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ABSTRACT
Machine learning models face increasing threats from membership inference attacks,
which aim to infer sample membership. Sample membership represents whether or
not a particular data sample is included in the training set of a given model and is
considered a fundamental form of privacy leakage. Recent research has focused on the
likelihood ratio attack, a membership inference attack that aggregates membership-
relevant features through difficulty calibration and infers sample membership through
hypothesis testing. However, difficulty calibration approaches typically require large
amounts of labeled data to train shadow models, limiting their general applicability.
Moreover, hypothesis testing often fails to identify training samples with low self-
influence, resulting in suboptimal attack performance. To address these shortcomings,
we propose Distilled Shadow Model and Inference Model to perform Membership
Inference Attack (DSMIM-MIA) a novel membership inference attack that reduces the
reliance on ground-truth labels through knowledge distillation and mitigates the bias
against low self-influence samples using an inference model. Specifically, we distill the
targetmodel to train shadowmodels, which not only remove the dependence on labeled
data but also transfer potential membership-relevant information to improve feature
aggregation. In place of hypothesis testing, we train a neural network, referred to as
the inference model, to predict sample membership. By learning membership decision
functions directly from data, without relying on predefined statistical assumptions, our
method achieves more accurate and generalizable predictions, especially for samples
with low self-influence. Extensive experiments across three datasets and four model
architectures demonstrate that DSMIM-MIA consistently outperforms existing state-
of-the-art attacks under various evaluation metrics.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Security and Privacy, Neural Networks
Keywords AI security, Data privacy, Membership inference attack, Likelihood ratio attack,
Privacy protection

INTRODUCTION
Machine learning models are increasingly deployed in data-sensitive fields such as
medicine (Fernando et al., 2021; Yu et al., 2021), politics (Cardaioli et al., 2020; Beltran
et al., 2021), and criminal records (Wexler et al., 2019; Sagala, 2022). However, these
models are vulnerable to privacy risks (Song & Shmatikov, 2020;Mehnaz et al., 2022; Balle,
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Cherubin & Hayes, 2022), particularly through membership inference attacks (MIAs),
where adversaries aim to determine whether a specific data point is part of a model’s
training set. MIAs have become a de facto standard for evaluating privacy leakage in
machine learning systems.

MIAs typically exploit the overfitting behavior of the target model to distinguish between
members and nonmembers, based on the model’s output confidence. The target model
refers to themodel under attack.Members represent samples used to train the target model,
and nonmembers represent samples not used to train the target model. Existing approaches
have adopted various techniques to perform this distinction, including the use of statistical
metrics such as predictive loss (Shokri et al., 2017) and entropy (Yeom et al., 2018), or by
training binary classifiers as attack models (Liu et al., 2022). Although these methods have
achieved good performance on average case metrics such as accuracy and area under the
curve (AUC), Carlini et al. (2022) argued that these metrics were insufficient to reflect
the actual privacy risk. Specifically, many prior attacks exhibit high accuracy by correctly
identifying nonmembers, yet perform poorly at identifying members. To address this issue,
Carlini et al. (2022) introduced a stricter evaluation criterion, true positive rate at low
false positive rate (TPR at low FPR), to better assess attack performance under low-error
conditions. Under this metric, nearly all previous attacks were shown to be ineffective,
often misclassifying a substantial portion of nonmembers as members, thus limiting their
real-world applicability.

To address the limitations of traditional MIAs, Watson et al. (2021) proposed difficulty
calibration, a technique that adjusts for the representational bias of samples in the data
distribution. Their empirical results show that nonmembers that are over-represented in
the data distribution aremore likely to bemisclassified. Tomitigate this bias, they quantified
sample difficulty as the degree to which a sample aligns with the overall data distribution,
and used it to regularize the original output scores of the model. This adjustment produces
calibrated scores, which have since been widely adopted in subsequent MIAs (Jayaraman
et al., 2021; Rezaei & Liu, 2021; Shi, Ouyang & Wang, 2024). Carlini et al. (2022) then
proposed the Likelihood Ratio Attack (LiRA), a state-of-the-art membership inference
attack which combined difficulty calibration with hypothesis testing. LiRA first estimates
the difficulty of each target sample using predictions from models trained on similar
data, then applies a likelihood ratio test to calibrate the model outputs, and finally infers
membership based on the calibrated score.

Despite LiRA’s strong overall performance, it lacks a fine-grained analysis explainingwhy
it succeeds for some samples while failing for others. To better understand its limitations,
we closely examine its two core components: difficulty calibration and hypothesis testing.
First, existing difficulty calibration methods typically require a large amount of labeled
data to train shadow models. In practice, however, obtaining sufficient ground-truth
labels can be challenging. Moreover, training shadow models solely with labeled data
may overlook latent membership signals present in the target model, thereby limiting the
amount of information available for aggregation. Second, we observe that the effectiveness
of hypothesis testing is closely related to the self-influence of the sample, which refers to
the degree to which an individual training point affects the model’s learning process. As
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formally defined in the ’Background’ section, self-influence measures a sample’s impact
on the trained model. Our experiments reveal that hypothesis testing tends to successfully
detect members with high self-influence, but frequently misclassifies members with low
self-influence as nonmembers. Furthermore, we show for the first time that themembership
score, i.e., the likelihood that a sample is classified as a member, is positively correlated
with the sample’s self-influence. This finding offers a plausible explanation for LiRA’s bias
toward detecting only certain types of training samples. In summary, LiRA’s reliance on
labeled data for difficulty calibration and its inherent bias in hypothesis testing against low
self-influence samples are the two primary factors limiting its effectiveness.

Our approach. To improve the effectiveness of MIAs, we propose a novel method
named DSMIM-MIA that leverages Distilled Shadow Model and Inference Model to
perform Membership Inference Attack. DSMIM-MIA utilizes two key components:
distilled shadow models and an inference model. We first generate a set of shadow models,
which are trained on data distributions similar to that of the target model but without
containing the target sample. Rather than training these models using ground-truth labels,
we perform knowledge distillation on the target model. This process enables the transfer
of latent membership-related signals embedded in the target model to the shadow models,
thereby enriching the information available for attack. Notably, knowledge distillation does
not rely on ground-truth labels, but instead uses the Kullback–Leibler (KL) divergence
between the output distributions of the target and shadowmodels as the training objective.
We then train an inference model that learns the relationship between the outputs of the
shadow models on a given sample and the sample’s membership. Unlike LiRA, which
relies on statistical hypothesis testing for this purpose, DSMIM-MIA replaces this step
with a trainable inference model, allowing for more flexible and accurate membership
predictions, particularly for samples with low self-influence. Details of the training process
and architecture of DSMIM-MIA are provided in the ‘Methods’ section.

Contribution. Our contribution can be summarised as follows

• We identify and analyze two key limitations of LiRA: its reliance on labeled data for
difficulty calibration, and its bias toward samples with high self-influence. We further
demonstrate a positive correlation between sample self-influence and membership
scores, offering a theoretical explanation for this bias.
• We propose a novel membership inference attack method, DSMIM-MIA, which
eliminates label dependency through knowledge distillation and improves member
detection performance, particularly for samples with low self-influence. Our method
achieves competitive results at a comparable attack cost.
• We conduct extensive experiments on three datasets and four model structures to
verify the effectiveness and efficiency of the attack across various settings in the image
classification domain.
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BACKGROUND
Machine learning
This work focuses on training data privacy issues for supervised machine learning
classification tasks. A classification neural network fθ : X−→ Y is a learned function
that maps each sample in a dataset X to its class in a n-class label set Y. Given a sample
(x,y), fθ outputs a n-class prediction vector p= fθ (x)= [p1,p2,...,pn] and pi represents
the prediction probability of ith class. In a machine learning (ML) model training process,
it is necessary to set a reasonable loss function L(y,p) to minimize the sample prediction
distribution from the ground truth of the samples. The cross-entropy loss is one of the
most commonly used loss functions in classification tasks and is defined as:

LCE(y,p)=−
n∑

i=1

yilogpi.

The model is trained by stochastic gradient descent to minimize the empirical losses just
as follows:

θi+1← θi−γ
∑

(x,y)∈B
∇θL(y,p)

where B is a small set of training samples and γ is the learning rate for iteratively updating
the neural network parameters θ .

Membership inference attack
A membership inference attack (MIA) is an attack that aims to predict whether a given
sample is from the training set or not. As one of the most popular forms of data privacy
leakage, MIA has developed a number of attack and defense mechanisms (Shokri et al.,
2017; Jia et al., 2019; Chen & Pattabiraman, 2023).

Definition. Given a sample x with ground truth y , a trained ML model denoted
as M , a learning algorithm of M denoted as A, a training dataset of M denoted as
Dtrain and some auxiliary information denoted as I , we follow a common definition of
membership inference attack (Liu et al., 2022): Atk(x,y,M ,I )→{0,1}, where Atk means
the membership inference attack, 1 means x ∈Dtrain and 0 means x 6∈Dtrain. From the
adversary’s point of view, (x,y) is also known as the target sample representing the sample
waiting to be detected, and M is also known as the target model representing the model
waiting to be detected. Themembership score is defined as the probability that the adversary
predicts that the target sample (x,y) is a member of the target modelM . SinceM is trained
on Dtrain using A, the membership scores can be denoted as s(x,y,Dtrain,A). The score
function s(·|·) can be the loss value, entropy, etc.

Evaluation. To assess the effectiveness of MIAs we follow (Yeom et al., 2018) and use a
classic inference game to outlineMIA evaluations. In this case, most of the studies adopt the
balanced set as the evaluation dataset and use the AUC metric and true positive rate (TPR)
at low false positive rate (FPR) metric to measure the performance of MIA. A balanced
set consists of an equal number of members and nonmembers and provides a fair test of
a sample’s ability to recognize members and nonmembers. The AUC metric reflects the
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overall ability of the MIA to distinguish between members and nonmembers. TPR can be
thought of as the adversary’s power while FPR can be thought of as the adversary’s errors,
and ultimately TPR at low FPR reflects the adversary’s ability to be effective at low error
rates.

Intuition. Early membership inference attacks were grounded in a simple but effective
intuition that, due to overfitting, machine learning models typically assign significantly
lower loss values to training samples (members) than to unseen data points (nonmembers).
As a result, the loss of the sample was often used as an indicator of its membership. While
such attacks performed well on average-case metrics like AUC, they exhibited a steep
performance decline under stricter evaluation criteria such as TPR at low FPR, revealing
difficulty in accurately identifying member samples with minimal error. To overcome
this limitation, Watson et al. (2021) proposed difficulty calibration, which has become a
cornerstone in contemporary MIAs. Difficulty calibration attributes the failure of past
methods to ignoring the role of sample difficulty. Sample difficulty is defined as the degree
to which a sample is represented in the data distribution, and samples with high difficulty
tend to be over-represented in the data distribution. In particular, nonmembers with
high difficulty are likely to produce membership scores close to or higher than those of
members, thereby increasing the risk of misclassification. To alleviate such issues, difficulty
calibration involves explicitly quantifying sample difficulty and using it to adjust the raw
membership scores. This process relies on accurately modeling the data distribution, which
is typically achieved by training a large number of OUT models. An OUT model is defined
as a model whose training set has the same distribution as the target model’s training set but
does not contain the target sample. The average membership score of a given sample across
all OUT models serves as an estimate of its difficulty. Finally, the calibrated membership
score is computed as the difference between the original score and this estimated difficulty,
yielding a more robust and discriminative indicator for membership inference.

Assume the target model is M , the learning algorithm is A, and the training set is
Dtrain. The Dtrain is sampled from the data distribution D. Let N be the number of OUT
models and Di m

∼D be the ith OUT model’s training set where ∀i|Dk
| = |Dtrain| =m and

Di
∩Dtrain=∅. For a given sample (x,y), its membership score on the target model and

the ith OUT model can be denoted as s(x,y,Dtrain,A) and s(x,y,Di,A), respectively. Since
the learning algorithm A is often fixed, the final calibrated score expression of (x,y) can be
abbreviated as:

scal(x,y)= s(x,y,Dtrain)−
1
N

N∑
i=1

s(x,y,Di). (1)

Data influence
Examining the influence of individual training sample on machine learning models is
a fundamental and sophisticated issue with widespread implications, especially when it
comes to data evaluation. A commonly used technique for this purpose is the leave-one-out
(LOO) approach which estimates the influence of a specific training instance by measuring
its impact on model performance when it is removed from the training set. Formally, let
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Dtrain and Dval denote the training and validation sets respectively, and let A denote the
learning algorithm. The validation accuracy of a model trained on Dtrain using algorithm
A, evaluated on Dval , is written as UA,Dval (Dtrain). The influence of a target sample (x,y) is
then defined as:

inf (x,y)=UA,Dval (Dtrain)−UA,Dval (Dtrain \{(x,y)}). (2)

Although the LOO approach is intuitive and effective, it suffers from prohibitive
computational costs, as it requires retraining a separate model for each training instance.
To address this limitation, Feldman & Zhang (2020) proposed a downsampling-based
approximation to reduce the computation burden. This strategy involves training only K
submodels, each on a random subset of the full training set. To further reduce complexity,
the validation set in the original LOO method was replaced with the sample itself, and
the accuracy metric was replaced with the model’s predicted probability of the sample’s
true label (Hammoudeh & Lowd, 2024). Specifically, let Dk m

∼Dtrain be the k-th submodel’s
training set with ∀k |Dk

| =m. Let Ki := I
[
(x,y)∈Dk] be the number of submodels whose

training set contains instance (x,y). Define f (x,Dtrain,A)y as the predicted probability for
label y when sample x is evaluated on amodel trained onDtrain. Since the learning algorithm
A for the target model is often fixed, f (x,Dtrain,A)y can be abbreviated as f (x,Dtrain)y . The
approximate influence of (x,y) is computed as:

inf (x,y)=
1
Ki

∑
k ′

(x,y)∈Dk′

f (x,Dk ′)y−
1

K −Ki

∑
k

(x,y)6∈Dk

f (x,Dk)y . (3)

In this work, we integrate the LOO and downsampling methodologies to introduce a
novel metric called self-influence, which is designed to quantify the influence of individual
training sample. Specifically, we retain the first term from Eq. (2) and simplify it to
f (x,Dtrain)y . This simplification is justified by the fact that the target model is trained
on a complete dataset, making its output more reliable and representative than that of
submodels. Meanwhile, we preserve the second term from Eq. (3), training K submodels
as in the downsampling approach. Notably, since the target model often yields extremely
confident predictions for its training samples, we apply a logit transformation to the
model outputs to better differentiate between samples with high-confidence scores. The
transformation is defined as φ(p)= ln p

1−p . Assuming that the target model training set
Dtrain is drawn from a data distribution D, each submodel training set Dk

⊂Dtrain can also
be regarded as a sample from D. To generalize further, we relax this condition by directly
drawing new submodel training sets Dk

∼Dtrain, ensuring that ∀k |Dk
| = |Dtrain| =m and

Dk
∩Dtrain=∅. For the sake of brevity, we further abbreviate φ(f (x,Dtrain)y) as φ(ft (x)y)

and φ(f (x,Dk)y) as φ(fk(x)y). The self-influence of sample (x,y) is then formally defined
as:

sinf (x,y)=φ(ft (x)y)−
1
K

K∑
k=1

φ(fk(x)y). (4)
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RELATED WORK
According to the existing taxonomy (Dionysiou & Athanasopoulos, 2023; Wen et al.,
2022; Salem et al., 2023), MIA can be classified into score-based MIA (Shokri et al., 2017;
Nasr, Shokri & Houmansadr, 2018; Carlini et al., 2022) and label-based MIA (Choquette-
Choo et al., 2021; Li, Li & Ribeiro, 2021; Chaudhari et al., 2023). Score-based MIA allows
the adversary to obtain the predicted probability distribution of the sample (e.g., soft
labels). In contrast, label-based MIA allows the adversary to obtain only the predicted
labels of the sample (e.g., hard labels). This paper concentrates on score-based MIA, whose
attack principles can be divided into the following three categories.

Neural network-based attack trains a binary classifier to infer whether a candidate sample
is a member of the target model. Shokri et al. (2017) proposed the first neural-network-
based membership inference attack. They trained a shadow model for each class in the
data to mimic the behaviour of the target model in that class and trained a neural network
on the posterior obtained from these shadow models for each class. Salem et al. (2019)
simplified this by reducing the number of shadow models to only one and keeping the
attack effect the same. Our attack is also essentially a neural network-based attack, as we
need to train an inference model to predict the sample membership.

Metric-based attack selects a number of statistical metrics that characterise the
distribution of model outputs and assumes that there is a significant difference between
the member and nonmember samples with respect to those metrics. Yeom et al. (2018)
proposed a loss-based attack grounded in the observation that models typically exhibit
lower prediction loss on training samples compared to test samples. Yeom et al. (2018) also
proposed an entropy-based attack, which leverages the observation that output scores for
training samples tend to be closer to the hard labels, resulting in lower predictive entropy
compared to test samples. Song & Mittal (2021) improved the entropy-based attack by
considering the thresholds associated with the categories and the ground truth and
demonstrated that this approach achieves a higher level of attack effectiveness. Recently,
Ye et al. (2024) also proposed the leave-one-out distinguishability (LOOD) metric for
quantifying information leakage, which enables identifying the causes and locations of
high leakage. The most relevant metric-based attack to our method is the Loss Trajectory
Attack (Liu et al., 2022). This attack applies knowledge distillation to the target model and
records the prediction loss trajectory of samples across training epochs as a statistical metric
for inference. Although both our attack and the loss trajectory attack utilize knowledge
distillation, they do so for fundamentally different purposes. The loss trajectory attack
trained only one shadow model via knowledge distillation, and monitors its prediction
behavior at multiple training epoch. In contrast, our approach performs knowledge
distillation on the target model using multiple different shadow training sets, resulting in a
collection of shadow models that better capture sample-level variations and support more
robust inference.

Likelihood ratio attack (LiRA) is a state-of-the-art attack that achieves high member
detection rates while maintaining a low error rate. Carlini et al. (2022) proposed the
first LiRA, combining per-example difficulty scores (Rahimian, Orekondy & Fritz, 2020;
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Choquette-Choo et al., 2021; Li & Zhang, 2021), with hypothesis testing. Wen et al. (2022)
improved the LiRA by directly optimising queries with differentiation and diversity using
adversarial tools. The most relevant variant to our attack is the Guided Likelihood Ratio
Attack (GLiRA) attack (Galichin et al., 2024). The GLIRA attack similarly distills knowledge
from the target model to obtain the shadow model. However, it still uses hypothesis testing
to calculate the membership score. As a result, GLIRA suffers in scenarios involving low
self-influence samples, whereas our method remains effective under such conditions.

METHODS
This section provides an overview of DSMIM-MIA.We begin by defining the threat model,
specifying the adversary’s assumptions and capabilities. We then analyze the limitations
of prior attacks and present an improved attack intuition that guides the design of our
approach. Finally, we detail each component of the attack pipeline and describe the
implementation of DSMIM-MIA.

Threat model
In line with prior research on score-based MIAs (Shokri et al., 2017; Yeom et al., 2018;
Ye et al., 2022), we assume that the adversary operates under a black-box threat model.
Specifically, the adversary is assumed to have access to the target model’s output through
query interfaces, as well as knowledge of an auxiliary dataset and the target model’s
architecture.

Under the black-box setting, the adversary can feed arbitrary inputs to the target model
and observe the corresponding outputs. Such access is commonly available in real-world
systems where public APIs or service endpoints expose model predictions. The auxiliary
dataset is defined as a set of samples drawn from the same distribution as the target
model’s training set, but with no overlap in actual instances. In practice, this dataset
can be constructed by sampling from public testing datasets when available. Compared
to black-box access and auxiliary dataset, obtaining the exact architecture of the target
model is more challenging. Nonetheless, this assumption can be slightly relaxed. Our
ablation experiments (see the ‘Ablation Study’) show that DSMIM-MIA maintains strong
performance even with only similar model structures.

Attack intuition
This subsection contrasts the core intuition behind our proposed attack with those of prior
approaches, highlighting their limitations and detailing how our method improves upon
them. Some key concepts referenced in this subsection, such as difficulty calibration, OUT
models, and self-influence, have been introduced in the ‘Background’.

Prior attack intuition.We focus on the LiRA, as it has become a foundational framework
for most recent membership inference attacks. LiRA is built on the principle of difficulty
calibration, which aims to reduce false positives by adjusting raw membership scores with
the sample difficulty. However, LiRA diverges significantly from earlier methods in its
specific implementation of difficulty calibration, particularly in the membership score
adjustment module.
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On one hand, LiRA interprets the sequence of membership scores generated by multiple
OUT models for a given target sample as sampling results from a Gaussian distribution.
The difficulty of the target sample can then be characterized by this Gaussian distribution.
Let (x,y) denote the target sample, n denote the number of OUT models, fi denote the
ith OUT model and fi(x)y denote the confidence value of model fi on input x at class
label y . A logit transformation φ

(
fi(x)y

)
is applied to each output to better separate high

confidence predictions fi(x)y and also to make the transformed output sequences more
closely resemble the Gaussian distributed samples. Assuming that these transformed values
follow a Gaussian distribution, we estimate its parameters as:

φ(fi(x)y)=Z , where Z ∼N
(
µ,σ 2), µ= 1

n

n∑
i=1

φ(fi(x)y),and

σ =

√√√√1
n

n∑
i=1

(
φ(fi(x)y)−µ

)2
. (5)

In this context, the Gaussian distributionN (µ,σ 2) serves as a quantification of the sample’s
difficulty.

On the other hand, LiRA casts membership inference as a statistical hypothesis testing
task. This task evaluates whether the output of the target model belongs to the output
distribution of OUT models when feeding the same target sample. According to Eq. (5),
the output distribution of the OUTmodels can be approximated as a Gaussian distribution
N (µ,σ 2). If the target model output lies deep in the tail of the Gaussian distribution, it
indicates that the target model is unlikely to be one of the OUT models, thus suggesting
that the target sample is likely to be a member. To formalize this, LiRA computes the
cumulative distribution function (CDF) of the transformed target model output under the
Gaussian distribution:

3= Pr(Z ≤φ(ft (x)y)), where Z ∼N
(
µ,σ 2). (6)

Here, 3 serves as the membership score. A higher value of 3 implies that the target
model’s behavior deviates more from the OUT models’ behavior, thereby indicating a
higher likelihood that the sample is a member.

Intuition flaw. Although LiRA has produced state-of-the-art results, we have found
two critical limitations that hinder its applicability and effectiveness. First, LiRA trains
OUT models using cross-entropy loss, which requires a large quantity of labeled data.
In practical scenarios, adversaries often only have access to unlabeled samples and have
to incur significant annotation costs. This reliance on ground-truth labels limits both
the scalability and practicality of the attack. Second, the membership scores produced by
LiRA’s likelihood ratio test are intrinsically tied to the self-influence of the sample. Samples
with low self-influence typically yield lower membership scores, making them less likely
to be correctly identified. Specifically, we demonstrate that there is a positive association
between membership score and self-influence, and members with low self-influence may
have trouble obtaining high membership scores.
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Figure 1 An illustration exhibiting how neural networks maymore effectively deduce the membership
of low self-influence samples in contrast to hypothesis testing. This example utilises a model trained on
CIFAR10 as the target model, employing 10,000 samples from the training set as the target samples. The
left subplot illustrates the probability density of the self-influence attribute among 10,000 samples. The
central subplot illustrates the correlation between the membership score of hypothesis testing and the self-
influence. The right subplot illustrates the correlation between the membership score of neural networks
and self-influence. Although there is no clear trend in the neural network, it can be clearly seen that the
self-influence and the membership score of hypothesis testing are positively correlated. Samples with high
probability density show low self-influence, indicating that many samples find it difficult to achieve higher
membership scores.

Full-size DOI: 10.7717/peerjcs.3269/fig-1

The proof of that positive correlation is given below.
According to Eq. (6), the membership score is calculated using the CDF of a Gaussian

distribution, which can be expressed by the error function erf :

3=
1
2

[
1+erf

(
φ(ft (x)y)−µ

σ
√
2

)]
, where erf (z)=

2
√
π

∫ z

0
e−t

2
dt (7)

Equation (7) indicates that the membership score exhibits a positive correlation with the
term

φ(ft (x)y )−µ
σ
√
2

. In practice, to improve the attack performance, LiRA typically employs
a global standard deviation σ , rather than estimating it per sample. This is particularly
useful when the number of OUT models is limited (Carlini et al., 2022). Therefore, the
denominator σ

√
2 can be considered as a constant C and the membership score becomes

a function of only φ(ft (x)y)−µ. Referring to Eq. (4), the term φ(ft (x)y)−µ is equivalent
to the sample self-influence sinf (x,y), and the membership score can be reformulated as
follows:

3=
1
2

[
1+erf

(
sinf (x,y)

C

)]
. (8)

This reformulation confirms that the membership score is a monotonic function of the
sample’s self-influence. As depicted in the center subplot of Fig. 1, there is a clear positive
correlation betweenmembership score and self-influence.Moreover, the left subplot reveals
that a large portion of member samples have low self-influence, resulting in relatively low
membership scores. Consequently, LiRA’s ability to detect such members is significantly
diminished, which limits its effectiveness in comprehensively assessing model privacy risk.

Our attack intuition. To overcome the aforementioned limitations, we propose a new
attack intuition that adheres to the basic principles of difficulty calibration but improves
both generality and performance. This intuition consists of two main components:
aggregating membership-relevant information and inferring sample membership.
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Membership information aggregation.We train each OUT model by distilling knowledge
from the target model on a randomly selected subset of the auxiliary dataset. Since sample
difficulty is closely related to sample membership and can be effectively quantified by the
outputs of the OUTmodels, these outputs can be used as an indirect but informative proxy
for inferring membership. The impact of knowledge distillation is twofold. On one hand,
because the OUT models are optimized using a different loss function (e.g., KL divergence
rather than cross-entropy), they may not fully replicate the training behavior of the target
model, which could introduce output bias. On the other hand, inspired by Liu et al. (2022),
we argue that membership-related signals embedded in the target model can be effectively
transferred to the OUT models via distillation. Moreover, knowledge distillation uses KL
divergence between the output distributions of the target and OUT models as its objective,
which eliminates the need for ground-truth labels and simplifies the training process.
Overall, knowledge distillation achieves a practical trade-off between fidelity and feasibility
in OUT model construction.

Membership inference via neural network. Instead of using hypothesis testing as in LiRA,
we propose training a neural network, referred to as the inference model, to directly predict
whether a sample is a member of the target model. This inference model learns a mapping
from membership-related signals (e.g., outputs of OUT models and the target model) to
a predicted membership score. It is worth noting that employing neural networks in this
context is a heuristic strategy. The underlying intuition is that, compared to hypothesis
testing, neural networks, with their high capacity and large number of parameters, can
better approximate complex mappings and thereby recognize a broader set of member
samples. Specifically, we hypothesize that the inference model is capable of identifying
low self-influence members that LiRA often fail to detect. This hypothesis is empirically
supported by the right subplot of Fig. 1, which shows that the membership scores produced
by the inference model do not exhibit a strong correlation with self-influence, indicating
improved detection performance for such hard cases. A key challenge, however, lies in
constructing a reliable training set for the inference model, as the adversary does not
know the ground-truth labels for the target model. To overcome this, we introduce a
reference model that mirrors the structure and training distribution of the target model.
Using this reference model and multiple OUT models distilled from it, we obtain training
samples with known membership labels (i.e., whether a sample was used to train the
reference model). This enables supervised training of the inference model. While training
the inference model requires additional OUT models, we mitigate the overhead by halving
the number of OUT models used per attack stage, thus keeping the overall model budget
constant. Subsequent experimental results also show that even with half the number of
OUT models, the performance of attacks using the inference model still outperforms the
performance of attacks using hypothesis testing.

Summary. Our proposed strategy distills membership-relevant signals from the target
model and leverages a learned inference model to more accurately predict membership. As
detailed in the ‘Ablation Study’ section, we compare the effectiveness of label-supervised
models, knowledge-distilled models, hypothesis testing, and inference models to assess
their individual contributions to attack performance.

Xu and Tan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3269 11/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.3269


…
…

…
…

…
…

…
…

…
…

2

1 Train model

4 Query Model

3 Knowledge 
Dis�lla�on

1

1

3

3

4

4

4

4

2 Bernoulli 
Sample

5 Average & 
Standard 
Devia�on

6 Concat & Train 
Inference Model

Concat & Model 
Inference

7

5

5

6

7

Figure 2 Our general attack pipeline for DSMIM-MIA. First, we train the reference model with the ref-
erence dataset and the target model has already been trained. Second, we construct shadow dataset sub-
sets using Bernoulli sampling. Third, for each subset we train the shadow model with knowledge distilla-
tion on the reference model or the target model. Fourth, we query the reference dataset for the reference
model and its shadow models to obtain the original and shadow predictive losses, respectively, and do the
same for the target dataset. Fifth, we take the mean and standard deviation of multiple shadow model pre-
diction losses for each sample as the sample predictive loss features on the OUT model. Sixth, we use the
concatenation of the OUT model predictive loss features and the original predictive loss as data features,
the membership of the samples on the reference model as labels to form the inference model training set,
and train the inference model. Finally, we obtain the data features of the target samples using similar con-
catenating methods and use the trained inference model to predict the membership of the target samples.

Full-size DOI: 10.7717/peerjcs.3269/fig-2

Attack method
In this article, we propose a newmembership inference attack, DSMIM-MIA, which targets
the challenge of identifying low self-influence samples while adhering to the principle of
difficulty calibration. The detailed architecture of the attack pipeline is shown in Fig. 2.
Our DSMIM-MIA mainly consists of three modules: shadow model training, inference
model training and inference model prediction. To prevent data leakage between modules,
we randomly divide the auxiliary dataset DAux into two disjoint halves: one serving as the
reference dataset DRef and the other as the shadow dataset DSha.

Shadowmodel training.Our attack begins with the shadowmodel training, which aims
to obtain a set of OUT models for each sample. A shadow model is defined as a model
trained on data drawn from the same distribution as the target model’s training set and
sharing the same architecture. When a shadow model is queried with samples not included
in its own training set, it functions as an OUTmodel for those samples. The shadow model
training module involves two main steps: constructing the training set and setting the loss
function. As shown in Fig. 2, our attack performs n times Bernoulli sampling on the shadow
dataset DSha to generate training subsets [DSha

1 ,...,DSha
n ]. Unlike previous approaches that

train shadow models with cross-entropy loss, our attack adopts the KL divergence loss
between the target model ’s outputs and those of shadow models. After completing the
above steps, we obtain a set of shadow models

[
MTsha

1 ,...,MTsha
n

]
.
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Algorithm 1 Inference Model Training Algorithm.

Input: Reference Dataset DRef , Training Algorithm τ , Shadow Dataset DSha, Knowledge
Distillation Algorithm κ , Shadow Model Numbers n

Output: Trained Inference Model I
1: Split DRef into two equal-sized and mutually disjoint part DRef

train and D
Ref
test

2: M ref
← τ (DRef

train)
3: Dinf

train←{}

4: for i= 1 to n do
5: Bernoulli sampling DSha yields the subset DSha

i
6: MRsha

i ← κ
(
M ref ,DSha

i
)

7: end for
8: for each sample (x,y) in DRef do
9: lossRout ={}
10: if ((x,y)∈DRef

train) then
11: sign← 1
12: else
13: sign← 0
14: end if
15: for i= 1 to n do
16: lossRshai ←MRsha

i (x)
17: lossRout← lossRout ∪

{
lossRshai

}
18: end for
19: lossref ←M ref (x)
20: µout←mean(lossRout )
21: σout← std(lossRout )
22: Dinf

train←Dinf
train∪

{
(lossref ,µout ,σout ,sign)

}
23: end for
24: I← τ

(
Dinf
train

)
Inference model training. After constructing the shadow models, the next phase

involves training the inference model to predict sample membership based on model
outputs. This step directly addresses the challenge of accurately identifying low self-
influence samples, which traditional hypothesis-based methods often fail to detect. The
complete steps of the inference model training module are described in Algorithm 1. First,
we train a reference modelM ref which shares the same architecture as the target model and
is trained using a subsetDref

train⊂Dref with the cross-entropy loss. Second, this module feeds
each sample in theDref to n shadow models [MRSha

1 ,...,MRSha
n ] and obtain their prediction

losses [lossRSha1 ,...,lossRShan ]. Our attack then compute themeanµout and standard deviation
σout of these losses to represent the behavior of OUTmodels. These statistics, along with the
reference model’s own predictive loss, are concatenated to form the feature representation.
The membership label (indicating whether the sample was used in trainingM ref ) serves as
the ground truth. These two together form the training set Dinf

train of the inference model.
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The inference model I is then trained on this dataset using the cross-entropy loss. It is
worth noting that the association between OUT model outputs and sample memberships
learned by the inference model essentially only applies to the reference model. However,
given the high similarity between the reference and target models, we assume that the
inference model can effectively generalize to successfully predict the sample membership
of the target model.

Inference model prediction. After training the inference model, the attack enters the
prediction phase, where it estimates the sample membership. The procedure is detailed in
the Algorithm 2. In brief, the inference model receives two types of input features: (1) the
output of the target model on the sample (2) the mean and standard deviation of outputs
from shadow models. Rather than directly feeding all individual outputs from the OUT
models, which may include redundant or noisy information, we use only the statistical
summaries (mean and standard deviation) as feature inputs. This design reduces noise
while preserving key membership-related patterns. We can formalize this as follows.

Algorithm 2 Inference Model Inference Algorithm

Input: Target sample
(
x,y

)
, Target ModelM tar , Shadow Dataset DSha, Knowledge Distil-

lation Algorithm κ , Trained Inference Model I , Shadow Model Numbers N
Output: Target Sample Membership score p
1: lossTout ={}
2: for i= 1 to n do
3: Bernoulli sampling DSha yields the subset DSha

i
4: MTsha

i ← κ
(
M tar ,DSha

i
)

5: lossTshai ←MTsha
i (x)

6: lossTout← lossTout ∪
{
lossTshai

}
7: end for
8: losstar←M tar (x)
9: µout←mean(lossTout )
10: σout← std(lossTout )
11: p← I

(
losstar ,µout ,σout

)
For any sample (x,y) in the target datasetDtarget , our attack query the target modelM tar

and the OUT models
[
MTsha

1 ,...,MTsha
n

]
to get losstar and

[
lossTsha1 ,...,lossTshan

]
. Our attack

then computes µout and σout over the OUT model losses, and concatenate µout , σout , and
losstar into a single feature vector. The trained inference model I then uses this vector to
output a membership score p. If p exceeds a predefined threshold, the sample is predicted
as a member; otherwise, it is predicted as a nonmember

Cost and online attack. DSMIM-MIA incurs a one-time training cost. Once the
inference and shadow models are trained, inference on new test samples can be performed
efficiently by simply querying the existing models. This enables DSMIM-MIA to handle
updated or streaming test samples with minimal computational overhead. We refer to
this version as DSMIM OFFLINE. To further enhance performance, we introduce a
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Algorithm 3 Online Inference Model Training Algorithm.

Input: Reference Dataset DRef , Training Algorithm τ , Shadow Dataset DSha, Knowledge
Distillation Algorithm κ , Shadow Model Numbers n

Output: Trained Inference Model I
1: Split DRef into two equal-sized and mutually disjoint part DRef

train and D
Ref
test

2: M ref
← τ (DRef

train)
3: Dinf

train←{}

4: for i= 1 to n do
5: Bernoulli sampling DSha yields the subset DSha

i
6: Bernoulli sampling DRef yields the subset DRef

i

7: MRsha
i ← κ

(
M ref ,DSha

i ∪D
Ref
i

)
8: end for
9: for each sample (x,y) in DRef do
10: lossRout ={}
11: if ((x,y)∈DRef

train) then
12: sign← 1
13: else
14: sign← 0
15: end if
16: for i= 1 to n do
17: if ((x,y)∈DRef

i ) then
18: lossRini ←MRsha

i (x)
19: lossRin← lossRin∪

{
lossRini

}
20: else
21: lossRouti ←MRsha

i (x)
22: lossRout← lossRout ∪

{
lossRouti

}
23: end if
24: end for
25: lossref ←M ref (x)
26: µin←mean(lossRin)
27: σin← std(lossRin)
28: µout←mean(lossRout )
29: σout← std(lossRout )
30: Dinf

train←Dinf
train∪

{
(lossref ,µin,σin,µout ,σout ,sign)

}
31: end for
32: I← τ

(
Dinf
train

)
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more powerful but computationally intensive variant called DSMIM ONLINE. The full
procedures for training and inference under DSMIMONLINE are presented in Algorithm 3
andAlgorithm 4. Unlike the offline variant, DSMIMONLINE additionally trains INmodels
to explicitly simulate the member case. Similar to the OUTmodel definition, the IN model
is defined as a shadow model whose training set includes the target sample and can be
referred to line 7 in Algorithm 3 and line 4 in Algorithm 4. We believe that the comparison
of the IN models’ outputs the OUT models’ outputs can drive the inference model to
learn more about the sample membership. Thus, DSMIM ONLINE extends the input
features of the inference model from (µout , σout ,lossref

)
to (µin , σin,µout , σout ,lossref

)
, and

train a better inference model as shown in line 30 of Algorithm 3. Despite its outstanding
performance, DSMIM ONLINE comes with a significant runtime cost. This is mainly
because DSMIM ONLINE has to spend a lot of time processing updated test samples. As
shown in the Algorithm 4, for each new test sample (x,y), all shadow models need to be
retrained to fit the IN models. This makes it computationally prohibitive in settings where
test samples arrive continuously or change frequently. In contrast, DSMIM OFFLINE does
not require retraining because its models are fixed and independent of new inputs. In
summary, DSMIM ONLINE achieves higher accuracy but at the expense of scalability,
making itmore suitable for static or small-scale evaluation tasks, whereasDSMIMOFFLINE
is preferable for real-time or large-scale deployment.

Algorithm 4 Online Inference Model Inference Algorithm

Input: Target sample
(
x,y

)
, Target ModelM tar , Shadow Dataset DSha, Knowledge Distil-

lation Algorithm κ , Trained Inference Model I , Shadow Model Numbers N
Output: Target Sample Membership score p
1: lossTout ={}
2: for i= 1 to n do
3: Bernoulli sampling DSha yields the subset DSha

i
4: MTin

i ← κ
(
M tar ,DSha

i ∪{x}
)

5: MTout
i ← κ

(
M tar ,DSha

i
)

6: lossTini ←MTin
i (x)

7: lossTouti ←MTout
i (x)

8: lossTin← lossTin∪
{
lossTini

}
9: lossTout← lossTout ∪

{
lossTouti

}
10: end for
11: losstar←M tar (x)
12: µin←mean(lossTin)
13: σin← std(lossTin)
14: µout←mean(lossTout )
15: σout← std(lossTout )
16: p← I

(
losstar ,µin,σin,µout ,σout

)
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RESULTS
Experimental setup
Datasets. Our experiments focused on three datasets as follows.

(item CIFAR10 Krizhevsky, 2009). It is a benchmark dataset for image classification
tasks and is widely used for MIA evaluation. It consists of 60,000 32 × 32 colour images
divided into 10 classes of 6,000 images each. (item CIFAR100 Krizhevsky, 2009). It is similar
to CIFAR-10, but it has 100 classes, each containing 600 images. (item CINIC10 Darlow
et al., 2018). It extends CIFAR10 by adding downsampled ImageNet images to the same
categories as in CIFAR10. CINIC10 also has 10 classes, but has a total of 270,000 images.

For each dataset, we set the number of samples to 10,000 for both the training and test
sets of the target and reference models and extracted 20,000 samples from the remaining
samples as the shadow model dataset. There is no overlap between the five sub-datasets
described above, andwewill vary the size of the datasets in subsequent ablation experiments
to explore the performance of the attacks under different dataset distributions.

Target model architecture. To comprehensively assess the performance of the proposed
attack, we conducted experiments on each dataset usingmultiple targetmodel architectures,
including ResNet-56 (He et al., 2016), MobileNetV2 (Sandler et al., 2018), VGG-16
(Simonyan & Zisserman, 2014), and WideResNet-32 (Zagoruyko & Komodakis, 2016).
In the following experiments, the default target model architecture is ResNet-56 unless
otherwise stated.

Inference model architecture. For the inference model, we used a 4-layer multilayer
perceptron (MLP) with hidden dimensions [512, 128, 32], ReLU activations, and a
final softmax output layer. This architecture follows the design proposed in Liu et al.
(2022), where a similar architecture was shown to achieve strong performance even on
low-dimensional inputs. In our ablation study, we compared this model against simpler
alternatives, including a 2-layer MLP, logistic regression, and decision trees. The 4-layer
MLP achieved the best overall performance across most evaluation metrics.

Metrics.We use the following evaluation metrics.

• Log-scale ROC Curve. Receiver operating characteristic curves (ROC) are widely used
to compare the true positive rate (TPR) and true positive rate (FPR) of attacks at all
possible decision thresholds.
• TPR at low FPR. The TPR at a low FPR metric evaluates the effectiveness of an attack
under strict false positive constraints, such as TPR@0.1% FPR or TPR@1% FPR.
It enables quick and intuitive comparisons between different attack configurations.
However, in practice, the target FPR may not be included in the computed sequence
consisting of < FPR,TPR> pairs. For instance, the evaluation may require the TPR at
0.1% FPR, while available data points only include TPRs at 0.01% and 0.12% FPR. To
address this, we estimate the TPR at the target FPR via linear interpolation between the
two nearest FPR points that bracket the target value (one immediately below and one
immediately above the target FPR). This interpolation yields a stable and reproducible
estimate of TPR at a given FPR.
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• Area under the curve (AUC) is an average-case metric widely used in many MIAs to
measure the overall performance of classifiers for binary classification tasks.

Attack baselines. We mainly compare our attack (DSMIM ONLINE and DSMIM
OFFLINE) with four representative MIA attacks as baselines. LIRA attack is the current
SOTA attack that achieves the highest TPR at lower FPR metrics than other methods.
LIRA attacks are further divided into LIRA ONLINE (Carlini et al., 2022) and LIRA
OFFLINE (Carlini et al., 2022). The former is only applicable to the case of a fixed test
sample while the latter can flexibly cope with an uncertain number of test samples,
similar to the difference between our DSMIM ONLINE and DSMIM OFFLINE. GLIRA
attack (Galichin et al., 2024) is a variant of the LIRA OFFLINE attack which performs
knowledge distillation of the target model to obtain shadow models. GLIRA differs from
our attack because it uses hypothesis testing to predict membership, whereas our attack
uses the inference model. LOSS TRAJECTORY (Liu et al., 2022) exploits the performance
discrepancy betweenmember and nonmember samples on distilled models to reason about
sample membership.

For the sake of brevity, LON, LOFF, DON, DOFF, GL, and LT are abbreviations for
the above attacks LIRA ONLINE, LIRA OFFLINE, DSMIM ONLINE, DSMIM OFFLINE,
GLIRA, and LOSS TRAJECTORY, respectively.

For the fairness of the comparison, the number of shadow models for each attack is
equal and not greater than thirty two, and the number of data enhancements is equal and
not greater than eight. LT is an exception to this rule because it requires only one shadow
model to be trained andmore shadowmodels do not improve its performance. In addition,
all attacks perform data augmentation on the test samples. Since data augmentation is a
common technique used in model training, the target model may have remembered
the augmented sample. We randomly flip or crop the image of each sample for data
augmentation and fix the number of augmented samples to eight.

Attack performance comparison
We trained twelve different target models on three datasets four model structures. Six
different attacks were executed on each target model and the results are shown in Fig. 3.
It is clear that for most target models, DON has the highest ROC curve height, LON the
second highest, DOFF the third highest, and the other three attacks (LOFF, GL, and LT)
have much lower curve heights. Since the height of the ROC curve reflects the attack’s
ability to correctly identify members, the above phenomenon shows that the three attacks,
LON, DON, and DOFF, are far more effective than the others. A simple explanation is that
the first three attacks all employ the difficulty calibration technique while the last three do
not. Another interesting point is that as the number of target model structure parameters
increases (from ResNet-56 to WideResNet-32), the performance of the last three attacks
improves but still falls short of the first three. This seems to indicate the impact of model
structure on attack performance, which we discuss further in the ‘Ablation Study’.

Table 1 gives the more detailed metrics of different attacks under the ResNet-56 model.
Overall, the data in the table matches the curves in Fig. 3, with the three attack metrics of
DON, DOFF, and LON attacks being much higher than the other three attacks. Specifically,
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Figure 3 Log-scale ROC curves for six attacks on three datasets and four model architectures.Dataset
from left to right: CIFAR10, CIFAR100, CINIC10. Model structure from top to bottom: ResNet-56, Mo-
bileNetV2, VGG-16, and WideResNet-32.

Full-size DOI: 10.7717/peerjcs.3269/fig-3

DON attack outperforms the LON attack in all metrics, especially on the CINIC10 dataset
where the metrics are higher by 2.7%, 6.7% and 2.8%, respectively. This suggests that the
DON identifies more members at low error rates and is a more powerful membership
inference attack than LON.

In addition, the attack performance of DOFF cannot be ignored. The DOFF is slightly
inferior to the LON attack in the TPR@0.1% FPR and TPR@1% FPR metrics, but the
reverse is true in the AUC metrics. According to the metrics definition, a low TPR at low
FPR represents more false identifications for member samples, while a high AUC represents
less false identifications for all samples. Therefore, we believe that DOFF is slightly less
capable of identifying members and slightly more capable of identifying nonmembers than
LON.
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Table 1 Attack performance of different attacks against ResNet-56 trained on three datasets. The boldface emphasizes the performance of the
DON attack.

Attack
method

TPR@0.1%FPR TPR@1%FPR AUC

CIFAR10 CIFAR100 CINIC10 CIFAR10 CIFAR100 CINIC10 CIFAR10 CIFAR100 CINIC10

LT 3.0%± 0.53% 5.9%± 1.89% 3.3%± 1.02% 10.1%± 0.76% 23.2%± 2.89% 11.5%± 1.23% 0.727 0.902 0.796

GL 0.1%± 0.05% 0.6%± 0.12% 0.2%± 0.07% 1.4%± 0.27% 2.0%± 0.32% 1.5%± 0.41% 0.689 0.768 0.694

LON 7.9%± 1.14% 18.7%± 2.12% 7.8%± 1.25% 19.2%± 0.89% 44.2%± 3.20% 23.1%± 2.18% 0.801 0.950 0.875

LOFF 0.2%± 0.05% 0%± 0.00% 0.1%± 0.04% 3.1%± 0.43% 0.4%± 0.10% 1.1%± 0.33% 0.661 0.679 0.645

DON 9.1%± 0.93% 20.4%± 2.29% 10.8%± 1.30% 20.4%± 0.67% 49.7%± 2.91% 27.6%± 1.67% 0.822 0.959 0.895

DOFF 7.5%± 0.67% 11.1%± 1.78% 8.4%± 1.47% 19.4%± 1.31% 40.7%± 2.23% 24.8%± 1.01% 0.818 0.950 0.890

Last but not least, DOFF is greater than the remaining three attacks (LOFF, GL and
LT) on all metrics. This implies that our DOFF attack is the state of the art among all the
attacks in the case of uncertainty in the size of the test set. Based on the above experimental
results, it is clear that all three attacks, LON, DON and DOFF, perform much better than
the other attacks when the number of shadow models is fixed. Therefore, our subsequent
experiments focus on the comparison between these three attacks.

Attack performance with fewer shadow models
In this subsection, we compared the attacks’ performance with fewer shadow models.
We conducted further experiments against the above three attacks with fewer shadow
models and the results are shown in Table 2. Specifically, the TPR @1%FPR metrics of
LON declined by 7.7%, 17.2%, and 10.3% on the three datasets, respectively. For the
same metrics, DON decreased by 6.8%, 16.0%, and 10.9%, and DOFF decreased by 6.4%,
13.8%, and 9.2%. The above results show that the performance of the DON and LON
attacks decreases rapidly and the performance of the DOFF attack decreases slowly as
the number of shadow models decreases. This means that the DOFF attack will be more
powerful than other attacks in some tasks where resources are severely constrained. A
reasonable guess is that the shadow models for LON and DON need to fit both the IN
model and the OUT model, whereas the shadow model for DOFF only needs to fit the
OUT model. Thus, as the number of shadow models decreases, the quality of the LON and
DON fits decreases more rapidly than the DOFF.

Data augmentation analysis
In addition to the quantity of shadow models, data augmentation may also affect the
attack performance. We varied the number of augmented samples and executed the attacks
separately and the results are shown in Table 3. As the number of data augmentations
is reduced from 8 to 1, the TPR @1%FPR metrics of LON on three datasets decrease by
7.3%, 12.0%, and 9.5%, respectively. For the same metric, DON decreased by 5.7%, 11.6%,
and 7.2%, while DOFF decreased by 3.6%, 6.5%, and 4.4%. Therefore, we can reason that
all attack performance decreases with the number of augmented samples, especially for
DOFF. A simple interpretation of the above results is that the model is trained not only
to minimise the loss of the original training samples, but also to minimise the loss of the

Xu and Tan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3269 20/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.3269


Table 2 Attack performance of LON, DON, and DOFF on different number of shadowmodels for three datasets.

Attack
method

TPR@0.1%FPR TPR@1%FPR AUC

CIFAR10 CIFAR100 CINIC10 CIFAR10 CIFAR100 CINIC10 CIFAR10 CIFAR100 CINIC10

LON(shadow_num=32) 7.9%± 1.14% 18.7%± 2.12% 7.8%± 1.25% 19.2%± 0.89% 44.2%± 3.20% 23.1%± 2.18% 0.801 0.950 0.875

LON(shadow_num=16) 6.8%± 1.29% 17.4%± 3.16% 6.1%± 1.54% 17.2%± 0.50% 40.6%± 2.81% 20.8%± 1.53% 0.788 0.942 0.862

LON(shadow_num=8) 4.7%± 0.33% 12.3%± 2.11% 4.8%± 0.66% 14.7%± 0.67% 34.1%± 2.97% 16.8%± 1.36% 0.767 0.927 0.840

LON(shadow_num=4) 3.3%± 0.50% 9.8%± 1.92% 3.3%± 0.58% 11.5%± 0.63% 27.0%± 2.75% 12.8%± 0.88% 0.737 0.904 0.806

DON(shadow_num=32) 9.1%± 0.93% 20.4%± 2.29% 10.8%± 1.30% 20.4%± 0.67% 49.7%± 2.91% 27.6%± 1.67% 0.822 0.959 0.895

DON(shadow_num=16) 7.1%± 0.82% 18.7%± 1.01% 8.9%± 0.94% 17.9%± 1.02% 44.8%± 1.96% 24.2%± 1.36% 0.807 0.951 0.883

DON(shadow_num=8) 5.8%± 0.58% 16.0%± 0.97% 8.0%± 0.64% 16.1%± 0.85% 39.0%± 1.71% 20.8%± 1.04% 0.787 0.940 0.864

DON(shadow_num=4) 5.1%± 0.42% 13.1%± 1.30% 5.4%± 0.45% 13.6%± 0.86% 33.7%± 0.97% 16.9%± 0.60% 0.764 0.926 0.840

DOFF(shadow_num=32) 7.5%± 0.67% 11.1%± 1.78% 8.4%± 1.47% 19.4%± 1.31% 40.7%± 2.23% 24.8%± 1.01% 0.818 0.950 0.890

DOFF(shadow_num=16) 6.1%± 0.51% 10.9%± 1.65% 7.1%± 1.24% 16.9%± 0.99% 36.1%± 1.84% 21.2%± 1.10% 0.802 0.941 0.874

DOFF(shadow_num=8) 4.4%± 0.61% 9.2%± 1.14% 4.9%± 1.16% 13.4%± 0.90% 28.9%± 2.15% 16.4%± 0.95% 0.776 0.926 0.850

DOFF(shadow_num=4) 4.0%± 0.45% 8.9%± 0.50% 4.5%± 0.67% 13.0%± 0.44% 26.9%± 1.80% 15.6%± 0.42% 0.744 0.901 0.814

Table 3 Attack performance of LON, DON, and DOFF on different number of augmented samples for three datasets.

Attack
method

TPR@0.1%FPR TPR@1%FPR AUC

CIFAR10 CIFAR100 CINIC10 CIFAR10 CIFAR100 CINIC10 CIFAR10 CIFAR100 CINIC10

LON(augment_num=8) 7.9%± 1.14% 18.7%± 2.12% 7.8%± 1.25% 19.2%± 0.89% 44.2%± 3.20% 23.1%± 2.18% 0.801 0.950 0.875

LON(augment_num=4) 7.1%± 1.29% 17.3%± 2.60% 6.8%± 1.04% 18.0%± 0.67% 41.4%± 2.42% 21.7%± 1.82% 0.793 0.946 0.867

LON(augment_num=2) 5.2%± 1.16% 15.9%± 2.57% 4.9%± 0.83% 15.3%± 0.53% 37.6%± 1.16% 17.4%± 0.60% 0.781 0.940 0.853

LON(augment_num=1) 3.8%± 0.76% 11.0%± 1.69% 3.3%± 0.59% 11.9%± 0.59% 32.2%± 1.49% 13.6%± 1.09% 0.763 0.929 0.834

DON(augment_num=8) 9.1%± 0.93% 20.4%± 2.29% 10.8%± 1.30% 20.4%± 0.67% 49.7%± 2.91% 27.6%± 1.67% 0.822 0.959 0.895

DON(augment_num=4) 7.7%± 0.88% 20.0%± 1.84% 9.3%± 0.76% 19.3%± 1.02% 47.2%± 2.29% 25.9%± 1.55% 0.818 0.956 0.892

DON(augment_num=2) 6.2%± 0.63% 17.8%± 2.19% 7.9%± 1.01% 17.0%± 0.74% 43.1%± 1.89% 23.4%± 1.05% 0.814 0.951 0.886

DON(augment_num=1) 5.1%± 0.58% 11.8%± 1.74% 6.2%± 1.18% 14.7%± 1.08% 38.1%± 2.13% 20.4%± 0.76% 0.806 0.944 0.878

DOFF(augment_num=8) 7.5%± 0.67% 11.1%± 1.78% 8.4%± 1.47% 19.4%± 1.31% 40.7%± 2.23% 24.8%± 1.01% 0.818 0.950 0.890

DOFF(augment_num=4) 8.0%± 0.73% 10.0%± 1.57% 7.8%± 1.39% 18.6%± 1.16% 38.5%± 1.92% 24.1%± 1.03% 0.816 0.948 0.888

DOFF(augment_num=2) 7.8%± 0.85% 10.0%± 2.30% 7.4%± 1.36% 18.1%± 0.71% 36.3%± 2.08% 22.1%± 1.31% 0.813 0.945 0.884

DOFF(augment_num=1) 6.1%± 0.74% 9.9%± 1.45% 7.0%± 1.78% 15.8%± 1.10% 34.2%± 1.92% 20.4%± 1.28% 0.809 0.941 0.880

augmented version of the samples (Carlini et al., 2022). More augmented samples means
a closer approximation to the actual model minimum loss, and also means less error in
fitting the output distribution.

ABLATION STUDY
In this section, we analyze the contributions of individual components to the effectiveness
of DSMIM-MIA. Specifically, we examine the separate impacts of knowledge distillation
and the inference model. Furthermore, we evaluate three additional factors: (1) the degree
of model overfitting, (2) the target model architecture mismatch between the target and
shadow models, and (3) the inference model architecture.
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Table 4 Performance of four combined attacks on the CIFAR10 dataset.

Attack combination TPR@0.1%FPR TPR@1%FPR AUC

LT+HT 7.9%± 1.14% 19.2%± 0.89% 0.801
KD+HT 7.7%± 1.01% 18.1%± 0.84% 0.649
LT+IM 8.0%± 0.91% 19.8%± 0.78% 0.810
KD+IM 9.1%± 0.93% 20.4%± 0.67% 0.822

Individual component impact
To understand the role of each component, we compare the inference model against
hypothesis testing, and knowledge distillation against label-based training. LetKD represent
knowledge distillation, LT represent label training, HT represent hypothesis testing, and
IM represent the inference model. By combining these components, we construct four
variants of the attack LT+HT ,KD+HT ,LT+ IM ,KD+ IM .

We evaluate these combinations on the CIFAR10 dataset and results are presented in
the Table 4. Interestingly, we observe that knowledge distillation has both pros and cons.
On the one hand, knowledge distillation weakens the ability of the OUT model to mimic
the target model’s training process due to its specialized loss function (KL divergence),
as evidenced by the reduced performance of KD+HT compared to LT +HT . On the
other hand, knowledge distillation transfers part of the information related to membership
from the target model and enhances the correlation between the OUT model’s output and
membership, which can be confirmed by the superior performance of KD+ IM compared
LT+IM . Overall, the advantages of knowledge distillation outweigh its drawbacks, because
the performance of KD+ IM is better than that of LT+HT .

Furthermore, we observe that the inference model consistently improves all evaluation
metrics, regardless of whether it is trained on ground-truth labels or distilled outputs.
To better understand this improvement, we analyze the distribution of membership
scores produced by the hypothesis testing method and the inference model, as shown in
Fig. 4. Specifically, 98.5% of member samples evaluated by the inference model obtain
membership scores greater than 0.6, whereas 31.1% of members evaluated via hypothesis
testing fall below this threshold. This observation aligns with our design intuition: the
inference model outperforms the hypothesis test in identifying low self-influence members
due to the inference model’s stronger representational capability. In addition, while the
inference model does improve the membership scores of some nonmember samples,
the proportion of nonmembers in the very-high-score regions decreases compared to
members. This shift in distribution provides an explanation for the inference model’s
superior performance as measured by the TPR at low FPR metric.

Training size impact
In the above experiments, we fixed the size of the training set for eachmodel for comparative
fairness. In this section, we will resize the training set and test the performance of DON
and DOF attacks.

To obtain more training set samples, we adopt the CINIC10 dataset as the evaluation
dataset, which has 270,000 images and is sufficient to support experiments with many
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Figure 4 Histogram of membership scores for different methods on the CIFAR-10 dataset. Each bin
shows the count of member and nonmember samples separately. (A) Inference Model (Neural Network).
(B) Hypothesis Testing.

Full-size DOI: 10.7717/peerjcs.3269/fig-4

Table 5 Impact of overfitting on DON’s attack performance on theWideResNet-32 target model
trained on CINIC-10.

Training size Train test gap TPR@0.1%FPR TPR@1%FPR AUC

10,000 0.355 8.9%± 0.77% 27.8%± 1.35% 0.891
15,000 0.301 13.6%± 1.23% 30.5%± 1.61% 0.879
25,000 0.240 14.1%± 1.08% 26.1%± 1.04% 0.854
40,000 0.205 12.2%± 0.89% 21.7%± 1.28% 0.811

training set samples. Here, we fix the model architecture WideResNet-32 and vary the
number of training samples for the target model, keeping the same number of training
samples for the target model, the reference model, and the shadow model.

As shown in Tables 5 and 6, as the training size of the target model increases, the train-
test-gap of the model gradually decreases, weakening the attack’s ability to distinguish
between members and nonmembers as a whole (AUC metrics decrease). However, the
TPR at a low FPR metric remains relatively high with decreasing model overfitting. Under
a training size of 40,000 and a well-trained target model, the DON attack achieves a 12.2%
TPR@0.1%FPR metric, and the DOF attack achieves an 8.6% TPR@0.1%FPR metric. This
high metric indicates that our attack can identify many membership samples at low error
rates, even in well-trained models, and can be applied to models with different levels of
overfitting.

Target model architecture impact
In previous experiments, we assumed the adversary knew the target model structure and
aligned the reference and shadow model architectures with the target model architecture.
However, the adversary may have difficulty knowing the target model structure in a
real-world environment. Thus, similar to Liu et al. (2022), Carlini et al. (2022), we change
the architecture of the target model, the reference model, and the shadow model while
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Table 6 Impact of overfitting on DOFF’s attack performance on theWideResNet-32 target model
trained on CINIC-10.

Training size Train test gap TPR@0.1%FPR TPR@1%FPR AUC

10,000 0.355 8.4%± 1.64% 27.0%± 0.94% 0.892
15,000 0.301 12.2%± 1.48% 26.9%± 1.47% 0.873
25,000 0.240 10.5%± 1.72% 24.7%± 0.87% 0.850
40,000 0.205 8.6%± 1.35% 20.7%± 1.23% 0.811

keeping the architecture of the reference model and the shadow model aligned since both
models are entirely under the control of the adversary locally.

As shown in Fig. 5, our attack performs best when the target and shadowmodel structures
are aligned. Furthermore, when the target model structure is similar to the shadow model
structure (e.g., ResNet-56 and WideResnet-32), the performance of our attack is similar
to that under the same structure for both. Regarding target and shadow models with
entirely different structures, our attack also performs well if the shadow model size is
much larger than the target model (e.g., WideResnet-32 vs. MobileNetV2). In contrast,
if the shadow model size is much smaller than the target model, the performance of our
attack becomes relatively worse. One possible reason is that larger models may have more
complex structures and can fit smaller ones with different structures, while the reverse is
untrue.

Inference model architecture impact
In our previous experiments, we employed a 4-layer MLP as an inference model. However,
since the input features consist of only a few low-dimensional statistics, it is unclear whether
such a complex model is necessary to capture the decision boundary effectively. To further
assess the impact of model complexity, we organized three additional experiments with
simpler inference model architectures: a 2-layer MLP with 32 hidden units, logistic
regression, and the decision tree. We denote the 4-layer MLP asMLP4, the 2-layer MLP as
MLP2, logistic regression as LR, and the decision tree as DT . Both the DSMIM ONLINE
andDSMIMOFFLINE algorithms were executed with each of these inferencemodels. Since
DSMIM ONLINE uses five statistics as input features, we denote this setting as dim= 5,
whereas DSMIM OFFLINE uses three statistics as input features, denoted as dim= 3.

The experimental results are presented in Table 7. The MLP-based models consistently
outperform the non-MLP models in both TPR@1%FPR and AUC metrics. This indicates
that deep neural networks are more capable of capturing subtle nonlinear relationships
among features, thereby achieving more accurate membership predictions with low error
rates. Furthermore, MLPs achieve substantially higher TPR@0.1%FPR on CIFAR-10,
comparable results on CINIC-10, and noticeably lower performance on CIFAR-100. These
mixed results suggest that there is no consistent pattern linking adversary performance
at very low false positive rates to model complexity. Interestingly, although MLP4 has
significantly more parameters than MLP2, the performance gains are relatively modest.
This implies that the benefits of increasing model capacity are constrained by the low
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Figure 5 Impact of structural differences between target and shadowmodels trained on the CIFAR10
dataset. (A) Hows the values of TPR@1%FPR on the CIFAR-10 dataset for the DISTILL ONLINE
(DON) attack under varying choices of target and reference model structures. (B) Shows the values of
TPR@1%FPR on the CIFAR-10 dataset for the DISTILL OFFLINE (DOFF) attack under varying choices
of target and reference model structures. (C) Shows the AUC values on the CIFAR-10 dataset for the DON
attack under varying choices of target and reference model structures. (D) Shows the AUC values on the
CIFAR-10 dataset for the DOFF attack under varying choices of target and reference model structures.
Together, (A–D) Illustrate how varying the structural choices of the target and reference models influences
the performance of DON and DOFF attacks, across both TPR@1%FPR and AUC metrics.

Full-size DOI: 10.7717/peerjcs.3269/fig-5

Table 7 Comparison of attack performance using different inference model architectures under DON (dim= 5) and DOFF (dim= 3).

Attack method TPR@0.1%FPR TPR@1%FPR AUC

CIFAR10 CIFAR100 CINIC10 CIFAR10 CIFAR100 CINIC10 CIFAR10 CIFAR100 CINIC10

MLP4(dim=5) 9.1%± 0.93% 20.4%± 2.29% 10.8%± 1.30% 20.4%± 0.67% 49.7%± 2.91% 27.6%± 1.67% 0.822 0.959 0.895

MLP2(dim=5) 9.3%± 0.42% 23.2%± 2.41% 10.6%± 1.04% 19.9%± 0.76% 49.1%± 2.02% 27.1%± 0.89% 0.819 0.958 0.893

LR(dim=5) 6.7%± 0.29% 23.1%± 3.21% 10.6%± 0.82% 17.3%± 0.89% 47.8%± 2.03% 26.7%± 0.74% 0.803 0.956 0.891

DT(dim=5) 6.3%± 0.41% 22.4%± 2.73% 10.0%± 0.80% 16.7%± 0.86% 47.4%± 2.13% 25.6%± 0.99% 0.798 0.955 0.889

MLP4(dim=3) 7.5%± 0.67% 11.1%± 1.78% 8.4%± 1.47% 19.4%± 1.31% 40.7%± 2.23% 24.8%± 1.01% 0.818 0.950 0.890

MLP2(dim=3) 8.2%± 0.38% 12.0%± 2.14% 8.8%± 0.87% 19.2%± 1.14% 39.9%± 2.10% 24.4%± 1.32% 0.816 0.949 0.887

LR(dim=3) 7.2%± 0.81% 14.4%± 1.02% 9.1%± 1.01% 18.1%± 0.71% 39.2%± 1.72% 24.1%± 1.46% 0.806 0.948 0.886

DT(dim=3) 7.1%± 0.91% 13.4%± 1.10% 8.8%± 1.03% 17.9%± 0.91% 38.9%± 1.87% 23.6%± 1.20% 0.804 0.947 0.884
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dimensionality of the input features, thus limiting the advantages of hyperparameterization
in this case.

CONCLUSIONS
In this work, we revealed a key limitation of LiRA and similarmembership inference attacks:
their effectiveness is biased toward samples with high self-influence, leading to degraded
performance on low self-influence members. We formally and empirically demonstrated
that LiRA’s membership scores are positively correlated with sample self-influence, which
fundamentally restricts its generality. To address this issue, we propose a novel attack
framework, DSMIM-MIA, which aggregates membership features through distilled shadow
models and predicts membership by the inference model, ultimately removing the bias
of low self-influence samples. The distillation process transfers membership-relevant
signals from the target model to shadow models without requiring ground-truth labels,
enabling more scalable shadow model training. The inference model adaptively learns the
relationship between shadow model output and membership from the data, effectively
overcoming the self-influence bias inherent in hypothesis testing. In addition, extensive
experiments across multiple datasets and model architectures demonstrate that our
DSMIM-MIA outperforms state-of-the-art attacks, particularly in identifying low self-
influence members, thereby providing a more comprehensive assessment of training data
privacy. In future work, we plan to explore alternative definitions of sample influence and
their impact on membership inference, aiming to better understand and quantify data
vulnerability in modern machine learning systems.
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