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ABSTRACT
Sign language is a vital communication tool for individuals with hearing and speech
impairments, yet Arabic Sign Language (ArSL) recognition remains challenging due
to signer variability, occlusions, and limited benchmark datasets. To address these
challenges, we propose a two-hand static and dynamic gesture recognition system
that integrates keypoint-based descriptors (ORB (Oriented FAST and Rotated
BRIEF), AKAZE (Accelerated-KAZE), SIFT (Scale-Invariant Feature Transform),
and BRISK (Binary Robust Invariant Scalable Keypoints)) with shape-based features
(smoothness, convexity, compactness, symmetry) for enhanced gesture
discrimination. A distance map-based method is also used to extract fingertip
keypoints by identifying local maxima from the hand centroid. An attention-enabled
feature fusion strategy effectively combines these diverse features, and a long
short-term memory (LSTM) network captures temporal dependencies in dynamic
gestures for improved classification. Evaluated on KArSL-100, KArSL-190, and
KArSL-502, the proposed system achieved 77.34%, 62.53%, and 47.58% accuracy,
respectively, demonstrating its robustness in recognizing both static and dynamic
ArSL gestures. These results highlight the effectiveness of combining spatial and
temporal features, paving the way for more accurate and inclusive sign language
recognition systems.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning,
Visual Analytics
Keywords RGB video analysis, Gesture recognition, Hand pose estimation, Motion analysis,
Arabic sign language recognition, BRISK, SIFT, AKAZE, ORB, LSTM

INTRODUCTION
Hearing loss is a growing global issue, with the World Health Organization projecting that
2.5 billion people will have some level of hearing impairment by 2050, increasing the need
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for sign language communication (World Health Organization, 2021). Sign languages like
American Sign Language (ASL), Chinese Sign Language (CSL), and Arabic Sign Language
(ArSL) have unique linguistic structures and visual vocabularies. ArSL, standardized in
1999, is widely used in Arab countries and media outlets such as Al-Jazeera (Almufareh et
al., 2025). Sign languages use manual gestures (hand movements) and non-manual cues
(facial expressions, posture), with both static (e.g., letters, digits) and dynamic (motion-
based) signs. Sign language recognition involves detecting and interpreting visual gestures
from images or videos and mapping each sign to its corresponding word or label in the
spoken language, thereby facilitating communication with non-signers (Myagila, Nyambo
& Dida, 2025).

Despite progress in computer vision, ArSL recognition still faces challenges such as
signer variability, difficulty capturing non-manual gestures, hand occlusions, inconsistent
lighting, and a lack of standardized datasets (Al-Barham et al., 2023). These issues hinder
system accuracy and require better posture extraction, temporal learning methods, and
dataset development. While automated ArSL systems are crucial for inclusive
communication, they remain underdeveloped. However, recent advances in vision-based
gesture recognition present promising opportunities for improving sign language
translation systems (Alabdullah et al., 2023).

Hand gestures in sign language are classified as static (fixed postures for letters or
numbers) and dynamic (continuous movements for full expressions). Accurate
recognition of both is crucial for effective translation. However, challenges like occlusions,
hand overlap in two-handed gestures, intra-class variability, and limited research on ArSL
continue to affect system reliability (Al Abdullah, Amoudi & Alghamdi, 2024).

Recent research has focused on keypoint-based and multimodal approaches to enhance
sign language recognition. Gangwar et al. (2024) used Speeded-Up Robust Features
(SURF) descriptors with a Bag of Visual Words and convolutional neural network (CNN)
to classify Indian Sign Language alphabets, performing well on static, single-hand gestures
but not addressing dynamic or two-hand signs. Ferreira, Cardoso & Rebelo (2019)
proposed a multimodal framework using Kinect and Leap Motion sensors to extract
complementary features, though it depends on specialized hardware and is not tailored to
Arabic Sign Language.

This study proposes a vision-based ArSL recognition system that handles both static
and dynamic two-hand gestures without using depth or motion sensors. It combines
keypoint-based and shape-based features, with fingertip detection via a distance map from
the hand’s centroid. Features are fused using an attention-enabled module (Tan et al.
2023), and long short-term memory (LSTM) networks capture temporal dependencies.
The system also uses skin segmentation for consistent hand localization and optical flow to
manage occlusions.

The main contributions of this work include:

. Lightweight fingertip detection: We propose a novel distance map-based method to
detect fingertips by selecting local maxima from the hand’s centroid, enabling efficient
and accurate gesture representation.
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. Dual-feature representation for gesture recognition: We propose a hybrid approach that
combines keypoints-based features and shape descriptors to enhance the recognition of
both static and dynamic gestures in ArSL.

. Attention enabled feature fusion: By integrating keypoints-based and shape-based
features through a attention enabled feature fusion strategy, our approach improves the
system’s ability to distinguish visually similar gestures.

The rest of this article is structured as follows: ‘Related Work’ reviews related work in
hand gesture recognition and sign language processing. ‘System Methodology’ details the
proposed methodology, including hand detection, feature extraction, fusion, and
classification. ‘Experimental Setup’ discusses experimental setup and evaluation metrics.
‘Results & Discussion’ presents results and compares the proposed system with existing
approaches. Finally, ‘Conclusion and Future Recommendations’ concludes the article and
outlines future directions.

RELATED WORK
Hand gesture recognition (HGR) has significantly progressed with advances in deep
learning, feature extraction, and multimodal sensor-based methods, becoming essential in
human-computer interaction, sign language translation, and smart technologies (Xie, He
& Li, 2018; Jalal et al., 2018). However, challenges like occlusions, viewpoint variations,
complex hand articulations, and real-time processing limitations still affect performance
(Chen et al., 2018; Liu et al., 2017). To overcome these issues, researchers have
incorporated CNNs, recurrent architectures, and feature fusion techniques to improve
robustness and efficiency (Bhagat, Vishnusai & Rathna, 2019; Barbhuiya, Karsh & Jain,
2021). CNN-based models, especially fine-tuned ones, have achieved high accuracy—
99.82% on ASL alphabets and numerals (Barbhuiya, Karsh & Jain, 2021), 99.96% on
Indian Sign Language (Sharma & Singh, 2021), and 100% on public ASL datasets (Sharma
& Singh, 2021). Nonetheless, real-time deployment remains challenging due to high
computational demands, hand orientation variability, and the need for large-scale
annotated datasets (Ansar et al., 2022; Damaneh, Mohanna & Jafari, 2023).

To overcome these challenges, researchers have explored hybrid models,
keypoint-based descriptors, and deep neural networks to improve recognition
performance across multiple datasets (Ansar & Jalal, 2023; Mudawi et al., 2024). Depth
information has proven effective in refining gesture segmentation and reducing
background interference, while pose-based models have been employed to enhance
real-time performance (Alyami, Luqman & Hammoudeh, 2024). Capsule networks and
transformer-based architectures have also contributed to handling rotation, scaling, and
occlusion, making these models more resilient in real-world scenarios (Shin et al., 2021;
Sharma & Singh, 2021).

Recent advances also highlight the importance of temporal modeling and attention
mechanisms in improving gesture recognition. Rahimian et al. (2022) introduced a
Temporal Convolutions-based HGR (TC-HGR) framework incorporating attention
modules to reduce computational complexity while maintaining competitive accuracy,

Kausar et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3275 3/27

http://dx.doi.org/10.7717/peerj-cs.3275
https://peerj.com/computer-science/


achieving 81.65% on sEMG signals. Building on the TC-HGR framework by Rahimian
et al. (2022), Zhong et al. (2023) introduced an STGCN-GR model that captures
spatial-temporal dependencies in high-density sEMG data, achieving 91.07% accuracy.
Xu et al. (2023) proposed an SE-CNN architecture using channel-wise attention to
enhance feature extraction. Wang, Zhao & Zhang (2023) proposed a deep learning
approach combining attention mechanisms and transfer learning for electromyographic
gesture estimation, improving real-time classification accuracy even with limited training
data. These approaches demonstrate the growing importance of selective feature
enhancement and temporal dynamics in gesture decoding. Yu et al. (2023) developed a
CNN-based channel attention model for real-time prosthetic hand control. Montazerin
et al. (2022) leveraged Vision Transformers (ViT-HGR) to improve classification without
heavy data augmentation. These studies underscore the value of temporal dynamics and
attention in improving gesture recognition.

Several recent studies have shown promising results using novel approaches. Ansar et al.
(2023) developed a CNN-based HGR system using landmark-based features, achieving
93.2% accuracy on the MNIST dataset and 91.6% on the ASL dataset.Mudawi et al. (2024)
proposed a six-module framework combining SSMD tracking, background modeling, and
a 1D CNN, reaching 85.71% accuracy onWLASL and 83.71% on the Indian Sign Language
dataset. Alyami, Luqman & Hammoudeh (2024) introduced a pose-based transformer
model for Arabic Sign Language, achieving 99.74% accuracy in signer-dependent and
68.2% in signer-independent modes on the KArSL-100 dataset. Their model also surpassed
existing methods on the LSA64 dataset, with 98.25% and 91.09% accuracy in
signer-dependent and -independent settings, respectively.

Incorporating feature fusion and recurrent architectures has also shown strong
potential. Alabdullah et al. (2023) proposed a markerless dynamic gesture recognition
system using joint color cloud, neural gas, and directional active models as features,
processed through an RNN. Their model achieved accuracies of 92.57%, 91.86%, and
91.57% on HaGRI, Egogesture, and Jester datasets respectively, and 90.43% on
WLASL—highlighting the efficacy of combining advanced feature extraction with
recurrent classifiers.

Dynamic gesture recognition, essential for human-robot interaction, has advanced
through sequence-based models like ConvLSTMs and transformers (Bhagat, Vishnusai &
Rathna, 2019; Ansar et al., 2022). Ansar et al. (2022) achieved 88.46% accuracy on the IPN
Hand dataset and 87.69% on Jester using SSD-CNN and temporal features. Damaneh,
Mohanna & Jafari (2023) improved accuracy and robustness with CNNs, Gabor filters,
and ORB descriptors, achieving up to 99.92% on the Massey and ASL datasets.

Hybrid and multi-modal descriptors have also been explored for real-time performance.
Huang & Yang (2021) developed a finger-emphasized multi-scale descriptor for
RGB-D data, demonstrating robustness to articulations and rigid transformations, while
Jalal et al. (2024) utilized multi-sensor data fusion (RGB + IMU) and hybrid transfer
learning to boost recognition accuracy on human activity recognition (HAR) tasks, with
results of 92% on the LARa and 93% on the HWU-USP dataset. These methods emphasize
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the relevance of combining visual cues with sensor fusion and advanced descriptors in
achieving real-time recognition.

Despite these advancements, challenges such as real-time efficiency, adaptability to
diverse backgrounds, and generalization across different sign languages remain key
concerns. The integration of multiple feature extraction techniques and feature
fusion strategies, as employed in this work, further enhances recognition accuracy
and robustness, making gesture recognition systems more adaptable to real-world
scenarios.

SYSTEM METHODOLOGY
We propose a two-hand Arabic Sign Language recognition system that integrates
keypoints and shape features with an attention-driven feature fusion strategy followed by
LSTM based classification as shown in Fig. 1.

Preprocessing steps
The first step in the proposed system is preprocessing the images to enhance quality,
remove noise, and improve feature extraction accuracy using three key steps: denoising,
sharpening, and brightness & contrast enhancement.

Figure 1 Comprehensive framework for holistic two hand pose estimation and dynamic motion analysis for gesture recognition.
Full-size DOI: 10.7717/peerj-cs.3275/fig-1
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Bilateral filtering enhances gesture recognition by smoothing image while preserving
edges, using weights based on both spatial and intensity differences as given in Eq. (1).

I0 xð Þ ¼ 1
Wp

X
i2�

I ið Þfr k I ið Þ � I xð Þkð Þfs k i� xkð Þ (1)

where I xð Þ and I ið Þ are the central and neighboring pixel intensities within window�, with
Gaussian blur first applied using Eq. (2).

G x; yð Þ ¼ 1
2pr2

e�
x2þy2

2r2 (2)

where r represents the standard deviation of the Gaussian kernel. Sharpening is achieved
by subtracting the blurred image from the original using Eq. (3).

Isharp ¼ Ioriginal þ a Ioriginal � Iblurred
� �

(3)

where r controls the sharpening intensity. Finally, brightness and contrast are enhanced
using histogram equalization (HE), which redistributes intensity values for better detail
visibility using Eq. (4).

T rð Þ ¼ L� 1ð Þ
MN

Xr

i¼0

h ið Þ (4)

where r is the input intensity level, L is the total number of intensity levels,MN represents
the total number of pixels, h ið Þ is the histogram count of intensity level.

Hand silhouette extraction
After preprocessing, faces are detected and removed using Haar Cascade, Vijaya et al.
(2024), to focus on hand gestures, using Eq. (5).

F x; y;w; hð Þ ¼ detectMultiScale Igray; s; n;m
� �

(5)

where, Igray is the grayscale image, s is the scaling factor, n is the minimum neighbors
required, and m is the minimum face size. The image is then converted to YCbCr to
separate luminance (Y) from chrominance (Cb and Cr), improving skin detection using
Eqs. (6a), (6b) and (6c).

Y ¼ 0:299Rþ 0:587Gþ 0:114B (6a)

Cb ¼ 128� 0:168736R� 0:331264Gþ 0:5B (6b)

Cr ¼ 128þ 0:5R� 0:418688G� 0:081312B: (6c)

A skin mask is created by using Cb and Cr ranges from Eq. (7).

133 � Cr � 173; 77 � Cb � 127: (7)

Morphological operations (Kaur et al., 2024) refine the mask. Dilation, given by Eq. (8),
expands the skin regions, and erosion, given by Eq. (9), removes small noise.

D Að Þ ¼ A� B ¼ fzj Bð Þz \ A 6¼ [g (8)

E Að Þ ¼ A � B ¼ fzj Bð Þz � Ag (9)

where A is the skin mask and B is the structuring element.
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Area-based thresholding for hand extraction
Connected component labeling identifies and labels connected regions in a binary image to
analyze their properties, using Eq. (10).

L x; yð Þ ¼ Labeling I x; yð Þð Þ (10)

where L x; yð Þ represents the labeled components. Each component’s area is evaluated, and
components with an area Ai � 1;500, are retained while smaller ones are removed. A
binary mask is then created to isolate the valid hand components. Further, occlusion
occurs when an object is partially hidden by overlapping elements as shown in Fig. 2C.
Optical flow detects occlusion regions by analyzing motion discontinuities. Given a flow
field with horizontal (u) and vertical (v) components, occlusions can be identified by
computing the flow divergence r � F x; yð Þ as defined in Eq. (11).

r � F x; yð Þ ¼ qu
qx

þ qv
qy

: (11)

A high divergence magnitude indicates areas where motion abruptly changes, often
corresponding to occluded regions. To normalize the occlusion probability, the divergence
is scaled using the maximum absolute divergence value across the image using Eq. (12).

O x; yð Þ ¼ 1� r � F x; yð Þj j
max r � Fj jð Þ (12)

where O x; yð Þ represents the occlusion probability map, where values close to 1 indicate
strong occlusions and values near 0 correspond to visible regions. After computing the
occlusion probability map O x; yð Þ; the RGB hand region is extracted by focusing on areas
with low occlusion, indicating visible parts of the hand. A binary maskM x; yð Þ is generated
using a threshold τ, typically between 0.3 and 0.5, to filter out heavily occluded pixels using
Eq. (13).

M x; yð Þ ¼ 1; if O x; yð Þ < s
0; otherwise

�
: (13)

This mask highlights only the reliable, unoccluded regions. The final RGB hand image
H x; yð Þ is obtained by applying this mask to the original RGB frame I x; yð Þ using Eq. (14).
H x; yð Þ ¼ I x; yð Þ �M x; yð Þ: (14)

Figure 2 Silhouette extraction: (A) original image, (B) skin region, (C) occlusion detected, (D) hand
separated. Full-size DOI: 10.7717/peerj-cs.3275/fig-2
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To enhance spatial coherence and remove noise, morphological operations such as
closing and dilation are applied to M x; yð Þ before masking. This process ensures accurate
extraction of the visible hand region, even under partial occlusions, enabling reliable
downstream gesture or pose analysis.

2D hand pose estimation
The segmented hand region is resized to 400 × 400 pixels using bilinear interpolation to
ensure uniformity and maintain aspect ratio. Keypoints and descriptors are then extracted
using Oriented FAST and Rotated BRIEF (ORB), Accelerated KAZE (AKAZE), Scale
Invariant Feature Transform (SIFT), Binary Robust Invariant Scalable Keypoints (BRISK)
and distance map for robust feature detection in gesture recognition.

A. ORB
ORB (Tareen & Saleem, 2018) is used for feature extraction and keypoint detection

from the segmented hand region, identifying gesture landmarks crucial for Sign
Language recognition. To balance accuracy and computational cost, 200 keypoints are
extracted as shown in Fig. 3A. ORB detects keypoints using a modified FAST algorithm
where a pixel p is a keypoint if a contiguous arc of n pixels meets the condition given
by Eq. (15).

Ix � Ip
�� �� > t; 8x 2 S (15)

where Ix and Ip are the pixel intensities, S is the circular neighborhood of 16 pixels around
p, t is a threshold for intensity difference. ORB ensures rotation invariance by assigning an
orientation using the intensity centroid C given by Eq. (16).

C ¼
P

xI x; yð ÞP
I x; yð Þ ;

P
yI x; yð ÞP
I x; yð Þ

� �
(16)

where I x; yð Þ is the pixel intensity. Using this centroid, ORB assigns an orientation angle h
to each keypoint by Eq. (17).

h ¼ tan�1

P
yI x; yð ÞP
xI x; yð Þ

� �
: (17)

For each key point in the hand, ORB extracts a binary feature descriptor by comparing
the intensity values of pairs of pixels using Eq. (18).

f ið Þ ¼ 1; I xið Þ < I yj
� �

0; otherwise

�
(18)

where xi; yj are pixel pairs sampled within a local region. I xið Þ and I yj
� �

are their intensity
values.

B. AKAZE
AKAZE (Tareen & Saleem, 2018) is a fast, robust feature detection algorithm using

nonlinear scale spaces to extract key points from hand components, aiding in tracking
finger positioning, shape, and movement by detecting high-contrast regions, edges, and
corners. The key points, provided in Fig. 3B, are computed using the Perona-Malik
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anisotropic diffusion equation given in Eq. (19), with smoothing controlled by diffusion
function given in Eq. (20)

qL
qt

¼ r � g rLð ÞrLð Þ (19)

g rLð Þ ¼ 1

1þ rLj j
j

� 	2 (20)

Figure 3 Keypoints extraction using (A) AKAZE (B) ORB (C) SIFT (D) BRISK various gestures.
Left: “2” Centre: “1” Right: “ ماحم ”. Full-size DOI: 10.7717/peerj-cs.3275/fig-3
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where L is the image intensity function, rL represents the image gradient, j is a
contrast-sensitive threshold. Each key point is associated with a descriptor that encodes
local texture and shape information. The descriptor vector is computed using Binary
Robust Independent Elementary Features BRIEF-like descriptors. Given a detected key
point k at location xk; ykð Þ, the descriptor Dk is constructed as given by Eq. (21).

Dk ¼ I xk þ dxi; yk þ dyið Þ � I xk þ dxj; yk þ dyj
� �
 �N

i;j¼1 (21)

where I x; yð Þ is the image intensity, dxi; dyi and dxj; dyj are small perturbations around the
key point, N is the number of binary comparisons used to form the descriptor. To ensure
computational efficiency, top-ranked key points are retained based on their response
strength Rk, given by Eq. (22).

Rk ¼
XN
i¼1

Dk ið Þ: (22)

These key points represent anatomical landmarks on the hand, enabling estimation of
hand orientation, finger spread, and motion patterns.

C. SIFT
SIFT (Tareen & Saleem, 2018) extracts distinctive, scale- and rotation-invariant

keypoints from hands as shown in Fig. 3C. To detect keypoints in hands at different scales,
SIFT builds a scale-space representation by progressively blurring the hand region using a
Gaussian function by using Eq. (23), where I x; yð Þ is the processed hand image, G x; y; rð Þ
is a Gaussian kernel given by Eq. (24).

L x; y;rð Þ ¼ G x; y; rð Þ 	 I x; yð Þ (23)

G x; y; rð Þ ¼ 1
2pr2

e�
x2þy2

2r2 : (24)

To efficiently find key points, Difference of Gaussians (DoG) is computed by
subtracting two Gaussian-blurred images at different scales given by Eq. (25).

D x; y; rð Þ ¼ L x; y; krð Þ � L x; y; rð Þ (25)

where k is a constant multiplier. Keypoints are detected as local extrema in the DoG images
by comparing each pixel with its 26 neighbors. Keypoints are refined using Hessian matrix
at each location with the response ratio R is computed by Eq. (26).

H ¼ Dxx Dxy

Dxy Dyy

� 

; R ¼ Tr Hð Þ2

det Hð Þ (26)

where Tr Hð Þ and det Hð Þ are calculated by using Eqs. (27) and (28).

Tr Hð Þ ¼ Dxx þ Dyy (27)

det Hð Þ ¼ DxxDyy � Dxy
� �2

: (28)

Each keypoints is assigned a dominant orientation for rotation invariance. The gradient
magnitude and direction are computed for each key point’s neighborhood using Eqs. (29)
and (30) respectively.
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m x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L x þ 1; yð Þ � L x � 1; yð Þð Þ2
þ L x; y þ 1ð Þ � L x; y � 1ð Þð Þ2

s
(29)

h x; yð Þ ¼ tan�1 L x; y þ 1ð Þ � L x; y � 1ð Þ
L x þ 1; yð Þ � L x � 1; yð Þ

� �
: (30)

For dynamic gestures, keypoints from sequential frames are matched using Euclidean
distance Outliers are removed using RANSAC (Random Sample Consensus) to eliminate
incorrect matches due to background noise.

D. BRISK
BRISK (Tareen & Saleem, 2018) identifies keypoints, illustrated in Fig. 4D, using a

scale-space pyramid approach, ensuring robustness to variations in hand size and
orientation. It constructs a pyramid of images at different resolutions by iteratively down
sampling the original image using Eq. (31).

Is x; yð Þ ¼ Is�1 	 Gssð Þ x; yð Þ (31)

where Gss is a Gaussian kernel with standard deviation ss. At each scale s, a modified
FAST detector identifies corners. A pixel p is considered a corner if a contiguous arc of at
least n pixels in a circular neighborhood is significantly brighter or darker than p as given
in Eq. (32), where q is a neighboring pixel of p, and t is the intensity threshold.

I pð Þ � I qð Þj j > t: (32)

After keypoints detection, subpixel interpolation refines their locations for accuracy.
BRISK computes a binary descriptor by comparing intensity values at 60 predefined points
in circular sampling, given by Eq. (33), resulting in a 512-bit descriptor.

f i; jð Þ ¼ 1; I pið Þ < I pj

� 	
0; otherwise

(
: (33)

Figure 4 Shape features: (A) uniqueness and smoothness, (B) convexity, (C) compactness (D) vertical
and horizontal symmetry distance based keypoints: (E) “5”: binary silhouette (Right) distance map
(Middle), fingertips keypoints (Left), (F) “2”: binary silhouette (Right), distance map (Middle),
fingertips (Left). Full-size DOI: 10.7717/peerj-cs.3275/fig-4
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SHAPE FEATURES FOR BINARY HAND SILHOUETTES
Binary silhouette of the hand region is analyzed using shape parameters which provide a
mathematical representation of the hand’s structure, enabling precise differentiation
between various hand poses (Murat, 2024). Their computation and corresponding
formulas are detailed below:

A. Compactness:
Compactness is defined as the ratio of the actual area of a detected object (hand or

finger) to the bounding box area enclosing it given in Eq. (34) as shown in Fig. 4A.

C ¼ A
B

(34)

where A represents the actual area of the detected hand region (from the binary skin mask)
and B is the area of the minimum enclosing bounding box.

B. Symmetry
Symmetry is evaluated by comparing the original hand region with its flipped version

along a chosen axis (horizontal or vertical). The symmetry score is computed using
Eq. (35) and is illustrated in Fig. 4B.

S ¼ O
max A; 1ð Þ (35)

where O is the overlapping area between the original hand mask and its flipped
counterpart, A is the total area of the hand region in the binary mask.

C. Global convexity

Global convexity, provided in Fig. 4C, quantifies the deviation of the hand region from
its convex hull by measuring the Euclidean distance between each pixel of the hand
silhouette and the nearest convex hull point. The global convexity score is computed
using Eq. (36).

Cg ¼ 1
N

XN
i¼1

di (36)

where N is the number of pixels in the region, di is the Euclidean distance between the ith

pixel of the hand region and the nearest convex hull point.

D. Uniqueness and smoothness

Uniqueness quantifies the distinctiveness of gesture by analyzing the distribution of
tangent angles along the contour, computed using the Shannon entropy of the angle
histogram using Eq. (37) as shown in Fig. 4D.

U ¼ �
XN
i¼1

Pilog2Pi (37)
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where Pi is the probability of an angle falling into the ith segment of the histogram and N is
the number of segments. While smoothness evaluates the continuity of a hand gesture by
analyzing variations in the contour’s tangent angles, provided in Fig. 4D. It is computed
using Eq. (38).

Sm ¼ max l1;l2ð Þ (38)

where l1;l2 are the mean angle values obtained from a Gaussian mixture model (GMM)
fitted to the angle histogram.

Keypoints calculation using distance map
To compute keypoints using distance map, first the centroid of each hand component is
computed using image moments using Eq. (39).

cx ¼
P

xiM xi; yið ÞP
M xi; yið Þ ; cy ¼

P
yiM xi; yið ÞP
M xi; yið Þ (39)

where M x; yð Þ is the binary mask of the segmented hand region. A distance transform is
applied to calculate the Euclidean distance from each pixel x; yð Þ in the hand region to the
centroid. Local maxima in the distance map i.e., max D x; yð Þð Þ are identified as fingertip
locations. A local window-based maximum filter ensures robust fingertip selection. The
five most distant points from the centroid are selected as fingertips using Eq. (40) as shown
in Figs. 4E and 4F.

F ¼ xi; yið Þ j i 2 1; 5½ 
;D xi; yið Þ is top 5 maximaf g: (40)

While some preprocessing techniques may eliminate hand features critical for
recognizing fingerspelling, a key component of sign language, our approach preserves the

Figure 5 Results of ORB, BRISK and fingertip locations for fingerspelling gestures: (a) “ :”د (b) “ ”.
Full-size DOI: 10.7717/peerj-cs.3275/fig-5
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hand configurations necessary for accurate interpretation. As demonstrated in Fig. 5, this
enables reliable recognition of several fingerspelled Arabic alphabet signs.

Feature extraction from keypoints
We extracted features from keypoints to analyze keypoint motion in gesture recognition.
Displacement, velocity, acceleration, angular displacement, angular velocity, and angular
acceleration were computed with the corresponding formulas provided by Murat (2024).

ATTENTION ENABLED EARLY FEATURE FUSION
For each frame, we extracted a total of 6,454 features. This includes eight features per
keypoint, comprising displacement in x and y (2), linear velocity (2), linear acceleration
(2), angular velocity (1), and angular acceleration (1). With 800 keypoints across four
regions (200 each), this yields 6,400 features. Additionally, we computed eight features
from six aggregated vectors (6 × 8 = 48) capturing overall movement trends. Lastly, we
included six global shape features—horizontal and vertical symmetry, compactness,
convexity, smoothness, and uniqueness—bringing the total feature count per frame to
6,454.

Each frame of the input video produces two feature vectors: a skeletal-based vector
si 2 RN1 and a silhouette-based vector hi 2 RN2 : These features are concatenated to form
the early fused feature vector fi 2 RN1þN2 as defined in Eq. (41):

fi ¼ si � hi (41)

where, 4 denotes the concatenation operation. For a video sequence of M frames, the
complete fused feature matrix F 2 RM� N1þN2ð Þs represented using Eq. (42).

F ¼ f1; f2; . . . ; fM½ 
: (42)

To emphasize the most informative components in the concatenated feature vector fi a
self-attention mechanism is applied. For each fused vector fi, a corresponding query vector
qi and key vector kj are computed through linear transformations with learned parameters:
qi ¼ Wqfi þ bq; kj ¼ Wkfj þ bk where, Wq 2 Rd� N1þN2ð Þ;Wk 2 Rd� N1þN2ð Þbq 2 Rd

bk 2 Rd are trainable parameters learned via backpropagation during training. The
attention score-eij, reflecting the similarity between the query qi and key kj, is computed
using scaled dot-product attention in Eq. (43).

eij ¼ qTi � kj: (43)

These raw attention scores are normalized with the softmax function to yield attention
weights aij in Eq. (44).

aij ¼
exp eij

� �
PM

k¼1 exp eikð Þ : (44)

Note that the softmax is applied across temporal dimension M, not across the vector
dimension N1 þ N2, as the attention operates between frame-level features. Using the
computed attention weights aij; each frame’s fused feature vector fi is reweighted to
generate an enhanced representation f 0i Eq. (45).
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f 0i ¼
XM
j¼1

aij � fj: (45)

This operation aggregates information across the entire sequence, enabling each frame’s
representation to be informed by context from other frames, which enhances the
discriminative power of the features. The final output from the attention module across the
video is given in Eq. (46).

F0 ¼ f 01; f
0
2; . . . ; f

0
M


 �
: (46)

This attention-enhanced sequence F′ is subsequently used for downstream tasks such as
exercise classification or movement quality assessment. By explicitly defining the learnable
parameters Wq Wk and the softmax-based weight assignment logic, this mechanism
clarifies how the attention module is integrated into the fusion pipeline. Figure 6A visually
represents this architecture, showing how fused features from each frame pass through the
attention module to derive a context-aware output that better captures the temporal
dynamics and discriminative structure of the input video sequence.

Using an attention mechanism, each feature was assigned a specific weight, indicating
its relative importance. Based on these weights, a data-driven selection process was

Figure 6 (A) Architecture of the attention mechanism for feature fusion; (B) design of long
short-term memory (LSTM) architecture; (C) heatmap highlighting the feature importances for
selected 20 features. Full-size DOI: 10.7717/peerj-cs.3275/fig-6
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employed to identify and retain the most relevant features for further analysis or model
training. Figure 6C shows the feature importances for the selected features, the features,
which exhibit higher weights highlight their greater significance and contribution to the
overall task.

LSTM-BASED CLASSIFICATION
To effectively capture both the spatial and temporal characteristics of sign language
gestures, our system integrates frame-level static descriptors with a long short-term
memory (LSTM) network for dynamic classification. This approach addresses the inherent
complexity of sign language, where both instantaneous hand configurations and their
evolution over time are critical for accurate recognition.

Specifically, the keypoint-based descriptors (ORB, AKAZE, SIFT, BRISK) and
shape-based features (smoothness, convexity, compactness, symmetry) are extracted
independently for each individual frame within a gesture sequence. These descriptors,
while static in their per-frame computation, provide a rich representation of the hand’s
posture and configuration at discrete points in time.

The static descriptors extracted from individual frames are adapted for temporal
learning by treating the sequence of frame-level feature vectors as input to an LSTM
network. For a dynamic gesture consisting of T frames, the fused keypoint and shape
features from each frame Ft are fed sequentially into the LSTM. Leveraging its recurrent
architecture, the LSTM captures temporal dependencies by learning movement patterns,
transitions, and correlations across successive hand configurations throughout the gesture.
This sequential processing enables the model to build a contextual understanding of the
gesture’s dynamic progression. By analyzing the order and variation in these frame-level
features, the LSTM effectively models the temporal evolution of the sign, allowing for
accurate classification of gestures defined by motion trajectories rather than static poses.
This approach provides a robust mechanism for combining the fine-grained spatial
information captured by per-frame static descriptors with the powerful temporal modeling
capabilities of LSTMs, thereby justifying their alignment in the context of dynamic sign
language recognition.

LSTM networks are particularly suited for sequential data where long-range temporal
dependencies are crucial such as in human exercise classification, where subtle changes in
motion over time determine the exercise type and correctness. While gated recurrent units
(GRUs) offer computational efficiency by simplifying LSTM’s gates, LSTMs generally
provide better performance in tasks with longer sequences due to their separate memory
cell structure. Compared to Transformers, which have shown state-of-the-art performance
in various domains, LSTMs require less data and computational resources for effective
training and generalize well when the dataset is moderately sized. In our setting, where
temporal continuity of skeletal or sensor-based features is key. LSTMs strike a balance
between model complexity and learning capacity, making them a practical and effective
choice.

An LSTM network classifies exercises as shown in Fig. 6B. LSTMs capture spatial and
temporal dependencies, enhancing accuracy in identifying exercise type and correctness.
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The transformed feature vectors f 0i are fed into the LSTM as a 3D tensor
F0
input 2 RB�M� N1þN2ð Þ, where B is the batch size. The stacked LSTM captures temporal

dependencies using input it , forget ft , and output ot , cell state ct and hidden state ht updates
are defined in Eq. (47).

ct ¼ ft � ct�1 þ it � tanh Wcf
0
t þ Ucht�1 þ bc

� �
(47)

This allows the LSTM to capture both short- and long-term temporal dependencies. The
LSTM’s final hidden state hM s passed to a fully connected layer, using softmax for
multi-class exercise classification or sigmoid for binary correctness evaluation.

DATASETS DESCRIPTION
This study used the KArSL-100, KArSL-190, and KArSL-502 (Luqman & Elalfy, 2022)
datasets to enhance ArSL recognition and model generalization. KArSL-100 includes 100
dynamic signs performed by three signers, totaling 15,000 samples. KArSL-190 expands to
190 signs, including digits, letters, and words, with 28,500 samples. KArSL-502, the most
extensive dataset, covers 30 digits, 40 letters, and 432 words, totaling 75,300 samples. Each
dataset ensures diverse and high-quality sign variations for robust model training.

EXPERIMENTAL SETUP
To rigorously assess the performance and generalization capability of the proposed system,
a comprehensive evaluation protocol was adopted. The KArSL dataset, specifically
designed for sign language recognition, includes predefined train-test splits to standardize
evaluation across studies. These fixed splits ensure that the training and testing sets are
mutually exclusive and representative of real-world conditions. By using the official splits
provided with the dataset, we maintain consistency with prior work and avoid potential
biases introduced by arbitrary data partitioning. This approach supports a fair and reliable
assessment of the system’s effectiveness.

RESULTS AND DISCUSSION
As seen in Table 1, it maintains an average precision, recall, and F1-score of 0.68,
indicating strong model reliability with minimal variance. The smaller class set allows for
better feature separation, reducing misclassification. For KArSL-190, the accuracy drops to
62.53%, reflecting the increased complexity of the dataset. As shown in Table 1, the
precision, recall, and F1-score decrease to 0.50. suggesting greater challenges in
differentiating overlapping classes. The presence of visually similar signs contributes to the
increased misclassification rate. The KArSL-502 dataset records the lowest performance,
with an accuracy of 47.58%. The precision, recall, and F1-score further decline to 0.40. The
large number of classes increases the likelihood of feature confusion, leading to a higher
misclassification rate.

For, the signer independent mode, the model achieves high classification accuracy on
the KARSL-100 dataset, with an average AUC of 0.96, as shown in Fig. 7A. Most classes are
well-separated, leading to low false positive rates and strong ROC curves. A few similar
signs exhibit minor misclassification, but overall, the model demonstrates excellent

Kausar et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3275 17/27

http://dx.doi.org/10.7717/peerj-cs.3275
https://peerj.com/computer-science/


performance for a smaller class set. With 190 classes, the dataset introduces higher
complexity, leading to a slight decrease in AUC to 0.92, as illustrated in Fig. 7A. While
classification remains strong, some visually similar classes show overlapping decision
boundaries, resulting in occasional misclassifications. However, the model maintains high
recall, ensuring reliable detection across most categories.

As the most complex dataset, KARSL-502 presents challenges due to a large number of
classes, resulting in an AUC of 0.87, as depicted in Fig. 7A. Increased class overlap leads to
higher false positives, affecting overall precision. While the model still performs
competitively, further optimization through improved feature selection or deep learning
enhancements could enhance classification accuracy.

For the signer independent mode, the KArSL-100 dataset achieves the highest
classification performance, with an accuracy of 77.34%. We used signer independent mode
to evaluate the model’s generalization ability across different users, which is essential for
real-world applications.

The confusion matrices for the KArSL datasets demonstrate strong classification
performance. KArSL-100 (Fig. 7B) achieves the highest accuracy, with a nearly perfect
diagonal, indicating excellent model performance on this smaller class set. KArSL-190
(Fig. 7B) also exhibits robust classification, with most classes correctly identified and only
minor misclassifications occurring between visually similar signs. Despite the increased
complexity, KArSL-502 (Fig. 7B) shows a significant accuracy improvement, with slight
misclassifications primarily among similar classes. Due to the large number of classes in
KArSL-502, it is challenging to display all confusion matrix values clearly, which limits
detailed visualization.

Figure 8A illustrates the performance of the KArSL-100 model over 100 epochs. Model
accuracy, both training and validation accuracy steadily increase towards approximately
0.8 (80%) and converge, indicating effective learning and good generalization. In Fig. 8B,
(Model Loss) mirrors this success, with both training and validation loss rapidly decreasing
to near 0.1–0.2 and then flattening out, signifying that the model is successfully
minimizing errors without significant overfitting.

For KArSL-190, Fig. 8C depicts the evolution of both training and validation accuracy
across 100 epochs. It is evident that both accuracy curves rise steadily, with training
accuracy reaching approximately 0.65 and validation accuracy stabilizing around 0.62 by
the 100th epoch. This indicates the model is learning, with validation accuracy showing a
slight performance gap compared to training accuracy.

In parallel, Fig. 8D illustrates the corresponding training and validation loss values. Both
loss curves exhibit a sharp initial decline, followed by a more gradual reduction, ultimately

Table 1 Average precision, recall, F1-score for all datasets (signer independent mode).

Dataset Accuracy Precision Recall F1-score

KArSL-100 0.7734 0.68 0.68 0.68

KArSL-190 0.6253 0.50 0.50 0.50

KArSL-502 0.4758 0.40 0.40 0.39
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reaching near-zero values by the 100th epoch. This consistent decrease in loss confirms the
model’s effective convergence and error minimization during training. Figures 8E and 8F
illustrate the training performance of the KArSL-502 model over 100 epochs. Figure 8E
presents model accuracy, where the “Train Accuracy” (blue line) steadily increases from
near 0.0 to approximately 0.45, and the “Validation Accuracy” (orange line) similarly rises
from near 0.0 to just above 0.4. This upward trend indicates that the model is effectively
learning from the data. Figure 8F shows the corresponding loss curves. The “Train Loss”
(blue line) decreases from around 1.75 to nearly 0.0, while the “Validation Loss” (orange
line) drops from above 1.75 to approximately 0.1. These reductions in loss further confirm
the model’s learning progress and convergence during training.

EVALUATION PROTOCOL
Crucially, to validate the system’s ability to generalize to new signers and prevent data
leakage, a signer-independent evaluation approach was implemented. This ensured that
data from any specific signer appeared exclusively in either the training or testing set,
preventing the model from learning signer-specific nuances rather than generalizable
gesture patterns. Specifically, signers were randomly assigned to folds such that no signer’s
data contributed to both the training and testing sets within any given fold. ‘or’ A leave-
one-signer-out strategy was considered for robustness.

Figure 7 ROC curves (A) KArSL-100; (B) KArSL-190; (C) KArSL-502 confusion matrix; (D) KArSL-100; (E) KArSL-190; (F) KArSL-502
(selective classes). Full-size DOI: 10.7717/peerj-cs.3275/fig-7
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Figure 8 (A) KArSL-100 model accuracy; (B) KArSL-100 model loss; (C) KArSL-190 model accuracy; (D) KArSL-190 model loss; (E) KArSL-
502 model accuracy; (F) KArSL-502 model loss. Full-size DOI: 10.7717/peerj-cs.3275/fig-8
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To ensure the robustness and statistical significance of our findings, all experiments
were conducted over ten independent runs. The results are reported as mean precision,
recall, and F1-score to provide a comprehensive view of the model’s performance. As
shown in Table 1, the model achieved an average accuracy of 77.34% on KArSL-100, with a
precision, recall, and F1-score of 0.68. For the larger and more complex KArSL-190 and
KArSL-502 datasets, the accuracy declined to 62.53% and 47.58%, respectively, with
corresponding drops in precision and recall to 0.50 and 0.40, respectively.

To further validate these results, 95% confidence intervals were calculated. For example,
the KArSL-502 accuracy falls within a confidence interval of approximately [46.4%,
48.7%], reinforcing the statistical reliability of our estimates.

A detailed error analysis using confusion matrices and validation accuracy/loss curves
highlighted recurring misclassification patterns, particularly in the larger datasets. In
KArSL-502, many signs with similar temporal patterns or motion trajectories were
frequently confused. Signs involving subtle or brief dynamic transitions also showed
higher misclassification rates, suggesting that increased complexity in motion and gesture
execution poses challenges for the model.

To mitigate overfitting and promote generalization, we employed early stopping (with a
patience of 10 epochs), L2 regularization (λ = 0.001), and dropout layers (rate = 0.5) in the
network architecture. The model’s performance on unseen test sets was continuously
monitored to ensure stability and robustness.

The observed performance decline across datasets—from KArSL-100 to KArSL-502—
can be attributed to the expanding vocabulary, which introduces greater gesture diversity,
increased temporal complexity, and a broader range of signer-specific variations. Per-class
analysis showed that signs with overlapping movement profiles or brief durations were
especially prone to misclassification, contributing significantly to the overall drop in
precision, recall, and F1-score in the largest dataset. The time cost analysis is given in
Table 2.

ABLATION STUDY
In Table 3, the performance analysis of the KArSL model across its various configurations
highlights the importance of each component in achieving optimal accuracy for sign
language recognition. The full model, which integrates preprocessing, keypoints, shape
features, attention fusion, and LSTM-based classification, delivers the highest accuracy
across all datasets—77.34% for KArSL-100, 62.53% for KArSL-190, and 47.58% for
KArSL-502. Omitting the preprocessing stage, which is essential for standardizing input
images, leads to a moderate decline in accuracy, emphasizing its role in minimizing noise
and enhancing feature extraction. The exclusion of keypoints, which capture fine spatial
and motion details using ORB, AKAZE, SIFT, and BRISK, results in the most significant
performance drop—underscoring their critical role in distinguishing visually similar signs.
Replacing keypoints with distance maps provides a slight improvement over having no
keypoints, but still underperforms compared to traditional keypoint-based extraction,
suggesting distance maps lack the discriminative power of local descriptors. Lastly,
removing shape features and global descriptors of hand geometry also leads to a noticeable
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accuracy reduction, indicating their importance in capturing holistic hand configurations.
Overall, each component plays a vital role, with keypoints and preprocessing contributing
most significantly to model performance.

COMPARISON WITH STATE-OF-THE METHODS
The classification accuracies across various methods on the KArSL-100 and KArSL-190
datasets highlight the challenges and advancements in ArSL recognition. In
signer-dependent scenarios, where models are trained and tested on the same individuals,
methods have achieved high accuracies, often exceeding 99%. For instance, Luqman &
Elalfy (2022) reported a 99.7% accuracy on the KArSL-100 dataset in a signer-dependent
setting. However, in signer-independent contexts, where models are evaluated on
individuals not seen during training, the performance significantly drops. Luqman & Elalfy
(2022) reported a 64.4% accuracy on the KArSL-100 dataset in a signer-independent
setting. This decline underscores the variability in signing styles among different
individuals, which poses a substantial challenge for generalization in sign language

Table 2 Time cost analysis.

Process Estimated time (s) MFLOPS

Preprocessing & silhouette extraction 0.82 52.42

SIFT 1.45 30.04

ORB 0.31 140.54

KAZE 0.31 21.06

BRISK 0.15 35.66

Compactness 0.15 5.28

Symmetry 1.46 0.45

Global convexity 0.0285 13.03

Uniqueness and compactness 0.0137 0.04

Table 3 Ablation study: impact of component removal on ArSL recognition accuracy.

Component Role in the model Impact when omitted KArSL-100
accuracy

KArSL-190
accuracy

KArSL-502
accuracy

Full model Integrates all features, attention
fusion, and LSTM classification.

Baseline performance. 77.34 62.53 47.58

Without
preprocessing

Prepares hand images/data for
feature extraction.

Increases noise and inconsistencies in input,
reducing feature extraction accuracy and
overall performance.

72.80 58.53 42.08

Without
keypoints

Extracts detailed spatial and
motion hand descriptors (ORB,
AKAZE, SIFT, BRISK).

Loses precise spatial information; reduces ability
to distinguish visually similar signs based on
fine hand movements.

55.43 40.59 30.54

Without
keypoints
using distance
map

Extracts features from distance
maps of hand silhouettes.

May offer different spatial information, but might
miss specific invariant features captured by
traditional keypoint detectors.

61.35 52.27 34.00

Without shape
features

Extracts global hand characteristics
(smoothness, convexity,
compactness, symmetry).

Weakens representation of overall hand and
finger configurations; misses broader context
from hand contour and geometry.

68.30 57.40 39.35
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recognition systems. The proposed model’s performance, with accuracies of 77.34% on
KArSL-100 and 62.53% on KArSL-190, indicates progress in developing more robust
recognition systems. Nonetheless, the noticeable performance gap between
signer-dependent and signer-independent scenarios emphasizes the need for further
research to enhance model generalization across diverse signers as given in Table 4.

LIMITATIONS
Our sign language recognition model encounters challenges due to highly self-occluded
body poses, where overlapping limbs obscure key gesture features, and twisted body
postures, which distort movement interpretation. Hand gestures near the face create
difficulties in distinguishing hand movements from facial expressions, while horizontally
aligned hands pose depth perception challenges, making it harder to differentiate between
similar gestures. Addressing these limitations is crucial for enhancing the model’s accuracy
and robustness in real-world scenarios.

CONCLUSION AND FUTURE RECOMMENDATIONS
This study presented a robust two-hand static and dynamic gesture recognition system for
Arabic Sign Language (ArSL), addressing key challenges such as signer variability,
occlusions, and intra-class variations. By integrating keypoint-based descriptors (ORB,
AKAZE, SIFT, BRISK) with shape-based features (smoothness, convexity, compactness,
symmetry) and employing an attention-enabled feature fusion strategy, the proposed
method enhances gesture discrimination. Additionally, the use of LSTM networks enables
effective modeling of temporal dependencies in dynamic gestures. Experimental

Table 4 Comparison with other state-of-the-art methods on all datasets.

Dataset Authors Accuracy (%)

KArSL-100 Alamri et al. (2024) Signer-dependent 0.9974

Signer-independent 0.682

Alamri et al. (2024) Signer-dependent 0.936

Signer-independent 0.294

Proposed model Signer-independent 77.34

Signer-dependent 97

KArSL-190 Luqman & Elalfy (2022) Signer-independent 0.406

Signer-dependent 0.992

Luqman & Elalfy (2022) Signer-independent 0.402

Signer-dependent 0.991

Proposed model Signer-independent 62.53

Signer-dependent 96.25

KArSL-502 Alamri et al. (2024) Signer-independent 0.273

Signer-dependent 0.989

Luqman & Elalfy (2022) Signer-independent 0.343

Signer-dependent 0.996

Proposed model Signer-independent 47.58

Signer-dependent 93.5
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evaluations on KArSL-100, KArSL-190, and KArSL-502 datasets demonstrated 77.34%,
62.53%, and 47.58% accuracy, respectively, showcasing the system’s effectiveness across
varying dataset complexities. These findings highlight the potential of combining spatial
and temporal features for sign language recognition, paving the way for more accurate and
inclusive communication technologies for individuals with hearing and speech
impairments. Future work will focus on improving generalization to unseen signers, by
fusion of full body pose estimzation in existing appoach, and extending the system to
real-time applications for enhanced accessibility.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the IITP (Institute of Information & Communications
Technology Planning & Evaluation)-ICAN (ICT Challenge and Advanced Network of
HRD) (IITP-2025-RS-2022-00156326), 50) grant funded by the Korea Government
(Ministry of Science and ICT). This work was also supported by the Deanship of Research
and Graduate Studies at King Khalid University through Large Group Project under grant
number (RGP2/367/46). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
IITP (Institute of Information & Communications Technology Planning &
Evaluation)-ICAN (ICT Challenge and Advanced Network of HRD): (IITP-2025-
RS2022-00156326), 50), Korea Government (Ministry of Science and ICT).
Deanship of Research and Graduate Studies at King Khalid University through Large
Group Project: RGP2/367/46.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Zarnab Kausar conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Shaheryar Najam conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Mohammed Alshehri performed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

. Yahya AlQahtani performed the experiments, authored or reviewed drafts of the article,
and approved the final draft.

. Abdulmonem Alshahrani analyzed the data, performed the computation work, prepared
figures and/or tables, and approved the final draft.

Kausar et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3275 24/27

http://dx.doi.org/10.7717/peerj-cs.3275
https://peerj.com/computer-science/


. Ahmad Jalal analyzed the data, performed the computation work, authored or reviewed
drafts of the article, and approved the final draft.

. Jeongmin Park analyzed the data, performed the computation work, authored or
reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplemental Files.
The KArSL 100, KArSL 190 and KArSL 502 datasets are available at: https://hamzah-

luqman.github.io/KArSL/index.html#sec-57f5.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.3275#supplemental-information.

REFERENCES
Ansar H, Jalal A. 2023. Robust handgesture tracking and recognition for healthcare via recurrent

neural network. In: 2023 20th International Bhurban Conference on Applied Sciences and
Technology (IBCAST). IEEE, 148–153 DOI 10.1109/IBCAST59916.2023.10712949.

Alabdullah BI, Ansar H, Mudawi NA, Alazeb A, Alshahrani A, Alotaibi SS, Jalal A. 2023. Smart
home automation-based hand gesture recognition using feature fusion and recurrent neural
network. Sensors 23(17):7523 DOI 10.3390/s23177523.

Alamri FS, Abdullahi SB, Khan AR, Saba T. 2024. Enhanced weak spatial modeling through
CNN-based deep sign language skeletal feature transformation. IEEE Access 12:77019–77040
DOI 10.1109/ACCESS.2024.3405341.

Al Abdullah BA, Amoudi GA, Alghamdi HS. 2024. Advancements in sign language recognition:
A comprehensive review and future prospects. IEEE Access 12:128871–128895
DOI 10.1109/ACCESS.2024.3457692.

Al-Barham M, Al-Sharkawi A, Al-Yaman M, Al-Fetyani M, Elnagar A, Abu Sa’aleek A, Al-Odat
M. 2023. RGB Arabic alphabets sign language dataset. ArXiv DOI 10.48550/arXiv.2301.11932.

Almufareh MF, Tehsin S, Humayun M, Kausar S, Farooq A. 2025. Attention-Based Approach
for Arabic Sign Language Recognition, Supporting Differently Abled Persons. Journal of
Disability Research 4(4):20250586 DOI 10.57197/JDR-2025-0586.

Alyami S, Luqman H, Hammoudeh M. 2024. Isolated Arabic sign language recognition using a
transformer-based model and landmark keypoints. ACM Transactions on Asian and
Low-Resource Language Information Processing 23(1):1–19 DOI 10.1145/3584984.

Ansar H, Ksibi A, Jalal A, ShorfuzzamanM, Alsufyani A, Alsuhibany SA, Park J. 2022.Dynamic
hand gesture recognition for smart lifecare routines via K-ary tree hashing classifier. Applied
Sciences 12(13):6481 DOI 10.3390/app12136481.

Barbhuiya AA, Karsh RK, Jain R. 2021. CNN-based feature extraction and classification for sign
language. Multimedia Tools and Applications 80:3051–3069 DOI 10.1007/s11042-020-09829-y.

Bhagat NK, Vishnusai Y, Rathna GN. 2019. Indian sign language gesture recognition using image
processing and deep learning. In: Proceedings of the Digital Image Computing: Techniques and
Applications (DICTA). Piscataway: IEEE, 1–8.

Chen TY, Ting PW, WuMY, Fu LC. 2018. Learning a deep network with spherical part model for
3D hand pose estimation. Pattern Recognition 80:1–20 DOI 10.1016/j.patcog.2018.02.029.

Kausar et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3275 25/27

http://dx.doi.org/10.7717/peerj-cs.3275#supplemental-information
https://hamzah-luqman.github.io/KArSL/index.html#sec-57f5
https://hamzah-luqman.github.io/KArSL/index.html#sec-57f5
http://dx.doi.org/10.7717/peerj-cs.3275#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3275#supplemental-information
http://dx.doi.org/10.1109/IBCAST59916.2023.10712949
http://dx.doi.org/10.3390/s23177523
http://dx.doi.org/10.1109/ACCESS.2024.3405341
http://dx.doi.org/10.1109/ACCESS.2024.3457692
http://dx.doi.org/10.48550/arXiv.2301.11932
http://dx.doi.org/10.57197/JDR-2025-0586
http://dx.doi.org/10.1145/3584984
http://dx.doi.org/10.3390/app12136481
http://dx.doi.org/10.1007/s11042-020-09829-y
http://dx.doi.org/10.1016/j.patcog.2018.02.029
http://dx.doi.org/10.7717/peerj-cs.3275
https://peerj.com/computer-science/


Damaneh MM, Mohanna F, Jafari P. 2023. Static hand gesture recognition in sign language based
on convolutional neural network with feature extraction method using ORB descriptor and
Gabor filter. Expert Systems with Applications 211(1):118559 DOI 10.1016/j.eswa.2022.118559.

Ferreira R, Cardoso A, Rebelo F. 2019. On the role of multimodal learning in the recognition of
sign language. Multimedia Tools and Applications 78(8):10035–10056
DOI 10.1007/s11042-018-6565-5.

Gangwar LK, Singh A, Sharma V, Kumar R. 2024. Recognition of Indian sign language using
SURF, BoW & CNN. In: 2024 IEEE International Conference on Information Technology,
Electronics and Intelligent Communication Systems (ICITEICS). Piscataway: IEEE.

Huang Y, Yang J. 2021. A multi-scale descriptor for real time RGB-D hand gesture recognition.
Pattern Recognition Letters 144:97–104 DOI 10.1016/j.patrec.2020.11.011.

Jalal MA, Chen R, Moore RK, Mihaylova L. 2018. American sign language posture understanding
with deep neural networks. In: 2018 21st International Conference on Information Fusion
(FUSION). Piscataway: IEEE, 573–579.

Jalal A, Khan D, Sadiq T, Alotaibi M, Alotaibi SR, Aljuaid H, Rahman H. 2024. IoT-based
multisensors fusion for activity recognition via key features and hybrid transfer learning. IEEE
Access 13:14727–14742 DOI 10.1109/ACCESS.2024.3524431.

Kaur N, Sharma K, Jain A, Singh S, Dhaliwal BK. 2024. Image enhancement using morphological
techniques. In: Computer Science Engineering and Emerging Technologies: Proceedings of ICCS
2022, 335.

Liu Z, Zhao C, Wu X, Chen W. 2017. An effective 3D shape descriptor for object recognition with
RGB-D sensors. Sensors 17(3):451 DOI 10.3390/s17030451.

Luqman H, Elalfy E. 2022. Utilizing motion and spatial features for sign language gesture
recognition using cascaded CNN and LSTM models. Turkish Journal of Electrical Engineering
and Computer Sciences 30(7):2508–2525 DOI 10.55730/1300-0632.3952.

Montazerin M, Zabihi S, Rahimian E, Mohammadi A, Naderkhani F. 2022. ViT-HGR: vision
transformer-based hand gesture recognition from high density surface EMG signals. ArXiv
DOI 10.48550/arXiv.2201.10060.

Mudawi NAl, Ansar H, Alazeb A, Aljuaid H, AlQahtani Y, Algarni A, Jalal A, Liu H. 2024.
Innovative healthcare solutions: robust hand gesture recognition of daily life routines using 1D
CNN. Frontiers in Bioengineering and Biotechnology 12:1401803
DOI 10.3389/fbioe.2024.1401803.

Murat ISIK. 2024. Comprehensive empirical evaluation of feature extractors in computer vision.
PeerJ Computer Science 10(3):e2415 DOI 10.7717/peerj-cs.2415.

Myagila K, Nyambo DG, Dida MA. 2025. Framework for detecting and recognizing sign language
using absolute pose estimation difference and deep learning. Machine Learning with
Applications 21:100723 DOI 10.1016/j.mlwa.2025.100723.

Rahimian E, Zabihi S, Asif A, Farina D, Atashzar SF, Mohammadi A. 2022. Hand gesture
recognition using temporal convolutions and attention mechanism. In: ICASSP 2022–2022 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE,
1196–1200.

Sharma S, Singh S. 2021. Vision-based hand gesture recognition using deep learning for the
interpretation of sign language. Expert Systems with Applications 182(3):1–8
DOI 10.1016/j.eswa.2021.115657.

Shin J, Matsuoka A, Hasan MAM, Srizon AY. 2021. American Sign Language alphabet
recognition by extracting features from hand pose estimation. Sensors 21(17):5856
DOI 10.3390/s21175856.

Kausar et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3275 26/27

http://dx.doi.org/10.1016/j.eswa.2022.118559
http://dx.doi.org/10.1007/s11042-018-6565-5
http://dx.doi.org/10.1016/j.patrec.2020.11.011
http://dx.doi.org/10.1109/ACCESS.2024.3524431
http://dx.doi.org/10.3390/s17030451
http://dx.doi.org/10.55730/1300-0632.3952
http://dx.doi.org/10.48550/arXiv.2201.10060
http://dx.doi.org/10.3389/fbioe.2024.1401803
http://dx.doi.org/10.7717/peerj-cs.2415
http://dx.doi.org/10.1016/j.mlwa.2025.100723
http://dx.doi.org/10.1016/j.eswa.2021.115657
http://dx.doi.org/10.3390/s21175856
http://dx.doi.org/10.7717/peerj-cs.3275
https://peerj.com/computer-science/


Tareen SAK, Saleem Z. 2018. A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and
BRISK. In: 2018 International Conference on Computing, Mathematics and Engineering
Technologies (iCoMET). Piscataway: IEEE, 1–10.

Tan CK, Lim KM, Lee CP, Chang RKY, Alqahtani A. 2023. SDViT: Stacking of Distilled Vision
Transformers for Hand Gesture Recognition. Applied Sciences 13(22):12204
DOI 10.3390/app132212204.

Vijaya J, Singh AP, Ekka M, Navya P, Otti SA. 2024. Face recognition system using Haar Cascade
algorithm. In: 2024 International Conference on Advances in Computing Research on Science,
Engineering, and Technology (ACROSET), 1–5.

Wang Y, Zhao P, Zhang Z. 2023. A deep learning approach using attention mechanism and
transfer learning for electromyographic hand gesture estimation. Expert Systems with
Applications 234(3):121055 DOI 10.1016/j.eswa.2023.121055.

World Health Organization. 2021. World report on hearing. Geneva: WHO.

Xie B, He X, Li Y. 2018. RGB-D static gesture recognition based on convolutional neural network.
The Journal of Engineering 2018(16):1515–1520 DOI 10.1049/joe.2018.8327.

Xu Z, Yu J, Xiang W, Zhu S, Liu B, Li J. 2023. A novel SE-CNN attention architecture for
sEMG-based hand gesture recognition. Computer Modeling in Engineering & Sciences
134(1):157–177 DOI 10.32604/cmes.2022.020035.

Yu G, Deng Z, Bao Z, Zhang Y, He B. 2023. Gesture classification in electromyography signals for
real-time prosthetic hand control using a convolutional neural network-enhanced channel
attention model. Bioengineering 10(11):1324 DOI 10.3390/bioengineering10111324.

Zhong W, Zhang Y, Fu P, Xiong W, Zhang M. 2023. A spatio-temporal graph convolutional
network for gesture recognition from high-density electromyography. ArXiv
DOI 10.48550/arXiv.2312.00553.

Kausar et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3275 27/27

http://dx.doi.org/10.3390/app132212204
http://dx.doi.org/10.1016/j.eswa.2023.121055
http://dx.doi.org/10.1049/joe.2018.8327
http://dx.doi.org/10.32604/cmes.2022.020035
http://dx.doi.org/10.3390/bioengineering10111324
http://dx.doi.org/10.48550/arXiv.2312.00553
http://dx.doi.org/10.7717/peerj-cs.3275
https://peerj.com/computer-science/

	Two-hand static and dynamic Arabic sign language recognition using keypoints and shape descriptors with attention-driven feature fusion ...
	Introduction
	Related work
	System methodology
	Shape features for binary hand silhouettes
	Attention enabled early feature fusion
	Lstm-based classification
	Datasets description
	Experimental setup
	Results and discussion
	Evaluation protocol
	Ablation study
	Comparison with state-of-the methods
	Limitations
	Conclusion and future recommendations
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


