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ABSTRACT
The ever-increasing use of internet has opened a new avenue for cybercriminals,
alarming the online businesses and organization to stay ahead of evolving thread
landscape. To this end, intrusion detection system (IDS) is deemed as a promising
defensive mechanism to ensure network security. Recently, deep learning has gained
ground in the field of intrusion detection but majority of progress has been witnessed
on supervised learning which requires adequate labeled data for training. In real
practice, labeling the high volume of network traffic is laborious and error prone.
Intuitively, unsupervised deep learning approaches has received gaining momentum.
Specifically, the advances in deep learning has endowed autoencoder (AE) with
greater ability for data reconstruction to learn the robust feature representation from
massive amount of data. Notwithstanding, there is no study that evaluates the
potential of different AE variants as one-class classifier for intrusion detection.
This study fills this gap of knowledge presenting a comparative evaluation of different
AE variants for one-class unsupervised intrusion detection. For this research, the
evaluation includes five different variants of AE such as Stacked AE, Sparse AE,
Denoising AE, Contractive AE and Convolutional AE. Further, the study intents to
conduct a fair comparison establishing a unified network configuration and training
scheme for all variants over the common benchmark datasets, NSL-KDD and
UNSW-NB15. The comparative evaluation study provides a valuable insight on
how different AE variants can be used as one-class classifier to build an effective
unsupervised IDS. The outcome of this study will be of great interest to the network
security community as it provides a promising path for building effective IDS
based on deep learning approaches alleviating the need for adequate and diverse
intrusion network traffic behavior.

Subjects Computer Networks and Communications, DataMining andMachine Learning, Security
and Privacy
Keywords Network intrusion detection, Deep learning algorithms, Deep autoencoders,
One-class classifier, Unsupervised deep learning

INTRODUCTION
The advances in networking technologies have fueled the significance of the Internet in
various domains of human society. While the Internet is finding a global reach,
cybercriminals are becoming even more proficient in looting the benefits of Internet
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openness to advance their attacks at an alarming pace (Binbusayyis & Vaiyapuri, 2019).
The increase in scope and severity of cyberattacks than ever before is alarming the online
businesses and organizations to stay ahead of cybercriminals. Under this background,
the intrusion detection system (IDS) is deemed as one of the most promising defensive
mechanism of cybersecurity and has attracted lot of research attention recently in the field
of network security (Binbusayyis & Vaiyapuri, 2020). Although IDS have evolved to a
highly sophisticated level, their detection capability is confronted with massive increase in
network traffic volume and complex network structure resulting from today’s extreme
use of Internet. Thenceforth, there is a surge of interest in devolving new effective
approach that learn the most robust feature representation from massive network data to
step up the detection accuracy of an IDS.

The recent technical breakthroughs in deep learning ability (Aldweesh, Derhab &
Emam, 2020) for feature representation with large volume of data have sparked a
revolution in designing effective IDS to achieve new performance level and safeguard
the computer networks from thwart cyberattacks arising from ever changing threat
landscape. While these methods have gained ground in the field of intrusion detection,
notwithstanding, the majority of progress has been witnessed on supervised tasks
which requires adequate and diverse labeled data for training. But in real network
environment, the process of labeling large volume of network traffic data is laborious
and error-prone. In light of these limitations, the development of IDS based unsupervised
deep learning approaches is gaining more attention with vital practical importance
(Choi et al., 2019). These approaches do not demand labeled data for training and have
potential to detect intrusion activities in the network traffic without any prior knowledge
about the intrusion behavior.

Amongst various unsupervised deep learning approaches, autoencoder (AE) has been
extensively explored in the field of intrusion detection on the grounds that it enables
data-driven approach for robust feature representation from massive amount of data and
exhibits strong ability for data reconstruction. For example, similar to our study, Choi
et al. (2019) investigated the performance of different AE variant within unsupervised
learning framework. But unlike the work discussed here, they train the AE network in a
supervised manner using both normal and abnormal samples to set the reconstruction
error (RE) value as a heuristic threshold to improve the detection accuracy of IDS.
Likewise, another study by Naseer et al. (2018) examined the suitability of deep learning
approaches for intrusion detection. Toward this, they developed different deep learning
model-based IDS and utilized AE for capturing robust feature representation that can
enhance the discrimination ability of IDS classifier. Also Aygun & Yavuz (2017) attempted
to enhance the AE discriminative ability utilizing stochastically determined threshold
for RE to reach an improved accuracy compared to deterministic AE variants on
NSL-KDD intrusion datasets. In the same manner, Ieracitano et al. (2020) presented
statistical analysis to extract more optimized and correlated features to improve the
accuracy of AE. Also, Shone et al. (2018) recently introduced non-symmetric variant of
deep AE for unsupervised learning and achieved promising results.
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The above examined literature ascertains that considerable progress has been made to
utilize the potential of different variants of AE to improve the detection accuracy of
IDS. Nonetheless, there is no concrete study that examines and compares the potential
of these variants of AE as one-class classifier for unsupervised IDS. To fill this gap of
knowledge, this study for the first time accounts to provide an experimental comparison
on detection performance between different AE variants on the development of
unsupervised IDS. The variants selected for comparison includes Stacked AE (SAE), Sparse
AE (SSAE), Denoising AE (DAE), Contractive AE (ContAE) and Convolutional AE
(CAE). The reason for choosing these variants is that they are competitive based on the
performance reported in their corresponding literature. Added on, currently they are most
commonly used in practice (Bayram, Duman & Ince, 2020; Abirami & Chitra, 2020).
The variants are evaluated on different benchmark datasets, NSL-KDD and UNSW-NV15
considering comprehensive evaluation metrics. A unified network configuration is adopted
for all variants to ensure uniform model complexity and make a meaning comparison.
The extensive evaluation results demonstrate the respective benefits and generalization
ability of different AE variants with regard to attacks of all kinds. This evaluation is
expected to provide a valuable insight on how the potential of different AE variants can be
used to develop an effective unsupervised IDS.

AUTOENCODER FOR ONE-CLASS CLASSIFICATION
An AE is neural network that learns the intrinsic network traffic features reconstructing
the original network traffic at its output layer (Rumelhart, Hinton & Williams, 1986).
As shown in Fig. 1, the architecture of an AE consists of two key networks, encoder
and decoder connected in serial. As represented by Eq. (1), the encoder network generates
the feature representation by mapping the given input network traffic to hidden layer using
an activation function f parameterized by W and b.

H ¼ f ðWX þ bÞ (1)

Similarly, the decoder network reconstructs the original input network traffic from the
generated feature representation using the activation function g parameterized by W′ and
b′ as given below

Z ¼ gðW 0H þ b0Þ (2)

The AE is trained jointly with given training samples to learn the parameter set
θ = {W, W′, b, b′} of two networks, encoder and decoder minimizing the RE. Concretely,
the cost function of the AE is defined as follows,

JAEðhÞ ¼ min
h

1
2N

kX � Zk2 þ �

2
ðkWk2 þ kW 0k2Þ (3)

Here the first term measures the RE between original input and reconstructed output
data over N input samples, the second term called regularization term is employed to
restrain the magnitude of the weights and help thwart the network from overfitting, and λ

is a weight decay parameter that controls the proportion of regularization and RE.
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In 2014, Sakurada & Yairi (2014) devised a holistic approach for anomaly detection
utilizing the reconstruction ability of the AE. The basic intuition behind this approach
is that AE trained only with normal samples will fail to reconstruct abnormal or malicious
samples that it has not confronted earlier and will display high RE. Evidently, the RE
of AE can be used as indicator for anomaly detection and can be employed as an alternative
for one-class classification. Since then, AE is being widely applied for anomaly detection in
various domain and intrusion detection is not an exception.

For instance, the acquisition of network traffic with various anomalous behavior is
practically impossible in most real networking environments. Under such circumstances,
the application of AE for one-class classification in the field of intrusion detection will play
a significant role in successfully modeling the normal network traffic behavior. In this
perspective, we aim to examine significance of AE for intrusion detection. Towards this
end, Algorithm 1 illustrates how AE can be utilized for one-class classification to detect
any kind of attacks and its working principles is depicted in Fig. 2. The average (Avg)
shown in Fig. 2 is determined during the training process of AE by computing the average
of RE over all training samples and is utilized as a threshold (α) to detect the intrusion from
normal traffic data.

VARIANTS OF AUTOENCODER
Stacked autoencoder
A SAE is a common variant of AE. It is called as Deep AE as it is constructed stacking
multiple AEs successively such that the output of first AE is fed as input to next AE and so
on as shown in Fig. 3. Since in practice, it is tedious task to train all AEs simultaneously,
SAE adopts greedy layer-wise training in forward order where each AE learn their
parameters reconstructing the output of the previous AE. The output of the kth AE is
computed as follows setting H0 = X.

Hk ¼ f ðWkHk�1 þ bkÞ (4)

Figure 1 Structure of general AE network. Full-size DOI: 10.7717/peerj-cs.327/fig-1
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Thus, the layer-wise training enables SAE to learn more abstract and essential
information gradually (Bengio et al., 2007). After training is completed, the encoding layer
in all AEs are concatenated and followed by decoding layer of all AEs. Thus, SAE consists

Figure 2 Illustration of using AE as one-class Classifier. Full-size DOI: 10.7717/peerj-cs.327/fig-2

Algorithm 1 AE as one-class classifier

Input: X-Training and Testing Set

Output: Classification Results

Initialize: all AE network parameters

Procedure:

Phase-I: Training

for each training epoch do

for each mini batch do

1. H ← Feature representation using Eq. (1)

2. Z ← Reconstructed Input using Eq. (2)

3. Compute the gradient to minimize Cost function in Eq. (3) using Adam

4. Update AE network parameters

end for

end for

a ← average Reconstruction Error on Training data set

Phase-II: Testing

for each sample in Testing dataset do

1. Error ← Compute reconstruction Loss

2. if Error > a then Sample is attack else Sample is normal traffic

end for
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of multiple hidden layers to drive deep representative features of the inputs that supports
in enriching its reconstruction ability.

Sparse autoencoder
Sparse autoencoder is a variation of basic AE proposed by Ranzato et al. (2007). It aims
to learn sparse features of the data introducing a sparse constraint to the core idea of
basic AE. The act of imposing sparse constraint on hidden layer as shown in Fig. 4 restricts
the undesired activation and enables to maintain low average activation of hidden
units. This encourages SSAE for improved learning of sparse features at its hidden
representation. Taking the sparse constraint into account, the cost function of SSAE is
revised as follows,

JSSAEðhÞ ¼ JAEðhÞ þ a
Xs

j¼1

KLðrkr̂Þ (5)

Thus, the Kullback–Leibler (KL) divergence between desired q̂ and actual ρ distribution is
used to add the sparse constraint as a regularizer to the cost function of AE and the

Figure 3 Structure of general Stacked AE (SAE) network.
Full-size DOI: 10.7717/peerj-cs.327/fig-3

Figure 4 Structure of general Sparse AE (SSAE) network.
Full-size DOI: 10.7717/peerj-cs.327/fig-4
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parameter α is used control the relative importance of sparsity penalty term in the cost
function.

Denoising autoencoder
Vincent et al. (2008) introduced a variation of AE called DAE to enhance the robustness of
basic AE for learning more generalizable features from noisy input data and help the
network prevent overfitting. To achieve this, DAE as a first step utilizes stochastic mapping
to corrupt the original input x as follows x̂ ¼ pðx̂jxÞ.

Then, DAE inherits the core idea of AE to encode the corrupted input x̂ to a hidden
representation as follows.

H ¼ f ðWX̂ þ bÞ (6)

Unlike basic AE, the encoding process in DAE is very effective in capturing the
more representative features that can nullify the effect of corruption for better data
reconstruction as shown in Fig. 5. Apparently, the advantage of DAE is two-fold: First,
it can capture and eliminate the statistical dependencies among the inputs for better
feature representation learning. Second, it displays stable performance especially when the
input is corrupted with noise.

Contractive autoencoder
Rifai et al. (2011) followed up DAE and introduced a variation of AE called ContAE as
an effective solution for improving the learning robustness of basic AE against the
influence of noise perturbation on input data. To this end, a contractive penalty is adopted
with Frobenius norm of Jacobian square summation of all partial derivatives of the hidden
representation in relation to the input data which is represented as follows,

Figure 5 Structure of general Denoising AE (DAE) network.
Full-size DOI: 10.7717/peerj-cs.327/fig-5
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Jf ðxÞ
�� ��2

F
¼

X
ij

@hjðxÞ
@xi

� �2

(7)

The above penalizing term tends to imply that the learnt features are locally invariant and
insensitive to small changes in input data. Intuitively, the cost function of ContAE with
penalizing term is written as follows,

JContAEðhÞ ¼ JAEðhÞ þ Jf ðxÞ
�� ��2

F
(8)

Although both DAE and ContAE share same motivation of improve the robustness of
basic AE, the idea adopted are distinct. For instance, DAE achieves stochastically by
corrupting the input with random noise. Whereas, ContAE achieves analytically by
balancing the RE with contractive penalty term as shown in Fig. 6.

Convolutional autoencoder
Masci et al. (2011) leveraging the benefits of CNN and AE proposed CAE to achieve strong
feature representation. Compared to other variants of AE, CAE accomplishes strong
feature representation considering the relationships among the features that are more
appropriate to eliminate irrelevant and redundant features. Further, CAE enables weight
sharing among the inputs and ensures to preserve the spatial locality of the features.
Doing so, the number of parameters to be trained is reduced. This in turn reduces the
memory requirement and computational efficiency of CAE. Thus, CAE is regarded as
special type of AE with convolutional layer as shown in Fig. 7 rather than fully connected
layer for encoding process and deconvolutional layer for decoding process.

Taking the inspiration from Chen, Yu & Wang (2020), this study adopts 1D CAE
with a hypothesis that the application of 1D CAE will enable to achieve further higher
efficiency with the sequential form of network traffic data compared to 2D CAE.

Figure 6 Structure of general Contractive AE (ContAE) network.
Full-size DOI: 10.7717/peerj-cs.327/fig-6
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Accordingly, the encoding process for convolutional layer with feature filters, maps 1D
input data X to produce hidden representation with kth feature map is given as,

Hk ¼ f ðX �Wk þ bkÞ (9)

Here � denotes 1D convolution operation over the input vector X. Similarly, the decoding
process with deconvolution operation is represented as follows

Z ¼ f ðHk �WT
k þ b0kÞ (10)

EXPERIMENTAL SETUP
This section first introduces the common network architecture utilized to compare all AEs.
Subsequently, it describes the experimental datasets and the framework adopted for
comparative evaluation. Finally, the implementation is presented.

Designed AE network structure
To conduct fair and valid comparison, a common network architecture that displayed
reasonable results with all the chosen AE variants over all datasets is determined
conducting a range of preliminary experiments. In this determination process, RE was
used as an indicator to obtain the best performing network architecture, which is
illustrated in Table 1. This architecture consists of two hidden layers of dimension
32 and 24 respectively in the encoder side and a bottleneck layer of dimension 16. Besides,
Tanh is used as activation function in all layers.

From the common network architecture, SSAE is developed by attaching the sparse
regularization on hidden layers to ensure acquisition of unique statistical features from the
given input dataset. The DAE is implemented by corrupting the preprocessed input data
with gaussian noise of level 10%. Since, the performance of DAE decreases as the noise
level increases, especially when σ > 0.5. This is mainly because the higher noise level will
cause the loss of useful information, resulting in difficult reconstruction and poor
classification performances.

Figure 7 Structure of general Convolutional AE (CAE).
Full-size DOI: 10.7717/peerj-cs.327/fig-7
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The ContAE is developed adding the contractive penalty term to the cost function
of SAE. To develop CAE, the hidden layers and bottleneck layers in the common network
architecture are replaced with convolutional, batch normalization as illustrated in Table 2.
Further, the number and size of kernels is kept same for all convolution layers and is
set to 8 and 1 × 3 respectively. This pyramid architecture not only reduces the number of
trainable parameters but also enables to learn the most essential features from input
network traffic by eliminating the redundant and irrelevant features. Besides, max pooling
layer with pool size of 2 is employed to extract the most essential features from the
input data and upsampling layer of pool size 2 is used to reconstruct the original input
from the extracted essential features.

Datasets
A number of datasets are available publicly for IDS research evaluation. Nonetheless,
these datasets suffer from absences of traffic diversity and lack of sufficient number of
sophisticated attack styles. Therefore, in order to conduct a fair and effective evaluation of
the proposed model, an old benchmark NSL-KDD dataset and a new contemporary

Table 1 Structural parameters of Deep AE.

Parameter Value

Input Layer Dimension (41,1)

Number of Hidden Layer in Encoder 3

Number of nodes in 1st Hidden Layer 32

Number of nodes in 2st Hidden Layer 24

Number of nodes in bottleneck Layer 16

Activation function Tanh

Sparsity Penalty term in SSAE in hidden layer 1e−5

Sparsity Penalty term in SSAE in bottleneck layer 1e−4

Contractive Penalty term in ContAE 1e−5

Gaussian noise corruption factor in DAE 0.1

Table 2 Structural parameters of CAE.

Layer type Input size Output size

Input (41,1) (41,1)

Conv1D (41,1) (41,8)

BatchNormalization (41,8) (41,8)

Maxpooling1D (41,8) (20,8)

Conv1D (20,8) (20,8)

BatchNormalization (20,8) (20,8)

Upsampling1D (20,8) (40,8)

Conv1D (40,8) (40,8)

BatchNormalization (40,8) (40,8)

Conv1DTranspose (40,8) (41,1)
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UNSW-NB15 dataset are considered in this work. A brief description of these two
intrusion datasets is given below.

NSL-KDD dataset
The NSL-KDD dataset is an improved version of KDD’99 dataset, presented by Tavallaee
et al. (2009) resolving the redundancy in KDD’99 dataset. This dataset contains an
optimal ratio of 125,973 training samples to 22,543 testing samples. Thus NSL-KDD is
regarded as one of the most valuable benchmark resource in the field cybersecurity
research for IDS evaluation. Each sample in NSL-KDD contains 41 features and 1 class
label to characterize whether the network traffic is normal or belongs to attack category.
The distribution of normal traffic samples in the training and testing sets with regard to
attacks are given in Table 3.

UNSW-NB15 dataset
The UNSW-NB15 is a modernized dataset recently developed by ACCS with hybrid of
real normal and synthesized contemporary attack behavior from network traffic flow
(Moustafa & Slay, 2015). This dataset includes 9 families of attacks namely DoS,
Analysis, Generic, Fuzzers, Backdoors, Exploits, Shellcode, Reconnaissance, and Worms.
The dataset consists of 175,341 training samples and 82,332 testing samples, each
characterized with 42 features and a class label to discriminate the network traffic as
normal or malicious activities. The distribution of samples against normal and attack class
is shown in Table 4.

Designed experimental framework for comparison of AE variants
The experimental framework designed for this comparative study is shown in Fig. 8.
It involves three steps: First, the raw network traffic data are prepared for subsequent
processing. This includes two main preprocessing operations, symbolic value encoding
and normalization. Next, Only the normal network traffic samples from the preprocessed
training dataset is employed to train all AE variants. Further, as an evaluation protocol,
5-fold cross-validation strategy recommended in literature is adopted on all AE variants

Table 3 Data distribution in NSL-KDD.

Class Training set Testing set

Normal 67,343 9,710

Attack 58,630 12,833

Total 125,973 22,543

Table 4 Data distribution in UNSW-NB15.

Class Training set Testing set

Normal 56,000 37,000

Attack 119,341 45,332

Total 175,341 82,332
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to prevent overfitting and manage accurately the trade-off between bias and variance.
After training process is completed, the preprocessed testing dataset is employed into the
trained AE variants and their performance is compared against the comprehensive set of
metrics.

Data preprocessing
Data preprocessing is an essential task in ensuring the quality of the input for the
subsequent model training and testing process. Thereof, both the training and testing
dataset are subjected to the following two preprocessing operations in sequence to boost
the performance of all chosen AEs for intrusion detection.

a) Data Encoding: This operation encodes all non-numeric or nominal features in the
given dataset to numeric values. Here, a nominal feature with C different values is
encoded with numeric values ranging from 0 to C−1.

b) Normalization: Generally, the machine learning algorithms are biased by input features
with large numeric value. To combat this effect, min-max normalization is applied to
adjust the value range of all input features within the range [0,1].

Training process
After data preprocessing task, all the chosen AE variants are trained to learn their
network model parameters optimizing their respective cost function using Adam as
stochastic gradient optimization method, because of its adaptability and computational
efficiency (Da, 2014). Further to ensure a fair comparison, all the chosen AE variants are

Figure 8 Illustration of experimental framework. Full-size DOI: 10.7717/peerj-cs.327/fig-8
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trained with batch size of 128 for 20 epochs using a learning rate of 0.001. Besides,
the trainable parameters of all AE variants are initialized applying Xavier algorithm
to keep the backpropagated gradient and activation value within a reasonable range
(Glorot & Bengio, 2010). Table 5 presents the parameters used for training all the chosen
AE variants.

Evaluation metrics
Once all the chosen AE variants are trained successfully, they are evaluated on pre-
procesed testing dataset for intrusion detection. As discussed in “Autoencoder For
One-Class Classification”, the trained AE detects the intrusion network traffic samples
on the basis that the RE will be larger for intrusion traffic than that for normal one.
To implement this, a threshold value is defined for each AE based on their respective
average RE loss obtained during the training process. Accordingly, all the AE variants
utilize their respective threshold value to detect the intrusion and their performance is
compared with respect to the following comprehensive set of standard evaluation metrics
(Abdulhammed et al., 2018).

a) Accuracy (ACC): measures the proportion of network traffic flows that are correctly
classified and is computed as follows,

ACC ¼ TPþ TN
TPþ TNþ FPþ FN

(11)

b) Detection rate (DR): Also called Recall or Sensitivity, measures the proportion of
intrusion traffic flow that are correctly classified as given below,

DR ¼ TP
TPþ FN

(12)

c) F1-measure (F1): Also termed as F1-Score, is considered as more effective measure
than accuracy to evaluate the performance of intrusion detection model especially
for imbalanced datasets. It is an hormonic average of detection rate and precision as
follows

F1 ¼ 2� ðDR � PrecisionÞ
DR þ Precision

(13)

Here, precision measures the proportion of detected intrusion traffic that are actually
correct. It is expressed as follows,

Table 5 Training parameters for AE.

Parameter Value

Optimizer Adam

Batch Size 128

Number of epochs 20

Validation 5-fold cross validation
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Precision ¼ TP
TPþ FP

(14)

d) False alarm rate (FAR): also termed as false positive rate, measures the proportion of
normal network traffic flows that are incorrectly classified. It is computed as follows,

FAR ¼ FP
FPþ TN

(15)

Implementation details
All the experiments are conducted on a personal computer with the specifications as
follows, Intel Core i7-8565H @ 1.8 GHz, 128 GB RAM and Windows 10 operating system.
The proposed model is implemented in Jupyter development environment using Python 3
as programing language. More specifically, the python libraries, Keras and Tensorflow
are used to implement various deep learning tasks (Géron, 2019). Also, python Scikit-learn
library is used to implement various evaluation measures and data preprocessing tasks.

RESULTS AND DISCUSSION
This section compares and discusses the effectiveness of each of AE variant chosen in
this study from three perspectives conducting experiments based on the framework
illustrated in “Designed Experimental Framework for Comparison of AE Variants”.
Firstly, convergence ability of the chosen AE variants is carefully analyzed to signify
the design decision of the compared AEs and to demonstrate their generalization ability on
unseen attacks. As second step, the intrusion detection ability of the chosen AE variants
is investigated to provide an insights into the applicability of different AE variants in
practice. Finally, the performance of the chosen AE variants for imbalanced classification is
examined to demonstrate the stability of the AE variants against imbalanced datasets.

Comparison on network convergence ability
Procedurally, as a first step of experimental process, the training and testing sets of the
both datasets discussed in “Datasets” are preprocessed according to steps described in
“Data Preprocessing”. Subsequently, for model training task, the processed training
and testing sets of each dataset are fed into all the AE variants designed for comparison and
5-fold cross validation is conducted to assess their ability for converges and generalization
on two datasets, NSL-KDD and UNSW-NB15 individually. This analysis is conducted
from two point of view as follows.

Learning behavior
The graphical representation of training and validation loss against epochs for the last fold
is displayed for all variants of AE for NSL-KDD dataset in Fig. 9.

Observing the training loss in these figures, it can be seen that all variants of AE show
fast decrease in loss during first 3 epochs and also converges quickly while nearing epoch 7.
Further, it can be observed from the curve of validation loss that all the examined AE
variants offer better learning behavior to avoid overfitting and gain generalization ability.
These observations evidently validates the optimal design configurations adopted for all
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AE variants and signify their detection capabilities for unseen attack styles in testing
(validation) set.

Reconstruction ability
To further quantitatively verify the reconstruction ability of each AE variant, the average of
RE given by each AE during the training process is computed for both the datasets and
reported in Table 6.

From these results, it is worth noticing that all the deep AE variants such as SAE, SSAE,
DAE and ContAE demonstrates marginally better reconstruction ability compared to
CAE variant. In many applications, convolutional networks have proved their outstanding
performance, but it is surprise to note the average performance of CAE in this study.
The reason may be due to the common network configuration that was followed across

Figure 9 Comparison of Loss curve on NSL-KDD Training dataset for different AE Variants (A) SAE (B) SSAE (C) DAE (D) ContAE and
(E) CAE. Full-size DOI: 10.7717/peerj-cs.327/fig-9

Table 6 Comparison of RE value for different AE variants.

Average RE NSL-KDD UNSW-NB15

SAE 0.0015 0.0022

SSAE 0.0012 0.0018

DAE 0.001 0.0038

ContAE 0.0003 0.0009

CAE 0.002 0.0022
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all chosen AE for comparison, did not support CAE to discover the most discriminative
representation to improve its reconstruction ability; despite this configuration
demonstrated stable converges and generalization ability during training process.

Among all the examined deep AE variants, ContAE yields the best reconstruction
ability on both datasets. This success of ContAE might be attributed to the incorporation
of contractive penalty term in cost function which ensures to capture the more
generalizable representations for reconstructions. Also, it can be noted that the denoising
training process has enabled DAE to learn more robust representation for reconstruction
and perform better than SAE and SSAE.

Comparison on detection performance
This section aims to compare the intrusion detection performance of the examined AE
variants. In this direction, the average RE reported in Table 6 is utilized as a threshold
of respective AE variants, to discriminate the network traffic as either intrusion or not.
Then, using these thresholds, the performance of all examined AE variants are analyzed
first on training set of NSL-KDD and later on testing set of NSL-KDD and finally on
UNSW-NB15 dataset. These results are presented and compared from two different views
as follows,

Quantitative analysis
In this step of analysis, the detection performance metrics such as ACC, DR and FAR are
computed for all the examined AE variants and reported in Table 7. Also, for clarity the
best results for each dataset are highlighted in boldface.

Inspection of the results remark that no single examined AE variants achieves best
performance with regard to all the compared metrics. In particular, it can be noted that
ContAE variant attains the best ACC and higher than average performance in terms of
DR and FAR on three datasets. Also, we can see the inconsistent performance of CAE
and DAE variants across the datasets. For instance, CAE variant shows comparably
better performance on training set of NSL-KDD. But, surprisingly it delivers the least
performance on testing dataset of NSL-KDD despite its behavior during training process
on testing dataset was appealing. Likewise, DAE variant that delivers marginally better
performance on NSL-KDD dataset, underperforms on UNSW-NB15 dataset. On contrary,

Table 7 Comparison of detection performance for different AE variants on NSL-KDD and UNSW-
NB15 datasets.

AE Variants NSL-KDD Training Set NSL-KDD Testing Set UNSW-NB15 Dataset

ACC DR FAR ACC DR FAR ACC DR FAR

SAE 89.61 97.26 17.04 85.23 85.13 14.62 87.16 96.58 32.90

SSAE 89.17 98.34 18.81 85.36 86.02 15.50 87.36 95.42 29.80

DAE 90.50 96.98 15.13 86.92 86.34 12.25 86.05 97.83 43.31

lightgray ContAE 91.46 97.00 13.34 87.98 89.23 13.66 88.48 96.83 29.30

CAE 90.90 96.42 13.90 81.07 80.37 14.21 86.66 96.26 33.79
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it is interesting to notice SAE and SSAE variants showing consistent average performance
across all datasets.

Indeed, ContAE has demonstrated best performance across all three datasets in
terms of ACC, yet, it is not apparent to confirm on the basis of ACC which AE variant is
perfectly better. Therein, in the following sections, we explore the comparison of the
examined AE variants on different metrics to verify the effects of these AE variants and to
identify the best AE variant for building IDS with better detection ability.

ROC curve analysis
To more intuitively compare the intrusion detection performance of the examined AE
variants, the results in Table 7 are analyzed using Receiver Operating Characteristic (ROC)
curve (Ruisánchez, Jiménez-Carvelo & Callao, 2020). This is carried out mainly because
ROC curve is regarded as an important metric for visualizing detection performance of
an IDS model. Besides, it enables to compare different IDS models offering relative
importance for both DR and FAR metrics, that are remarked as essential performance
metric for an idle IDS in practice. Accordingly, the average REs displayed during the
training process by each AE variant were utilized as a threshold to generate the ROC
curve of the respective AE. Figure 10 visualizes the ROC curves of all the examined AE
variants on the two benchmark datasets, NSL-KDD and UNSW-NB15. An idle ROC
curve approaches close to the upper-left corner and indicates the perfect classification
performance. Against this background, it is visually clear that ROC curves of all the
examined AE variants are close to the upper-left corner on both datasets. A careful
observation of ROC curves on both datasets reveals an interesting finding that all ROC
curves on NSL-KDD datasets are more towards upper-left corner than on UNSW-NB15.
This finding indicates that the performance of the examined AE variants are sensitive
to the proportion of normal samples in training set thereby confirming our initial
discussion that the lack of sufficient normal traffic samples for training can affect the
network performance. Intuitively, it obviously highlights that the detection performance of
the examined AE variants can be further improved in real network settings, as adequate
normal traffic samples for training will not be a constraint.

Subsequently, the area under the ROC curve (AUC) that quantitatively exposes the
generalization ability of a model to recognize new attacks is computed and presented
in the legend section of Fig. 10 for both datasets. As may be observed, the ContAE variant
exhibits a reliable best performance on all three datasets with AUC value of (91.8, 87.8 and
83.8). On contrary, the variants DAE and CAE yield varying performance across three
datasets with AUC values of (90.9, 87, 78.3) and (90.5, 81.6, 81.2) respectively. In general,
the AUC results are in accordance to the results reported in Table 7 revealing the
generalization potential of all the examined AE variants to gain better detection
performance for abnormal network traffic samples.

Comparison on imbalanced classification
In general, the intrusion datasets are imbalanced with less number of infrequent attack
traffic samples and large number of normal traffic samples as illustrated in Tables 3 and 4.

Vaiyapuri and Binbusayyis (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.327 17/26

http://dx.doi.org/10.7717/peerj-cs.327
https://peerj.com/computer-science/


The presence of such circumstances intend the need to compare the behavior of the
examined AE variants for imbalanced binary classification. Further, the standard metrics
employed to analyze the detection performance in the previous section might not be
appropriate to verify the imbalanced classification performance. For instance, ROC and
AUC are valuable metrics for assessing the performance of intrusion detection model.
But are insensitive to data imbalance and might tend to mislead giving optimistic
performance for normal traffic samples. Furthermore, they fail to consider the model
precision. Towards this end, this experimental analysis employs the most widely used
metrics such as precision-recall (PR) curve, Area under PR (AUPR) curve and F1-score to
provide a comparison of the examined AE variants with imbalanced intrusion datasets in
the following sections.

Precision recall curve analysis
Precision recall curve is a 2D graph that displays the relative trade-off between precision
and DR. Recent literature recommend PR curve over ROC curve for two-fold reasons

Figure 10 Comparison of ROC curves for different AE variants on (A) NSL-KDD training set
(B) NSL-KDD testing set and (C) UNSW-NB15 datasets.

Full-size DOI: 10.7717/peerj-cs.327/fig-10
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(Soleymani, Granger & Fumera, 2020): First, it enables to measure the proportion of
correctness to completeness when an imbalanced dataset is considered for classification.
Second, it enables compare several classifiers and identify the classifier that maximizes
intrusion detection precision with an acceptable DR. Realizing its advantages, the
comparison of PR curves for examined AE variants on testing set of NSL-KDD and
UNSW-NB15 dataset are illustrated in Fig. 11 respectively.

The PR curve for an IDS model with perfect discrimination passes through a point
nearer to the upper-right corner. But for a model with no discriminability, the PR curve
coincides with the diagonal line. Analyzing these figures from this perspective, it can be
observed that PR curves of all the examined AE variants on both datasets passes close
to upper-right corner. In specific, looking thoroughly the PR curves on NSL-KDD
dataset, it can be found that all the examined AE variants are close to upper-right corner
except CAE. Similarly, on UNSW-NB15 datasets, DAE shows exception with penalized
performance compared to other variants. Further, it is worth noticing that the obtained
PR curve results are also in agreement with ROC curve results on both datasets. From this
observation, it is apparent that all the examined AE variants being trained only with
normal traffic samples are capable of exhibiting reliable performance even against
imbalanced intrusion datasets, thereby suggesting that the examined AE variants can serve
as better choice as an one-class classifier to build an IDS with better detection ability.

To give more quantitative comparison, the AUPR values achieved by each of the
examined AE variants on NSL-KDD and UNSW-NB15 datasets are computed and shown
in the legend section of Fig. 11. The obtained AUPR values are also in agreement with
AUC values indicating that all the examined AE variants are comparably efficient in
achieving promising results in terms of precision and DR on both datasets. For instance,
ContAE achieves the best AUPR values on both NSL-KDD and UNSW-NB15 datasets
of (0.925, 0.933) in comparison to other examined AE variants. Also, it is interesting to
observe that despite CAE delivers least AUPR value of 0.891 on NSL-KDD, displays above

Figure 11 Comparison of PR curves for different AE variants on (A) NSL-KDD and (B) UNSW-
NB15 datasets. Full-size DOI: 10.7717/peerj-cs.327/fig-11
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average AUPR value of 0.923 on UNSW-NB15. On contrary, it can be seen that DAE
displays better AUPR value on NSL-KDD but underperforms on UNSW-NB15 delivering
AUPR value of 91.5. On the whole, the observation of PR curve and AUPR results indicates
that all the examined AE variants are very efficient to gain better intrusion detection
performance as one-class classifier against highly imbalanced datasets. This promising
success in their performance might be attributed to the unsupervised training with only
normal samples.

F1-measure analysis
The F1 is an essential performance metric to highlight the efficiency of IDS model in terms
of precision and recall using a factor that controls their relative significance (Soleymani,
Granger & Fumera, 2020). Besides, in a most recent literature, it is pointed out that it
can benefit over other metrics in favoring the correct classification of abnormal traffic
samples at same time avoiding the misclassification of normal traffic samples. Accordingly,
to gain deeper insight on the discriminative ability of the examined AE variants, the F1 is
analyzed and the results are illustrated in Fig. 12. The obtained F1 again complements
the above computed metrics and confirm the significance of the all examined AE variants
in achieving better performance for intrusion detection. In particular, it can be noted
that despite CAE displays low F1 of 82.33 compared to other AEs on NSL-KDD dataset,
but still proves to display a better score of 90.76 on a highly imbalanced UNSW-NB15
dataset. In the same vein, other examined AE variants SAE, SSAE and ContAE except DAE
also prove to gain better F1 on highly imbalanced UNSW-NB15 datasets. On contrary,
DAE shows a F1 of 88.23 on NSL-KDD but a slightly penalized score of 90.69 on
UNSW-NB15.

Statistical analysis
As stated in literature (Agbolade et al., 2020; Phillips et al., 2020), we conducted statistical
analysis to investigate the significant performance of different AE variants for intrusion
detection. In this line, various statistics are computed on AUC, AUPR and F1-measures
illustrated in Figs. 10–12 respectively for both NSL-KDD and UNSW-NB15 datasets.
The computed statistics are presented in Table 8. Here, the best mean values are
underlined for each metrics for clarity purpose. Observing these results in Table 8, it can be

Figure 12 Comparison of F1 measure for different AE variants on (A) NSL-KDD and (B) UNSW-
NB15 datasets. Full-size DOI: 10.7717/peerj-cs.327/fig-12

Vaiyapuri and Binbusayyis (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.327 20/26

http://dx.doi.org/10.7717/peerj-cs.327/fig-12
http://dx.doi.org/10.7717/peerj-cs.327
https://peerj.com/computer-science/


noted that the minimum, maximum and 95% confidence interval (CI) for mean values of
AUC, AUPR and F1-measure with regard to ContAE are higher compared to other variants.

Thus, it is evident that ContAE provides a better intrusion detection performance
among all other variants. Nevertheless, looking at these means, it appear that a simple
linear relationship did not exist. So, these mean values are plotted to provide a visual
picture of the relationship with standard deviation as error bars in Fig. 13. Looking at this
graph, one can note CAE displaying less error equivalent to ContAE with AUPR metric.

Table 8 Statistics of performance metrics (AUC, AUPR, F1) for different AE variants.

Evaluation metrics AE variants N Mean Std. Dev. Std. error 95% CI for Mean

Lower bound Upper bound

AUC SAE 2 83.55 2.47 0.78 82.01 85.08

SSAE 2 84.05 1.76 0.55 82.95 85.14

DAE 2 82.65 6.15 1.94 78.83 86.46

ContAE 2 85.8 2.82 0.89 84.04 87.55

CAE 2 81.4 0.28 0.08 81.22 81.57

AUPR SAE 2 91.8 1.13 0.35 91.09 92.5

SSAE 2 91.95 1.34 0.42 91.11 92.78

DAE 2 91.85 0.49 0.15 91.54 92.15

ContAE 2 92.9 0.56 0.17 92.54 93.25

CAE 2 90.7 2.26 0.71 89.29 92.1

F1 SAE 2 88.94 3.04 0.96 87.05 90.83

SSAE 2 89.06 2.92 0.92 87.24 90.87

DAE 2 89.47 1.72 0.54 88.40 90.53

ContAE 2 90.79 1.65 0.52 89.76 91.81

CAE 2 86.54 5.96 0.188 82.85 90.23

Figure 13 Mean plot of AUC, AUPR and F1 with error bars for different AE variants.
Full-size DOI: 10.7717/peerj-cs.327/fig-13
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However, its performance with regard to AUC and F1 are poor and discouraging. Also,
it is interesting to see that a better intrusion detection performance is gained with
ContAE in comparison to other AE variants with all metrics such as AUC, AUPR and F1.
In this case, one can hypothesize that ContAE as one-class classifier has impacted the
intrusion detection performance compared other AE variants.

Comparison with related works
This section compares the results obtained utilizing AE as one class classifier IDS with
some of the related works published in literature. To the best of our knowledge, very few
works in literature have utilized the capabilities of AE for building unsupervised based
IDS as we do in this study. Therefore, to examine the effectiveness of AE as one-classifier
for IDS, the works related on AE based IDS are considered disregarding the variant of
AE used and learning technique adopted for training the IDS. The results provided in their
published articles are used to maintain fair comparison and this comparison results are
presented in Table 9. Here, for clarity purpose, the highest score is highlighted in bold for
each metrics.

Now observing the results, it can be realized that the utilizing AE as an one-classifier as
in this study outperforms all the recent AE based IDS approaches for all metrics except
for the two models introduced in Choi et al. (2019) and Aygun & Yavuz (2017) which
displays the higher ACC value of 91.70 and 88.28 respectively. Though, these models show
better ability in delivering high ACC value, its performance in terms of DR and F1 are
very worst, essential metrics required for a IDS model. Hence, it is worth noticing that
the use of AE as one-class classifier enables to gain better performance for intrusion
detection than all other recent AE-based IDS approaches. Thereby we evidently
recommend that AE as one-class classifier has great potential for building effective IDS
with improved detection ability for unseen attacks.

FINDINGS OF COMPARISON ANALYSIS
From the comparative results reported in the section, the following important insights are
drawn

Table 9 Comparison with related works on NSL-KDD datasets.

IDS Models Training set Testing set

ACC DR F1 ACC DR F1

Choi et al. (2019) 91.70+ 84.68 90.71 NA NA NA

Naseer et al. (2018) NA 81.0 NA* NA

Chen et al. (2020) NA 85.02 86 80

Aygun & Yavuz (2017) NA 88.28 87.86 89.51

Ieracitano et al. (2020) NA 87 80.37 81.98

Shone et al. (2018) NA 85.42 85.42 87.37

Proposed 91.46 97.00 91.36 87.98 89.23 89.62

Note:
* The corresponding metric is not available/provided in the published article.
+ Highest score is highlighted with underline for each metrics.
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a) The optimal design decision of the common network architecture adopted across all
variants of AE was verified for its significance and manifested.

b) Of the five AE variants compared for intrusion detection, ContAE yields the best
detection performance in terms of ACC, AUC, AUPR and F1 across NSL-KDD and
UNSW-NB15. This confirms that the incorporation of contractive penalty term into the
cost function AE can enable capture the most robust feature representation for
reconstruction and gain better performance for intrusion detection.

c) Convolutional AE exhibited inconsistent behavior across dataset with different
characteristics. For instance,CAE delivered an average performance on UNSW-NB15
dataset but failed to provide consistent performance on NSL-KDD testing set despite it
converges and generalization ability during training process was impressive on this
dataset. The reason may be due to the common network architecture adopted for
all AE variants was not optimal for CAE and thereby demanding more complex network
model to capture useful feature representation from a dataset such as NSL-KDD which
contains features with complex non-linear relationships.

d) Similarly, DAE demonstrated an average performance on NSL-KDD dataset but
failed to provide reliable performance on UNSW-NB15 dataset. This difference in
performance of DAE variant across the datasets may be due to the fact that for certain
datasets even minimum noise level corrupts the useful information required for
reconstruction; thereby affecting the detection performance of AE. Consequently, DAE
is not a better choice of AE for such type of dataset.

e) Despite SAE and SSAE did not provide best performance compared to other chosen
AE variants, these variants exhibited an average reliable performance across diverse
datasets in terms of ACC, AUC, AUPR and F1.

f) Interestingly, all the AE variants examined in this study proved their detection ability
for intrusion as an one-class classifier delivering higher DR and F1 value of 89.23
and 89.62 respectively on NSL-KDD dataset compared to the recent AE based IDS
models reported in literature which ranged between 80% and 86% for DR and 81% and
89% for F1.

CONCLUSION
A thorough comparison of five different AE variants for unsupervised IDS has been
presented in this study. At first, the study provides an overview of all the AE variants
selected for comparison which includes SAE, SSAE, DAE, ContAE and CAE. Second, to
establish a common benchmark for fair comparison, all AE variants relied on unified
network architecture and same datasets are used to evaluate the performance of
different AE variants considering comprehensive set of evaluation metrics. The detailed
comparative results demonstrate that all the AE variants offered comparable detection
performance perfect to reconstruct the normal traffic samples and at the same time
different AE variants displayed different RE value with regard to normal and intrusive
network traffic which is also considered as threshold to discriminate the intrusion traffic
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and evaluate their performance for intrusion detection. Also the effectiveness of each AE
variant for imbalanced binary classification is investigated in terms of precision-recall
curve, AUPR and F1 value. The summary of our analysis results is presented to provide
an insight on the potential of different AE for intrusion detection. Hence, we expect
this study to act as starting point to research further and improve the reconstruction ability
of AE to build an unsupervised IDS that can gain even better detection performance
for unseen attacks. Indeed our future work will focus to review different variants of
variational autoencoders reported in recent literature (Lopez-Martin et al., 2017;
Lopez-Martin, Carro & Sanchez-Esguevillas, 2019) and investigate their performance as
one-class classifier for intrusion detection.
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