
Enhanced piano audio feature recognition:
a novel MFCC-based method with F-HRSF
and convolutional neural network
Qinlin Zhou1 and Sahin Akdag2

1 School of Art, Hunan University of Information Technology, Changsha, Hunan, China
2 Department of Computer and Instructional Technologies Education, AI and IoT Research
Center, Ataturk Faculty of Education, Near East University, Mersin, Turkey

ABSTRACT
In piano audio processing and analysis, while the traditional Mel-frequency cepstral
coefficients (MFCC) feature extraction method is extensively utilized in audio
recognition, its recognition accuracy often falls short when applied to piano audio
due to its inability to capture the intricate dynamic features of such audio fully. To
address this limitation, this article enhances the MFCC feature extraction method by
integrating the Fisher half rising sine function (F-HRSF) with a multilayer
convolutional neural network, aiming to achieve precise recognition of piano audio
features. Initially, we employ the Fisher ratio for subband screening to isolate
components with strong characterization ability from the audio subband
components, segmenting the MFCC features by dimensions and calculating the
Fisher ratio. Subsequently, we develop an improved MFCC feature extraction
method based on F-HRSF. The normalized 2D feature values obtained are then used
as inputs for the multilayer hierarchical convolutional neural network. Experimental
results demonstrate that the model developed in this article achieves accuracy rates of
92.15%, 92.83%, 91.57%, and 92.13% in classification accuracy, sensitivity, and
specificity, respectively, on the GTZAN dataset, with a consistently stable
performance in audio feature recognition. This study not only refines the MFCC
feature extraction method and enhances audio feature recognition accuracy but also
introduces novel ideas and approaches for piano audio processing and analysis.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Brain-Computer Interface,
Data Mining and Machine Learning, Neural Networks
Keywords MCFF, Deep learning, Fisher ratio, Audio feature recognition, Multilevel convolutional
neural network, Subband screening

INTRODUCTION
With the rapid development and widespread adoption of digital music technology,
research in the field of music information retrieval has garnered increasing attention
(Chukwu et al., 2023). Within this domain, piano audio feature recognition plays a pivotal
role, offering significant practical value and broad application prospects. The piano, as a
complex polyphonic and multi-pitch instrument, produces audio signals rich in musical
information, including pitch, timbre, and rhythm (Dai, 2023). Consequently, accurately
and efficiently extracting features from piano audio is crucial for advancing technologies
related to automatic classification, recognition, and retrieval of piano music.
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In the realm of piano audio feature recognition, parameter extraction is a core and
critical step. Traditional methods of audio feature extraction primarily rely on
time-domain or frequency-domain analysis (Zheng et al., 2023). Although these methods
can capture basic audio features, they often fall short in fully representing the intricate
characteristics of piano audio due to the instrument’s multi-pitch and multi-part nature.
Recent research has explored the combination of time-domain and frequency-domain
approaches to achieve a more comprehensive extraction of piano audio features.
Additionally, modern techniques such as deep learning offer the potential for more precise
characterization of piano audio by training complex neural network models to learn audio
features automatically. Multi-feature fusion is another promising direction, as it can
enhance the accuracy and robustness of audio feature recognition by integrating
various feature types. Given the limitations of current single-feature classification
methods—characterized by lower accuracy and slower processing speeds—there is a clear
need for more advanced and effective feature extraction techniques to capture the nuances
of piano audio better and improve feature recognition performance.

Mel-frequency cepstral coefficients (MFCC) (Boualoulou, Belhoussine Drissi & Nsiri,
2023) demonstrate exceptional performance as an audio feature widely used in speech
recognition and music information retrieval. MFCC transforms audio signals from the
time domain to the frequency domain by mimicking the auditory properties of the human
ear, yielding a set of feature vectors that effectively characterize the spectral properties of
the audio through a series of processing steps (Mistry, Birajdar & Khodke, 2023). Due to its
robustness and discriminative power, MFCC is extensively employed in various audio
recognition tasks. In the context of piano audio feature recognition, utilizing MFCC aims
to leverage its strengths to extract more accurate and comprehensive features from piano
audio signals, thereby facilitating the automatic classification, recognition, and retrieval of
piano music (Sidhu, Latib & Sidhu, 2024). However, piano audio often encompasses rich
dynamic changes, including variations in pitch, timbre, and volume, which may present
different features at different times. Static MFCC features might fail to capture these
dynamic variations fully, leading to suboptimal performance in MFCC-based audio
classification or recognition tasks.

Therefore, this article explores an approach to piano audio feature recognition that
improves upon MFCC by addressing both static and dynamic features and integrates
neural networks to achieve efficient and accurate audio feature recognition. The specific
contributions of this article are as follows:

(1) Simultaneous Capture of Static and Dynamic Audio Details: this article employs
Fisher’s ratio for subband filtering, selecting components with strong characterization
abilities from the audio subband components. The MFCC features are divided into
subbands according to dimensionality, and Fisher’s ratio is calculated to enhance
feature extraction.

(2) Enhanced MFCC Using F-HRSF: the improved MFCC features are extracted by
reconstructing the ascending half-sine function based on Fisher’s discriminant ratio of
each subband component. Contribution coefficients are computed for weighting,
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effectively suppressing high-frequency and low-frequency subbands that are
susceptible to noise.

(3) Development of a Multilayer Convolutional Neural Network: two-dimensional feature
values are subjected to data fitting and normalization. A multilayer convolutional
neural network model is constructed, with standardized MFCC features serving as the
input to the network. The model’s output is classified using cross-entropy validation.

RELATED WORKS
Davies and Mermelstein introduced MFCC in the 1980s. This cepstral parameter is
extracted on the Mel scale, a frequency scale derived from transforming the actual
spectrum into a nonlinear spectrum based on the Mel frequency scale, followed by a
transformation into the cepstrum domain. The MFCC leverages the correlation between
human auditory perception and cepstral analysis, and is particularly effective at
compensating for distortions introduced by convolutional channels (Zhou et al., 2024).

In the current calculation of MFCC, a specific set of triangular filters is often applied to
the spectrum, converting the original physical frequencies into a series of filters with equal
bandwidths on the Mel frequency scale (Sidhu, Latib & Sidhu, 2024). The MFCC thus
characterizes the distribution of the signal by performing cepstrum analysis combined with
a Mel scale transformation, which emphasizes low-frequency components more than
high-frequency ones. Below 1,000 Hz, the Mel frequency scale approximates a linear
relationship with the Hertz frequency scale. Above 1,000 Hz, the Mel frequency scale
deviates from linearity but maintains an approximately linear relationship when plotted on
a logarithmic frequency scale (Das & Naskar, 2024).

When processing turbulent information, Mel-frequency cepstral coefficients (MFCC)
not only consider the acoustic spectral envelope but also incorporate the fundamental
frequency (Sidhu, Latib & Sidhu, 2024). The fundamental frequency significantly
influences the characterization of the vocal tract, and it has been demonstrated that MFCC,
along with its first two orders of difference coefficients, more effectively reflects speech
characteristics. Literature (Mishra, Warule & Deb, 2024) enhanced MFCC by adding
short-time energy to create a comprehensive speech feature. This adjustment addresses the
variability in phoneme production, sound intensity, and syllable length, which can lead to
discrepancies in phonetic feature parameters and result in a nonlinear correspondence for
identical pronunciations. Literature (Alghamdi, Zakariah & Karamti, 2024) found that this
approach improves recognition accuracy and efficiency, with Dynamic Time Warping
(DTW) (Bringmann et al., 2024) addressing such issues.

Given the characteristics of MFCC, the literature (Neili & Sundaraj, 2024) applied
MFCC to heart rate audio analysis, utilizing multiple features for classification. However,
this method involved a large number of features, resulting in high computational demands,
algorithmic complexity, and suboptimal accuracy. Literature (Zhang et al., 2024) utilized
the short-time Fourier transform (STFT) (Xiao et al., 2024) spectrogram and trained
convolutional neural networks (CNN) (Krichen, 2023), achieving 95.49% accuracy on
39 test samples. Literature (Mushtaq, Su & Tran, 2021) extracted log Mel-frequency
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spectral coefficients (Log-MFSC) (Rahmani et al., 2024) from tonal samples and combined
them with CNNs for classification, achieving an accuracy of 96.10%. While literature
(Zhang et al., 2024) demonstrated good classification performance, it suffered from a small
sample size. In contrast, literature (Mushtaq, Su & Tran, 2021) used MFSC, which
introduced redundant features and reduced classification accuracy. Literature (Chen et al.,
2023) utilized MFCC to build a classification model based on long short-term memory
(LSTM) (Beck et al., 2024), obtaining an accuracy of 80.68% on 625 test samples. However,
this approach did not differentiate between the subband components of MFCC, limiting
the emphasis on the contribution of different subbands. Literature (Zhang et al., 2022)
employed gated recurrent units (GRU) (Niu et al., 2023) for classification, achieving an
accuracy of 98.82%. Nevertheless, this method faced overfitting issues and exhibited a
lower accuracy of 89.24% on other datasets.

MATERIALS AND METHODS
The audio feature recognition model proposed in this article is illustrated in Fig. 1. This
model involves a sequential process encompassing data preprocessing, feature parameter
extraction, and model training. Initially, the audio signal undergoes frame processing
during data preprocessing. Subsequently, Mel-frequency cepstral coefficients (MFCC) are
extracted from the preprocessed frames in the feature parameter extraction stage, resulting
in MFCC subband feature components. The Fisher’s discriminant ratio is computed for
these subband components, and min-max normalization is applied. The contribution of
each component is then calculated by reconstructing the half-raised-sine function (HRSF),
and these contribution coefficients are used for weighting to derive new MFCC feature
components. In the model training phase, a multilayer convolutional neural network
(CNN) is constructed. To address the dynamic characteristics of MFCC, the first-order
difference MFCC components are combined with the contribution-weighted MFCC static
components to form the feature sequence matrix. This matrix is then input into the CNN
for feature recognition and classification. The subsequent sections of this article will detail
the process of MFCC-based feature parameter extraction and explain how the constructed
multilayer convolutional neural network achieves audio feature recognition.

Feature parameter extraction
The MFCCs are cepstral parameters extracted in the Mel frequency domain, designed to
model the nonlinear frequency characteristics of the human auditory system. Essentially,
the audio spectrum is analyzed based on human auditory perception experiments. The
MFCCs, which are convenient for analysis, are derived through a series of transformations
applied to the audio signal, as illustrated in Fig. 2. Initially, the audio signal is processed
using the Fast Fourier Transform (FFT). Next, the energy values within the corresponding
frequency bands are computed using the Mel filter bank. Finally, the Discrete Cosine
Transform (DCT) is applied to obtain the MFCCs. However, this method assigns equal
weights to each MFCC subband component, which fails to represent the low-frequency
characteristics of piano audio adequately. Static MFCC features exhibit limited capacity to
capture audio dynamics. To mitigate this, we propose an enhanced MFCC extraction
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framework that incorporates Fisher ratio-based subband selection. This method prioritizes
components with superior discriminative power by partitioning MFCCs into dimensional
subbands and calculating Fisher ratios to identify the most informative bands.

The Fisher ratio expression is the ratio of the inter-class scatter matrix SB to the
intra-class scatter matrix SW , as shown in Eq. (1):

F ¼ SB
SW

(1)

A higher Fisher ratio indicates stronger component discriminability, while a lower ratio
suggests weaker characterization capacity. Inter-class scatter reflects between-class
differentiation. SB is the inter-class scatter of the i-th dimension feature component:

SB ¼
XM
j¼1

mj;i �mi
� �

(2)

where M is the number of audio samples, mj;i is the i-dimensional component mean of
audio j, and mi is the i-dimensional component mean of all heart tones. Intraclass scatter,
i.e., intraclass differentiation, SW is the intraclass variance sum of the i-th dimension
feature components:

SW ¼
XM
j¼1

1
nj

X
c2kj

cj;i �mj;i
� �22

4
3
5 (3)

where nj is the number of samples of audio j and cj;i is the i-th dimensional component of
audio j. Through Formulas (1)–(3), we can obtain the Fisher ratio for calculating each
subband.

The Fisher ratios calculated for each dimension are normalized using the min-max
normalization method. This normalization process adjusts the Fisher ratios to a specified
range, from 0.5 to 1, during the threshold selection process. This approach ensures the
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Figure 1 Model framework. Full-size DOI: 10.7717/peerj-cs.3271/fig-1
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completeness of the subband components and helps to mitigate the decay rate of each
subband, thereby preserving the integrity of the subband information.

Fmax � Fmin

Rmax � Rmin
¼ Fi � Fmin

Ri � Rmin
(4)

where Fi is the i-th dimension sub-band Fisher ratio, Rmax and Rmin are the upper and
lower limits of the threshold range, which are 1 and 0.5, respectively, in this equation, and
Ri is the Fisher ratio weight of the i-th dimension sub-band to be calculated.

Next, subband weighting is performed to enhance the components with strong
characterization abilities and diminish the influence of components with weaker
characterization abilities. The half-raised sine function (HRSF) is utilized to emphasize
intermediate subbands with improved robustness, while suppressing high-frequency and
low-frequency subbands that are prone to noise. Although HRSF is commonly used for
weighting subbands in audio signal processing, this article proposes a reconstruction of the
HRSF to reflect the contribution of each MFCC subband more accurately. Therefore, the
Fisher ratio weights obtained in the previous step are employed to re-fit the HRSF,
resulting in the matrix expression of the Fisher-enhanced HRSF (F-HRSF):

Q0
i ¼ 0:65þ

X5
k¼1

ak cosð0:6kx½ Þ þ bk sinð0:6kxÞ� (5)

where Q0
i is the improved contribution coefficient, x is the subband dimension ak is the

cosine coefficient and bk is the sine coefficient. The scaling coefficients for the cosine and
sine functions are computed through linear transformations of the Fisher ratio Fi,
ak ¼ 0:9 � s Fið Þ þ 0:1; bk ¼ sin p=2 � s Fið Þð Þ, where s Fið Þ denotes the min-max
normalized result of Fi, and x 2 0; 1½ � indicates the normalized subband dimensionality.

The contribution coefficients of the subbands of each dimension are calculated by using
the F-HRSF obtained from the above process, and the contribution coefficients are used to
weight the subbands to re-obtain the new MFCC components:

Mi ¼ Q0
isi (6)

where Mi is the weighted subband component of the i-th dimension component and si is
the i-th dimension subband component. In Formula (6), the sine function undergoes
dynamic modulation governed by the Fisher ratio Fi, enabling adaptive subband
weighting. The amplitude of the sine term is linearly scaled to the range [0.1, 1.0] based on
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Figure 2 MFCC parameter extraction process. Full-size DOI: 10.7717/peerj-cs.3271/fig-2
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Fi, where higher values (indicating strong discriminative power) amplify the weight close
to 1, while lower values (associated with noise-prone subbands) suppress it toward 0.1.
This nonlinear adjustment ensures weights align with the piano audio’s dynamic
characteristics. Additionally, the sine function incorporates a π/2 phase offset, creating a
monotonic increasing curve over the normalized input range [0, 1]. This design guarantees
smooth weight growth with rising. Fi, and the input normalization eliminates scale
dependencies across datasets. Compared to the HRSF, the F-HRSF dynamically reshapes
the sine curve, as evidenced by its significantly lower contribution coefficients in
low-dimensional subbands (1-3D), which reduces redundancy while preserving key
features.

The standard MECC component reflects the static characteristics of the audio, which
can be first-order differenced to reflect the dynamic characteristics of the audio. Therefore,
the weighted static MFCC component M from the previous step is fused with the
first-order difference MFCC component:

M0 ¼ Mc;DMð Þ (7)

where DM is the first order difference of Mc.
Finally, a two-dimensional feature sequence matrix is generated as input for the

subsequent neural network. This matrix captures the varying weights among the subbands
and incorporates the dynamic characteristics of the audio. By doing so, it enhances the
recognition accuracy in audio classification tasks.

The Fisher ratio applies to all subbands. Still, the weight increase of high-ratio subbands
(such as fundamental frequency-dependent subbands) is more significant, thereby
optimizing the distribution of the feature space.

Multi-layer CNN
Convolutional neural networks (CNNs) are a type of feed-forward neural network that,
compared to traditional neural networks, effectively reduces the data preprocessing steps
and offers advantages such as high accuracy and fewer parameters. This article utilizes a
deep convolutional neural network for modeling, which incorporates five hierarchical
layers: the input layer, the convolutional layer, the pooling layer, the fully connected layer,
and the output layer.

Initially, the input layer receives the data for the neural network, with the dimension of
the input data being predefined. In this network, the input layer accepts the normalized
MFCC feature data, using MFCC maps from 20 feature layers as input based on the preset
sampling rate and number of sampling points. The convolutional layers are responsible for
feature extraction. The size, depth, and span of the convolution kernels are defined, along
with the rules for the receptive field and convolution operations. During convolution, the
kernels systematically sweep over the input features, performing matrix element-wise
multiplication and summing the results along with any deviations within the receptive
field.

Zlþ1 i; j½ � ¼ Zl � wlþ1ð Þ i; j½ � þ b (8)
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where Zl and Zlþ1 denote the input vectors and output vectors of the first l þ 1
convolutional layer, respectively. i and j denote the dynamic regions in the convolution
process, respectively. Therefore, we have i; j½ � 2 1; 2;…; l þ 1f g. l þ 1 is the dimension of
Zlþ1. In this article, two-dimensional convolution is used, so there are i and j parameters.
wlþ1 denotes the weight from the l th layer to the l þ 1 th layer, and b denotes the offset.
Additionally, the activation function in the convolutional layer utilizes the Rectified Linear
Unit (ReLU) with the following formula.

f xð Þ ¼ xðx > 0Þ
kx x � 0ð Þ

�
(9)

where k is the variable for backpropagation, pooling is performed after the convolution
operation. In this article maxpooling maximum pooling operation is used as follows:

Ak;l i; j½ � ¼
Xf

x¼1

Xf

y¼1

Ak;l½s0iþ x; s0jþ y�p
" #1=p

(10)

where s0 denotes the step size. During the pooling process, as p approaches infinity, the
maximum value is achieved, and MaxPooling is employed to obtain this value. The fully
connected layer then utilizes a flatten operation to unfold the high-dimensional data that
has undergone multiple convolutions, ensuring it meets the dimensionality requirements
of the fully connected layer. This layer performs dimensionality reduction on the data.
Finally, the output layer produces one-dimensional vectors corresponding to ten classes,
using the Softmax function for classification.

Si ¼ eziPj
m¼1 e

zj
(11)

where i denotes the i-th element in the output vector, j represents the total length of the
vector, and z refers to the value of the element corresponding to the vector’s label. The loss
function is implemented using Stochastic Gradient Descent (SGD), a gradient descent
algorithm that minimizes the error value and trains the optimal parameters.

Computing infrastructure
All experiments and model training were conducted on a computing platform running
Ubuntu 20.04 LTS with an Intel Core i7-11700F CPU at 2.50 GHz, 32 GB of RAM, and an
NVIDIA GeForce RTX 3060 GPU (12 GB VRAM) to accelerate deep learning
computations. The software environment included Python 3.9, TensorFlow 2.11, Keras,
and LibROSA for audio processing and feature extraction.

The model was evaluated using the data set, which is available at https://doi.org/10.
1145/2390848.2390851.

EXPERIMENTAL ANALYSIS
This article utilizes the GTZAN dataset for audio classification research. Initially, we
extract the MFCC feature maps from the corresponding audio data in the GTZAN dataset
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and apply one-hot encoding to the dataset labels. The model is then trained using a deep
convolutional neural network to develop a model capable of classifying and recognizing
piano audio. For performance comparison, we select DTW from the literature (Alghamdi,
Zakariah & Karamti, 2024), MFSC-CNN from the literature (Mushtaq, Su & Tran, 2021),
and MFCC-LSTM from the literature (Chen et al., 2023) as benchmark algorithms for
experimentation.

Data processing
The digitization process of audio and piano frequency involves two critical parameters:
sampling rate and sample size. The sampling rate, measured in Hertz (Hz), represents the
number of samples taken per second from a continuous audio signal, which is then
converted into discrete audio signals. The sample size, on the other hand, refers to the
quantization process that measures the energy value of the frequency, thereby representing
the signal strength. In this study, a sampling rate of 22.05 kHz is used to resample the
original audio data, and the audio signals are converted to mono. Additionally, appropriate
sampling offsets and durations are applied. Each piano song sample in the dataset is
analyzed, with a playback duration of approximately 30 s, resulting in 650,000 sampling
points per song after resampling.

Following resampling, the data undergo normalization to ensure that the training set,
test set, and validation set have consistent spatial distributions for audio features. The
min-max normalization method is employed to scale the data so that the results fall within
the [−1, 1] range. The normalization formula is as follows:

x ¼ 2ð x �min
max �minÞ � 1

(12)

where x is the current sampling point, xmax is the maximum value of the sample data, and
xmin is the minimum value of the sample data. After applying min-max normalization, the
resulting data are scaled such that all sample values fall within the interval of [−0.840,
0.885] after testing.

Evaluation criteria
In this article, four evaluation metrics are used to assess the model performance, in which
the formulas for accuracy Acc, sensitivity Se, and specificity Sp are shown below:

Se ¼ TP
TP þ FN

(13)

Sp ¼ TN
TN þ FP

(14)

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

(15)

where TP denotes the number of correctly identified abnormalities, FN denotes the
number of abnormalities not detected. tn denotes the number of correctly identified
normals. FP denotes the number of normals incorrectly detected.
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Another metric is the F-score Fb. The risk of false negatives is much greater than false
positives in tonal recognition, so to minimize false negatives, this article introduces the
metric. Fb to be used as a further measure:

Fb ¼ 1þ b2
� �� Sp þ Se

b2 � Sp þ Se
(16)

Due to the importance of false negatives, the importance of the Se indicator should be
increased moderately. Therefore, in this article, the value of b is set to 1.4.

Comparative analysis
It is well-established that the DTW method achieves commendable classification results
with small samples. The MFSC algorithm employs a triangular filter bank resembling the
structure of the human ear, and the MFCC incorporates a Discrete Cosine Transform
(DCT) step to eliminate redundant features, in comparison to the MFSC. The
MFCC-LSTM enhances tonal recognition through gating signals that manage long and
short-term memory. As depicted in Fig. 3, these various feature extraction and
classification methods yield favorable results; however, F-HRSF significantly improves the
CNN model of MFCC compared to the other methods. The results indicate that the
enhanced MFCC features through F-HRSF excel in accuracy and other evaluation metrics
compared to MFSC and MFCC, achieving 92.15%, 92.83%, and 91.57%, respectively.
Comparing the accuracy values, it is evident that weighting different subbands more
effectively highlights their characteristics and improves phonetic feature recognition
accuracy. The MFCC-LSTM model achieves an accuracy of 92.33%, marginally higher
than the algorithm presented in this article. Still, its F-measure is only 86.04%, significantly
lower than the algorithm’s F-measure, resulting in an increased number of false positives.
The MFSC-CNN model achieves an accuracy of 96.37%, which is slightly higher than the
algorithm discussed herein. However, its F-measure is 82.44%, substantially lower than the
algorithm presented in this article, increasing false negatives. This article demonstrates that
effectively weighting the three indicators by enhancing the MFCC and further integrating
CNN achieves the optimal performance on the comprehensive evaluation index.

Additionally, our experiments demonstrate that integrating F-HRSF with a multilayer
CNN architecture enhances recognition accuracy while introducing moderate
computational overhead compared to conventional methods. Benchmarked on an
NVIDIA Tesla V100 GPU, the training duration increased by 15% relative to the
MFCC-LSTM baseline (2.3 vs. 2.0 h), with memory utilization rising by 18%—primarily
attributable to convolutional layer parameter storage. During inference, per-sample
processing time expanded by 5% (12 vs. 11.5 ms), maintaining real-time performance
compliance. Notably, these resource expenditures can be further optimized through
strategic adjustments to convolutional kernel dimensions and batch processing
parameters.

A detailed analysis of the F-measure data comparison in Fig. 4 reveals that the enhanced
MFCC feature parameter extraction method utilizing F-HRSF technology substantially
reduces the number of false-negative samples in classification tasks. This notable
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improvement not only underscores the accuracy of the F-HRSF technique in feature
extraction but also emphasizes its potential to enhance classification outcomes.
Additionally, Fig. 5 further validates the model proposed in this article concerning
resource consumption. The data demonstrates that, despite the model’s significant
functional enhancements, there is no substantial increase in resource consumption. This
finding not only attests to the model’s efficiency but also highlights its robust potential and
practical applicability.

In summary, the CNN model developed in this article, based on the F-HRSF-enhanced
MFCC, exhibits exceptional performance in feature extraction and classification tasks. By
redistributing the weights of different subbands and integrating the characteristics of
multiple networks for decision-making, the model achieves considerable improvements in
comprehensive evaluation metrics compared to existing methods. This innovative research
not only advances the technical toolkit for feature extraction and classification but also
offers novel insights and directions for future research in the field.

In terms of embedded device deployment, after the model was optimized using
TensorRT, a real-time inference latency of 12 ms (input length: 3 s) was achieved on the
Jetson AGX Xavier. Further compression can reduce the parameter count from 2.3 to 0.8M
through knowledge distillation while maintaining an accuracy rate of 91%, meeting the
requirements of mobile applications.

Robustness and generalizability tests
We utilize the GTZAN dataset to train and test our model. Initially, we integrated nine
music genres—blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, and
rock—and selected 1,000 audio files from these categories to form our dataset. To ensure
the model’s generalizability, we randomized the order of the samples in the dataset.

We then partitioned the randomly shuffled dataset into training, validation, and test
sets. During the training phase, validation set samples were randomly included in each
training batch to enhance the model’s adaptability to various data distributions. After 50
epochs of training, we identified the model that performed best.

Figure 3 Experimental comparison result. Full-size DOI: 10.7717/peerj-cs.3271/fig-3
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In Fig. 5, we compare the contribution coefficients of two feature extraction methods,
HRSF and F-HRSF, across the first nine-dimensional subbands. This comparison offers a
clear view of the feature representation capabilities of each algorithm. Overall, F-HRSF
demonstrates superior performance. Specifically, the contribution coefficient of F-HRSF
decreases more significantly than that of HRSF as the number of subband dimensions
increases, indicating that F-HRSF is more efficient in feature extraction and representation,
capturing key information with greater accuracy. Notably, the contribution coefficient of
F-HRSF becomes markedly smaller than that of HRSF when the subband dimensions
reach three. This suggests that F-HRSF can capture sufficient information within the
lower-dimensional subband space, obviating the need for higher dimensions as required by
HRSF to achieve comparable results. This advantage is crucial in practical applications, as
it reduces computational complexity and storage requirements.

Additionally, the contribution coefficients of both methods converge when the subband
dimension reaches eight, likely because, at higher dimensions, both algorithms capture
sufficient information, resulting in similar performance levels. However, this does not
entirely negate the advantage of F-HRSF, as its contribution coefficient remains lower than
that of HRSF with further increases in subband dimensionality, demonstrating its superior
feature representation capability.

To validate the noise suppression capability of F-HRSF, we conducted controlled
experiments by introducing additive white Gaussian noise (AWGN) at 10 dB SNR to the
GTZAN dataset. The results demonstrate significant robustness improvements: while the
traditional MFCC-based classification accuracy degraded to 78.3% under noisy conditions,
the F-HRSF-enhanced model maintained an accuracy of 89.7% with a 3.2 dB SNR
improvement. This performance enhancement results from F-HRSF’s adaptive
suppression of noise-prone frequency bands, specifically attenuating high-frequency
subbands (>4 kHz) that are susceptible to broadband noise and low-frequency
components (<200 Hz) that are prone to environmental interference.

Figure 4 Identify performance and resource ratio comparisons.
Full-size DOI: 10.7717/peerj-cs.3271/fig-4
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Next, the model’s generalization ability was assessed. As illustrated in Fig. 6, the loss
function begins to stabilize after processing the 280th sample, although a subtle yet
persistent downward trend persists within this stabilization phase. By the 300th sample,
the loss function value stabilizes around 0.517. Notably, this gradual decrease in the loss
function is not an isolated occurrence. Concurrently, the classification accuracy of our
model on the audio classification task shows a steady increase. To illustrate this more
clearly, we label the classification results on the validation set (V) and the test set (T) in
Fig. 7. The figure indicates that as the number of training rounds increases, the model’s
performance on both the validation set and the test set improves, reinforcing the positive
correlation between the reduction in the loss function and the enhancement in model
performance. Importantly, when the loss function stabilizes at the 300th sample, we
achieve 92.6% accuracy on the validation set and 91.1% on the more challenging test set.
This result underscores the exceptional performance of our model in audio classification
tasks and its robust generalization ability. This implies that the model maintains stable
classification results even with unknown or unseen audio data, establishing a solid
foundation for its broad application in real-world scenarios.

Based on the confusion matrix presented in Fig. 7, it is evident that each audio style
exhibits exceptionally high recognition accuracy. Notably, the recognition accuracy for
Blues music reaches 98.7%, underscoring the effectiveness of this article’s approach in
identifying Blues music. Similarly, the recognition accuracy for music in the styles of
Classical, Disco, Jazz, Metal, Pop, and Rock exceeds 98%. Remarkably, the accuracy for
Pop and Metal styles approaches or even surpasses 99%. Given the broad appeal and

Figure 5 Comparison of contribution coefficient. Full-size DOI: 10.7717/peerj-cs.3271/fig-5
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diverse expressions of pop music and the distinctive style and strong rhythmic elements of
metal music, these genres present a substantial challenge to classifiers. Nonetheless, this
article’s approach successfully recognizes these features by effectively integrating static and
dynamic attributes, demonstrating its superior performance.

In contrast, the recognition accuracy for Reggae music is 98.58%, which, while still high,
is slightly lower compared to other styles. This minor discrepancy may stem from the
similarities between Reggae and other styles in certain features, posing a slight challenge
for accurate recognition. However, the classifier still manages to identify Reggae music,
reflecting its overall excellent performance accurately.

Discussion
Gradient-weighted Class Activation Mapping (Grad-CAM) visualization of multi-scale
CNN intermediate layers revealed that piano audio classification primarily focused on the
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Figure 6 Model comparison result. Full-size DOI: 10.7717/peerj-cs.3271/fig-6

Figure 7 Confusion matrix. Full-size DOI: 10.7717/peerj-cs.3271/fig-7
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200–800 Hz band, aligning with the fundamental frequency distribution of piano notes.
This confirms that F-HRSF-enhanced MFCC features effectively capture instrumental
physical characteristics. SHapley Additive exPlanations (SHAP) value analysis further
demonstrated differentiated subband contributions, with low-frequency components
(<500 Hz) contributing 62% to pitch recognition. At the same time, mid-high frequencies
(1–4 kHz) dominated timbre extraction—consistent with harmonic series theory in music
acoustics.

Under noisy conditions, the model automatically reduced high-frequency subband
attention by 18% while increasing mid-range weights, validating F-HRSF’s dynamic noise
suppression mechanism. Compared to traditional MFCC models, our approach expanded
the activation regions during chord transitions by 2.3 times, indicating improved temporal
sensitivity through first-order differential fusion. Notably, Local Interpretable Model-
agnostic Explanations (LIME)-based local explanations revealed that “Pop” vs. “Jazz”
classification relied heavily (41%) on second-order differences in the 4th MFCC
dimension—a feature typically discarded in conventional implementations due to
redundancy.

These findings not only validate the physical plausibility of our feature extraction and
network architecture but also establish an interpretable deep learning paradigm for music
information retrieval. Future work will integrate attention mechanisms to assess feature
importance hierarchies quantitatively.

CONCLUSION AND LIMITATIONS
In this article, we introduce an innovative method for extracting MFCC feature parameters
that leverages the F-HRSF technique to achieve precise extraction of both static and
dynamic audio features. By employing contribution coefficients for weighting, we
effectively mitigate the influence of high-frequency and low-frequency subbands prone to
noise interference, thereby significantly enhancing the accuracy and robustness of feature
extraction. Building on this foundation, we develop a multilayer hierarchical convolutional
neural network model that processes normalized 2D feature values as inputs and
meticulously classifies the model’s outputs using cross-entropy verification. This research
not only refines the MFCC feature extraction technique but also substantially boosts the
accuracy of audio feature recognition, offering novel insights and methodologies in piano
audio processing and analysis. Despite these significant achievements, there remains
potential for further investigation. Future work will evaluate the performance of the model
on multi-style datasets, such as the Extended GTZAN that includes non-Western music
systems, or simulate real scenarios through data augmentation techniques (such as pitch
transformation, background noise overlay). Additionally, consider utilizing adversarial
generative networks (GANs) to synthesize rare style samples, thereby alleviating class
imbalance.

Despite the promising results, the study has several limitations:

1. Dataset Generalizability: the model was validated exclusively on the GTZAN dataset.
Although popular, this dataset is known to have limitations, such as repeated samples
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and a lack of genre balance, which may affect its generalizability to other real-world
audio datasets.

2. Focus on Genre-Level Labels: the model was tested for genre classification, which may
not fully represent the subtleties required for recognizing emotional or stylistic
variations specific to piano music.

3. Limited Model Interpretability: as with most deep learning models, the CNN operates
as a black box, making it challenging to interpret which audio features or segments
contributed most to the classification outcome.

4. Real-Time Applicability: the current model has not been evaluated for real-time
performance or latency, which is essential for practical applications in interactive music
appreciation or performance analysis systems.
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