wasserstein distance for generating synthetic instances for minority attack
classes. Constantin et al. (2024) evaluated various GAN models, like energy-based,
Wasserstein, gradient penalty, LSTM-GAN, and conditional on traffic data from 16 users,
with results demonstrating improved performance of intrusion detection models.

Kumar & Sinha (2023) employed a Wasserstein Conditional Generative Adversarial
Network (WCGAN) with a gradient penalty to produce synthetic attack instances for
underrepresented classes. In addition, the synthetic samples were combined with the real
data and evaluated with the XGBoost classifier. Jamoos et al. (2023) developed a
GAN-based model, named Temporal Dilated Convolutional Generative Adversarial
Network (TDCGAN), for producing synthetic instances for minority attack classes in the
UGR’16 dataset. By integrating three discriminators and an election mechanism, the
model ensures high-quality data generation, leading to improved detection accuracy,
precision, and recall. Cai et al. (2023) suggested an IDS framework named the CycleGAN
Self Attention-Recurrent Neural Network (CGSA-RNN), which enhances attack detection
by addressing data imbalance through an improved CycleGAN, which performs data
augmentation using style transfer. By integrating a self-attention mechanism and replacing
Rectified Linear Unit (ReLU) with LeakyReLU in the CycleGAN generator, the model
reduces image distortion and captures critical features more effectively. Alsirhani et al.
(2023) developed a DL-based IDS that utilizes Deep Convolutional GAN (DCGAN) for
data augmentation to handle the issue of imbalance in datasets. By producing realistic
synthetic samples of minority attack classes, the model significantly improved detection
accuracy and robustness.

Although many GAN-based methods, such as WCGAN (Kumar & Sinha, 2023),
BEGAN (Park et al., 2022), DCGAN (Alsirhani et al., 2023), TDCGAN (Jamoos et al.,
2023), and CycleGAN (Cai et al., 2023), successfully mitigate class imbalance by generating
synthetic samples, they do not incorporate feature selection algorithms, which may lead to
redundant or irrelevant features that degrade performance. Moreover, these approaches
lack explainability mechanisms, making it difficult to interpret or trust the decisions of the
IDS models in critical security contexts. As a result, they remain limited in practical
deployment despite achieving improved accuracy on benchmark datasets.

The proposed WGAN-GP_IMOA_DA_Ensemble addresses these gaps by using IMOA
for effective feature selection, reducing dimensionality, and improving detection efficiency,
while the dynamic attention ensemble enhances interpretability by highlighting feature
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contributions. Additionally, WGAN-GP ensures balanced training data, allowing the
model to achieve both high accuracy and explainability in real-world IDS.

Srivastava, Sinha & Kumar (2023) suggested an IDS using WCGAN-GP for realistic
data augmentation and GA for feature selection to address data imbalance. The model,
combined with a Boost classifier, outperformed traditional and state-of-the-art methods by
generating high-quality synthetic samples and optimizing features. The framework did not
address interpretability. In contrast, the proposed WGAN-GP_IMOA_DA_Ensemble
approach introduces interpretability through a dynamic attention-based ensemble.

Deep learning-based classification
Recently, DL methods have been employed for classification tasks in developing effective
IDS. Meliboev, Alikhanov & Kim (2022) explored DL architectures, including CNN,
LSTM, Recurrent Neural Network (RNN), and Gated Recurrent Unit (GRU), for
identifying intrusion by analyzing sequential network traffic data. Among the models
tested, CNN and the CNN-LSTM hybrid performed better. However, it did not address the
issue of high dimensionality. The proposed WGAN-GP_IMOA_DA_Ensemble
framework introduces feature selection through IMOA and reduces dimensionality.

Altunay & Albayrak (2023) designed an IDS for Industrial IoT (IIoT) by integrating
CNN and LSTM architectures to enhance threat identification. Although tested on two
datasets, the model only utilized classification with basic preprocessing methods. It didn’t
address issues like high dimensionality, data imbalance, and model interpretability. In
contrast, the proposed WGAN-GP_IMOA_DA_Ensemble framework introduces feature
selection through IMOA, which reduces dimensionality, handles class imbalance with
WGAN-GP by producing realistic samples of minority attack instances, and provides
interpretability through dynamic attention.

Thilagam & Aruna (2023) proposed an IDS for cloud computing environments by
integrating an Lion Mutated-Genetic Algorithm (LM-GA) and a hybrid CNN-LSTM DL
model. The LM-GA optimizes encryption keys for securing non-intruded data using AES
encryption, while the CNN-LSTM model effectively detects intrusions by analyzing
preprocessed and balanced input data. The system did not address the issue of model
interpretability. In contrast, our proposed system offers model interpretability through
dynamic attention.

Karthic & Kumar (2023) designed an IDS where the essential features are identified
using an enhanced Conditional Random Field. Additionally, an Optimized Hybrid Deep
Neural Network (OHDNN) is employed for classification. This approach focuses on
performance but did not address the explainability of results and class imbalance
problems. The proposed system offers interpretability through dynamic attention and
utilizes WGAN-GP to tackle the class imbalance.

Li, Li & Li (2023) introduced a GAN-CNN-BiLSTM model to enhance network
intrusion detection by addressing data imbalance with GAN for data augmentation and
combining CNN with Bidirectional LSTM, called BiLSTM networks for classification.
However, they didn’t address the problem of a high-dimensional dataset. Our proposed
system addresses this limitation with IMOA-based feature selection.

Chinnasamy and Subramanian (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3278 10/73

http://dx.doi.org/10.7717/peerj-cs.3278
https://peerj.com/computer-science/


Attention mechanism
In IDS, attention mechanisms enhance DL models by enabling them to concentrate on the
essential parts of network traffic instances (Ragab & Sabir, 2022). This selective focus
allows the models to assign higher importance to critical features indicative of malicious
activity, thereby reducing false positives and improving detection accuracy. However, the
class imbalance issue and problems of high dimensionality, which lead to computational
overhead, persist. The proposed system overcomes these limitations with IMOA-based
feature selection and WGAN-GP-based synthetic data generation.

Aljehane et al. (2024) developed an IDS that utilizes Attention-based BiLSTM (A-BiLSTM)
to improve the capability of the model to focus on critical temporal patterns in intrusion
samples. The system fails to handle the class imbalance issue. The suggested approach
addresses the class imbalance problem through WGAN-GP-based synthetic data generation.

Ahmed et al. (2024) employed a random oversampling technique to overcome the class
imbalance issue. Besides, the model provides interpretability through “Shapley Additive
explanations” (SHAP) and “Local Interpretable Model-agnostic Explanations” (LIME).
However, it did not address the high dimensionality issue. The proposed
WGAN-GP_IMOA_DA_Ensemble addresses the high dimensionality issue through
IMOA-based feature selection.

In summary, recent advancements in IDS have utilized bio-inspired optimization
algorithms for feature selection, GAN-based frameworks for addressing data imbalance, and
DL models for classification. Notably, the integration of attention mechanisms has further
contributed to the overall improvement in performance by making them focus on critical
features of network traffic, enhancing detection precision, and reducing false positives.

From the detailed study of the previous literature, the general block diagram for the
development of an IDS is designed and is shown in Fig. 1. It has been observed that the
AI-based IDS generally preprocesses the dataset, such as data cleaning, normalization, and
scaling (Devendiran & Turukmane, 2024). Next, some optimization algorithms identify the
essential features of the dataset. Then, the dataset is divided into training and test datasets.
Later, the classification model is trained with the training dataset. Finally, the framework’s
effectiveness is evaluated using performance metrics.

Figure 1 General block diagram of a typical IDS. Full-size DOI: 10.7717/peerj-cs.3278/fig-1
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MATERIALS AND METHODS
This section provides the details of the suggested model, including the IMOA algorithm,
WGAN-GP algorithm, dataset preprocessing, proposedWGAN-GP_IMOA_DA_Ensemble
model, and the dynamic attention mechanism. The source code for this research can be
accessed at https://doi.org/10.5281/zenodo.17153877.

Novel Indian millipede optimization
A technique for finding the best solution to a problem from a set of possible solutions is
known as an optimization algorithm (Nandhini & SVN, 2024). These algorithms are
designed for maximizing or minimizing an objective function by iteratively improving
candidate solutions (Devendiran & Turukmane, 2024).

The schematic diagram that shows the components of an optimization algorithm is
depicted in Fig. 2. Firstly, it has a parameter named decision variable x1, x2,…, xn that can
be fine-tuned for identifying an optimal solution to a problem. Secondly, the limits on
decision variables, known as bounds lbi ≤ xi ≤ ubi, define the feasible region within the
search space. Next, constraints g1(x), g2(x),…, gm(x) are requirements that a solution must
fulfill. Finally, a mathematical expression known as an objective function f(x1, x2, …, xn)
assesses the quality of a solution by taking into account the decision variables (Otair et al.,
2022). The optimization algorithms are classified broadly into traditional and
metaheuristic algorithms. Metaheuristic optimization algorithms are more straightforward
to comprehend and implement in comparison with conventional optimization algorithms

Figure 2 Fundamental components of the optimization algorithm.
Full-size DOI: 10.7717/peerj-cs.3278/fig-2
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(Jia et al., 2023). The metaheuristic optimization process finds the optimal solution xbest
after numerous iterations. It yields a new solution xnew {x1, x2, …xn} in every iteration. If
xnew is superior to xbest, then xbest is updated to xnew. The iterations persist until the
discovered solution fulfills specific predefined criteria. The last solution is the optimal or
best solution (Jia et al., 2023). Despite the numerous meta-heuristic algorithms developed
in recent years, as per the No Free Lunch theorem, there is no single algorithm that can
solve every problem (Fraihat et al., 2023). An algorithm that performs exceptionally well
for one problem may not achieve the same effectiveness for other issues.

In this article, a novel IMOA that mimics the behavior of the Indian millipede is
proposed for identifying the crucial features in the very large dataset.

Figure 3 Composite image showcasing varied behavioral expressions of the Indian millipede. Full-size DOI: 10.7717/peerj-cs.3278/fig-3
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Indian millipede general biology
The millipedes are specialists of the soil, which can be found on the ground, in the soil,
among leaf litter, or in shallow subterranean environments (Ramanathan et al., 2023).
They are primarily found in the tropics and subtropics of the world because they are
adapted to exist in humid environments with mild temperatures. With a length of about
21–33 mm, the adult millipede is black or dark brown. They are primarily herbivores,
although they also consume wood, rotting fish, and cow dung in addition to any decaying
and rotting leaves and vegetable pieces (Aswathy & Sudhikumar, 2022). Figure 3 illustrates
different species of Indian millipedes along with their activities such as movement, mating,
and defensive behaviors. These natural behaviors serve as the biological foundation of our
proposed IMOA. The most notable behavior of millipedes that can be modelled for
optimization is as follows.

1. Seasonal Abundance: Millipedes are more active during the rainy season (Usha,
Vasanthi & Esaivani, 2022), which can be modelled to increase exploration during
certain phases (Jia et al., 2023).

2. Obstacle Avoidance: When encountering obstacles, millipedes curl up and wait before
changing direction (Anilkumar, Wesener & Moritz, 2022), which can be used to avoid
local optima (Otair et al., 2022).

3. Temperature Response: Millipedes seek shady areas when temperatures are high
(Aswathy & Sudhikumar, 2022), analogous to moving towards better solutions in
high-stress scenarios (Jia et al., 2023).

4. Resource Utilization: Millipedes prefer areas rich in organic material (Aswathy &
Sudhikumar, 2022), representing the focus on high-quality solutions (Nandhini & SVN,
2024).

5. Group Movement: Millipedes move in groups (Dave & Sindhav, 2025), indicating
cooperative behavior in the algorithm (Devendiran & Turukmane, 2024).

6. Defensive Behavior: Millipedes emit a foul odor when threatened (Dave & Sindhav,
2025), analogous to penalizing poor solutions (Alsirhani et al., 2023).

7. Mating Behavior: Millipedes mate by stacking (Usha, Vasanthi & Esaivani, 2022),
representing crossover operations (Jia et al., 2023).

8. Predator Avoidance: Millipedes are avoided by predators due to their odor (Dave &
Sindhav, 2025), which can be used to maintain diversity by reinitializing specific
populations (Jia et al., 2023).

Inspiration
IMOA is inspired by the seasonal abundance, group movement, predator avoidance,
temperature response, resource utilization, defensive behavior, and mating behavior of
Indian millipedes (Usha, Vasanthi & Esaivani, 2022; Dave & Sindhav, 2025; Aswathy &
Sudhikumar, 2022; Ramanathan et al., 2023; Anilkumar, Wesener & Moritz, 2022). In this,
the seasonal abundance, group movement, and predator avoidance correspond to the
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exploration phase. On the other hand, temperature response, resource utilization,
defensive behavior, and mating behavior correspond to the exploitation phase of IMOA.

Mathematical model
This section gives the mathematical equivalence of the IMOA, which simulates various
behaviors of the millipedes.

Algorithmic steps
IMOA is a global optimization technique since it has the potential to include both
exploration and exploitation stages. The stepwise procedure of the IMOA, adapted for
feature selection in IDS, is presented in Algorithm 1.

The detailed steps of the suggested IMOA algorithm are given below.
Step 1: Initialization

The initialization step of IMOA begins with creating an initial population of millipedes,
each positioned randomly within the defined bounds of the search space. It aims to cover a
wide range of the search space, which in turn promotes diversity and enhanced
exploration. The detailed initialization is as follows.

• Define the Bounds of the Search Space:

Each dimension j of the search space has a lower bound lbj = xmin,j and an upper bound
ubj = xmax,j.

• Generate Initial Positions:

For each millipede i and dimension j, generate a random position within the bounds.

Algorithm 1 IMOA.

Input: Population size N, Maximum iterations T, Temperature threshold Tth

Parameters: a (seasonal activity factor), β (reversal factor), γ (learning rate),
δ (step size), ε (social factor), λ (penalty coefficient), η (crossover coefficient)

Output: Best solution found
1. Initialize population P with N millipedes at random positions
2. Evaluate the fitness of each millipede using the objective function f(x).

• If constraints are violated → apply a penalty using the coefficient λ.
3. Set iteration counter t ¼ 0.
4. While (t < T and not converged) do
4.1. for each millipede i in P do

• Seasonal Abundance: update position using periodic factor (Eqs. (4) and (5)).
• Obstacle Avoidance: if an obstacle is detected, apply a reversal update (Eq. (6)).
• Temperature Response: if Temperature > Tth, move towards best-known position (Eq. (7)).
• Resource Utilization: refine position using local gradient (Eq. (8)).
• Group Movement: move towards the population mean (Eq. (9)).
• Defensive Behavior: apply a penalty if poor conditions are encountered (Eq. (10)).
• Mating Behavior: generate offspring via crossover with another individual (Eq. (11)).
• Predator Avoidance: if population diversity < threshold, reinitialize to a random position (Eq. (12)).

4.2. Evaluate new positions and compute fitness for all millipedes (Eq. (13)).
• Apply a penalty if constraints are violated (Eq. (14)).

4.3. Update the best solution found so far (Xbest).
4.4. Increment iteration counter (t = t + 1) (Eq. (16)).
5. Return the best solution Xbest.
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Initialization for the entire population is given by Eq. (1).

P ¼ ½X1;X2;X3; � � �XN� ¼

x1;1 . . . : x1;j . . . : x1;d
..
. ..

. ..
.

xi;1 . . . : xi;j . . . : xj;d

..

. ..
. ..

.

xN;1 . . . : xN;j . . . : xN;d

26666664

37777775 (1)

where P is the candidate solution
N is the number of millipedes (population size),
d is the dimensionality of the search space,
Xi is the position vector of the ith millipede.

The initial position xi;j for each millipede i in each dimension j is given by the following
Eq. (2).

xi;j ¼ lbj þ ðubj � lbjÞ � randð0; 1Þ (2)

where rand(0, 1) is a random number uniformly distributed between 0 and 1.
Also set algorithm parameters, population size N, maximum iterations T, temperature

threshold Tth, and scaling factors a, β, γ, δ, ε, λ, and η.
Step 2: Fitness Evaluation

The initial fitness evaluation in IMOA involves defining the fitness function, computing
the fitness for each millipede, and applying penalties for constraint violations if necessary.
This process provides the initial quality assessment of the solutions, guiding the
optimization process in subsequent iterations. Let xi be the position vector of the ith

millipede,
f ðxi) be the fitness function applied to xi,
λ be the penalty coefficient for constraint violations, and
gðxi) be a constraint violation function that returns a positive value if constraints are

violated and zero otherwise.
The penalized fitness function fpenalized xið Þ is given by Eq. (3).

fpenalized xið Þ ¼ f xið Þ þ l � g xið Þ: (3)

Step 3: Iterative Process
The iterative process in the IMOA includes (i) updating the positions of millipedes

based on their behaviors, (ii) evaluating their fitness, and (iii) checking for convergence.
This section explains in detail he iterative procedure and its mathematical equivalents.
Iterative Loop

Set the iteration counter t = 0
For each iteration until convergence:
• Update positions based on various behaviors.
• Evaluate the fitness of new positions.
• Apply penalty for constraints (if any).
• Check for convergence.
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Iterative steps
Iterative step1: Seasonal Abundance

During the rainy season, Indian millipedes experience a significant increase in activity
and population (Aswathy & Sudhikumar, 2022). This trait allows increased exploration.
The mathematical equivalence for the seasonal abundance for more exploration is given in
Eqs. (4) and (5).

at ¼ a� sin
2pt
T

� �
(4)

xtþ1
i ¼ xti þ ðat� riÞ (5)

where a is the scaling factor, t is the current iteration, T is the maximum number of
iterations, and ri is the random vector.
Iterative step 2: Obstacle Avoidance

When it encounters an obstacle, the Indian millipede curls up and waits for some time.
Afterwards, it changes its direction (Aswathy & Sudhikumar, 2022). This is equivalent to
reversing the search when there is a poor fitness to avoid local optima trapping. The
mathematical equivalence of obstacle avoidance is given in Eq. (6).

xtþ1
i ¼ xti � ðb� riÞ (6)

where b is the reversal factor.
Iterative step 3: Temperature Response

Millipedes move to cooler areas when temperatures rise above 26 �C. It is analogous to
moving towards better solutions in high-stress situations. The mathematical equivalence of
temperature response is given in Eq. (7). Move towards better solutions xbest, if the
temperature exceeds the threshold Tth.

xtþ1
i ¼ xti þ c� ðXbest � xti Þ (7)

where γ is the learning rate and Xbest is the best position found so far.
Iterative step 4: Resource Utilization

Indian millipedes utilize resources efficiently by seeking out areas with abundant
degradable leaves and mud. This behavior allows them to thrive in environments rich in
organic matter, ensuring their survival and growth (Usha, Vasanthi & Esaivani, 2022).
This behavior can be modelled as focusing on high-fitness areas. The mathematical
equivalence of resource utilization is given in Eq. (8).

xtþ1
i ¼ xti þ d� ðrf ðxti ÞÞ (8)

where δ is a step size and rf ðxti ) is the gradient of the fitness function.
Iterative step5: Group Movement

Indian millipedes travel in clusters and exhibit group movement, enhancing their
chances of finding resources and protection (Usha, Vasanthi & Esaivani, 2022). This
collective behaviour helps them navigate their environment more effectively and increases
their overall survival rate. This simulates the cooperative behaviour that involves multiple
agents working together and sharing information to explore the search space more
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effectively and improve the chances of finding optimal solutions. The mathematical
equivalence of group movement is given in Eq. (9).

xtþ1
i ¼ xti þ e� 1

N

XN
j¼1

xtj � xti

 !
(9)

where e is a social factor.
Iterative step 6: Defensive Behavior

Indian millipedes display defensive behavior by emitting a foul odor when threatened,
deterring predators and ensuring their safety. This chemical defense mechanism is crucial
for their survival, as it makes them unappealing to potential threats. This can be modelled
as penalizing poor solutions. The mathematical equivalence of defensive behavior is given
by the penalized fitness function in Eq. (10).

f penalizedðxiÞ ¼ fðxiÞ þ k� PenaltyðxiÞ (10)

where, λ is a penalty coefficient.
Iterative step 7: Mating Behavior

Indian millipedes exhibit mating behavior where one millipede climbs on top of
another, facilitating reproduction. This behavior is crucial for the continuation of their
species and helps maintain their population in suitable environments (Usha, Vasanthi &
Esaivani, 2022). It represents crossover or recombination. This process involves combining
parts of two or more parent solutions to create new offspring solutions, promoting genetic
diversity and enhancing the search for optimal solutions. The mathematical equivalence of
mating behavior is given in Eq. (11).

xof f spring ¼ g� xi þ 1� gð Þ � xj (11)

where g is a crossover coefficient.
Iterative step 8: Predator Avoidance

Indian millipedes avoid predators by emitting a foul odor, making them unappealing to
birds and other animals. This chemical defense strategy is highly effective, as it deters
potential threats and ensures their safety (Usha, Vasanthi & Esaivani, 2022). It can be
modelled to reinitialize specific populations to avoid premature convergence and maintain
diversity. This, in turn, ensures that the algorithm explores new regions by introducing
randomness and avoiding stagnation in local optima. The mathematical equivalence of
mating behavior is given in Eq. (12).

xtþ1
i ¼ xrand: (12)

Iterative step 9: Evaluate Fitness
Compute the fitness of the new position.
Compute f xtþ1

i

� �
Iterative step 10: Apply penalty for constraints (if any)

Apply a penalty for solutions that violate constraints as shown in Eq. (13).
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Initialize population P with N millipedes at random positions

Evaluate initial fitness of each millipede

Intialize the iteration counter t=0 and

Set a value for the Maximum number of Iterations T

Is it rainy season

Increase the population size Continue with  current population

For each millipede i in P

Is obstacle encountered?

Roll up and wait

Set obstacle wait counter

Decrement wait counter

Is wait counter>0

Reverse Direction
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Move towards lower fitness

area(Shady area) Continue normal movement

Update position based on gradient(Resource Utilization)

Move towards the average position of the population(Group Movement)

if penalized_fitness[i]>mean(penalized_fitness)

Penalize poor solutions(Defensive

Behaviour)

Perform crossover with other solutions(Mating behaviour)

if Predator

Reinitialize position

Evaluate fitness of new postion, update penalized fitness, check for convergence,increment the
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Figure 4 Flowchart of the IMOA. Full-size DOI: 10.7717/peerj-cs.3278/fig-4
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fpenalized xtþ1
i

� � ¼ f xtþ1
i

� �þ k� g xtþ1
i

� �
: (13)

Step 4: Convergence Check
This checks if the convergence criteria are met.
Check if the maximum number of iterations T is reached or if there is no significant

improvement in fitness. It is given in Eq. (14).

if t � T or rf < e: (14)

If converged, stop the iteration; otherwise, proceed to the next iteration by incrementing
the counter t as shown in Eq. (15).

t ¼ t þ 1: (15)

Step 5: Solution Selection
Select the best solution from the population based on the highest fitness value. Figure 4

presents the flowchart of IMOA, highlighting the initialization, fitness evaluation using
mutual information, and iterative updates through seasonal activity, resource utilization,
and predator avoidance. Each block corresponds to steps in Algorithm 1.

Theoretical analysis of IMOA
Convergence behavior of IMOA
Optimization algorithms require a balance between global search and local refinement
to ensure convergence to an optimal solution (Jia et al., 2023). IMOA achieves this
by dynamically adjusting its movement strategies inspired by Indian millipede
behaviors (Usha, Vasanthi & Esaivani, 2022; Dave & Sindhav, 2025; Aswathy &
Sudhikumar, 2022; Ramanathan et al., 2023; Anilkumar, Wesener & Moritz, 2022). The
iterative update mechanism follows a diminishing learning rate strategy, preventing
stagnation in local optima while ensuring gradual convergence. A convergence
proof in heuristic optimization typically relies on demonstrating that the search space
coverage diminishes over time, leading the algorithm toward a stable solution
(Jia et al., 2023).

Theoretical convergence guarantees
The convergence of IMOA can be analyzed through its adaptive phase transitions. In the
exploration phase, the seasonal abundance (Ramanathan et al., 2023) and group
movement (Usha, Vasanthi & Esaivani, 2022) behaviors allow millipedes to spread widely
across the search space, reducing the likelihood of premature convergence. In the
exploitation phase, temperature response (Aswathy & Sudhikumar, 2022) and resource
utilization (Anilkumar, Wesener & Moritz, 2022) encourage millipedes to refine their
search around promising regions, gradually stabilizing towards optimal solutions. Given
that IMOA follows a structured adaptation of movement and interaction rules, it aligns
with convergence properties observed in traditional nature-inspired algorithms such as
GA (Fang et al., 2024), PSO (Jain et al., 2022), and GWO (Mirjalili, Mirjalili & Lewis,
2014), as shown in Table 2.
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Empirical evidence of convergence
To empirically validate IMOA’s convergence, we analyze its fitness function evolution
across 100 iterations on the UNSW-NB15, H23Q, and CIC-IDS2017 datasets. Figure 5
demonstrates the empirical evidence of convergence for the proposed IMOA across three
benchmark datasets. The fitness curves show a consistent and smooth convergence
pattern, where the algorithm rapidly improves its performance in the early iterations and
gradually stabilizes as it approaches the optimal solution. CIC-IDS2017 exhibits the
highest average fitness, indicating a more complex optimization landscape, while H23Q
converges faster due to its relatively more straightforward structure.

Table 2 Theoretical convergence strategies and adaptability features across metaheuristic algorithms.

Algorithm Exploration strategy Exploitation strategy Local optima escape
mechanisms

Adaptability

GA (Fang et al., 2024) Random mutation Selection pressure on fittest
solution

Mutation moderate (Static Mutation and
crossover rates)

PSO (Jain et al., 2022) Inertia weighted velocity
updates

Position refinement based
on global/local bests

No explicit escape
mechanism

Moderate (Fixed inertia weight)

GWO (Mirjalili,
Mirjalili & Lewis,
2014)

Alpha, beta, delta
wolf-based exploration

Hunting mechanism via
encircling prey

Leader-centric approach Moderate (Depends on hierarchy)

IMOA (Proposed) Seasonal abundance and
group movement

Temperature response and
resource utilization

Obstacle avoidance and
Predator avoidance

High (Adaptive transition based on
the optimization phase)

Figure 5 Convergence behavior of the IMOA across UNSW-NB15,CIC-IDS2017 and H23Q datasets.
Full-size DOI: 10.7717/peerj-cs.3278/fig-5
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While a universal formal proof of convergence remains a research challenge for
metaheuristics, IMOA’s adaptive control mechanisms ensure stable behavior comparable
to GA (Fang et al., 2024), PSO (Jain et al., 2022), and GWO (Mirjalili, Mirjalili & Lewis,
2014).

Computational complexity analysis
Theoretical complexity
The computational complexity of IMOA can be analyzed and compared with traditional
metaheuristics like GA, PSO, and GWO through the key steps, namely initialization,
fitness evaluation, and iterative movement. These steps define its computational
complexity as shown in Table 3.
Let N be the population size.
d be the number of features and
T be the number of iterations.
The worst-case time complexity of IMOA is

O (N2 × d × T).
In theory, from Table 3, we deduce that among the algorithms compared, IMOA and
GWO (Mirjalili, Mirjalili & Lewis, 2014) have higher per-iteration costs due to their

Table 3 Theoretical computational complexity comparison of IMOA with PSO,GWO and GA.

Operation GA (Fang et al., 2024)
complexity

PSO (Jain et al., 2022)
complexity

GWO (Mirjalili, Mirjalili & Lewis, 2014)
complexity

IMOA
complexity

Initialization O (N × d) O (N × d) O (N × d) O (N × d)

Fitness
evaluation

O (N) O (N) O (N) O (N)

Iterative update O (N) O (N × d) O (N2 × d) O (N2 × d)

Overall
complexity

O (N × d × T) O (N × d × T) O (N2 × d × T) O (N2 × d × T)

Table 4 Performance comparison of metaheuristic algorithms in terms of average iteration time and best fitness on UNSW-NB15,
CIC-IDS2017, and H23Q datasets.

Algorithm (UNSW-NB15) (CIC-IDS2017) (H23Q)

Average time per
iteration in sec

Average best
fitness

Average time per iteration
in sec

Average best
fitness

Average time per
iteration in sec

Average best
fitness

PSO (Jain
et al., 2022)

718.3821 ± 121.7650 s 5.4856 ± 0.3687 34,336.9969 ± 1,560.9912 s 14.3848 ± 0.6970 1,188.7140 ± 183.7473 s 1.4882 ± 0.0851

GWO
(Mirjalili,
Mirjalili &
Lewis, 2014)

19.9321 ± 2.7349 s 0.3286 ± 0.0469 838.9168 ± 36.9396 s 0.5139 ± 0.0148 71.2276 ± 4.3994 s 0.2478 ± 0.0786

GA (Fang
et al., 2024)

824.0888 ± 141.8974 s 5.6282 ± 0.0439 75,434.3345 ± 749.7889 s 13.4396 ± 1.0739 1,496.4866 ± 45.3354 s 1.6351 ± 0.0232

IMOA
(Proposed)

31.0347 ± 5.0961 s 5.0811 ± 0.3663 2,819.3449 ± 575.5523 s 13.3224 ± 0.6850 137.0148 ± 21.3123 s 1.3121 ± 0.0168

Chinnasamy and Subramanian (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3278 22/73

http://dx.doi.org/10.7717/peerj-cs.3278
https://peerj.com/computer-science/


group-interaction-based update strategies, unlike GA (Fang et al., 2024) and PSO (Jain
et al., 2022), which primarily rely on individual-based updates.

Runtime and fitness comparisons
To empirically validate IMOA’s computational efficiency, we conducted runtime
comparisons as shown in Table 4. The runtime and fitness performance analysis compares
IMOA with PSO, GWO, and GA across the UNSW-NB15, CIC-IDS2017, and H23Q
datasets. IMOA demonstrates a strong balance between optimization accuracy and
computational efficiency, achieving significantly lower average iteration times than PSO
and GA while maintaining competitive fitness values. For instance, on the UNSW-NB15
dataset, IMOA required only 31.03 s per iteration compared to 718.38 s for PSO and
824.08 s for GA. Although GWO had the fastest runtime, its fitness performance was
consistently the lowest across all datasets. These results highlight IMOA’s suitability for
real-time intrusion detection applications where both speed and accuracy are essential.

Comparative advantages of IMOA over traditional metaheuristics
While numerous nature-inspired metaheuristics such as GA (Fang et al., 2024), PSO
(Jain et al., 2022), and GWO (Mirjalili, Mirjalili & Lewis, 2014) exist, they often suffer from
premature convergence, limited diversity, or rigid parameter adaptation. But the IMOA is
not only biologically novel but also provides algorithmic benefits due to its multi-phase
behavioral modelling, as given below.

1. The seasonal abundance and group movement behaviors in IMOA allow dynamic
adjustment of the exploration rate based on the optimization stage. This offers greater
flexibility and adaptability compared to the static inertia weights in PSO (Jain et al.,
2022) or fixed crossover and mutation rates in GA (Fang et al., 2024).

2. In IMOA, the obstacle avoidance behavior introduces directional reversal and
temporary stagnation, simulating a biologically inspired pause-and-redirect
mechanism. This enables the algorithm to escape local optima without relying solely on
random mutation or high stochasticity. In contrast, optimizers like PSO (Jain et al.,
2022) and GWO (Mirjalili, Mirjalili & Lewis, 2014) may experience premature
convergence due to their fixed update equations and leader-centric designs. While
standard GA (Fang et al., 2024) introduces diversity through mutation, it still requires
careful tuning of mutation rates and selection pressure to avoid getting trapped in
suboptimal regions.

3. Temperature response in IMOA modulates search intensity based on convergence
status, while predator avoidance enables selective reinitialization of stagnated agents.
These behaviors help maintain population diversity. In comparison, PSO (Jain et al.,
2022) and GWO (Mirjalili, Mirjalili & Lewis, 2014) lack explicit mechanisms for
diversity control or stagnation recovery, and GA (Fang et al., 2024) relies on fixed
mutation rates that may be suboptimal in complex search spaces. IMOA offers a more
adaptive and context-aware approach to managing exploration during optimization.
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4. In IMOA, resource utilization and mating behaviors guide the search toward
high-fitness regions, similar to elitism in GA (Fang et al., 2024) but driven by
biologically inspired selection pressures. Unlike PSO (Jain et al., 2022), which updates
positions based on global and personal bests without direct exploitation of elite zones, or
GWO (Mirjalili, Mirjalili & Lewis, 2014), which relies on leader-driven convergence,
IMOA enables a more focused yet diverse local search guided by adaptive biological
mechanisms.

Relevance to our IDS
In the proposed WGAN-GP_IMOA_DA_Ensemble framework, the IMOA was utilized to
tackle the issue of feature redundancy and high dimensionality. For example, the UNSW-
NB15 dataset includes 44 features, many of which are either irrelevant or overlapping. By
applying IMOA, the feature space was reduced to 22 attributes, effectively removing nearly
half of the redundant features while keeping the most informative ones. This reduction
directly benefits real-time IDS deployment, where faster processing allows for timely attack
detection. The comparative runtime and fitness analysis shown in Table 4 illustrates
IMOA’s strong balance between computational efficiency and optimization accuracy.
Furthermore, the adaptive exploration–exploitation strategies embedded in IMOA, such as
obstacle avoidance and resource utilization, ensure that feature selection remains both
accurate and robust. This makes it more suitable for IDS environments than traditional
metaheuristics like PSO, GA, or GWO.

Training
Data

Random Noise
Z

Generator

Discriminator
Classification

1=Real
0= Fake

Backpropagation

Backpropagation

Real Data Samples
X=[x1,x2 ...... ,xm ]

Z=[z1,z2 ...... ,zm ]

Fake Data Samples
G(Z)

X U G(Z)
D(X)

Figure 6 Basic architecture of a GAN model. Full-size DOI: 10.7717/peerj-cs.3278/fig-6
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Generative adversarial networks (GAN)
A generative model is a type of machine learning model that learns to generate new data
instances that resemble the training data. Among the various generative models, the GAN
(Jamoos et al., 2023) is gaining momentum due to its ability to produce highly realistic and
quality data samples. The architecture of a GAN is shown in Fig. 6. The generator G creates
synthetic traffic samples, while the discriminator D distinguishes between real and
generated data, forming the basis of our enhanced WGAN-GP. GANs are composed of
two neural networks (Cai et al., 2023): a generator and a discriminator. These networks are
trained together in an adversarial process. The generator aims to create realistic data
samples, while the discriminator’s objective is to differentiate between genuine and
generated samples (Alsirhani et al., 2023).

The generator G is a neural network that takes a random noise vector Z = [z1, z2,……,
zm] as input and generates a fake data sample G(Z) (Jamoos et al., 2023). The discriminator
D is a neural network designed to evaluate data samples and produce a probability D(x)
that reflects whether the sample is authentic (originating from the real dataset) or synthetic
(created by the generator) (Srivastava, Sinha & Kumar, 2023). The objective function of
the GANs is a minimax game between the generator and the discriminator. The generator
tries to minimize the objective while the discriminator tries to maximize it. The objective
function of G can be formulated as shown in Eq. (16) (Srivastava, Sinha & Kumar, 2023).

min
G

EZ�pz zð Þ log 1� D G zð Þð Þð Þ½ �: (16)

The objective function of D can be formulated as shown in Eq. (16) (Srivastava, Sinha &
Kumar, 2023).

max
D

Ex�pdata Xð Þ log D xð Þð Þ½ � þ EZ�pz zð Þ log 1� D G zð Þð Þð Þ½ �: (17)

Clearly, GAN can be formulated as a minmax problem min
G
max

D
V D;Gð Þ where

V D;Gð Þ is a value function and is defined in Eq. (18).

V D;Gð Þ ¼ Ex�pdata Xð Þ log D xð Þð Þ½ � þ EZ�pz zð Þ log 1� D G zð Þð Þð Þ½ � (18)

where x is a real data sample from the true data distribution pdata xð Þ.
z is a random noise vector sampled from a prior distribution pz zð Þ
G zð Þ is the generated data sample from the generator.
D xð Þ is the probability that x is a real data sample.
D G zð Þð Þ is the probability that the generated sample G zð Þ It is a real data sample.

Some of the most widely used GAN models are Vanilla GAN (Jamoos et al., 2023),
Conditional GAN (cGAN) (Devendiran & Turukmane, 2024), Deep Convolutional GAN
(DCGAN) (Cai et al., 2023) and WGAN (Park et al., 2022). Among these models, WGAN
uses the Wasserstein distance that encourages the generation of diverse samples and yields
better-quality generated samples. WGAN-GP is a variation of WGAN in which the
Wasserstein distance with gradient penalty is used to improve the training stability and
alleviate issues such as mode collapse (Alsirhani et al., 2023). This research utilized
WGAN-GP to tackle the problem of an imbalanced dataset by generating synthetic data
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samples that are similar to the original data samples. The WGAN utilizes the Wasserstein
distance to measure the difference between the real and generated data distributions. The
Wasserstein distance between two probability distributions Pr and Pg is given by Eq. (19)
(Alsirhani et al., 2023).

WðPr;PgÞ ¼ inf
c2�ðPr ;PgÞ

E x;yð Þ�c½ x � yj jj j� (19)

where �ðPr; PgÞ denotes the set of all joint distributions γ(x; y) whose margins are
Pr and Pg respectively. γ(x; y) denotes the expectation E is taken over pairs (x; y) sampled

from the joint distribution γ.
In WGAN-GP, the critic (discriminator) D is trained to approximate the Wasserstein

distance, while the generator G is trained to minimize it. The objective function of the critic
is given in Eq. (20) (Alsirhani et al., 2023).

LD ¼ E~X�pg
D ~xð Þ½ � � E~X�pr

D xð Þ½ � þ kEx̂�px̂ rx̂D x̂ð Þj jj j2 � 1
� �2h i

(20)

where k is the gradient penalty coefficient ~x is generated data and x̂ are the samples
interpolated between real and generated data.

To ensure the critic is a 1-Lipschitz function (required for Wasserstein distance),
WGAN-GP uses a gradient penalty instead of weight clipping. The gradient penalty is
calculated as

GP ¼ lgp � Ex̂�px̂ ½ rx̂D x̂ð Þj jj j2 � 1
� �2

: (21)

With the ability to provide high-quality and diverse synthetic samples that improve model
robustness and detection accuracy, WGAN-GP shows potential in augmenting data for
IDS (Alsirhani et al., 2023). By using the Wasserstein distance and gradient penalty,
WGAN-GP produces realistic data that accurately replicates the intricate patterns of
network traffic and ensures stable training (Alsirhani et al., 2023). This improves the ability
of the IDS to identify new and sophisticated attacks that may not be well represented in the
original dataset. The practical training process of our enhanced WGAN-GP, which
incorporates attention layers, normalization, and skip connections in the discriminator, is
summarized in Algorithm 2.

WGAN-GP—relevance to our IDS
The application of enhanced WGAN-GP effectively addresses the severe class imbalance
issue in IDS datasets. As shown in Table 5, minority classes such as Infiltration with 36
samples, Heartbleed with 11 samples, and Worms with 174 samples were augmented to
several thousand synthetic samples. As a result, imbalance ratios are reduced from extreme
values like 1:50 to near-balanced distributions such as 1:3. This augmentation is significant
because conventional classifiers tend to bias toward majority classes, leading to poor recall
on rare but high-impact attacks.

By generating realistic synthetic traffic patterns, WGAN-GP improves both the diversity
and representativeness of training data. For instance, the UNSW-NB15 Worms class
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expanded from 174 to 2,958 instances, while CIC-IDS2017 Heartbleed increased from 11
to 1,802 instances. These enriched datasets enhance the learning capability of the ensemble
classifier, enabling more reliable detection of rare intrusions.

Overall, the integration of WGAN-GP into our IDS pipeline transforms theoretical
generative modeling into a practical solution for skewed data distributions. It leads to
measurable improvements in performance for minority attacks without introducing
significant overfitting.

PROPOSED METHODOLOGY
This section provides the details of the proposed methodology. It has five significant
steps. (1) Description of datasets used, (2) initial data preprocessing, (3) data augmentation
with WGAN-GP, (4) feature selection using IMOA, and (5) classification using a

Algorithm 2 Enhanced WGAN-GP for minority-class data augmentation.

Input: Real training data Xreal, Noise distribution Z, Number of training steps T
Parameters: λ (gradient penalty coefficient), learning rates aG and aD
Output: Trained Generator G and Discriminator D
1. Initialize Generator G and Discriminator D with random weights.

• Add attention layers, layer normalization, and skip connections to D for stability.
2. For each training iteration t = 1 to T:

2.1 Sample real data batch x from minority classes (e.g., Worms, Heartbleed).
2.2 Sample noise vector z from distribution Z (e.g., Gaussian).
2.3 Generate synthetic samples:

- ~x = G(z)
2.4 Update Discriminator D:

• Compute real score: Dr = D(x)
• Compute fake score: Df = D(~x)
• Compute gradient penalty (Eq. (21)):
• Update D by minimizing loss:

LD = Df − Dr + GP
2.5 Update Generator G:

• Sample noise vector z → generate ~x.
• Update G by minimizing:

LG = -D(~x)
3. Repeat steps 2.1–2.5 until convergence.
4. Return trained G and D.

• Use G to augment minority classes in the IDS dataset, balancing the distribution.

Table 5 Applied WGAN-GP on the datasets.

Dataset Minority classes Number of Instances Generated synthetic data
instances using WGAN-GP

Total number of instances

CIC-IDS2017 Infiltration 36 4,327 4,363

Web Attack-Sql Injection 21 2,586 2,602

Heartbleed 11 1,791 1,802

H23Q Quic-enc 1,663 2,000 3,663

http-smuggle 508 2,000 2,508

UNSW-NB15 Worms 174 2,784 2,958
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DA_Ensemble approach. The complete workflow of our IDS is illustrated in Fig. 7. The
pipeline integrates IMOA-based feature selection, WGAN-GP augmentation for class
balancing, and a DA based ensemble classifier for final decision-making.

Figure 7 Architecture of the proposed WGAN-GP_IMOA_DA_Ensemble method for intrusion
detection. Full-size DOI: 10.7717/peerj-cs.3278/fig-7
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Dataset description
This section gives a detailed description of the datasets used in this research. It uses three
datasets, namely (i) CIC-IDS2017, (ii) UNSW-NB15, and (iii) H23Q, to evaluate the
effectiveness of the suggested IDS as described by Table 6.

UNSW-NB15
The UNSW-NB15 dataset is a comprehensive intrusion detection dataset created by the
Australian Centre for Cyber Security (ACCS) (Otair et al., 2022). It is freely available for
download at https://research.unsw.edu.au/projects/unsw-nb15-dataset. It consists of two
.csv files, namely “UNSW_NB15_training_set.csv” of 175,341 instances and
“UNSW_NB15_testing_set.csv” of 82,332 instances. It contains a total of 257,673
instances. It has nine attack categories. Various attacks and their total number of
occurrences in the dataset are depicted in Table 6. It has 45 features, including four
categorical features and 41 numerical features. The t-distributed Stochastic Neighbor
Embedding (t-SNE) visualizations of binary and multiclass labels for this dataset are
shown in Figs. 8A and 8D, respectively.

CIC-IDS 2017
The Canadian Institute for Cybersecurity IDS (CIC-IDS) 2017 dataset is a comprehensive
dataset designed for evaluating the performance of IDS (Jia et al., 2023). It is freely
available for download at https://www.unb.ca/cic/datasets/ids-2017.html. It has 2,273,097
instances of benign samples. In addition, it has 14 attack types of a total of 557,646
instances, as shown in Table 6. It has 79 features. It has all numeric features except the
label. The t-SNE visualizations of binary and multiclass labels for this dataset are shown in
Figs. 8B and 8E, respectively.

H23Q
The H23Q Dataset is a comprehensive 802.3 dataset containing labelled (Aljehane et al.,
2024) traces of ten attack types against Hypertext Transfer Protocol (HTTP)/2, HTTP/3,
and Quick UDP (User Datagram Protocol) Internet Connections (QUIC) services, with a
focus on modern HTTP/3-specific attacks. Available at https://icsdweb.aegean.gr/awid/
other-datasets/H23Q in pcap and CSV formats, it has 9,569,662 normal instances and
804,203 attack instances. Additionally, this dataset has 200 features, as shown in Table 6. It
has all numeric features except the label. The t-SNE visualizations of binary and multiclass
labels for this dataset are shown in Figs. 8C and 8F, respectively.

Initial data preprocessing
Data preprocessing, also known as data preparation, is the process of transforming raw
data into a clean and usable format (Fraihat et al., 2023). The main aim of data
preprocessing is to improve the quality of the data. The proposed model uses the following
data preprocessing techniques.
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Table 6 Description of datasets.

Dataset Attacks Number of instances Total .CSV files Instances used in
experiment

Number of features

CIC-IDS2017 1. BENIGN 2,273,097 Eight files in total 2,273,097 79

2. DoS Hulk 231,073 231,073

3. PortScan 158,930 158,930

4. DDoS 128,027 128,027

5. DoS GoldenEye 10,293 10,293

6. FTP-Patator 7,938 7,938

7. SSH-Patator 5,897 5,897

8. DoS slowloris 5,796 5,796

9. DoS Slowhttptest 5,499 5,499

10. Bot 1,966 1,966

11. Web Attack Brute Force 1,507 1,507

12. Web Attack XSS 652 652

13. Infiltration 36 36

14. Web Attack Sql Injection 21 21

15. Heartbleed 11 11

Total 2,830,743 2,830,743

UNSW-NB15 1. Normal 93,000 Two files (Train file, test file) 93,000 45

2. Generic 58,871 58,871

3. Exploits 44,525 44,525

4. Fuzzers 24,246 24,246

5. DoS 16,353 16,353

6. Reconnaissance 13,987 13,987

7. Analysis 2,677 2,677

8. Backdoor 2,329 2,329

9. Shellcode 1,511 1,511

10. Worms 174 174

Total 257,673 257,673

H23Q 1. Normal 95,69,662 In all 60 files 1,372,539 200

2. HTTP3-flood 498,810 6 62,383

3. Fuzzing 22,224 6 8,046

4. HTTP3-loris 74,572 6 17,502

5. QUIC-flood 61,340 6 17,159

6. QUIC-loris 24,269 6 3,762

7. QUIC-enc 5,829 6 1,663

8. HTTP-smuggle 3,337 6 508

9. HTTP2-concurrent 60,273 6 8,980

10. HTTP2-pause 53,549 6 7,458

Total 10,401,928 60 files 1,500,000

Chinnasamy and Subramanian (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3278 30/73

http://dx.doi.org/10.7717/peerj-cs.3278
https://peerj.com/computer-science/


Merging datasets (data integration)
Usually, the IDS dataset is very large in size and is available in chunks of many files. To
make use of the complete dataset for the comprehensive analysis or modelling, all the
chunks need to be merged (Moustafa & Slay, 2015). Table 6 provides the count of files in
each dataset, along with the total number of features and instances for each one (Fraihat
et al., 2023). The CIC-IDS2017 dataset consists of a total of eight .csv files, while the
UNSW-NB15 dataset contains two files. In contrast, the H23Q dataset comprises sixty
files. For the CIC-IDS2017 and UNSW-NB15 datasets, all the files have been merged for
utilization. Due to the substantial size of the H23Q dataset, which is 30 GB, a sample of
150,000 instances for each attack type has been extracted, resulting in a total of 1,500,000
instances for experimentation.

Figure 8 t-SNE visualizations of the WGAN-GP_IMOA_DA-Ensemble model for binary (A–C) and multiclass (D–F) classification on UNSW-
NB15, CIC-IDS2017, and H23Q datasets. t-SNE plots illustrating the feature space separation achieved by the proposed model for both binary and
multi-class classification tasks across the UNSW-NB15, CIC-IDS2017, and H23Q datasets. Each color represents a distinct class label.

Full-size DOI: 10.7717/peerj-cs.3278/fig-8
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Data cleaning
Data cleaning is the process of identifying and correcting or removing errors or
inconsistencies in the dataset (Hanafi et al., 2023). The data cleaning techniques employed
for the CIC-IDS2017 dataset include removing columns that are entirely homogeneous
and dropping rows with NA values. For the UNSW-NB15 dataset, the methods applied
involve eliminating the ‘id’ column, which is deemed unnecessary; checking for any
missing values and removing those rows; and replacing categorical columns with a value of
‘-’ with ‘None.’ In the case of the H23Q dataset, missing values for categorical features are
filled using mode imputation, while numerical features are addressed with mean
imputation.

Data Transformation
Data encoding is a kind of data transformation where categorical data are converted into
numerical data as required by modelling and analysis (Bowen et al., 2023). In this study,
label encoding was utilized for all the categorical features in binary classification to reduce
dimensionality. Conversely, one-hot encoding was employed for the ‘Label’ feature in
multiclass classification to avoid making any ordinal assumptions among the multiple
classes. Data normalization is a data transformation technique where numerical data is
scaled to a consistent range, such as 0–1 (Fraihat et al., 2023).

Min-Max Scaling: Min-max scaling transforms features to a fixed range, usually 0 and 1
(Hanafi et al., 2023). The formula for min-max scaling is

X0 ¼ X � Xmin

Xmax � Xmin
: (22)

Min-max scaling was applied to the CIC-IDS 2017 and UNSW-NB15 datasets to
normalize features within a bounded range of [0, 1], because these datasets have limited
outlier influence.

Z-Score Scaling: Z-score scaling, also known as standardization, transforms the data to
have a mean of 0 and a standard deviation of 1 (Sajid et al., 2024). The formula for z-score
scaling is:

Z ¼ X � l
r

: (23)

Standard scaling (z-score scaling) was utilized for the H23Q dataset, given its larger size
and potentially diverse feature distributions, ensuring that all features had a mean of 0 and
a standard deviation of 1 while being less sensitive to outliers.

Data augmentation with WGAN-GP
This research utilizes the WGAN-GP model to generate synthetic samples for the minority
classes to address the class imbalance problem. The details of various parameters of
WGAN-GP used in this study are given in Table 7. This noise vector, z ~ N(0, 1), has a
dimension of z_dim = 10. The generator network has three fully connected layers, each
followed by batch normalization and a Leaky ReLU activation function. The generator’s
output layer applies a tanh activation function. The discriminator D is also composed of
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three dense layers, each followed by Leaky ReLU activations. Its final layer outputs a single
scalar value D(x) for a given input x. After training, the generator G is used to produce
synthetic data samples corresponding to the minority classes identified in CIC-IDS2017,
UNSW-NB15, and H23Q, as shown in Table 5. For example, in UNSW-NB15, the
discriminator assigns higher scores to synthetic ‘Worms’ traffic that resembles real
samples, penalizing only when gradients deviate significantly from 1. This stabilizes
training and avoids mode collapse. Specifically, for CIC-IDS2017, synthetic data is
generated for the classes Infiltration, Web Attack—SQL Injection, and Heartbleed. In
contrast, for UNSW-NB15, the targeted class is Worms, and for H23Q, they are quic-enc
and http-smuggle. The created augmented dataset combines both real and synthetic
samples, denoted by Xcombined and ycombined. This augmented dataset is subsequently used
to train the final detection model.

IMOA-based feature selection
Feature selection is a data pre-processing method that reduces the number of features of a
dataset that is fed as input to an artificial intelligence model. It enhances the performance
of the learning models by keeping only the most significant features (Moustafa & Slay,
2015). Various techniques, such as wrapper methods, filter methods, and embedded
methods, are available for feature selection (Chatzoglou et al., 2023). Recently, researchers
have shown phenomenal interest in using optimization algorithms for feature selection
due to the improved model performance (Bowen et al., 2023). This article utilizes the
IMOA algorithm for feature selection from the datasets.

IMOA mechanisms in feature selection
In this application, IMOA’s objective is to maximize the relevance of selected features
based on their mutual information with the target variable (attack type or benign). This is
formulated as a fitness function given in Eq. (24).

Fitness ðf Þ ¼
X
j2f

MI Xj; y
� �

(24)

Table 7 WGAN-GP parameters.

Variable Value

z_dim 10

gp_weight 10.0

batch_size 128

epochs 50

input_dim Based on X

output_dim Based on X

generator_optimizer Adam (learning rate: 10−4)

discriminator_optimizer Adam (learning rate: 10−4)

real_data Based on X

noise Sampled from a normal distribution with dimension z_dim
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where f is a binary mask indicating selected features, Xj denotes a specific feature in the
dataset, and y represents the target class labels. For instance, in UNSW-NB15, IMOA
evaluates feature sbytes by calculating its mutual information with the attack label. A
higher MI score indicates that this feature strongly correlates with attack presence, hence it
is more likely to be selected. The mutual information, MI (Xj, y), measures the statistical
dependency between each selected feature Xj and y, guiding the algorithm towards
high-information features. The parameter configuration of IMOA for feature selection is
given in Table 8.

For each mask, the fitness function evaluates the relevance of the selected features based
on mutual information. Penalized fitness is calculated by subtracting the product of the
penalty coefficient k = 10 and any constraint violation. In this application, there are no
hard constraints, so constraint violations are zero, simplifying the penalized fitness to the
raw fitness score. Through iterative updates and fitness evaluations, IMOA identifies the
optimal subset of features for each dataset.

Outcome and final feature set
The IMOA was applied to CIC-IDS2017, UNSW-NB15, and H23Q to select the most
informative features based on mutual information with respect to attack labels. The
selected features help in distinguishing between normal and malicious network traffic
while maintaining the balance between detection accuracy and computational efficiency.
This optimized feature subset reduces computational overhead, allowing the IDS to
operate efficiently even in real-time environments. The resulting feature sets are given
in Table 9.

Dynamic attention-based ensemble mechanism for intrusion detection
This research proposes a DA_Ensemble ensemble mechanism for classification that
combines predictions from three distinct models: a CNN, LSTM, FNN to enhance the
classification accuracy. This ensemble method utilizes the individual strengths of each
model and dynamically assigns weights based on their validation accuracy, allowing the

Table 8 IMOA parameters.

Parameter Value

Population size (N) 20

Dimensions (d) Feature count varies based on the dataset

Maximum iterations (T) 100

Seasonal activity (a) 0.1

Reversal factor (β) 0.5

Learning rate (γ) 0.1

Penalty coefficient (λ) 10

Crossover coefficient (η) 0.5

Batch size 128

No improvement limit 10
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ensemble to focus on the models with the highest predictive performance. This section
provides an overview of each model, describing the model architecture along with the
parameters applied in this research and an explanation of the dynamic attention
mechanism.

Convolutional Neural Network (CNN)
A CNN is a deep learning method that learns and identifies patterns from raw data by
using filters (or kernels) that slide across the input data and capture local features (Kareem
et al., 2022). The basic architecture of a CNN consists of three main types of layers (Kareem
et al., 2022):

Convolutional Layers: These layers perform convolutions, which involve applying filters
to small regions of the input data. Each filter in a convolutional layer is a matrix of weights
that is learned during training. For a single convolution operation, a filterW of size k × k is
applied to an input X, producing an output (feature map) h, calculated as

hi;j ¼ f W � Xð Þ þ bð Þ (25)

where W � X represents the dot product between the filter and the input region, b is the
bias term, and f is a non-linear activation function.

In the proposed model, the 1D convolutional layer is configured with 64 filters and a
kernel size of 3, followed by the ReLU activation function.

Pooling Layers: A pooling layer downsamples a feature map from a convolutional layer
by selecting the maximum value from each sub-region (Bella et al., 2024). The pooled value
is given by Eq. (26).

pi;j ¼ max
k;l

hiþk;jþl (26)

where pi;j is the pooled value, and hiþk;jþl represents the values within the pooling window.
The proposed model utilizes a global average pooling layer, which reduces the
dimensionality of the feature maps by taking the average value of each feature map across
all positions.

Table 9 Selected features for each dataset after IMOA-based feature selection.

Dataset Selected features
count

Selected features

CIC-
IDS2017

40 Total Backward Packets, Total Length of Fwd Packets, Total Length of Bwd Packets, Fwd Packet Length Max, Fwd
Packet Length Min, Fwd Packet Length Std, Bwd Packet Length Min, Bwd Packet Length Std, Flow IAT Std, Flow
IAT Max, Flow IAT Min, Fwd IAT Max, Fwd IAT Min, Bwd IAT Mean, Bwd IAT Max, Bwd IAT Min, Fwd URG
Flags, Fwd Header Length, Bwd Header Length, Bwd Packets/s, Max Packet Length, Packet Length Mean, Packet
Length Variance, SYN Flag Count, RST Flag Count, PSH Flag Count, ACK Flag Count, URG Flag Count, CWE Flag
Count, Down/Up Ratio, Average Packet Size, Avg Fwd Segment Size, Avg Bwd Segment Size, Subflow Fwd Packets,
Subflow Bwd Packets, Subflow Bwd Bytes, Active Mean, Active Max, Active Min, Idle Std

H23Q 14 Frame. Time, frame.time_epoch, frame.time_delta, frame.time_delta_displayed, frame.time_relative, frame.len, ip.
hdr_len, ip.dsfield.dscp, ip.dsfield.ecn, ip.flags.df, ip.flags.mf, ip.ttl, ip.src, ip.dst

UNSW-
NB15

22 dur, proto, service, state, sbytes, dbytes, dload, sloss, sinpkt, sjit, swin, stcpb, dtcpb, dwin, synack, ackdat, dmean,
trans_depth, ct_state_ttl, ct_dst_src_ltm, ct_ftp_cmd, ct_src_ltm
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Fully Connected Layers: At the end of the CNN, fully connected layers take the flattened
feature maps and apply a series of dense connections to combine features across the entire
input, resulting in an output suitable for classification (Kareem et al., 2022). This research
employs a fully connected layer with 128 units. A sigmoid activation function in the output
layer for binary classification and SoftMax activation for multiclass classification.

Long Short-Term Memory (LSTM)
LSTM networks are a special type of recurrent neural network (RNN) that excel at
capturing dependencies over long sequences of data (Chinnasamy, Malliga & Sengupta,
2022). The fundamental structure of an LSTM consists of memory cells and a series of
gates (Ahmed et al., 2024). The main gates in an LSTM cell.

Forget Gate: It controls whether the information from the previous cell state is retained
or forgotten. This is given by Eq. (27).

ft ¼ r Wf � ht�1; xt½ � þ bf
� �

(27)

where ft is the forget gate‘s output, Wf and bf are weights and biases, ht�1 is the previous
hidden state, and xt is the current input (Chinnasamy, Malliga & Sengupta, 2022). The
activation function r (sigmoid) scales the output between 0 and 1 (Ahmed et al., 2024).

Input Gate: It determines how much new information will enter the cell state from the
current input (Chinnasamy, Malliga & Sengupta, 2022). It consists of an input update eCt

and the input gate activation it is given by Eqs. (28) and (29).

it ¼ sðWi� ht�1; xt½ � þ biÞ (28)eCt ¼ tanhðWC � ht�1; xt½ � þ bCÞ: (29)

Here, it regulates the input’s influence on the cell state, while eCt represents a candidate
update to the cell state (Chinnasamy, Malliga & Sengupta, 2022).

Output Gate: It controls the amount of information passed to the next layer or output
by adjusting the hidden state (Ahmed et al., 2024). This is given by Eq. (30).

ot ¼ sðWo: ht�1; xt½ � þ bo (30)

where ot is the output gate value. The final hidden state for the time step is calculated with
the Eq. (31) (Chinnasamy, Malliga & Sengupta, 2022).

ht ¼ ot � tanh Ctð Þ: (31)

This research utilizes a single LSTM layer with 128 units, batch normalization, a dense
layer with 64 units, and a ReLU activation function. This research utilizes a Sigmoid
activation function in the output layer for binary classification and SoftMax activation for
multiclass classification.

Feedforward Neural Networks (FNN)
FNNs consist of layers of interconnected nodes (neurons) where information moves in one
direction—from the input layer, through one or more hidden layers, and finally to the
output layer (Moustafa & Slay, 2015). Each neuron in an FNN performs a weighted sum of
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its inputs and passes this through an activation function. The operation of a single neuron
is given by the Eq. (32) (Moustafa & Slay, 2015).

y ¼ r W: x þ bð Þ (32)

where x is the input vector, W is the weight matrix associated with the connections, b is
the bias term, σ is the activation function, such as ReLU, sigmoid, or tanh, y is the
output. This research has an FNN with three fully connected layers as given below. It
has an input layer that accepts a set of network traffic features, which are then passed to the
subsequent hidden layers. The first hidden layer contains 128 units and uses the ReLU
activation function. The second hidden layer contains 64 units, also with ReLU
activation. The output layer utilizes a sigmoid activation function in the output
layer for binary classification and a SoftMax activation function for multiclass
classification.

Dynamic attention-based ensemble
The dynamic attention mechanism is an approach in machine learning that selectively
focuses on certain parts of input data based on the relevance to a specific task, enhancing
model interpretability. Unlike static attention mechanisms, where attention weights are
predetermined, dynamic attention recalculates these weights in real-time, adapting to each
input instance and thereby allowing the model to dynamically adjust its focus (Moustafa &
Slay, 2015). The dynamic attention mechanism involves assigning a score or weight to each
input feature or part of the input sequence, which determines its contribution to the final
output (Sharafaldin, Lashkari & Ghorbani, 2018). Attention weights ai for each input xi is
calculated with Eq. (33).

ai ¼ exp S xið Þð ÞP
j exp S xj

� �� � (33)

where S xið Þ is a scoring function that evaluates the relevance of xi. The exponential
function exp S xið Þð Þ normalizes the scores to form a probability distribution (Sharafaldin,
Lashkari & Ghorbani, 2018). The final attention-weighted output combines the inputs
according to their weights, as shown in Eq. (34).

Output ¼
X
i

ai � xi: (34)

In this study, the dynamic attention mechanism specifically utilizes the outputs of the
CNN, LSTM, and FNNmodels to adaptively weight each model’s contribution based on its
relevance to the input instance. The models CNN, LSTM, and FNN produce a predictive
output for a given input instance. For example, when analyzing Distributed Denial of
Service (DDoS) traffic, CNN output receives the highest attention weight of around 0.6,
whereas for sequential attacks such as infiltration, LSTM is prioritized. This research
uses a cosine similarity function to compute the similarity between each model’s output
vector and the ideal target vector y. The relevance score si for each model i is computed
with Eq. (35).
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Si ¼ cos mi; yð Þ ¼ mi:y
jjmi j j yj jj j (35)

where mi is the output vector of model i, y is the target vector and cos mi; yð Þmeasures the
alignment between the model’s prediction and the target output. Once the relevance score
Si for CNN, LSTM, and FNN are calculated, these scores are passed through a softmax
function to transform them into attention weights ai. The attention weight ai for each
model i is computed with Eq. (36).

ai ¼ exp sið ÞP
j exp sj

� � (36)

where si is the relevance score for model i, exp sið Þ ensures non-negativity and

emphasizes higher relevance scores, the sum
P
j
exp sj
� �

acts as a normalization factor

across all models. The final output of the ensemble is computed as a weighted sum of the
outputs from the CNN, LSTM, and FNN models. Each model’s output is scaled by its
respective attention weight ai to form the final prediction. The final output is calculated
with Eq. (37).

Final output ¼
X
i

ai �mi (37)

wheremi represents the output vector of model i and ai is the attention weight for model i.
The dynamic fusion of CNN, LSTM, and FNN outputs using attention weights is

detailed in Algorithm 3, which illustrates the complete classification process of our
ensemble model.

Algorithm 3 Dynamic attention-based ensemble for IDS classification.

Input: Preprocessed feature set X
Base Models: Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Feedforward
Neural Network (FNN)

Output: Final class prediction Ypred

1. Extract features from input X:
• Pass X through CNN to obtain local spatial feature representation HCNN.
• Pass X through LSTM to capture temporal dependencies HLSTM.
• Pass X through FNN to learn global feature interactions HFNN.

2. Normalize outputs of all three models to a uniform dimensional space.
3. Compute attention weights for each model:

• Concatenate [HCNN, HLSTM, HFNN] into a joint feature vector.
• Apply attention mechanism (Eqs. (32)–(34)):

▪ Compute similarity scores between model outputs and target context.
▪ Normalize scores via softmax to obtain attention weights:

wCNN, wLSTM, wFNN

4. Fuse model outputs dynamically:
• Compute weighted sum of outputs:

Hfusion = wCNN � HCNN + wLSTM � HLSTM + wFNN � HFNN.
5. Feed fused representation into a final dense + softmax layer for classification.
6. Return prediction Ypred for each input instance.
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Theoretical justification of the attention mechanism
The attention mechanism serves as a dynamic weighting strategy that allows the model to
focus selectively on more informative components of the input or intermediate
representations. Theoretically, attention can be interpreted as a form of soft feature
selection, where importance scores are assigned to each input or sub-model output based
on their learned relevance to the target task (Momand, Jan & Ramzan, 2024). In our
ensemble model, attention weights are computed using a trainable dense layer followed by
a SoftMax activation, ensuring that the weights are positive and sum to one. This
formulation enables the network to adaptively emphasize the outputs of the CNN, LSTM,
or FNN sub-models depending on the specific characteristics of each input instance. From
an optimization perspective, this setup introduces inductive bias that can help reduce
overfitting by guiding the model to rely more heavily on the most relevant components,
especially in cases of class imbalance or noisy data. Although a full theoretical proof of
optimality for attention mechanisms in deep ensembles is still an open problem, recent
literature (Momand, Jan & Ramzan, 2024; Cai et al., 2023) supports its role in improving
representational capacity and model interpretability.

DA_Ensemble—relevance to our IDS
The proposed dynamic attention-based ensemble directly enhances intrusion detection by
adaptively weighting the contributions of CNN, LSTM, and FNN learners. Unlike static
ensembles that assign equal or fixed weights, the attention mechanism dynamically adjusts
weights according to the confidence of each model for a given traffic flow. For example, in
CIC-IDS2017, CNN received higher attention scores when processing DDoS flows due to
its strength in capturing local packet patterns. At the same time, LSTM was prioritized for
Infiltration and Slowloris attacks, where temporal dependencies are critical.

This adaptive fusion ensures that no single learner dominates across all attack types,
thereby reducing bias and improving robustness. Empirical evaluation shows that the
attention-based ensemble outperforms simple majority-voting or averaging ensembles,
achieving higher accuracy and lower false-positive rates, particularly on rare attack classes
that benefit from the complementary strengths of different deep learning models.

By explicitly mapping theoretical attention weights to model outputs, the ensemble
translates mathematical formulation into a practical mechanism for IDS, delivering a more
context-aware and attack-specific detection capability.

Replication rationale and comparative validation
In addition to proposing a novel IDS framework, we designed parts of our methodology to
replicate and validate existing GAN-based data augmentation and ensemble classification
techniques under new conditions. Specifically,

. We replicate WGAN-GP’s role in addressing class imbalance, as applied in prior works
such as Park et al. 2022 and Lee, Li & Li 2023 by deploying it across three benchmark
datasets: UNSW-NB15, CIC-IDS2017, and H23Q. However, we go beyond mere
replication by introducing architectural improvements to the WGAN-GP discriminator,
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including attention layers, layer normalization, and skip connections. These
enhancements enable the discriminator to better capture fine-grained patterns in
minority-class data, resulting in more realistic and diverse synthetic samples, which
improve downstream classification performance.

. We also replicate ensemble-based IDS architectures such as CNN+LSTM and CNN
+FNN as seen in works by Meliboev, Alikhanov & Kim (2022), Altunay & Albayrak
(2023), and Chatzoglou et al. (2023). In our study, these are extended with a dynamic
attention mechanism and informed by optimization-driven feature selection using our
proposed IMOA. This integration allows for adaptive weighting of models based on
relevance.

By framing these components as replications and extensions, we provide both validation
of previously established techniques and a demonstration of their improved effectiveness
under new conditions, including imbalanced data distributions, high-dimensional feature
spaces, and a modern, large-scale dataset like H23Q. This approach strengthens the
reproducibility and comparative validation of our work.

EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we present the experimental results obtained from applying our proposed
WGAN-GP_IMOA_DA_Ensemble approach to three benchmark datasets. Here, we
analyze the performance of the CNN, LSTM, and FNN models as an ensemble with the
dynamic attention mechanism, focusing on metrics such as accuracy, precision, recall,
F1-score, and loss. The downstream effects of IMOA, WGAN-GP, and dynamic attention
on loss, accuracy, ROC, and PR are analyzed in Figs. 9–13, with learned attention patterns
in Figs. 14, 15.

Experimental setup
The experiments were performed on a Dell Latitude laptop with an Intel Core i7-1265U
processor, 16 GB of RAM, and Windows 11 Pro (64-bit). Programming was done in
Python 3.7, using the Anaconda IDE along with Keras and TensorFlow for deep learning
tasks. Microsoft Excel 2021 was utilized to generate comparison charts, and Fotor Pro was
used to enhance the quality of images produced by the programming tools.

Experimental design and statistical validity
To ensure the statistical validity and reliability of our evaluation, we adopted the following
methodologies across all three datasets.

5-Fold Cross-Validation: All experiments were performed using five-fold stratified
cross-validation to ensure class balance in each fold. This approach allowed us to evaluate
the consistency and generalizability of model performance across different subsets of data.
The metrics accuracy, training time, and memory usage are averaged over the five folds
and presented as mean ± standard deviation.
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Figure 9 Training and validation loss curves of the WGAN-GP_IMOA_DA-Ensemble model for binary (A–C) and multiclass (D–F)
classification on UNSW-NB15, CIC-IDS2017, and H23Q datasets. Subplots (A–C) show binary classification loss curves, and (D–F) show
multiclass classification loss curves on UNSW-NB15, CIC-IDS2017, and H23Q datasets using the proposed model.

Full-size DOI: 10.7717/peerj-cs.3278/fig-9

Figure 10 Training and validation accuracy curves of the proposed WGAN-GP_IMOA_DA-Ensemble model for binary (A–C) and multiclass
(D–F) classification tasks on UNSW-NB15, CIC-IDS2017, and H23Q datasets. Subplots (A–C) depict training and validation accuracy curves for
binary classification, while (D–F) represent multiclass classification on the UNSW-NB15, CIC-IDS2017, and H23Q datasets.

Full-size DOI: 10.7717/peerj-cs.3278/fig-10
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Figure 11 Confusion matrices for the proposed WGAN-GP_IMOA_DA-Ensemble model for binary
(A–C) and multiclass (D–F) classification tasks on UNSW-NB15, CIC-IDS2017, and H23Q datasets.
Subplots (A–C) show confusion matrices for binary classification, and (D–F) show confusion matrices for
multiclass classification on the UNSW-NB15, CIC-IDS2017, and H23Q datasets.

Full-size DOI: 10.7717/peerj-cs.3278/fig-11
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Statistical Significance Testing: To support performance claims, we conducted paired
t-tests (a = 0.05) comparing the proposed IMOA-based model with baseline models CNN,
LSTM, and FNN. The tests confirmed that the improvements in accuracy are statistically
significant in both binary and multiclass settings.
Random Seed Control and Data Partitioning:

For the UNSW-NB15 and CIC-IDS2017 datasets, we utilized the complete datasets with
stratified 5-fold cross-validation and ensured no data leakage occurred during
preprocessing or splitting. As these datasets are well-structured, we followed consistent
fold generation.

For the H23Q dataset, due to its size (~10 million instances), we extracted a stratified
random sample of 1,500,000 instances while maintaining class distribution. We used a
fixed random seed for repeatability and applied stratified k-fold splitting to avoid bias and
ensure no overlap between folds.

These controls ensure that our model evaluations are both statistically grounded and
robust across datasets of varying sizes and characteristics.

Performance measures
This section provides an overview of the performance measures applied in this research.
The confusion matrix for performance measurement is given in Table 10. The following

Figure 12 Precision Recall Curve of the proposed WGAN-GP_IMOA_DA-Ensemble model for binary (A–C) and multiclass (D–F)
classification tasks on UNSW-NB15, CIC-IDS2017, and H23Q datasets. Subplots (A–C) display Precision-Recall curves for binary classifica-
tion, while (D–F) illustrate multiclass classification performance on UNSW-NB15, CIC-IDS2017, and H23Q datasets.

Full-size DOI: 10.7717/peerj-cs.3278/fig-12
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figures are interpreted alongside the design choices of our framework. Briefly, IMOA
reduces redundant and noisy features to improve separability; WGAN-GP addresses class
imbalance by synthesizing high-quality minority samples; and the dynamic attention
ensemble adaptively weights CNN, LSTM, and FNN learners per instance to leverage their

Figure 13 ROC Curve of the proposed WGAN-GP_IMOA_DA-Ensemble model for binary (A–C) and multiclass (D–F) classification tasks on
UNSW-NB15, CIC-IDS2017, and H23Q datasets. Subplots (A–C) present ROC curves for binary classification, and (D–F) present ROC curves for
multiclass classification on the UNSW-NB15, CIC-IDS2017, and H23Q datasets. Full-size DOI: 10.7717/peerj-cs.3278/fig-13
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Figure 14 Attention weight plots of the proposed WGAN-GP_IMOA_DA-Ensemble model for binary classification on UNSW-NB15 (A),
CIC-IDS2017 (B), and H23Q (C) datasets. Subplots (A–C) illustrate the attention weights learned by the proposed model during binary classi-
fication on the UNSW-NB15, CIC-IDS2017, and H23Q datasets. Full-size DOI: 10.7717/peerj-cs.3278/fig-14
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Figure 15 Attention weight distributions for multiclass classification on the UNSW-NB15 dataset across different attack classes. The plot
shows how the proposed model assigns attention weights to different features for each attack class in the UNSW-NB15 dataset during multiclass
classification. Full-size DOI: 10.7717/peerj-cs.3278/fig-15

Table 10 General confusion matrix.

Predicted positive Predicted negative

Actual positive True positive False negative

Actual negative False positive True negative
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complementary strengths. Together, these components explain why the proposed system
consistently outperforms single-model baselines across loss, accuracy, PR/ROC behavior,
and confusion matrices.

Loss
The loss function measures the difference between the predicted and actual values. A lower
loss indicates that the model’s predictions are closer to the true labels (Bowen et al., 2023).
It is calculated for both training and validation sets. Training loss measures the model’s
performance on the training data, updated at each epoch. Validation loss measures the
model’s performance on the validation set. This research utilizes the Binary cross-entropy
(BCE) loss function for binary classification tasks and the Categorical Cross-Entropy
(CCE) loss function for multiclass classification tasks (Ahmed et al., 2024).

Binary Cross-Entropy (BCE) loss
It measures the discrepancy between the predicted probability and the actual label. The
BCE loss for a dataset of N samples is given by the Eq. (38) (Santos, Miani & de Oliveira
Silva, 2024).

BCE ¼ � 1
N

XN
i¼1

yi: log pið Þ þ 1� yið Þ: log 1� pið Þð Þ (38)

where yi is the true label for the i
th sample and pi is the predicted probability of the ith

sample.

Categorical Cross-Entropy (CCE) loss
It calculates the loss by comparing the predicted probability distribution with the true
label’s one-hot encoded representation (Jain et al., 2022). The CCE loss for a dataset of N
sample is given by the Eq. (39).

CCE ¼ � 1
N

XN
i¼1

XC
c¼1

yi;c: log pi;cð Þ (39)

where C is the total number of classes, yi;c is 1 if the true label is class c for the sample i and
0 otherwise. pi;c is the predicted probability of the sample i belonging to class c.

Accuracy
Accuracy is defined as the fraction of correct predictions out of the total predictions made
(Chinnasamy, Subramanian & Sengupta, 2023b). The formula is

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

:

Precision
Precision is the ratio of true positive predictions to the total number of positive predictions
made by the model (Subramani & Selvi, 2024). The formula is
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Precision ¼ TP
TP þ FP

:

Recall
Recall is the ratio of true positive predictions to the total actual positives in the dataset
(Subramani & Selvi, 2024). The formula is

Recall ¼ TP
TP þ FN

:

F1-score
The F1-score is the harmonic mean of precision and recall, providing a single metric that
balances both values (Yesodha et al., 2024).

F1-score ¼ 2� Precision� Recall
Precisionþ Recall

:

Precision Recall (PR) curve
A Precision-Recall (PR) Curve is a graphical representation that evaluates the performance
of a classification model by illustrating the trade-off between precision and recall at various
classification thresholds (Kilichev, Turimov & Kim, 2024).

Receiver Operating Characteristic (ROC) curve
The Receiver Operating Characteristic (ROC) curve is a graphical representation of a
classifier’s performance across different threshold settings. It plots the True Positive Rate
(TPR) against the False Positive Rate (FPR).

TPR ¼ TP
TP þ FN

FPR ¼ FP
FP þ TN

:

Attention weight plot
This plot shows the attention weights assigned to each feature (or each model’s output
component) after the attention mechanism has been applied. By analyzing these weights,
one can discern which features or components the model deems most influential in
forming its predictions.

The proposed system is trained and tested with the benchmark datasets UNSW-NB15,
CIC-IDS2017, and H23Q. The following section explicates the performance of the
proposed model applied on the three datasets. The pre-processed datasets are utilized for
both binary and multi-class classification tasks.

Results
The proposed model receives input from the pre-processed UNSW-NB15, CIC-IDS2017,
and H23Q datasets, which have undergone WGAN-GP data augmentation and
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IMOA-driven feature selection. The following section analyses various performance
measures for the proposed model on the mentioned datasets.

Training and validation loss
This section details the training and validation loss of theWGAN-GP_IMOA_DA_Ensemble
model on the mentioned datasets.

Binary Cross Entropy (BCE) loss
The BCE loss curves of the proposed model on the UNSW-NB15 dataset, which are shown
in Fig. 9A, start at approximately 0.5 and decrease rapidly to 0.05 by epoch 10. Similarly,
the validation loss begins at 0.4 and follows a similar downward trend, converging with the
training loss by epoch 10 and stabilizing near 0.01 by epoch 20. The consistent stabilization
of both training and validation losses close to 0.01 after epoch 20. However, a notable spike
in validation loss occurs at around epoch 20, where it briefly rises to 0.03 before quickly
stabilizing again. The BCE loss curves of the proposed model on the CIC-IDS2017 dataset
is shown in Fig. 9B. The training loss starts at approximately 0.05 in the first epoch and
decreases consistently, stabilizing near 0.02 by epoch 30.

Similarly, the validation loss begins slightly higher, at around 0.06, and follows a similar
trend, converging with the training loss by epoch 20 and stabilizing close to 0.02. The BCE
loss curves of the proposed model on the H23Q dataset is shown in Fig. 9C. With the
training loss starting at approximately 0.06 in the initial epoch and steadily decreased to
stabilize near 0.02 after epoch 30. However, the validation loss exhibits notable spikes at
several points, such as at epoch 10 (~0.08), epoch 20 (~0.10), and epoch 50 (~0.11), despite
following a general downward trend.

In conclusion, the UNSW-NB15 dataset demonstrates the best performance, as its
training and validation losses decrease smoothly and stabilize at low values without
significant fluctuations. The CIC-IDS2017 dataset performs moderately well, with a stable
training loss and slightly noisier validation loss. In contrast, the H23Q dataset shows the
least stability, with significant spikes in validation loss despite a steady decrease in training
loss.

The DA-Ensemble demonstrates faster and smoother convergence than the baselines
because IMOA reduces feature redundancy and WGAN-GP ensures balanced training
samples. This leads to lower and more stable validation loss, supporting higher accuracy
and F1-scores.

Categorical Cross-Entropy (CCE) loss
The CCE loss curve for the UNSW-NB15 dataset is shown in Fig. 9D. The training loss
begins at approximately 0.32 in the initial epoch and decreases steadily, stabilizing close to
0.02 by epoch 30. Similarly, the validation loss starts at 0.30 and follows a comparable
downward trend, converging with the training loss around epoch 20 and stabilizing near
0.02 by epoch 40. The CCE loss curve for the CIC-IDS2017 dataset is shown in Fig. 9E. The
training loss starts at approximately 0.22 in the first epoch and decreases sharply, reaching
0.05 by epoch 20, and continues to decline gradually, stabilizing near 0.02 by epoch 50. The
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validation loss follows a similar trajectory, starting at around 0.11, and steadily aligns with
the training loss after epoch 20, stabilizing at 0.02 toward the end of training. The CCE loss
curve for the H23Q dataset shown in Fig. 9F. The training loss starts at approximately 0.36
in the initial epoch and decreases rapidly to around 0.05 by epoch 10. The validation loss
follows a similar trend, starting at approximately 0.22 and aligning closely with the training
loss as the epochs progress. Both losses stabilize near 0.02 by epoch 30 and maintain
stability throughout the remainder of training, with only minor fluctuations.

Overall, the CIC-IDS2017 dataset demonstrates the best performance. It exhibits steady
convergence for both training and validation losses. In comparison, the UNSW-NB15
dataset also performs well, showing rapid convergence and stable validation loss, but its
validation loss is slightly higher than that of CIC-IDS2017. The H23Q dataset, while
converging, displays slower stabilization and occasional oscillations in validation loss,
indicating minor instability.

In multiclass tasks, WGAN-GP balances rare classes, and IMOA selects clearer features,
resulting in steadier CCE curves and better results compared to baselines.

The consistently lower and more stable loss of the DA-Ensemble in both binary and
multiclass setting arises from (i) IMOA removing redundant/noisy attributes before
training, which reduces variance and accelerates convergence, (ii) WGAN-GP rebalancing
rare classes to prevent loss spikes from minority misfits, and (iii) dynamic attention
dampening over-reliance on any single learner when its confidence is low. Together, these
mechanisms reduce overfitting and yield smoother generalization across datasets.

Accuracy curve
This section gives a detailed explanation of the accuracy curve of the proposed
WGAN-GP_IMOA_DA_Ensemble model on the datasets UNSW-NB15, CIC-IDS2017,
and H23Q with both binary and multi-class classification.

Binary classification
Binary classification refers to the process of categorizing network traffic or system activity
into one of two classes: normal (benign) or intrusive (malicious) (Bowen et al., 2023). The
accuracy curve of the UNSW-NB15 dataset for binary classification is given in Fig. 10A.
The training accuracy reaches a perfect value of 1.0 within the first few epochs, with
validation accuracy closely following and stabilizing around the same value. The accuracy
curve of the CIC-IDS2017 dataset for binary classification is given in Fig. 10B. The
training and validation accuracies steadily improve over the first 20 epochs, stabilizing
around 99%. Fluctuations are observed in both curves, particularly during the early and
middle epochs of complexity. The accuracy curve of the H23Q dataset for binary
classification is given in Fig. 10C. The training accuracy steadily improves and stabilizes
around 99%, but the validation accuracy exhibits significant fluctuations throughout the
training process.

Overall, the UNSW-NB15 dataset emerges as the best-performing dataset for this binary
classification task. The CIC-IDS2017 dataset also performs well, with minor fluctuations.
However, the H23Q dataset requires further investigation to address its instability.
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The DA-Ensemble reaches higher accuracy levels by combining CNN, LSTM, and FNN
strengths through attention weighting, while IMOA and WGAN-GP reduce bias and
variance.

Multi-class classification
Multi-class classification involves categorizing network traffic or system activity into one of
several predefined classes, each representing a specific type of behavior or attack (More
et al., 2024). The accuracy curve of the UNSW-NB15 dataset for multi-class classification is
given in Fig. 10D. The training and validation accuracies are stabilizing near-perfect values
(close to 1.0) by epoch 30. The accuracy curve of the CIC-IDS2017 dataset for multi-class
classification is given in Fig. 10E. It demonstrates slightly lower performance, with training
accuracy stabilizing around 99.5% and validation accuracy fluctuating between 98% and
99%. The accuracy curve of the H23Q dataset for multi-class classification is given in
Fig. 10F. The training accuracy is stabilizing around 98% but the validation accuracy
showing significant fluctuations, particularly in the later epochs.

Overall, UNSW-NB15 is the best-performing dataset for multiclass classification. The
CIC-IDS2017 dataset follows as a close second, with strong performance but minor issues
in validation stability. The H23Q dataset, however, requires additional preprocessing to
improve model stability and generalization. In multiclass settings, balanced samples from
WGAN-GP and IMOA-selected features reduce confusion between classes, resulting in
consistently higher accuracy.

Accuracy gains are primarily due to IMOA focusing learning on discriminative features,
while WGAN-GP mitigates bias toward majority traffic, enabling reliable updates from
underrepresented attacks. Dynamic attention then assigns higher weights to CNN on
spatially patterned traffic and to LSTM on temporally evolving attacks, which improves
accuracy across heterogeneous classes.

Confusion matrix
This section gives details about the confusion matrix of the proposed WGAN-
GP_IMOA_DA_Ensemble model on the UNSW-NB15, CIC-IDS2017, and H23Q
datasets.

Binary classification
The confusion matrix of the WGAN-GP_IMOA_DA_Ensemble model for binary
classification on the UNSW-NB15 dataset is shown in Fig. 11A This confusion matrix
indicates that the proposed model achieved perfect classification with no false positives or
false negatives. The confusion matrix of the WGAN-GP_IMOA_DA_Ensemble model for
binary classification on the CIC-IDS2017 dataset is shown in Fig. 11B. On the CIC-
IDS2017 dataset, the model maintains strong performance with 112,675 true positives and
45,146 true negatives, though there are 2,519 false positives and 363 false negatives. The
confusion matrix of WGAN-GP_IMOA_DA_Ensemble model for binary classification on
the H23Q dataset is shown in Fig. 11C. The model performs well, with 273,019 true
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positives and 25,286 true negatives, but it has slightly higher false negatives at 1,006
compared to CIC-IDS2017.

Overall, while the UNSW-NB15 dataset shows the highest accuracy, the CIC-IDS2017
dataset provides a more realistic evaluation of the model’s capabilities due to its diversity
and complexity. Therefore, the CIC-IDS2017 dataset results highlight the model’s
robustness and suitability for practical IDSs.

The DA-Ensemble produces fewer false positives and false negatives, especially for
minority classes, because WGAN-GP improves class balance and IMOA enhances class
separation.

Multi-class classification
The confusion matrix for multi-class classification of the proposed model on the
UNSW-NB15 dataset is shown in Fig. 11D. For normal traffic, there are 18,544 true
positives with negligible misclassifications. Among attacks, the model performs well on
classes like “Generic” with 11,761 true positives and “Exploits” with 8,853 true positives,
indicating strong recognition of these prevalent attack types. However, for minority classes
such as “Analysis” and “Backdoor,” the model achieves 518 and 442 true positives,
respectively, with some confusion across other classes. Similarly, the “Denial of Service
(DoS)” attack class has 3,101 true positives but exhibits minor confusion with “Exploits”
and “Fuzzers”.

The confusion matrix for multi-class classification of the proposed model on the
CIC-IDS2017 dataset is shown in Fig. 11E. The model performs exceptionally well for the
“BENIGN” class, achieving 451,457 true positives with very few false positives. The model
also handles high-volume attack classes like “DDoS” and “DoS Hulk” efficiently, with
25,594 and 46,009 true positives, respectively. However, for rare attack types like
“Heartbleed” and “Web Attack–SQL Injection,” the true positive counts are 295 and 104,
with minor misclassifications into other categories.

The confusion matrix for multi-class classification of the proposed model on the H23Q
dataset is shown in Fig. 11F. It shows strong performance for the “Normal” class, with
272,685 true positives and minimal confusion with attack types. Attack types such as “http-
flood” and “quic-flood” are also well-classified, with 12,471 and 3,408 true positives,
respectively. However, certain attack types like “http2-pause” and “quic-loris” demonstrate
lower true positive counts, 272 and 568, respectively, with some confusion across other
categories.

Overall, the CIC-IDS2017 dataset offers the best balance between real-world diversity
and attack type coverage, showcasing the model’s ability to handle both majority and
minority classes effectively. The UNSW-NB15 dataset reflects high accuracy for major
classes but struggles more with rare classes, while the H23Q dataset shows strong
classification for normal traffic and common attack types but slightly lower performance
for rare and complex attacks.

The improved clarity of the diagonals and the reduction in misclassifications for rare
classes can be attributed to the proposed components of our framework. Specifically,
WGAN-GP generates realistic synthetic samples that mitigate decision-boundary bias
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against minority classes, while IMOA eliminates redundant features that previously
contributed to cross-class confusion. In addition, the dynamic attention mechanism
adaptively emphasizes the base learner most suitable for a given instance, further reducing
misclassification rates.

Precision-Recall curve
This section provides a detailed explanation of Precision-Recall curve of the
WGAN-GP_IMOA_DA_Ensemble model.

Binary classification
For binary classification, the PR curve is generated by plotting precision against recall as
the decision threshold. A high area under the curve (AUC) indicates a model that performs
well in distinguishing between the positive and negative classes (Yao, Shi & Zhao, 2023).

The PR curve for the UNSW-NB15 dataset in Fig. 12A shows an almost perfect
rectangular curve, with precision remaining consistently at 1.0 across all recall values until
it sharply drops at the end. The PR curve for the CIC-IDS2017 dataset in Fig. 12B exhibits
a minor decline in precision as recall increases, but the overall curve remains close to the
top, demonstrating strong model performance. The PR curve for the H23Q dataset in
Fig. 12C shows a more pronounced decline in precision as recall increases, resulting in a
less rectangular shape.

Overall, based on the PR curves, the proposed model performs best on the UNSW-
NB15 dataset, where it achieves near-perfect precision and recall, indicating its robustness
in classifying binary labels with minimal errors. The DA-Ensemble maintains high
precision even at broad recall ranges, as WGAN-GP addresses class imbalance and IMOA
filters for useful features.

Multiclass classification
The PR curves for the UNSW-NB15 dataset in Fig. 12D indicate strong performance
across all classes, with average precision (AP) scores ranging from 0.95 to 1.00. The
“Normal” and “Generic” classes achieve an AP of 1.00, signifying perfect precision and
recall across all thresholds. Minority classes like “Analysis” and “Fuzzers” also perform
exceptionally well, with AP values around 0.97. All curves exhibit steep declines only at the
extreme right, showcasing strong classification capability until very high recall values.

The PR curves for the CIC-IDS2017 dataset are shown in Fig. 12E. Classes such as
“BENIGN,” “DDoS,” and “PortScan” have AP values of 1.00, indicating perfect
classification. Certain attack types, including “Web Attack–Brute Force” and “Web
Attack–SQL Injection,” show comparatively lower AP scores of 0.79 and 0.80, respectively.
The “Bot” and “Heartbleed” classes exhibit moderate AP scores of 0.85 and 0.82,
respectively.

The PR curves for the H23Q dataset are shown in Fig. 12F. The “Normal” class achieves
an AP of 1.00, showcasing perfect classification performance. Most attack classes,
including “http-flood,” “quic-enc,” and “quic-flood,” have AP values of 0.99. However,
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classes like “fuzzing” and “http-smuggle” display significantly lower AP values of 0.67 and
0.57, respectively.

Overall, the UNSW-NB15 dataset exhibits the best overall performance, with
consistently high AP scores across all classes, reflecting a well-trained model and effective
feature representation. Minority classes benefit from synthetic balancing and adaptive
ensemble weighting, leading to higher average precision across all classes.

Higher AP, especially on minority attacks, stems from WGAN-GP improving positive
class coverage at training time, so precision remains high as recall increases. IMOA keeps
only signal-bearing attributes, boosting precision at moderate to high recall, while dynamic
attention adapts weights per instance, preserving precision under class overlap.

ROC curve
This section gives the details of the ROC curve of both binary and multiclass classification
of the proposed WGAN-GP_IMOA_DA_Ensemble on UNSW-NB15, CIC-IDS2017 and
H23Q datasets.

Binary classification
The ROC curve for binary classification of the UNSW-NB15 dataset, which is shown in
Fig. 13A, is a perfect curve with an AUC score of 1, indicating that the proposed model
achieves 100% True Positive Rate (TPR) with no false positives across all thresholds. This
implies that the model performs well in distinguishing between benign and malicious
traffic on the UNSW-NB15 dataset. The ROC curve for binary classification of the
CIC-IDS2017 dataset, which is shown in Fig. 13B, is a perfect diagonal with an AUC score
of 1.00, suggesting the model perfectly classifies all instances. The ROC curve for binary
classification of the H23Q dataset which is shown in Fig. 13C shows a near-perfect
performance but slightly below the previous datasets, with an AUC score of 0.98.

Overall, the proposed model achieves the best results on the UNSW-NB15 and
CIC-IDS2017 datasets with binary classification, with AUC scores of 1.00. The
performance on the H23Q dataset is slightly lower, with an AUC of 0.98. The
DA-Ensemble achieves near-perfect AUC because IMOA prunes noisy features and
WGAN-GP balances samples, creating clearer separation between benign and attack
traffic.

Multi-class classification
The ROC curve for multi-class classification of the UNSW-NB15 dataset is shown in
Fig. 13D. It demonstrates that the model performs exceptionally well on most classes,
achieving perfect classification (AUC = 1.00) for classes like Exploits, Generic, Normal,
and Worms. The lowest performance is observed for Shellcode, Backdoor, and DoS
(AUC = 0.97), which still indicates high separability. The ROC curve for multiclass
classification of the CIC-IDS2017 dataset is shown in Fig. 13E. The model achieves
excellent performance for major attack types like DDoS, DoS, and infiltration (AUC =
1.00). Performance is slightly lower for Web Attacks, Heartbleed, and Bot, with AUC
values ranging from 0.90 to 0.93. The ROC curve for multiclass classification of the H23Q
dataset is shown in Fig. 13F. The model shows high performance across all classes, with
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AUC values between 0.92 and 0.95. Fuzzing exhibits the lowest AUC (0.92), likely due to
its complex patterns or overlap with other attack classes. The overall performance is
consistent but slightly lower than the other two datasets.

Overall, the UNSW-NB15 dataset demonstrates the best performance, with multiple
classes achieving perfect classification (AUC = 1.00) and all other classes maintaining AUC
values of 0.97 or higher.

The near-perfect AUC can be attributed to three key factors: (i) IMOA-enhanced
feature selection, which improves feature-space separability; (ii) WGAN-GP
augmentation, which balances sensitivity to rare attack classes; and (iii) the dynamic
attention mechanism, which provides threshold-robust fusion by adaptively reallocating
emphasis among CNN, LSTM, and FNN components as operating points vary. Together,
these factors account for the consistently higher ROC performance of the proposed model
across datasets.

Taken together, the analyses of loss, accuracy, confusion matrices, PR curves, and ROC
curves illustrate the stable learning behavior and balanced classification performance of the
proposed DA-Ensemble across all datasets. The improvements observed in the evaluation
tables and confirmed through statistical tests can be explained by three complementary
components: (1) IMOA reduces redundant features and improves class separation,
(2) WGAN-GP generates synthetic samples that help balance majority and minority
classes, and (3) the dynamic attention ensemble adjusts the weighting of base learners to
exploit their different strengths. As a result, DA-Ensemble achieves faster convergence,
reliable accuracy, improved recognition of minority classes, and more consistent
Precision–Recall and ROC behavior.

Attention weight plot
This section highlights the attention-based visualization of feature importance for binary
and multiclass classification in the proposed model, applied to the UNSW-NB15,
CIC-IDS2017, and H23Q datasets.

Binary classification
The attention weights for binary classification of the UNSW-NB15 dataset are shown in
Fig. 14A, indicate a nearly uniform contribution of features, with slight prominence for
features like stcpb (source Transmission Control Protocol (TCP) base), swin (source
window size), dmean (mean of destination packets), and trans_depth (transaction depth),
which have the highest weights above 0.046. Most features, such as proto, sinpkt, and
dtcpb, fall in a narrow range around 0.045, suggesting they also play a significant role in
classification. The feature ackdat has the lowest weight (0.0435), indicating a relatively
minor influence compared to others.

The attention weight plot for binary classification of the CIC-IDS2017 dataset is shown
in Fig. 14B. It demonstrates features such as Fwd Inter-Arrival Time (IAT) Max, Fwd
Packet Length Std, Total Backward Packets, and Acknowledgment (ACK) Flag count
exhibit significantly higher attention weights. The weights across other features, including
Idle Std and Avg Fwd Segment Size, appear evenly distributed with moderate importance.
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Features including Bwd Packet Length Min and Subflow Fwd Packets received less
importance.

The analysis of the H23Q dataset’s attention weights shown in Fig. 14C reveals that
frame_len has the highest importance, followed by features like frame_time and
frametime_delta_displayed. Network-related features such as ip.ttl, ip.src, and ip.dst also
play a moderate role, emphasizing the relevance of protocol-level information. Meanwhile,
features like ip.dsfield.dscp and frame.time_epoch have lower attention weights, indicating
their relatively minimal contribution to the model’s decision-making.

Multiclass classification
Figure 15 shows the attention weight plots for individual classes of attack for multiclass
classification of the proposed model on the UNSW-NB15 dataset. The notable
observations are

. Analysis: The features such as ackdat and dur have high attention where as dmean,
ct_state_ttl, dtcpb received medium attention, and sloss has the least attention.

. Backdoor: The model emphasizes ackdat, dmean, dtcpb and dur as key contributors for
detecting backdoor attacks, suggesting these features effectively capture patterns
associated with unauthorized access.

. DoS: Features such as ackdat, dmean and sinpkt, receive higher attention. This aligns
with the nature of DoS attacks, where traffic volume is a critical indicator.

. Exploits: The focus is distributed among multiple features, including ackdat, dmean
sinpkt and dur, indicating the need for a broader feature set to capture the subtleties of
Exploits.

. Fuzzers: Features such as dload and ct_src_ltm are highlighted, reflecting the importance
of data transfer and connection metrics in detecting fuzzing behaviors.

. Generic: Protocol-specific features like ackdat and packet-specific attributes like sinpkt
stand out, showcasing the model’s ability to identify generic attack patterns using diverse
feature sets.

. Normal: Traffic attributes like ct_ftp_cmd, ct_src_ltm has higher importance and
features such as dbytes and synack has less attention.

. Reconnaissance: Features like ackdat, dmean and dload are prioritized, likely due to their
role in identifying probing behaviors typical of reconnaissance attacks.

. Shellcode: The model emphasizes dload and proto, reflecting their significance in
capturing low-level attack behaviors inherent to Shellcode.

. Worms: Similar to other classes, dload and dwin receive attention, highlighting their
importance in detecting propagation-related activities.

Figure 16 shows the attention weight plots for individual classes of attack for multiclass
classification of the proposed model on the CIC-IDS2017 dataset. The notable
observations are
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Figure 16 Attention weight distributions for multiclass classification on the CIC-IDS2017 dataset across different attack classes. The plot
shows how the proposed model assigns attention weights to different features for each attack class in the CIC-IDS2017 dataset during multiclass
classification. Full-size DOI: 10.7717/peerj-cs.3278/fig-16
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. Benign: Key traffic features such as Active IAT Min, Active Mean, and Total Length of
Fwd Packets have higher attention weights, suggesting that these attributes are
significant in distinguishing benign traffic patterns.

. Bot: Notable features such as Total Backward Packets, Bwd Packets/s, and Avg Fwd
Segment Size have high attention weights, indicating their crucial role in identifying
bot-related network traffic.

. DDoS: Key features such as Total Length of Bwd Packets, Bwd IAT Mean and Average
Packet Size have prominent attention weights, reflecting their significance in detecting
DDoS attacks.

. DoS GoldenEye: Prominent features include Down/Up Ratio, Active Mean and Active
Max, which play a critical role in detecting DoS GoldenEye attacks.

. DoS Hulk: The DoS Hulk class-specific feature importance plot indicates that Total
Length of Fwd Packets, Flow IAT Min, and Max Packet Length are the most critical
features.

. DoS Slowhttptest: The DoS Slowhttptest class-specific feature importance plot highlights
Total Backward Packets, Fwd IAT Max, and Active Max as significant features.

. DoS Slowloris: The DoS Slowloris feature importance visualization indicates that Fwd
Packet Length Std, Down/Up Ratio, and Flow IAT Min are key distinguishing features.

. File Transfer Protocol (FTP)-Patator: The FTP-Patator feature importance analysis
highlights that Fwd Packet Length Std, Bwd Packet Length Std, and active mean are
significant in identifying this attack type.

. Heartbleed: The feature importance analysis reveals that Bwd Packet Length Std, Bwd
IATMin, and CommonWeakness Enumeration (CWE) Flag Count are highly weighted.

. Infiltration: The feature importance analysis highlights Bwd Packet Length Std, Bwd IAT
Min and CWE Flag Count as significant contributors.

. Portscan: It reveals that Bwd IAT Max, Bwd IAT Min and Idle Std are key contributors,
indicating their relevance in identifying anomalies associated with scanning activity.

. Secure Shell (SSH)-Patator: It reveals that Bwd Packet Length Std and Reset (RST) Flag
Count are highly influential, indicating their critical role in capturing the nature of
brute-force SSH attacks.

. Web Attack—SQL Injection: It highlights Bwd Packet Length Std, Bwd IAT Min and
CWE Flag Count as dominant contributors.

. Web Attack—Cross-Site Scripting (XSS): The top features include Active Min, Total
Backward Packets, and Bwd IATMax, indicating their significance in detecting cross-site
scripting attacks.

. Web Attack—Brute Force: Active Min, Fwd Packet Length Std, and Bwd IAT Max
emerge as the most influential features.

Figure 17 shows the attention weight plots for individual classes of attack for multiclass
classification of the proposed model on the H23Q dataset. The notable observations are,
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. Fuzzing: Packet level features such as frame.time,frame.time_epoch and frame.len has
high attention.

. http2-concurrent: frame.time_relative and ip.ttl among the features receiving higher
weights.

. http2-pause: frame.len,ip.ttl, and ip.dst are the features having high importance.

Figure 17 Attention weight distributions for multiclass classification on the H23Q dataset across different attack classes. The plot shows how
the proposed model assigns attention weights to different features for each attack class in the H23Q dataset during multiclass classification.

Full-size DOI: 10.7717/peerj-cs.3278/fig-17

Chinnasamy and Subramanian (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3278 58/73

http://dx.doi.org/10.7717/peerj-cs.3278/fig-17
http://dx.doi.org/10.7717/peerj-cs.3278
https://peerj.com/computer-science/


. http-flood: frame.time_epoch, frame.len, ip.dsfield.ecn and ip.dst are dominant features
in deciding the attack http-flood

. http-loris: frame.time, frame.len and bip.src are the major contributors in detecting the
http-loris attack.

. http-smuggle: frame.time_relative, ip.hdr_len and bip.src are the features that receives
high attention.

. Normal: frame.time, frame.time_relative and ip.dst are the features that receives major
attention.

. quic-enc: frame.time_epoch, frame.time_relative and frame.len are the major
contributing features to detect quic-enc.

. quic-flood: frame.time, frame.time_epoch,frame.len and ip.flags.mf has received more
attention in detecting quic-flood.

. quic-loris: The top features include frame.time,frame.len and ip.dst, indicating their
significance in detecting quic-loris attacks.

These attention plots from Figs. 14–17 not only highlight which features dominate in
each dataset but also explain the superior performance of the DA-Ensemble over baseline
methods. By elevating attributes that distinguish minority and complex attack classes, the
attention mechanism reduces bias toward majority classes and improves recall on rare
categories. When combined with IMOA feature selection, which ensures that only
discriminative features enter the model, and WGAN-GP augmentation, which balances
the data distribution, the learned attention weights provide a causal explanation for the
consistently lower validation loss, higher AUC values, and improved accuracy observed in
Figs. 9–13. Thus, Figs. 14–17 provide interpretability that directly supports why the
proposed model outperforms existing IDS baselines.

DISCUSSION
Ablation study and component-wise evaluation
To evaluate the contribution of each component in the proposed framework, we conducted
an extensive ablation study by progressively integrating the modules such as static
ensemble, DA_Ensemble, IMOA-based feature selection, and WGAN-GP-based data
augmentation. The results, summarized in Table 11, demonstrate a clear performance
improvement at each stage across both binary and multiclass classification tasks on all
three datasets. The static ensemble baseline achieved reasonable accuracy, but its
performance was limited by feature redundancy and data imbalance. Integrating dynamic
attention improved classification consistency and adaptability, while the addition of IMOA
further enhanced accuracy and reduced computational overhead by selecting
discriminative features. Finally, incorporating WGAN-GP significantly boosted minority
class detection, resulting in near-perfect performance metrics (up to 1.00 accuracy,
precision, recall, and F1-score) in binary classification and 0.98–0.99 in multiclass settings.
Moreover, the proposed model demonstrated favorable trade-offs in terms of training time
and memory usage, especially when compared to static and DA_Ensemble configurations,
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underscoring its practicality for real-world deployment. This ablation analysis confirms
that each module contributes meaningfully to the overall performance and justifies the
integrated design of the final framework.

Statistical significance analysis
To ensure that the performance improvements achieved by the proposed WGAN-
GP_IMOA_DA-Ensemble model are not due to random variation, we conducted a series
of paired t-tests comparing its classification accuracy against three baseline models, such as
CNN, LSTM, and FNN across both binary and multiclass settings for all datasets. The
results, summarized in Table 12, show that all comparisons yielded p-values below 0.05,
confirming that the improvements are statistically significant. In many cases, the p-values
were far smaller like less than 0.001, accompanied by extremely high t-statistics, which
provide strong evidence of consistent and reproducible improvements.

Table 11 Ablation study of the UNSW-NB15, CIC-IDS2017 and H23Q dataset with 5-fold cross validation.

Dataset Modules Classification Accuracy Precision Recall F1-
score

Average training time
(s)

Average memory

UNSW-NB15 Static ensemble Binary 0.90 0.92 0.90 0.91 5,247.47 ± 28.25 s 1,012.70 ± 115.70 MiB

Multi-class 0.86 0.91 0.86 0.88 34,050.42 ± 56,997.44 s 815.22 ± 106.29 MiB

DA_Ensemble Binary 0.92 0.93 0.92 0.92 5,227.59 ± 207.43 s 1,255.67 ± 218.77 MiB

Multi-class 0.88 0.93 0.88 0.90 6,020.92 ± 875.14 s 1,186.44 ± 158.21 MiB

IMOA + DA_Ensemble Binary 0.93 0.93 0.93 0.93 4,893.41 ± 112.68 s 896.91 ± 138.40 MiB

Multi-class 0.89 0.93 0.89 0.91 3,261.76 ± 282.17 s 1,721.63 ± 102.96 MiB

WGAN-GP + IMOA +
DA_Ensemble
(Proposed)

Binary 1.0 1.0 1.0 1.0 5,597.69 ± 1,055.79 s 1,053.21 ± 217.09 MiB

Multi-class 0.99 0.99 0.99 0.99 514.55 ± 8.35 s 1,283.10 ± 185.32 MiB

CIC-IDS2, 017 Static ensemble Binary 0.89 0.92 0.89 0.90 87,161.15 ± 2,682.68 s 3,623.59 ± 426.31 MiB

Multi-class 0.88 0.95 0.88 0.91 96,837.78 ± 4,101.75 s 1,137.00 ± 53.24 MiB

DA_Ensemble Binary 0.90 0.93 0.90 0.91 82,206.24 ± 1,265.54 s 3,852.75 ± 215.90 MiB

Multi-class 0.89 0.95 0.89 0.91 17,370.50 ± 1,722.94 s 2,552.87 ± 421.04 MiB

IMOA + DA_Ensemble Binary 0.91 0.93 0.91 0.91 52,948.40 ± 2,053.89 s 1,709.12 ± 115.38 MiB

Multi-class 0.92 0.97 0.92 0.93 11,738.25 ± 498.18 s 1,443.31 ± 348.46 MiB

WGAN-GP + IMOA +
DA_Ensemble
(Proposed)

Binary 0.99 1.00 0.99 0.99 60,545.77 ± 2,799.15 s 1,444.08 ± 441.24 MiB

Multi-class 0.99 0.99 0.99 0.99 139,234.90 ± 17,927.13 s 1,672.20 ± 242.21 MiB

H23Q Static ensemble Binary 0.87 0.93 0.87 0.89 18,845.71 ± 1,710.39 s 845.10 ± 110.74 MiB

Multi-class 0.88 0.97 0.88 0.92 36,784.18 ± 1,525.64 s 1,652.21 ± 47.61 MiB

DA_Ensemble Binary 0.91 0.94 0.91 0.92 23,622.68 ± 693.11 s 1,323.90 ± 198.70 MiB

Multi-class 0.89 0.97 0.89 0.92 5,852.00 ± 236.48 s 1,340.00 ± 208.85 MiB

IMOA + DA_Ensemble Binary 0.92 0.94 0.92 0.92 10,009.53 ± 535.43 s 2,106.70 ± 85.24 MiB

Multi-class 0.90 0.97 0.90 0.93 4,377.13 ± 144.94 s 1,309.69 ± 176.29 MiB

WGAN-GP + IMOA +
DA_Ensemble
(Proposed)

Binary 0.99 0.99 0.99 0.99 9,759.59 ± 775.36s 1,497.67 ± 77.17 MiB

Multi-class 0.98 0.98 0.98 0.98 2,039.61 ± 234.18 s 1,488.80 ± 140.32 MiB
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For the UNSW-NB15 dataset, the DA-Ensemble achieved highly significant
improvements in binary classification, outperforming the LSTM baseline with a t value of
1,563.73 and a p value of 1.00 × 10−12 and the FNN baseline with a t value of 3,294.56 and a
p value of 5.09 × 10−14. In multiclass classification, the DA-Ensemble again demonstrated
clear statistical significance, such as against CNN with a t value of 12.89 and a p value of
2.09 × 10−4. On the CIC-IDS2017 dataset, the results were equally impressive. In binary
classification, the DA-Ensemble significantly outperformed CNN with a t value of 32.31
and a p value of 5.47 × 10−9, LSTM with a t value of 5.81 and a p value of 4.37 × 10−3, and
FNN with a t value of 13.25 and a p value of 1.87 × 10−4. In multiclass settings, the
DA-Ensemble consistently outperformed all baselines, with strong results such as CNN vs.
DA-Ensemble with a t value of 83.07 and a p value of 1.26 × 10−7.

For the H23Q dataset, statistical significance was again observed across both tasks. In
binary classification, the DA-Ensemble demonstrated highly significant improvements,
such as against the FNN baseline, with a t value of 108.41 and a p value of 4.34 × 10−8.
Multiclass classification results also confirmed the robustness of the approach, with
examples including CNN vs. DA-Ensemble, with a t value of 7.85 and a p value of 1.42 ×
10−3, and FNN vs. DA-Ensemble, with a t value of 13.99 and a p value of 1.51 × 10−4.

Collectively, these findings emphasize two key points. First, the consistently low p-values
across three benchmark datasets and both binary and multiclass tasks confirm that the
observed improvements are not due to random chance. Second, the size of the t-statistics
highlights that the gains are both statistically significant and practically meaningful. Overall,

Table 12 Statistical significance of DA-ensemble vs. baseline models (CNN, LSTM, FNN) across binary and multiclass classifications on
UNSW-NB15, CIC-IDS2017, and H23Q datasets.

Dataset Classification Baseline vs. proposed t-statistic p-value Statistically significant (p < 0.05)

UNSW-NB15 Binary CNN vs. DA-Ensemble 1.7404557886333356 0.01567545111738706 Yes

LSTM vs. DA-Ensemble 1,563.7300000004682 1.0034667664427704e-12 Yes

FNN vs. DA-Ensemble 3,294.555746438036 5.092881150858561e-14 Yes

Multiclass CNN vs. DA-Ensemble 12.889258189933278 0.0002089343865805691 Yes

LSTM vs. DA-Ensemble 6.699023290065787 0.00258341180114001 Yes

FNN vs. DA-Ensemble 11.97626398351866 0.0002785766624558316 Yes

CIC-IDS2017 Binary CNN vs. DA-Ensemble 32.31013064432767 5.470512987977092e-0 Yes

LSTM vs. DA-Ensemble 5.810480547643236 0.0043658384460866255 Yes

FNN vs. DA-Ensemble 13.253003293334746 0.0001873213167449350 Yes

Multiclass CNN vs. DA-Ensemble 83.06522046184398 1.259084449585072e-07 Yes

LSTM vs. DA-Ensemble 5.55420830644023 0.005142676188209267 Yes

FNN vs. DA-Ensemble 9.047216336434865 0.0008270310181249053 Yes

H23Q Binary CNN vs. DA-Ensemble 82.5118686776108 1.2931842692845362e-07 Yes

LSTM vs. DA-Ensemble 16.75371119090979 7.438098006382559e-05 Yes

FNN vs. DA-Ensemble 108.40719208481883 4.3418272910447173e-08 Yes

Multiclass CNN vs. DA-Ensemble 7.852240113549909 0.0014210846958986809 Yes

LSTM vs. DA-Ensemble 4.5188955914851805 0.010667313739832018 Yes

FNN vs. DA-Ensemble 13.997412174613357 0.0001511212440940260 Yes
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this thorough statistical validation offers strong confidence in the reliability, robustness, and
generalizability of the DA-Ensemble framework for intrusion detection. Although this study
focuses on t-tests and p-values, future work could include confidence intervals and effect
size measures such as Cohen’s d to enhance the statistical analysis further.

Validation of the research hypothesis through performance metrics
To evaluate our research hypothesis, we assessed the performance of the proposed IDS
framework using standard classification metrics such as accuracy, precision, recall,
F1-score, and confusion matrix. These metrics were used to examine whether the
IMOA_WGAN-GP_DA_Ensemble model effectively enhances performance, particularly
for underrepresented attack classes. The results obtained across all datasets demonstrate
consistent improvements in classification performance for both binary and multiclass
settings, supporting the validity of the proposed approach.

Computational performance
To assess the feasibility and efficiency of the proposed IDS model, we performed detailed
experiments measuring the computational cost, including average training time and memory
usage, across three benchmark datasets: UNSW-NB15, CIC-IDS2017, and H23Q. The proposed
WGAN-GP_IMOA_DA_Ensemble was compared to baseline deep learning models (CNN,
LSTM, and FNN), each integrated with WGAN-GP and IMOA to ensure a fair comparison.

The results, summarized in Table 13, show that the proposed ensemble incurs higher
training time and moderate memory overhead due to the attention mechanism and
multi-model integration. However, this trade-off is justified by its consistently better
classification performance across datasets, making it computationally feasible for
real-world IDS deployment.

Moving beyond computational cost, we next evaluate the classification performance.

Classification performance
The classification report for the binary classification of the proposed model on UNSW-
NB15, CIC-IDS2017, and H23Q datasets is shown in Table 14. For UNSW-NB15, the
model achieves perfect performance (1.00 for all metrics), indicating perfect classification.
In CIC-IDS2017, the model maintains a strong overall accuracy of 0.99, with near-perfect
metrics for the benign class. In contrast, the attack class shows slightly lower precision of
0.98 due to some false positives. The H23Q dataset also achieves 0.99 accuracy, with perfect
metrics for the normal class but slightly lower precision of 0.94 and an F1-score of 0.95 for
the attack class.

The performance comparison of the proposed model with benchmark models on binary
classification is provided in Table 15. For the UNSW-NB15 dataset, it achieves a perfect
100% across accuracy, precision, recall, and F1-score, outperforming models like
OHDNN + Enhanced Conditional Random Field (ECRF) (98.30% accuracy) and CNN +
LSTM (93.21% accuracy). Similarly, for the CIC-IDS2017 dataset, the proposed model
reaches 99% in all metrics, surpassing benchmark models such as Naïve Bayes
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(NB)+Elliptic Envelop (EE), which achieved 98.59% accuracy, and Hybrid convolutional
neural network + Bidirectional Long Short-Term Memory (HCNN + BLSTM), which
scored 98% accuracy but lower precision and recall. Although models like Sample
Generation Model (SGM)+CNN and Tree-CNN+Simple Random Sampling (SRS)
demonstrate strong performance, they are outperformed in key metrics by the proposed
model. Since the H23Q dataset is new, there is no direct performance comparison
available, making this work a pioneering contribution in this area.

The classification reports for the multi-class classification of the proposed model on
UNSW-NB15, CIC-IDS2017, and H23Q datasets are given in Table 16. For UNSW-NB15,
the model achieves an impressive 0.99 accuracy, with near-perfect metrics across most
classes. Attack “Generic” achieves 1.00 precision, recall, and F1-score, indicating flawless
classification. However, attacks like ”Backdoor“ and “Shellcode” show slightly lower recall
(0.95), suggesting some false negatives. The macro average metrics (0.99 precision, 0.98
recall, 0.98 F1-score) indicate balanced performance across all classes.

For CIC-IDS2017, with an overall 0.99 accuracy, the model performs exceptionally well
for the attack types like “DDoS” and “PortScan” (all scoring 1.00 F1-score). However,

Table 13 Performance comparison of WGAN-GP_ IMOA_DA_Ensemble model with baseline models.

Dataset Modules Classification Accuracy Average training time (s) Average memory

UNSW-
NB15

WGAN-GP + IMOA + CNN Binary 0.9590 ± 0.0815 904.67 ± 26.81 s 839.07 ± 247.97 MiB

Multi-class 0.8393 ± 0.0241 457.50 ± 10.39 s 1,211.23 ± 138.86 MiB

WGAN-GP + IMOA + LSTM Binary 0.9700 ± 0.0000 4,991.16 ± 246.31 s 879.13 ± 215.07 MiB

Multi-class 0.8489 ± 0.0402 2,646.59 ± 103.84 s 1,224.04 ± 151.46 MiB

WGAN-GP + IMOA + FNN Binary 0.9800 ± 0.0000 480.41 ± 20.58 s 828.51 ± 281.62 MiB

Multi-class 0.9203 ± 0.0132 221.67 ± 4.82 s 1,129.61 ± 292.43 MiB

WGAN-GP + IMOA + DA_Ensemble
(Proposed)

Binary 1.0000 ± 0.0000 5,597.69 ± 1,055.79 s 1,053.21 ± 217.09 MiB

Multi-class 0.9901 ± 0.0038 514.55 ± 8.35 s 1,283.10 ± 185.32 MiB

CIC-
IDS2017

WGAN-GP + IMOA + CNN Binary 0.8829 ± 0.0022 8,588.95 ± 725.30 s 1,169.48 ± 470.16 MiB

Multi-class 0.8685 ± 0.0029 26,282.20 ± 479.48 s 1,516.99 ± 265.11 MiB

WGAN-GP + IMOA + LSTM Binary 0.8975 ± 0.0363 57,653.00 ± 3,068.33 s 1,328.84 ± 463.46 MiB

Multi-class 0.8733 ± 0.0419 227,192.97 ± 169,782.02 s 1,563.88 ± 254.57 MiB

WGAN-GP + IMOA + FNN Binary 0.9464 ± 0.0039 3,804.13 ± 86.41 s 1,335.71 ± 463.04 MiB

Multi-class 0.9412 ± 0.0105 8,532.20 ± 785.83 s 1,575.86 ± 250.06 MiB

WGAN-GP + IMOA + DA_Ensemble
(Proposed)

Binary 0.9918 ± 0.0052 60,545.77 ± 2,799.15 s 1,444.08 ± 441.24 MiB

Multi-class 0.9906 ± 0.0005 139,234.90 ± 17,927.13 s 1,672.20 ± 242.21 MiB

H23Q WGAN-GP + IMOA + CNN Binary 0.8247 ± 0.0029 1,853.33 ± 73.06 s 1,307.13 ± 197.40 MiB

Multi-class 0.9332 ± 0.0027 497.34 ± 145.28 s 1,488.62 ± 170.04 MiB

WGAN-GP + IMOA + LSTM Binary 0.8719 ± 0.0122 9,579.01 ± 284.30 s 1,331.18 ± 118.14 MiB

Multi-class 0.9424 ± 0.0123 2,600.65 ± 1,077.18 s 1,500.22 ± 145.61 MiB

WGAN-GP + IMOA + FNN Binary 0.9126 ± 0.0000 1,130.35 ± 59.30 s 1,216.68 ± 197.20 MiB

Multi-class 0.9126 ± 0.0000 288.00 ± 113.86 s 1,317.63 ± 111.91 MiB

WGAN-GP + IMOA + DA_Ensemble
(Proposed)

Binary 0.9806 ± 0.0013 9,759.59 ± 775.36 s 1,497.67 ± 77.17 MiB

Multi-class 0.9800 ± 0.0096 2,039.61 ± 234.18 s 1,488.80 ± 140.32 MiB
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attack classes like “Bot” and “Heartbleed” have lower recall (0.86 and 0.82, respectively),
indicating some missed detections. Additionally, “Web Attack” variants show variability in
performance, with “Web Attack–XSS” achieving an F1-score of 0.93, while “Web Attack—
SQL Injection” and “Web Attack–Brute Force” score lower (0.89 and 0.88). The macro
average metrics (0.98 precision, 0.93 recall, 0.95 F1-score) highlight slightly reduced
performance for minority classes compared to the majority.

For H23Q, the model achieves 0.98 accuracy. The “Normal” traffic is classified with high
precision and recall (0.99), minority classes like “http2-pause” and “http2-concurrent”
perform poorly, with F1-scores of 0.30 and 0.70, respectively, due to low recall. Attack
types like “http-loris” and “quic-loris” also show reduced performance, with F1-scores of
0.83 and 0.81. The macro average metrics (0.90 precision, 0.82 recall, 0.83 F1-score)
indicate significant room for improvement in handling certain attack types, though the
weighted average metrics remain high due to the dominance of well-classified majority
classes.

The performance comparison in Table 17 has proved that the proposed
WGAN-GP_IMOA_DA_Ensemble model outperforms the benchmark models in
multiclass classification tasks. For the UNSW-NB15 dataset, the proposed model achieves
99% accuracy, precision, recall, and F1-score, surpassing models like LR + DT (98.63%)
and ELM + LR (98.16%) in both accuracy and consistency across metrics. On the CIC-
IDS2017 dataset, the proposed model achieves 99% across all metrics, outperforming the
SVM model (97.12% accuracy) and CNN 1D + BLSTM (98% accuracy but significantly
lower recall and F1-score). For the H23Q dataset, the proposed model demonstrates
remarkable improvements over existing methods like Bagging and LightGBM, which

Table 14 Binary classification report of the WGAN-GP_IMOA_DA_Ensemble model.

Dataset Class Precision Recall F1-score Support

UNSW-NB15 0 1.00 1.00 1.00 18,600

1 1.00 1.00 1.00 33,492

Macro average 1.00 1.00 1.00 52,092

Weighted average 1.00 1.00 1.00 52,092

Accuracy 1.00 52,092

CIC-IDS2017 0 1.00 0.99 1.00 454265

1 0.98 1.00 0.99 113,038

Macro average 0.99 1.00 0.99 567,303

Weighted average 0.99 0.99 0.99 567,303

Accuracy 0.99 567,303

H23Q 0 1.00 0.99 1.00 274,508

1 0.94 0.96 0.95 26,292

Macro average 0.97 0.98 0.97 300,800

Weighted average 0.99 0.99 0.99 300,800

Accuracy 0.99 300,800
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achieved 94.82% and 94.76% accuracy, respectively, but with significantly lower precision
and recall.

The reported improvements in accuracy, precision, recall, and F1-score are not only
numerical gains but also translate into meaningful benefits for intrusion detection. For
example, higher recall directly reduces the likelihood of missed attacks, which is critical for
maintaining system security, while higher precision minimizes false alarms that could
otherwise overwhelm analysts. The consistently higher F1-scores across datasets
demonstrate that the proposed DA-Ensemble balances both objectives better than
individual CNN, LSTM, and FNN models. These results can be attributed to three design
factors: (1) IMOA ensures that only the most discriminative features are used, reducing
noise and redundancy; (2) WGAN-GP balances the datasets by generating high-quality
minority-class samples, thereby improving classification of rare attacks; and (3) the
dynamic attention ensemble adaptively weights the contributions of CNN, LSTM, and
FNN, leveraging their complementary strengths. Together, these elements provide the
basis for the observed higher performance, and explain why the DA-Ensemble consistently
achieves more reliable and robust results across binary and multiclass tasks.

In summary, the results across UNSW-NB15, CIC-IDS2017, and H23Q confirm that
the proposed WGAN-GP_IMOA_DA_Ensemble consistently outperforms both internal
baselines (CNN, LSTM, FNN) and state-of-the-art IDS approaches from the literature. The
integration of IMOA for feature selection, WGAN-GP for minority augmentation, and
DA_Ensemble results in a significant improvement in both classification accuracy and
robustness, although at a modest computational cost.

Table 15 Binary classification performance comparison of WGAN-GP_IMOA_DA_Ensemble model with benchmark models.

Model Year Accuracy Precision Recall F1-score

UNSW-NB15 binary classification

K-NN (Kareem et al., 2022) 2022 97.01% 81.53%

MMultiSVM (Turukmane & Devendiran, 2024) 2024 97.53% 97.67% 98.94% 97.99%

CNN + LSTM (Meliboev, Alikhanov & Kim, 2022) 2022 87.60% 85.50% 90.60% 88%

HCNN + ALSTM (Ragab & Sabir, 2022) 2022 92.87% 97.33% 77.53% 72.53%

CNN + LSTM (Altunay & Albayrak, 2023) 2023 93.21%

CNN + LSTM + AES (Thilagam & Aruna, 2023) 2023 96.99% 95.45%

OHDNN + ECRF (Karthic & Kumar, 2023) 2023 98.30% 97.50% 96.70% 97.10%

Proposed model 2025 100% 100% 100% 100%

CIC-IDS2017 binary classification

LSTM (Hanafi et al., 2023) 2024 98.36% 96.68% 97.91% 97.29%

HCNN + ALSTM (Ragab & Sabir, 2022) 2022 97.62% 97.26% 97.25% 99%

HCNN + BLSTM (Bowen et al., 2023) 2023 98% 86% 84% 81%

GAN + CNN + BiLSTM (Li, Li & Li, 2023) 2023 96.32% 96.55% 95.38% 96.04%

NB + EE (Vishwakarma & Kesswani, 2023) 2023 98.59% 95.40% 97.51% 96.44%

HBO + ANN (Chinnasamy, Subramanian & Sengupta, 2023a) 2023 97.60%

Proposed model 2025 99% 99% 99% 99%
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Table 16 Performance metrics of classification models on different datasets.

Dataset Class Precision Recall F1-score Support

UNSW-NB15 Analysis 1.00 0.97 0.98 535

Backdoor 1.00 0.95 0.97 466

DoS 1.00 0.95 0.97 3,271

Exploits 0.97 0.99 0.98 8,905

Fuzzers 0.99 0.97 0.98 4,849

Generic 1.00 1.00 1.00 11,774

Normal 0.99 1.00 1.00 18,600

Reconnaissance 0.97 0.98 0.98 2,798

Shellcode 1.00 0.95 0.97 302

Worms 1.00 0.99 1.00 592

Macro average 0.99 0.98 0.98 52,092

Weighted average 0.99 0.99 0.99 52,092

Accuracy 0.99 52,092

CIC-IDS2017 BENIGN 1.00 0.99 1.00 454265

Bot 1.00 0.86 0.92 391

DDoS 1.00 1.00 1.00 25,605

DoS GoldenEye 0.99 0.99 0.99 2,059

DoS Hulk 0.95 1.00 0.97 46,025

DoS Slowhttptest 0.95 0.99 0.97 1,100

DoS slowloris 1.00 0.97 0.99 1,159

FTP-Patator 0.99 1.00 0.99 1,587

Heartbleed 1.00 0.82 0.90 358

Infiltration 0.84 1.00 0.91 865

PortScan 1.00 1.00 1.00 31,761

SSH-Patator 1.00 0.92 0.96 1,180

Web Attack-Brute Force 0.99 0.80 0.88 301

Web Attack-Sql Injection 1.00 0.80 0.89 517

Web Attack-XSS 1.00 0.86 0.93 130

Macro Average 0.98 0.93 0.95 567,303

Weighted Average 0.99 0.99 0.99 567,303

Accuracy 0.99 567,303

H23Q Normal 0.99 0.99 0.99 274,508

fuzzing 0.96 0.88 0.92 1,609

http-flood 0.93 1.00 0.96 12,476

http-loris 0.85 0.82 0.83 3,500

http-smuggle 0.90 0.95 0.93 502

http2-concurrent 0.74 0.67 0.70 1,796

http2-pause 0.91 0.18 0.30 1,492

Quic-enc 0.93 0.94 0.94 733

Quic-flood 0.93 0.99 0.96 3,432

Quic-loris 0.86 0.76 0.81 752

Macro average 0.90 0.82 0.83 300,800
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CONCLUSION AND FUTURE WORK
This study investigated whether an IDS that integrates the IMOA for feature selection,
WGAN-GP for addressing class imbalance, and a DA-Ensemble of deep neural networks
such as CNN, LSTM, and FNN can outperform traditional IDS models. In our experiments
on three benchmark datasets, namely UNSW-NB15, CIC-IDS2017, and a representative
sample of H23Q. The proposed WGAN-GP_IMOA_DA_Ensemble model achieved
consistently high classification performance across both binary and multiclass intrusion
detection tasks. Accuracy scores approached or exceeded 99%, with strong precision,

Table 16 (continued)

Dataset Class Precision Recall F1-score Support

Weighted average 0.98 0.98 0.98 300,800

Accuracy 0.98 300,800

Table 17 Comparison of performance of the WGAN-GP_ IMOA_DA_Ensemble model with benchmark models for multiclass classification.

Methods/Metrics Year Accuracy Precision Recall F1-score

UNSW-NB15 multiclass classification

RF + GOA (Bakro et al., 2024) 2024 98.11% 98.11% 98.22% 98.12%

RF + GA (Bakro et al., 2024) 2024 97.98% 97.94% 97.98% 97.95%

RFE + LSTM (Sayegh, Dong & Al-madani, 2024) 2024 98.31% 97.87% 98.74% 98.30%

ELM + LR (Sajid et al., 2024) 2021 98.16% 98.43%

LR + DT (More et al., 2024) 2024 98.63% 97.80%

MLP (Yin et al., 2023) 2023 84.24% 83.60% 84.24% 82.85%

Proposed model 2025 99% 99% 99% 99%

CIC-IDS2017 multiclass classification

BiGAN (Yao, Shi & Zhao, 2023) 2023 82.30% 76.30% 76.50% 76.40%

Decision Tree (DT) (Bacevicius & Paulauskaite-Taraseviciene, 2023) 2023 91.48% 96.87%

CNN–GRU (Kilichev, Turimov & Kim, 2024) 2024 98.82% 98.03% 97.46% 98.02%

KELM Model (Kilichev, Turimov & Kim, 2024) 2024 98.12% 97.51% 97.31% 97.11%

CNN 1D+BLSTM (Aljehane et al., 2024) 2023 98.00% 86.00% 84.00% 81.00%

CHEM (Ahmed et al., 2024) 2024 97.63% 97.63% 79.81% 86.35%

DCAE (Aktar & Nur, 2023) 2023 92.46% 92.45% 92.45% 92.45%

Proposed model 2025 99% 99% 99% 99%

H23Q multiclass classification

Methods/Metrics Accuracy Precision Recall F1-score

DT (Chatzoglou et al., 2023) 94.44% 65.93% 63.56% 64.21%

LightGBM (Chatzoglou et al., 2023) 94.76% 79.71% 64.72% 68.40%

Bagging (Chatzoglou et al., 2023) 94.82% 79.95% 64.81% 68.77%

MLP (Chatzoglou et al., 2023) 92.62% 62.15% 51.15% 53.71%

AE (Chatzoglou et al., 2023) 92.51% 63.50% 33.15% 39.59%

TextCNN (Chatzoglou et al., 2023) 92.37% 72.44% 45.90% 46.71%

Proposed model 98% 98% 98% 98%
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recall, and F1-scores. The results were validated using 5-fold stratified cross-validation,
and all reported metrics represent mean ± standard deviation across folds. Additionally,
paired t-tests confirmed that the performance improvements over baseline models such as
CNN, LSTM, and FNN were statistically significant (p < 0.05), reinforcing the reliability of
these results. While the model incurred moderately higher training time and memory
consumption, the trade-off proved worthwhile for high-accuracy, security-critical
applications.

Limitations
While the proposed approach shows promise, the study has a few important limitations:

. Hyperparameter Dependency: The model’s performance depends on careful tuning of
GAN architecture, attention layers, and learning rates. These settings were optimized
empirically and may require adjustment for new datasets or environments.

. Lack of Real-Time Evaluation: The system was evaluated offline; its scalability and
latency in real-time or streaming environments (e.g., edge networks or IoT gateways)
have not been assessed.

. Scope of Optimizer Benchmarking: Although we compared IMOA with other popular
optimization algorithms such as PSO, GA, GWO, additional comparison with newer or
domain-specific metaheuristics (e.g., Differential Evolution (DE), Ant Colony
Optimization (ACO), Simulated Annealing (SA)) could further validate IMOA’s relative
performance.

. Dataset Diversity: The datasets used are benchmark standards but may not fully reflect
real-world encrypted traffic or zero-day attack scenarios. Further testing on dynamic and
diverse datasets is necessary for broader generalization.

Future work will focus on evaluating the WGAN-GP_IMOA_DA_Ensemble model’s
performance and optimizing its components for better efficiency. Strategies to minimize
training time without compromising accuracy will be explored. Additionally, the model’s
ability to enhance the detection of rare attack classes will be improved by leveraging
innovative data sampling and augmentation techniques. To ensure adaptability, the model
will be tested on diverse and emerging datasets, including those specific to IoT and edge
computing environments. This will validate its robustness and applicability in various
real-world scenarios.
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