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ABSTRACT
Background: Successful treatment for pancreatic cancer depends on timely and
precise diagnosis because the disease has a low chance of survival. The critical
challenge of effectively distinguishing between tumorous and non-tumorous
pancreatic tissues in computed tomography scans is pancreatic cancer classification.
Using detailed cross-sectional images provided by computed tomography scans,
radiologists and oncologists can examine the properties and morphology of the
pancreas. Furthermore, deep learning algorithms can obtain precise image analysis
and in-depth diagnostic knowledge for therapeutic use.
Methods: This research proposes an integrated artificial intelligence system based on
deep learning to segment and classify pancreatic cancer. The tumor-affected region
on computed tomography scans can be identified using an Enhanced UNet model
segmentation technique. The Modified ResNext model is used to classify pancreatic
cancer. Ultimately, the modified ResNext model’s hyper-parameter tuning is
achieved using the tunicate swarm optimization algorithm, which helps to increase
classification performance. The proposed deep learning models aim to create a
reliable and accurate approach to enhance pancreatic cancer diagnosis performance.
A benchmark computed tomography image database was used to test the suggested
method’s experimental results.
Results: The experimental results show that the proposed Modified ResNext model
effectively classifies the pancreatic cancer images into benign and malignant stages
with a maximum accuracy of 99.85%, sensitivity of 99.76%, specificity of 99.72%,
precision of 99.54%, F-measure of 99.23%, it offers huge possibilities and safety in the
automated diagnosing of benign and malignant malignancies. The proposed
Enhanced UNet model correctly segments the accurate region of the pancreatic
tumor with a higher Intersection Over Union of 96.04% and Dice Similarity
Coefficient (DSC) of 95.87%. A comprehensive analysis of the results showed that the
proposed strategy performed favorably compared to more cutting-edge techniques.
The pancreatic cancer classification and tumor segmentation performance using the
proposed integrated model was excellent, indicating its ability to detect pancreatic
cancer effectively and precisely.
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INTRODUCTION
Pancreatic cancer is one of the most aggressive malignancies, with a poor prognosis and a
high mortality rate due to its late-stage diagnosis and limited treatment options
(JagadeeswaraRao & Sivaprasad, 2024; Li et al., 2024). In 2020, pancreatic cancer
accounted for approximately 496,000 cases worldwide, with 466,000 reported deaths,
making it the seventh leading cause of cancer-related mortality globally (Qu et al., 2024;
Shen et al., 2024). The disease is often asymptomatic in its early stages, leading to late
detection when therapeutic interventions are less effective (Zhang et al., 2024). The
absence of reliable early diagnostic tools significantly contributes to high mortality rates,
necessitating the development of advanced, automated systems for early detection and
classification (Juneja et al., 2024). Traditional imaging techniques, such as computed
tomography (CT) scans, are widely used for pancreatic cancer diagnosis (Saxena &
Saxena, 2023). However, about 40% of tumors smaller than 2 cm remain undetected using
conventional CT imaging techniques, making early detection a major clinical challenge
(Yugandhar & Naidu, 2024). Consequently, the development of computer-aided diagnosis
(CAD) systems powered by deep learning can significantly enhance the ability to detect
pancreatic cancer at an early stage, thereby improving survival rates (Gunesch et al., 2022;
Sonnad et al., 2025).

Recent advancements in artificial intelligence (AI) and deep learning have significantly
improved medical image analysis, offering promising solutions for early cancer detection
and diagnosis (Li et al., 2024). Convolutional neural networks (CNNs), in particular, have
demonstrated exceptional performance in medical imaging tasks such as tumor
segmentation, classification, and prediction (Gao et al., 2022b). AI-driven computer-aided
diagnosis (CAD) systems have the potential to enhance radiologists’ ability to detect
malignant lesions by analyzing large-scale imaging data with high precision and
consistency (Boekestijn et al., 2024). These systems can automatically extract critical
features from CT images, reducing the likelihood of misdiagnosis and minimizing human
errors (Dzemyda et al., 2024). Moreover, artificial intelligence (AI) models can identify
subtle patterns and anomalies that may not be apparent to the human eye, enabling more
accurate and early-stage detection of pancreatic cancer (Karar, El-Fishawy & Radad, 2023;
Qiao et al., 2022). Despite these advancements, existing AI-based approaches still face
challenges, such as class imbalance, lack of generalizability, and limitations in
distinguishing between malignant and benign tumors, necessitating further research into
more robust and efficient deep learning architectures for pancreatic cancer detection
(Zavalsız et al., 2023; Dinesh et al., 2023). Additionally, existing deep-learning approaches
for pancreatic cancer diagnosis suffer from limitations such as poor segmentation
accuracy, feature loss, and computational inefficiency (Vishnudas & King, 2023; Chhikara,
Goel & Rathee, 2025). To address these challenges, we propose a hybrid deep learning
framework integrating Enhanced U-Net (EUNet) for segmentation and Modified ResNeXt
(MResNeXt) for classification. The proposed EUNet model surpasses conventional U-Net
models in segmentation accuracy, making it particularly effective for localizing pancreatic
tumor regions with high precision. In our proposed hybrid framework, MResNeXt is

Dodda and Muneeswari (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3263 2/43

http://dx.doi.org/10.7717/peerj-cs.3263
https://peerj.com/computer-science/


leveraged to distinguish malignant from benign pancreatic tumors, ensuring robust
classification performance.

The EUNet-MResNeXt framework provides an end-to-end deep learning solution that
integrates precise segmentation and high-accuracy classification. This hybrid approach not
only improves diagnostic reliability but also offers a more computationally efficient
solution compared to existing methods. The combination of advanced segmentation
techniques in EUNet and the powerful classification capabilities of MResNeXt ensures that
our proposed model achieves superior performance in pancreatic cancer detection and
classification. Through extensive experiments, our model has demonstrated improved
segmentation accuracy, classification robustness, and computational efficiency, making it a
valuable tool for early pancreatic cancer diagnosis.

Problem statement
The accuracy of existing models, such as the basic UNet, SegNet, and DenseNet models,
may be decreased since they cannot identify subtle and complicated features specific to
pancreatic cancer. Conventional CNNs are helpful but frequently need more structural
flexibility or depth to assess such complex data fully.

The degree of feature discrimination needed to concentrate on essential regions of
interest may not be applied by the existing standard models for pancreatic tumor
segmentation. This may result in a large number of false positives or false negatives,
particularly when attempting to differentiate between benign and malignant pancreatic
diseases.

Several accurate models are computationally costly, which makes them unsuitable for
large-scale or real-time clinical applications. Additionally, they lack the processes
necessary to generalize successfully when trained on small pancreatic cancer datasets.

We have created the Modified ResNext (MResNext) model for pancreatic cancer
classification and the Enhanced UNet model (EUNet) for pancreatic cancer segmentation
to address the issues above with the existing models.

Motivation
The size, shape, and texture of pancreatic cancer cells vary greatly depending on the
imaging modality. Because of this, it is challenging for standard models to depict the
distinctive features of malignant tissues accurately. The proposed models have a
high segmentation accuracy and successfully capture the unique features of malignant
tissues.

Because pancreatic cancer is aggressive, even minor classification errors might cause a
delay in diagnosis or result in inappropriate treatment choices. Therefore, increasing
classification robustness and precision is crucial. The proposed classification model
reduces false positives and negatives while achieving excellent precision.

Because pancreatic cancer imaging datasets are frequently smaller and unbalanced, it
can be difficult for models to identify subtle differences between early and advanced stages
and generalize across various patient populations. Our proposed approach effectively
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detects both early and advanced stages of pancreatic cancer by capturing the complex
features of the tumors and performing well on smaller datasets.

Effectiveness of proposed research
To overcome these particular difficulties, the Modified ResNeXt model (MResNeXt)
incorporates architectural enhancements that increase feature extraction and
facilitate improved generalization on small, intricate datasets. ResNeXt can more
effectively identify complex patterns in the data by employing aggregated
transformations, which are essential for distinguishing minor variations between benign
and malignant tissues. MResNeXt is more versatile for classifying pancreatic cancer even
when data is sparse or biased toward one category since it can accommodate various
channel sizes and employ group convolutions. The proposed MResNeXt model addresses
traditional models’ drawbacks regarding feature extraction, efficiency, and scalability,
offering a viable way to enhance the accuracy and robustness of pancreatic cancer
classification.

For the segmentation of pancreatic tumors, the Enhanced UNet (EUNet) model with
Wide Context (WC) and Residual Extended Skip (RES) blocks provide several significant
advantages. These changes are intended to address the difficulties of obtaining contextual
information and minute features in intricate tumor locations, which are essential for
precise pancreatic cancer segmentation. By keeping vital information at several levels, the
combination of RES andWC blocks in the suggested EUNet segmentation model allows to
segment tumors with greater accuracy and precision. As a result, the segmented regions
have more distinct boundaries and fewer false positives and negatives. The EUNet model
can sustain high performance without experiencing an unnecessary increase in computing
complexity thanks to the RES and WC blocks.

Main contribution of the research
. To improve the performance of pancreatic diagnosis, a deep learning-based integrated
artificial system is proposed in this research.

. A novel pre-processing pipeline combines Gaussian and median filtering for effective
noise elimination and introduces the haze-reduced local-global (HRLG) technique for
enhanced contrast in pancreatic CT images.

. We propose an Enhanced UNet (EUNet) model with WC and RES blocks, improving
tumor boundary segmentation in pancreatic cancer imaging. Our model achieves higher
segmentation accuracy than conventional U-Net, ensuring precise tumor localization,
which enhances classification performance.

. Advanced tumor features, including higher-order, texture, shape, and intensity features,
are extracted using the DenseNet-169 model, enabling robust tumor characterization.

. A novel Modified ResNeXt model, equipped with a standard deviation-based regularizer
(SD-Reg) and optimized hyper-parameters using the Tunicate Swarm Optimization
algorithm (TSOA), is proposed for classifying pancreatic tumors as benign or malignant.
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. The proposed system is validated on a benchmark pancreatic cancer CT image database,
demonstrating superior segmentation and classification performance, supported by high
Dice Similarity Coefficient (DSC), Intersection over Union (IoU), accuracy, and
precision metrics.

Organization of the research
The article’s structure is as follows: related prior works are covered in ‘Related Prior
Works’. ‘Proposed Methodology’ presents the proposed hybrid deep learning models and
the overall block diagram of the proposed system. In ‘Result and Discussion’, the
experimental results of the proposed approach in both quantitative and qualitative ways
are compiled and discussed. ‘Conclusion’ concludes with recommendations and a
discussion of future directions.

RELATED PRIOR WORKS
This section reviews recent methods for segmenting and classifying pancreatic cancer
using machine learning and deep learning. Table 1 shows the summary of existing
methods for pancreatic tumor classification on CT images: techniques, performance,
advantages, and limitations. A novel radiomics-based CAD method for CT images was
created by Gai et al. (2022). First, the image noise is reduced and filtered by applying an
image pre-processing algorithm. Then, the tumor region is segmented using the modified
region growing algorithm. After that, the optimal radiomics features are computed and
selected; then, the detected pancreatic tumor is classified by training and testing the
SVM model.

The local variance-driven level set model was created by Shu & Yuan (2023),
dynamically mixes the boundary information and the local variance difference for medical
image segmentation. The local variance-driven level set model outperforms existing level
set techniques in terms of accuracy and noise resistance. However, because of the intricate
energy function optimization, the method is computationally costly, and its performance
may deteriorate when weak boundary regions or very heterogeneous textures are involved.

For pancreatic cancer classification, a new deep learning-based technique was created by
Althobaiti et al. (2022). This approach aims to identify and categorize pancreatic tumors
from non-tumors. Adaptive window filtering (AWF) is used in this technique to eliminate
noise. The image segmentation procedure also uses Kapur’s thresholding technique with
Sailfish Optimizer. Additionally, feature extraction utilizing the capsule network
(CapsNet) is derived to provide a set of feature vectors. A political optimizer (PO) with a
cascade forward neural network (CFNN) is also used for categorization.

Lakkshmanan & Ananth (2022), created a deep learning-based method for classifying
pancreatic cancer. Image pre-processing using the bilateral filtering (BF) approach is
mainly used to remove noise. Additionally, the non-interactive GrabCut (NIGC) method
is used to segment images. Then, a helpful set of feature vectors is produced using the
ResNet152 model as a feature extractor. The red deer optimization algorithm
(RDA)-tuned back-propagation neural network (BPNN), or RDA-BPNN model is used
for pancreatic tumor classification.
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Khdhir, Belghith & Othmen (2023) created the ALO-CNN-GRU model for pancreatic
tumor detection. This approach aims to segment and classify the existence of cancerous
tissue. The segmentation of pancreatic cancer region is performed using the Antlion
optimization (ALO) technique. The CNN and GRU classifiers are used to classify the
pancreatic cancer. Zhou et al. (2023) used a dual branch coding network (DB-Net) for
segmentation. The semantic features of the pancreas and its surroundings are extracted
using one branch, and the complex pancreas features are extracted using other branches in

Table 1 Summary of existing methods for pancreatic tumor classification on CT images.

Reference Year Method Results Advantage Disadvantage

Gai et al.
(2022)

2022 SVM Accuracy: 72.7% (i) SVMs have relatively few
hyperparameters to tune during
training.

(I) It produces less accuracy for classification

Sensitivity: 60.6% (ii) It performs well in high-dimensional
processes during classification.

(ii) It can be computationally intensive,
mainly when dealing with large datasets.

Specificity:81.8%

Althobaiti
et al. (2022)

2022 CFNN Accuracy: 98.40% (i) It significantly decreases the trainable
parameters.

The segmentation performance has
decreased. Improving classification
performance requires a deep-learning
model for segmentation

Sensitivity: 98.73% (ii) Accurate and fast diagnosis is
performed with this approach.

Specificity: 97.75%

F1-score: 98.82%

Lakkshmanan
& Ananth
(2022)

2022 RDA-BPNN Accuracy: 98.51% A significant level of specificity and
sensitivity is produced, along with
accurate results.

(i) In real-time applications, it lowers the
classifiers’ quality.

sensitivity: 98.54% (ii) The network model’s reliability and
interpretability are both lacking

Specificity: 98.46%

F1-score: 98.23%

Khdhir,
Belghith &
Othmen
(2023)

2023 CNN-GRU Accuracy: 99.92% (i) It improves classification accuracy and
lessens the over-fitting issue.

Training takes a lot of time and is a highly
complex procedure.

Precision: 99.64% (ii) This approach correctly classifies
higher-resolution images.

F1-score: 99.72%

Recall: 99.53%

Zhou et al.
(2023)

2023 DN-Net Precision: 89.98% It generates precise results for pancreatic
segmentation.

(i) The model’s overall complexity is
improved.

Recall: 87.08% (ii) Especially when working with limited
training data, there is a chance of
over-fitting due to the increased model
complexity.

F1-score: 88.07%

Vaiyapuri
et al. (2022)

2022 Auto
encoder
(AE)

Accuracy: 99.35% (i) Auto encoders are capable of reducing
the dimensionality of features. It does
not require any dimensionality
reduction technique.

(i) It has several hyperparameters; finding the
optimal set of hyperparameters can be
challenging and may require extensive
experimentation.

Sensitivity: 99.35% (ii) It produces high classification accuracy (ii) It increases the complexity of the network

Specificity: 98.84%
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the encoder part. Next, using the fine-grained enhancement network (FE-Net), pancreatic
tumors are segmented into different segments within the organ.

Chaithanyadas & King (2025) created an automated deep learning network models for
pancreatic cancer segmentation and classification. To remove unwanted noise, the raw
input images are first pre-processed using a hybrid CLAHE and median filter. Second,
ASMO-assisted IAF-Unet is used to apply semantic segmentation to filtered images.
Segmented images are processed by the CNN model to the point of radiomic feature
extraction. In addition, deep features are extracted using cascade-net. Lastly, pancreatic
tumor identification and classification are done using an Ensemble Learning-based
Classifier with Cascade-net and CNN (ELC-Casnet-CNN) that uses AdaBoost, Random
Forest, and Auto-Encoder.

An effective deep learning framework was presented byNadeem et al. (2025). The tumor
region of pancreatic cancer is segmented using UNet and watershed segmentation. Using a
proposed reduced 11-layer AlexNet model, the system first classifies the identified tumor
as a normal or pancreatic tumor before determining whether it is benign, pre-malignant,
or malignant.

Shu et al. (2023) developed a reinforcement learning-based balanced distribution active
learning (BDAL) framework for MRI cardiac multi-structure segmentation. From a vast
number of unlabeled datasets, the deep Q-network architecture can train an efficient policy
to choose a few sample and instructive images to be tagged. The agent can find
representative and instructive images for annotation by using the shape attributes of the
images and the balance of various class distributions to create new state and action
representations. This BDAL technique offers an agent to enhance active learning’s capacity
to choose images in order to increase segmentation accuracy. Additionally, tests and
findings demonstrate that this BDAL approach works noticeably better than all baselines
and alternative AL-based techniques. However, BDAL’s scalability in practical applications
is limited by its reliance on the quality of the initial labeled data, which makes it susceptible
to subpar annotations. Additionally, its computational complexity rises with the size of
datasets.

Complex medical imaging tasks have recently been demonstrated to be successfully
handled by attention-based systems. For instance, in oral multi-pathology segmentation
tasks, the lead-assisting backbone attention network has proven to be effective (Li et al.,
2025). Likewise, the interpretability of deep models in whole slide image analysis has
improved thanks to multiple instance learning (MIL) techniques (Zhang et al., 2025).
These findings aid in the creation of integrated deep learning models for the segmentation
and classification of pancreatic tumors.

Research gaps
Most studies have focused on improving prediction accuracy with traditional classification
methods and other feature selection approaches. In contrast, some of the studies produce
results with noise, which has a significant impact on the model’s accuracy. Similarly, the
number of features in the dataset significantly impacts both the computational complexity
and accuracy of the machine-learning process. Consequently, in any machine learning
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process, selecting appropriate features for classification is essential. The proper
classification approach still needs to be significantly improved to choose the relevant subset
of features that contribute to more reliable and accurate predictions, even though various
classification methods have previously been proposed by researchers for the datasets
provided. To significantly reduce the computational complexity of the proposed classifiers,
the classification technique has to identify a minimal number of critical features that could
help achieve accurate classification. Moreover, improved accuracy requires an efficient
classification technique. The proposed integrated deep learning methodology for
pancreatic segmentation and classification aims to address the shortcomings of existing
methods.

Conventional deep learning models for pancreatic cancer classification (e.g., standard
ResNet, VGG, Xception) struggle to capture both local and global features effectively. They
may not focus on critical region-specific details necessary for accurate benign and
malignant classification. Many existing models fail to handle the challenges of small,
indistinct pancreatic tumor regions, resulting in poor Dice similarity coefficients (DSC)
and Intersection over Union (IoU) scores. Pancreatic tumors have high inter-patient
variability, making it difficult for traditional models to generalize well across diverse
datasets. Many deep learning models require high computational resources, making them
impractical for real-time or clinical applications. Lightweight and optimized architectures
are needed to balance accuracy and computational cost.

PROPOSED METHODOLOGY
The main focus of this proposed research is the use of images from the pancreatic cell
tumor classification dataset, which includes examples of both benign and malignant stages.
A novel integrated deep learning-based approach is applied at every stage of image
processing with the assistance of the Chapter 2 survey. Figure 1 displays the proposed
methodology’s block diagram.

As pre-processing sets the image prepared for subsequent processing, it is a crucial stage
in any categorization process. During the pre-processing phase, hybrid filters like Gaussian
and median are used to eliminate unwanted noise from the input photos, and the HRLG
approach is used to improve the contrast of the images. Then, the segmentation approach
is used to remove the tumor’s interesting region from CT images. The EUNet model is
utilized in the segmentation step to partition the tumour area precisely to improve
classification accuracy. To extract the essential tumor features, such as higher-order,
texture, shape, and intensity features, the segmented images are sent to the DenseNet-
169 model. Afterwards, the MResNext uses the features gathered from the pancreas sample
to categorize the tumor cells as benign or malignant. The TSOA algorithm is used to
optimize the classification network’s hyperparameters.

Database
In this research, the experimental evaluation is performed using a publicly available dataset
from Kaggle titled “Pancreas Cancer Segmentation” (https://www.kaggle.com/datasets/
piyansusaha/pancreas-cancer-segmentetion/data). A total of 10,870 abdomen CT scans in
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Figure 1 Schematic representation of the end-to-end pancreatic cancer analysis pipeline. Full-size DOI: 10.7717/peerj-cs.3263/fig-1
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DICOM and PNG formats make up this dataset, which has been carefully selected for the
purpose of segmenting and classifying pancreatic cancers. The 512 × 512 pixel spatial
resolution of each CT picture comes from contrast-enhanced abdominal scans. Both
benign and malignant pancreatic tumor cases are included in the dataset, which offers a
solid foundation for developing deep learning models for tasks involving binary
classification and segmentation. CT scans from patients ranging in age from 25 to 80 are
included in the dataset. The proportion of male and female patients is comparatively equal.
A variety of sizes, shapes, and contrast levels are seen in tumor instances, which indicate
both: Clearly defined tumor boundaries (easy cases), In order to facilitate supervised
learning, tumors that are diffuse, low contrast, or irregularly shaped (difficult cases) are
labeled as either benign or malignant. The very low number of instances of advanced-stage
pancreatic cancer should be noted, too, since this could affect the generalization of models
for late-stage diagnosis. Both 2D slice-level images and related segmentation masks are
included in the collection. Although the dataset is curated at the slice level rather than as
whole 3D volumes, each CT scan normally has numerous axial slices (around 80 to 150
slices per volume). Segmentation masks use binary labeling for tumor areas, where
background (0) and tumor (1) are represented by pixel values.

Pre-processing
Two image processing techniques are performed in the pre-processing: noise removal and
contrast enhancement. The resulting images after pre-processing are shown in Fig. 2.

Noise removing
Pre-processing is the first step in the detection of pancreatic cancer. It is used to eliminate
unnecessary data in datasets. Unrelated noises impacting the computed tomography
images slow the image analysis process. The CT images are affected mainly by speckle
noises resulting from internal and exterior sources. Therefore, in CT pancreatic images, a
hybrid filter reduces the noise. The combination of Gaussian and median filters is used in
the present research. The Gaussian filter reduces residual differences in regional intensities
and noise in the CT scans. Using the average value of surrounding pixels propagated
according to Gaussian probability, the Gaussian filter replaces the noisy pixels in the
images. Conversely, the median filter will return the grey level to each pixel and may be
able to successfully eliminate spikey noises without affecting the image’s sharp edges. The
proposed approach uses noise-reduced images to segment the pancreatic cancer images.

The Gaussian filter equation is:

G rð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2
p r2

e2pr2
(1)

where the standard deviation is represented r, the distribution’s mean is assumed to be 0.
The median filter equation is:

ĝ m; nð Þ ¼ median s;tð Þ2Tmn
f s; tð Þf g: (2)

Here f s; tð Þ represents residual pixel removal.
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The enhanced formula for CT image pre-processing is:

ĝ m; nð Þ ¼ median s;tð Þ2Tmn
G rð Þf g: (3)

Here, each image’s pixel dimension is depicted as r. Each image has m as its denotation.

Contrast enhancement
Conventional haze removal methods seek to restore an image to a high level of
quality by varying the saturation and contrast (Jabeen et al., 2023). The haze
reduction process can significantly improve the scene’s visibility in the image. A
hybrid method of local-global transformation and haze removal is used for contrast
enhancement.

Consider M as a whole image database with N total images. The original image is
described as I x; yð Þ with dimensional N × M × 3, and the final enhanced image is denoted
as CF x; yð Þ. We first performed a haze reduction approach to the original image using the

Figure 2 Visual representation of CT image pre-processing stages: noise removal and contrast
enhancement. Full-size DOI: 10.7717/peerj-cs.3263/fig-2
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dark channel as the basis. The following is the mathematical definition of the haze
reduction procedure:

Q xð Þ ¼ y xð Þt xð Þ þW 1� t xð Þð Þ (4)

where the observed intensity value is denoted as Q, the scene radiance is depicted as Y, the
transmission map is denoted as t xð Þ, and the atmospheric light is W. By estimating the
transmission map and atmospheric light, the dehazing technique is used to recover scene
radiance YðxÞ:

Y xð Þ ¼ Q xð Þ � að Þ
max t xð Þ; toð Þð Þ þ a: (5)

Afterwards, the resulting Y is applied using the following formulation to determine an
image’s global contrast:

go ¼ 1þ Ckð Þ � gi � kmeanð Þ þ r (6)

where go is the resulting image of global contrast, the gain factor for global contrast is
denoted as Ck, the standard deviation of Y xð Þ is denoted as σ, the global mean value of
Y xð Þ is represented as Kmean, an input pixel value of Y xð Þ is represented by gi. The
following mathematical function was used in the final phase to calculate the haze reduction
image’s local contrast,

W x; yð Þ ¼ 4 x; yð Þ þ LC
r i; jð Þ þ a

� 4 x; yð Þ � l x; yð Þ½ � (7)

where the image’s grayscale pixel after dehaze Y xð Þ is shown 4 x; yð Þ, the dehazed image’s
mean value is described as l x; yð Þ a small parameter value is a, and the local contrast is
depicted as LC. The final enhanced image CF x; yð Þ was obtained by applying the following
mathematical equation to create a single image by combining the regional and global
contrast-produced images.

CF x; yð Þ ¼ g x; yð Þ þW x; yð Þ � I x; ! yð Þ½ �: (8)

Dataset splitting
For experimental evaluation, the dataset is randomly divided into test and training sets.
After pre-processing, 80% of the data is used for training, and the remaining 20% of the
data is used for testing. For experiment analysis, 9,035 images are used for training and
1,835 for testing. The training set consisted of 5,035 benign nodules and 4,000 malignant
nodules, and the test set consisted of 1,035 benign nodules and 800 malignant nodules. The
model is assessed using the test set.

Pancreatic cancer segmentation
Extracting the affected region from computed tomography (CT) images is a crucial stage in
surgical operations like radiation therapy and cancer diagnosis. Different forms and sizes
present challenges for existing computer-assisted segmentation approaches, while manual
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segmentation could be more laborious and operator-dependent. To overcome these
difficulties, this research offers a EUNet model for precise pancreatic tumor segmentation
from CT scans.

Recent segmentation models such as UNet, Attention U-Net, DeepLabV3+, UNet++,
TransUNet, and Swin-UNet have advanced feature extraction capabilities but suffer from
various limitations. Traditional U-Net models rely on standard convolutional layers, which
may struggle to capture multi-scale contextual information. Attention U-Net improves
focus on relevant regions but can miss fine-grained tumor details and is computationally
expensive. DeepLabV3+, relying on atrous convolutions, struggles with small object
segmentation and spatial information loss. UNet++ enhances skip connections but
increases model complexity and is prone to over-fitting. Transformer-based models like
TransUNet and Swin-UNet achieve strong global feature extraction but require high
computational power and often struggle with local detail preservation. Our Enhanced
U-Net (EUNet) model overcomes these challenges through WC blocks and RES blocks.
The WC blocks improve multi-scale feature extraction, ensuring precise tumor boundary
segmentation without excessive computational cost. The RES blocks enhance feature
propagation, reduce over-fitting, and preserve fine-grained tumor details, making our
model both efficient and highly accurate for pancreatic tumor segmentation. Unlike
transformer-based models, EUNet achieves comparable performance with lower
computational complexity, making it a practical choice for real-world medical
applications. While conventional U-Net skip connections transfer low-level features
directly, our RES blocks introduce residual learning, which helps in better gradient
flow, feature reuse, and reducing vanishing gradient issues. This leads to more
accurate localization of tumor regions with better shape preservation and less
over-segmentation.

Prior baseline U-Net architecture (Yin et al., 2022) did not share contextual information
between the deep and shallow layers. Enhancing the network’s local and global features
requires introducing a module between the shallow and deep layers to share information.
The proposed EUNet’s general architecture, consisting of RES blocks and a WC block, is
depicted in Fig. 3. The design generates images of the same size when it receives input
images with a resolution of 512 × 512. The proposed EUNet uses convolution layers with
padding. This makes it possible to obtain an image with the same size as the input as the
output.

The network’s encoder and decoder are separated into blocks. Every block has two
convolution layers: one max-pooling layer, one dropout layer, and one on the encoder side.
Concatenation is performed between the output produced by the related RES block and the
output of the Conv2DTranspose layer. Two convolution layers are added after dropout to
the concatenated output. Six 1 × 1 filters comprise the final convolution layer in the
decoder’s block. In an image, the decoder side handles image expansion while the encoder
side handles image contraction. The proposed EUNet model employs a Softmax activation
function for the last convolution layer, while batch normalization and ReLU activation
functions follow each convolution layer.
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The Improved UNet model proposed in this research differs from the baseline UNet
and other existing segmentation methods in several significant ways. The conventional
UNet uses simple convolutional blocks, which can have vanishing gradients in deeper
networks and aren’t able to reuse features that have been learned.

In our proposed EUNet model, the EUNet adds skip connections within each
convolutional layer by using residual blocks. This enables better feature reuse, adequate
gradient flow during back-propagation, and an increased capacity to capture fine-grained
features of the tumor region.

The ability of traditional UNet to comprehend global image features is limited since it
does not specifically concentrate on obtaining contextual information across many scales.
By enlarging the receptive region, wide context (WC) blocks improve the model’s ability to
extract both local and global features. This allows for improved segmentation in complex
locations by bridging the gap between shallow (regional) and deep (contextual) layers.

Standard UNet typically uses cross-entropy or Dice loss independently, which may lead
to suboptimal segmentation performance, especially in imbalanced datasets. The proposed
method creates a single loss function by combining weighted cross-entropy (WCE) and
dice loss coefficient (DLC). WCE addresses class imbalance by giving minority classes
(such as tumor regions) greater weights. DLC ensures accurate segmentation by
concentrating on boundary precision and overlap. Segmentation performance is enhanced
by this combined loss function, especially when dealing with small and irregular tumor
regions.

Figure 3 Detailed architecture of the proposed enhanced U-Net (EUNet) for tumor segmentation.
Full-size DOI: 10.7717/peerj-cs.3263/fig-3
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Restoring the original input size becomes more difficult because the original UNet
might not have used padding in its convolutional layers, which would have reduced the
spatial dimensions of feature maps. Padding-equipped convolution layers guarantee that
feature maps’ spatial dimensions are maintained across the network. As a result, the input
and output sizes match precisely—improving spatial information preservation for
segmentation at the pixel level.

The standard UNet’s encoder and decoder are simple and don’t specifically highlight
how shallow and deep levels share contextual information. The encoder in our proposed
EUNet model concentrates on feature extraction using residual blocks for improved
gradient flow. At the same time, the decoder efficiently reconstructs fine-grained
segmentation maps using WC blocks and skip connections.

Even in complex and noisy CT images, these enhancements enable the EUNet to more
accurately separate pancreatic tumors by capturing both fine-grained details (local
features) and wider anatomical structures (global features).

Residual extended skip
Five parallel connections are used in the architecture. The first convolution layer uses the
N × 1 filter size. By the second convolution layer, a 1 × N size filter is used in each
connection with convolution layers. The two cascaded convolution layers are used rather
than a single N × N filter size convolution layer. The architecture benefits from using two
convolution layers since fewer parameters are generated. Furthermore, tests revealed that
the effect of cascading convolution layers with fewer parameters is comparable to that of a
single convolution layer with more parameters. The input is forwarded as it is in the final
connection, which is a skip connection. One output is obtained by adding the outputs from
each of the five connections. Five connections’ outputs are added together to create a single
output. The three convolution layers’ filter sizes are 3 × 3, 3 × 3, and 1 × 1.

Information deterioration is controlled in part by the RES block. The residual extended
skip is scale-invariant because it executes contextual aggregation on several scales despite
the considerable size variability in the cancer patches. By increasing the valid receptive
field, the RES enables improved segmentation for the EUNet.

Wide context
Two parallel connections receive input from WC. Two convolution layers are present in
each connection. The two convolution layers in the first connection use N × 1 and 1 × N,
respectively. In the next convolution layers, the filter size 1 × N and N × 1 is used in the
second connection. This variation in the two connections creates a robust feature set that
can improve performance. It was noted that this variation alters the retrieved features, and
both variations can influence the outcome. The combined outputs from the two
connections are regarded as WC’s output.

Like RES, the broad context (WC) captures contextual information crucial for
sub-classification across several cancer subclasses. Moreover, it aggregates the transition
level feature, improving the segmented areas’ reconstruction.
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Customized loss function
The imbalance of class data is a significant challenge for pancreatic tumor segmentation.
The non-enhancing tumor covers the least volume, at only 0.23%. The considerable
discrepancy severely impacts the performance of segmentation.

The DLC and WCE are added to create a combined loss function, which EUNet uses to
solve the described problem.

WCE ¼ �
XN
j

wjgj log pj
� �

(9)

DLC ¼ 1� 2

PN
j wjgjpjPN

j wj gj þ pj
� � (10)

where the total number of labels is depicted as N, and the weight given to the label “j” is wj ·
pj represents the segmented image’s predicted binary pixel value and gi represents the

segmented image’s ground truth binary pixel value. The following equation describes the
total loss function.

Ltotal ¼WCE þ DLC: (11)

Two objective functions make up the loss function: Regardless of class, the DLC executes
one objective function that optimizes the overlap between the ground truth and the
predicted segmented regions, and WCE is used in the second objective function to classify
the tissue cells according to their class.

Feature extraction
The DenseNet-169 is used for the feature extraction process in the research, which
effectively extracts the local and global features of the images to enhance classification
performance. By directly connecting every layer with an equal feature size to every other
layer, DenseNets solves the gradient vanishing issue.

A convolution and pooling layer at the beginning, three transition layers, and four dense
blocks comprise the DenseNet-169 (Dalvi, Edla & Purushothama, 2023) design. A max
pooling of 3� 3 convolutions with stride two is applied by the first convolutional layer
following the completion of 7� 7 convolutions with stride 2. The network is then divided
into three sets, each of which contains a dense block and a transition layer. Figure 4
displays the DenseNet-169 model’s layer structure.

DenseNets have direct connections between every layer and every other layer in the
network. As a result of receiving feature maps from every previous layer in the network, the
lth layer improves the gradient flow over the whole structure. Several densely connected
blocks are used to form the DenseNet framework because CNNs are significantly designed
to reduce the size of feature maps. The feature maps are reduced by combining the
previous layer’s feature maps with the same size.

The layers that lie between these dense blocks are known as transition layers. An average
pooling layer, batch normalization layer, and a 1� 1 convolutional layer make up the
network’s transition layers. As previously stated, four dense blocks have two convolution
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layers each. The first layer is sized 1 × 1, while the second is sized 3 × 3. In the DenseNet169
architecture, the four dense blocks have the following sizes: 6, 12, 32, and 32.

All network layers were used in the feature extraction procedure except the final
classification layer, which is a fully connected layer. Following interpretation, a 50,176 × 1
dimension vector was produced and fed into the classifier as the final feature
representation.

Pancreatic cancer classification
Using a deep learning network, the work’s last stage involves classifying pancreatic cancer.
The new technique improves the proposed approach’s overall performance and maximizes
the cancer prediction rate. Pancreatic cancer is mainly detected and classified using
classification algorithms such as machine and deep learning approaches. Several
traditional classification methods have a low classification rate and must be more
appropriate for subsequent severity diagnosis. The present research uses the MResNext
model to classify pancreatic CT scans into benign and malignant classes.

The term “cardinality,” which describes the number of parallel paths in every
convolutional block, is introduced by ResNeXt. ResNeXt increases cardinality without
appreciably increasing the number of parameters, which enhances learning capacity in
contrast to ResNet, which concentrates on deeper and wider networks. The diversified
feature extraction made possible by grouped convolutions in medical image segmentation
allows for the better acquisition of subtle and complex information (such as small tumor
boundaries). ResNeXt outperforms a comparable ResNet in terms of accuracy while using
fewer parameters. ResNeXt lessens feature extraction redundancy by reusing the same
transforms across several pathways. ResNeXt can learn richer and more varied feature
representations due to group convolutions. To differentiate between areas of disease and
healthy tissue, different features are necessary. Because of this, ResNeXt is especially good

Figure 4 Detailed layout of the DenseNet-169 network for deep feature extraction.
Full-size DOI: 10.7717/peerj-cs.3263/fig-4
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at capturing small changes in texture and intensity in CT scans of pancreatic tumors. In
terms of performance benefits relative to the computational cost of more extensive or
deeper networks, ResNeXt scales more effectively than ResNet. When working with
high-resolution medical pictures, scalability helps the model retain accuracy without
incurring excessive computing costs. Because of its grouped convolutions, which serve as
a form of regularization by diversifying learned features, the ResNeXt design
generalizes well.

Compared to ResNet, the ResNeXt model has a number of advantages, including as
improved feature diversity, effective parameter use, scalability, and resistance to over-
fitting. These benefits translate into better tumor identification, enhanced boundary
recognition, and consistent performance across various datasets in the context of medical
image segmentation. The Modified ResNeXt is the best option for pancreatic cancer
classification and segmentation tasks since the SD-Reg regularizer enhances the model’s
capacity for generalization.

To classify pancreatic cancer, we employ the ResNeXt classification model (Pant, Yadav
& Gaur, 2020). Rather than a simple residual block, we have used an aggregated residual
block in the network; this is the fundamental concept underlying ResNeXt. This approach,
also known as “split-transform merge,” was used in the initial architecture.

Each layer’s weighted sum of primary neurons is the artificial neural network’s inner
product, determined independently for each layer. Looking at the inner product from the
perspective of Eq. (12), one can consider it a kind of aggregate transformation.

XD
i¼1

wixi (12)

where are the neurons ith channel, the filter weight is denoted by wi, and the neuron’s
D-channel input vector is described as xi.

A function that is more inclusive and capable of acting as a network, the aggregated
transformations as,

F xð Þ ¼
X
i¼1

cti xð Þ: (13)

An arbitrary function is defined as ti xð Þ; ti integrating x into a projection and then
modifying it, which acts as an analog to a primary neuron. According to their analysis, the
cardinality dimension can control many intricate transformations.

y ¼ x þ
Xc
i¼1

ti xð Þ: (14)

As illustrated in Eq. (14), the residual function is the aggregated transformation from
Eq. (13). A deep and extensive network is less accurately constructed than ResNeXt since it
uses ResNet’s skip notion and cardinality. Regarding accuracy, the proposed MResNeXt
performed better than the existing models. We use the MResNeXt model for pancreatic
cancer classification because of these benefits. Figure 5 displays the MResNeXt model
structure for classification.
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The proposed model was modified using a novel regularization technique to regulate the
connection between specific weight values and weight matrix elements. To develop an
adaptive weight decay form, multiply the weight matrix’s standard deviation by λ. Thus,
the regularizer terminates the learning model using values too widely distributed from the
weight space. The new regularizer has undergone thorough testing on various tasks using
various datasets and is more successful than previous regularization techniques.

From the weight matrix, the obtained weight values control the relationship between
entries using the new regularizer technique. This minimizes the complexity of the model
by eliminating irrelevant data and retaining only those that are important for classification.
Compared to other regularization algorithms, the stated regularizer outperformed the
others after comprehensive testing across various domains, including computer security.
The Softmax layer is used for the final classification process, and the ReLU activation
function is effectively used to classify benign and malignant tumors.

Figure 5 Proposed MResNext deep learning architecture for tumor classification. Full-size DOI: 10.7717/peerj-cs.3263/fig-5
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Although group convolutions are useful for computational efficiency, the
traditional ResNeXt model may have difficulty capturing minor intraclass variations,
such as slight textural differences within benign or malignant tumor classifications. The
SD-Reg penalizes changes that do not contribute to class separability, allowing the
model to concentrate on critical characteristics across samples and capture smaller
distinctions within classes. The SD-Reg regularization helps keep the model from
over-fitting on noisy or small datasets by stabilizing the feature representations and
lowering variance in feature maps. Better generalization results from this, mainly when
data is limited.

Regularizer
While the L2 regularizer gives less important features less weight, the feature selection is
performed using the L1 regularizer. Nevertheless, significant disadvantages and inherent
restrictions with both regularizers prevent their widespread application in identifying
zero-day threats. Regretfully, a weight matrix’s relationship between entries is ignored by
L1 and L2 regularizers.

Stated differently, their focus is solely on specific weight values. Nonetheless, even
slight changes in the feature properties might significantly impact the model’s
performance. To effectively handle the dispersion of the weight values, we devised a novel
regularizer technique (SD-Reg) based on the standard deviation. In other words, the
learning model is restricted to using the weight-space diapered area by the SD-Reg
regularizer. To generate the periodicity term, it starts with a standard deviation and
multiplies it by the λ parameter, which is then used to produce an adaptive form with
weight decay.

The standard deviation of the following weight values:

r xð Þ ¼
ffiffiffiffiffi
1
nk

r Xnk
i¼1

x2
i �

1
nk

i ¼ 1
Xnk
i¼1

xi

 !2( )
: (15)

There are k rows in the weight matrix, and every row represents a distinct weight. The
number of features is defined as ‘n’ and x provides each feature’s weight values. At the
same time, the standard deviation’s weighted averages are described as σ. The weight
matrix has n columns in each of its it rows. The parameter λ is used to control the rows
and columns. In our case, the loss function is

min
w

f X; y : xð Þ þ kr xð Þf g: (16)

The loss functionx is minimized by using the standard deviation r to choose a specific
range of values.

Hyper-parameter optimization
The TSOA is used to optimize the hyperparameter tuning of the Deep Echo State Network
(DESN) model. Tunicates’ social behavior when they are looking for prey serves as the
model for TSOA (Cui, Shi & Dong, 2022). All the tunicates could rapidly expel the seawater
inhaled using atrium siphons. Additionally, the tunicate showed SI as soon as it could
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exchange search parameters regarding the meal’s location. The tunicate needs to satisfy the
following requirements:

. Prevent any conflicts amongst the search agents.

. Every agent will inevitably approach the most physically fit individual.

. Construct the search agent to merge towards the area surrounding the most fit individual.

The algorithm below was utilized to determine the agent’s novel location to avoid
conflicts between each search agent:

~A ¼
~G
~M

(17)

~G ¼ c2 þ c3 �~F (18)
~F ¼ 2:c1 (19)

where ~A is the vector used to determine each agent’s most recent location, three randomly
selected integers from (0,1) are represented by c1, c2, and c3 the deep sea’s water flow is
depicted as ~F, Gravity is depicted as ~G and ~M stands for the vector value, which is the
searching agents’ social strength as follows:

~M ¼ P1minmaxmin : (20)

In Eq. (20), the search agent can create social interaction by using primary and
secondary speeds, denoted by Pmin and Pmax; the values of Pmin and Pmax are set to 1 and 4.

PD
�! ¼ Xbest

��!� rrand:X tð Þ��!��� ���: (21)

In Eq. (21), the food at the current optimal individual’s location is indicated by Xbest
��!

;

the present search agent’s location information at t-th iterations is displayed in X tð Þ��!
, rrand

stands for any arbitrary number between 0 and 1, and target food and tunicates’ spatial
distance from one another is represented by the vector PD

�!
.

Developing the search agent and conducting enough local investigations of nearby
fittest individuals to identify the optimal solution for the present iteration, the location was
evaluated by:

X tð Þ ¼ Xbest �~A:PD
�!

; if rrand < 0:5

Xbest þ~A:PD
�!

; if rrand � 0:5

( )
: (22)

Every search agent investigates the area around the best-fit individual X best at iteration t.
Location information is shared throughout the searching agents via the tunicates’
swarming behavior. This procedure can be influenced by the current search agents’
locations and completed by their improved locations. The fit individual can achieve this by
using the swarm act to improve their position from the previous individual:

Xi ~t þ 1
� � ¼! Xi tð Þ�!þXi�1 ~tþ1ð Þ

2þc1 if i > 1

Xi tð Þ�! if i ¼ 1

8<
:

9=
;: (23)
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Here, the exiting search agents’ locations are displayed Xi ~tþ 1
� �

, the previous search
agents’ position at the next iteration is described Xi�1 ~tþ 1

� �
, and the population size is

denoted i ¼ 1;…:;N;. The steps to update the search agent’s location are listed below to
illustrate the TSOA process:

Step 1: Establishes the initial group of searching agents X.

Step 2: Set the starting parameters and maximum iterations to their values.

Step 3: Analyze each candidate’s FV and select the one with the highest FV as a superior
search agent.

Step 4: All search agents should be repositioned by Eq. (20).

Step 5: Prevent all search agents from entering the search area.

Step 6: Calculate the FV of each upgrading searching agent and update Xbest if the fittest
individuals differed from the previous best-searching agents in the population.

Step 7: If the operation ends after the maximum number of iterations is reached, Then
return to steps 4 to 7.

Step 8: Print the best possible individual (Xbest).
The TSOA system generates a fitness function (FF) to achieve higher classification

efficacy. Positive integers are defined as denoting the superior performance of the
proposed solution. The classifier error rate decline is considered to be FF.

fitness xið Þ ¼ Classification Error Rate xið Þ
¼ number of misclassified samples

Total number of samples
� 100: (24)

RESULT AND DISCUSSION
The results of a comparison analysis employing pancreatic tumor samples from the
database image are shown in this section. Hybrid filtering techniques are applied to the
sampled images in the initial pre-processing stage. To distinguish the pancreatic tumor cell
from the surrounding tumor area, we have utilized the EUNet segmentation method. The
DenseNet-161 model is used to extract the significant features of the pancreatic tumor. The
MResNext architecture is used to classify the extracted features according to severity. This
advances the creation of segmentation and classification algorithms to diagnose pancreatic
tumor sample images with the CAD system. A ROC curve and confusion matrix are
presented for each classification technique. Utilizing statistical functions, the data were
visualized using Python software.

Evaluation measures
F1-score, precision, specificity, sensitivity (recall), and accuracy are used to assess the
performance of pancreatic cell tumor CT scan database images (benign and malignant).
Formulas (25)–(29) define the performance parameters. When using the deep learning
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classification model, more TPs and TNs were acquired than when using alternative
methods.

Accuracy: Accuracy measures the classification system’s ability to identify tumor areas
from pancreatic CT scans.

Accuracy ¼ TN þ TP
FN þ TN þ FP þ TP

: (25)

Sensitivity (Recall): The percentage of the malignant region the categorization system
accurately recognizes is known as sensitivity.

Sensitivity ¼ TP
FN þ TP

: (26)

Specificity: The percentage that the normative system has identified as the actual
background of the cancerous area

Specif icity ¼ TN
FP þ TN

: (27)

Precision: It displays the proportion of the identified area corresponding to the proper
region.

Precision ¼ TP
FP þ TP

: (28)

F-measure: Precision and sensitivity are averaged and weighted in the F-measure. Two
types of false negatives and false positives are included in the method.

F�measure ¼ 2� Precision� Recall
Precisionþ Recall

: (29)

In segmentation networks, intersection over union (IOU) and dice similarity coefficient
(DSC) are two often used performance evaluation metrics. The similarity between the two
sets is measured by DSC and IOU, which are also used to assess the similarity between
network segmentation outcomes and the gold standard mask, which is calculated as
follows:

DSC ¼ 2� TP
2� TPð Þ þ FP þ FN

: (30)

IOU ¼ DSC
2� DSC

: (31)

Pixel-level indicators such as the DSC and IOU accept values between 0 and 1, values
nearer one signifying improved model performance.

Parameter settings
The experiments were conducted on a system running Windows 10 with 32 GB RAM and
a 2.90 GHz CPU. The proposed model was implemented in Python using TensorFlow 1.14
for both training and testing. For deep learning computations, the training process was
accelerated using an NVIDIA RTX 3090 Tesla V100.
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The stochastic gradient descent (SGD) optimization technique is used during training to
optimize the segmentation (EUNet) and feature extraction (DenseNet-169) network
parameters. The classification network’s parameters are optimized via the TSOA method.
Next, training and test sets were randomly selected from the dataset in an 80:20 ratio.
Table 2 provides the hyperparameter settings of the proposed deep-learning pipeline for
pancreatic tumor analysis.

Experimental results
While building the EUNet-MResNext, a training and testing phase was carried out using
the collected datasets; following model adjustments, the proposed approach was used to
improve classification results. First, the classification assessment measures are displayed.
Each test set result’s performance is utilized to assess it.

The value of the suggested method is demonstrated in Fig. 6 by providing a visual
comparison between the segmentation results of the pancreas produced using the
proposed method and the ground truth segmentation. The abdominal CT scans are
displayed in the first column, followed by the segmentation based on ground truth in the
second column and the segmentation outcomes of the suggested approach in the third,
illustrating the visual comparison.

From abdominal CT images, the performance of the proposed technique in accurately
segmenting the tumor region is evaluated using a visual comparison. Comparing the
proposed approach’s segmentation findings with the ground truth segmentation can help
determine how well the recommended method accurately segments the pancreatic tumor’s
affected region. The results show that the recommended method is effective in accurately
segmenting pancreatic tumors in CT images of the abdomen. The similarities and
differences generated by the recommended approach and the accurate segmentation are
examined between the segmentation outcomes.

The affected lesion area is precisely segmented using the EUNet model. The proposed
segmentation model resolves the poor resolution of the CT image and the overlap in the
area of the infected lesion. Our hybrid deep learning technique enhances diagnostic
performance by enhancing convergence and mitigating the effects of structured noise.

The pancreatic tumor segmentation performance analysis uses the Dice coefficient and
IOU scores. The goal is to measure the accuracy with which segmentation regions and

Table 2 Summary of training parameters for each module in the proposed pancreatic cancer detection framework.

Hyper-parameters Segmentation (Enhanced UNet) Feature Extraction (DenseNet-169) Classification (Modified ResNext)

Optimizer SGD SGD TSOA

Learning rate 0.01 0.001 (with step decay) 0.0001

Batch size 16 32 32

Number of epochs 100 100 100

Momentum 0.9 0.9 –

Loss function Customized loss function – Categorical cross-entropy

Regularization L2 weight decay (0.0005) L2 weight decay (0.0001) SD-Reg weight decay (0.0001)

Dropout rate 0.3 – 0.4
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spatial segmentation may be predicted from pancreatic tumor images. Figure 7 shows the
performance result for segmentation in terms of IOU. When the suggested segmentation
model was used in research, higher IOU accuracy and lower loss rates were observed. The
results presented in Table 3 demonstrate the effectiveness of the proposed EUNet in
accurately segmenting benign and malignant pancreatic tumors. Both IOU and DSC
values show strong performance consistency across training and testing phases, indicating
the model’s robustness and generalization ability. The suggested IUNet segmentation
model segments the lesion region for each class with high segmentation outcomes,
averaging mean IOU scores of 95.85% and 96.04% and Dice scores of 95.27% and 95.87%
for training and testing.

The binary classification strategy is used in the present research to distinguish between
benign and malignant pancreatic tumors. Figure 8 shows the final classified results. The
training and testing accuracies and losses of the suggested classification model for
pancreatic cancer are shown in Fig. 9. We observed gains in every evaluation criterion

Figure 6 Qualitative results of pancreatic tumor segmentation.
Full-size DOI: 10.7717/peerj-cs.3263/fig-6
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following the implementation of our binary classification strategy. Table 4 presents the
classification outcomes achieved by the proposed model using CT image datasets. The
results indicate outstanding performance in both training and testing phases, with an
average accuracy of 99.85% and strong values across all other metrics (precision,
sensitivity, specificity, and F-measure), confirming the model’s effectiveness in
distinguishing between benign and malignant pancreatic tumors. The training process is
completed in 75 s to reach the final iteration. It illustrates our model’s superior
classification and generalization abilities.

The graph visualization in Fig. 9 clarifies that the accuracy, precision, and recall test
curves continuously outperform the respective training curves. Even though Fig. 9’s recall
curve initially showed some slight under-fitting, the suggested model performed better
over epochs as the distance between training and testing lines reduced. Multiple strategies
were used in this research to address the issues of under- and over-fitting. The testing loss
was monitored for three consecutive epochs to apply early stopping and prevent over-
fitting. It was evident from the loss graph that training had a more significant loss than
validation. It revealed no issues with under-fitting during training and that the suggested

Figure 7 IOU performance for training and testing phases.
Full-size DOI: 10.7717/peerj-cs.3263/fig-7

Table 3 Quantitative segmentation results of the proposed EUNet model during training and
testing.

Class IOU (%) DSC (%)

Training phase

Benign 96.23 95.12

Malignant 95.52 95.23

Average 95.85 95.27

Testing phase

Benign 95.64 96.42

Malignant 96.45 95.32

Average 96.04 95.87
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model appropriately operated. When the precision and recall graphs were seen, it was
evident that the training and testing curves were not more significant than each other. It
shows that the suggested model for categorization is acceptable. In general, these efforts
enhanced the resilience and functionality of the proposed MResNext model throughout
the training and testing phases. The AUC training and testing value for pancreatic cancer
classification is shown in Fig. 10. The AUC graph visualization shows that the proposed
model has a high AUC score. A higher AUC value suggests that the MResNext model can
distinguish across various classes. Consequently, the model demonstrated exceptional
performance in the detection challenge.

Figure 11 displays the plots of the ROC curve for classification. It is observed that the
suggested model utilizing the CT image dataset yields better classification results, with
AUCs for testing and training being 0.974 and 0.979, respectively.

Figure 12 presents an analysis of the pancreatic cancer categorization using the
confusion matrix of the MRextNet approach. According to the findings, the suggested
method successfully distinguished between benign and malignant pancreatic cancer.

Comparison results
The findings show that the suggested method effectively distinguished between benign and
malignant pancreatic cancer. The proposed approach using CT scans for pancreatic tumor
classification was contrasted with the cutting-edge techniques shown in Table 5. It

Figure 8 Visual representation of predicted classification results. Full-size DOI: 10.7717/peerj-cs.3263/fig-8
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demonstrates an improvement in the suggested model’s ability to classify benign and
malignant tumors compared to the previous optimization processes. The best results are
obtained using the proposed MResNext model with a TSOA optimizer configuration. The

Figure 9 Training and testing performance curves for the proposed classification model: (A) the
accuracy graph for training and testing, (B) the loss graph for training and testing, (C) the
precision graph for training and testing, and (D) the recall graph for training and testing.

Full-size DOI: 10.7717/peerj-cs.3263/fig-9

Table 4 Proposed model performance on pancreatic cancer CT image classification across multiple
metrics.

Class Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F-measure (%)

Training phase

Benign 100 99.38 99.28 99.69 99.68

Malignant 99.28 100 99.58 100 99.27

Average 99.46 99.94 99.43 99.84 99.475

Testing phase

Benign 100 99.82 100 99.82 99.03

Malignant 99.73 99.26 99.52 99.74 99.43

Average 99.85 99.54 99.76 99.72 99.23
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effectiveness of the proposed approach is compared to more recent previous approaches,
including CNN (Lakkshmanan, Ananth & Tiroumalmouroughane, 2022), DESN
(Gandikota, 2023), artificial neural networks (ANN) (Cao et al., 2023), Extreme Gradient
Boost (XGBoost) (Bakasa & Viriri, 2023), Graph Neural Network (GNN) (Li et al., 2023),
Echo State Network–Auto Encoder (ESN-AE) (Hussain et al., 2024), 11-layer AlexNet
(Nadeem et al., 2025), and ELC-Casnet-CNN (Chaithanyadas & King, 2025) is less
effective in extracting spatial features from images because they are built on recurrent
neural networks first created for sequential data. Convolutional structures, such as those in
MResNeXt, can better capture the intricate spatial patterns necessary for categorizing
pancreatic cancer. It can be computationally costly to train a DESN, particularly for large,
high-dimensional image datasets. In contrast to the more organized and optimized
training of MResNeXt, echo state networks rely on a reservoir of randomly linked neurons,
which might make the training process more complex and unpredictable.

Figure 10 ROC-AUC performance during model training and testing.
Full-size DOI: 10.7717/peerj-cs.3263/fig-10

Figure 11 ROC curves of the proposed classification system for training and testing.
Full-size DOI: 10.7717/peerj-cs.3263/fig-11
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ANN does not automatically recognize the local and global features between pixels in an
image. However, MResNeXt’s deep, hierarchical structure allows it to capture these
correlations and learn intricate spatial patterns across several scales, which is essential for
recognizing tumor features. Significant parameters are usually needed for ANNs with fully
connected layers, which might result in over-fitting, mainly when image data or small
datasets are included. MResNeXt reduces this danger by using grouped convolutions and
residual connections, which enhance generalization and help manage model complexity.

Figure 12 Confusion matrix of proposed pancreatic classification approach for (A) training and
(B) testing. Full-size DOI: 10.7717/peerj-cs.3263/fig-12

Table 5 Benchmarking the proposed MResNeXt model against state-of-the-art classification techniques for pancreatic tumor diagnosis.

Reference Year Model Accuracy (%) Sensitivity (%) Specificity (%)

Lakkshmanan, Ananth &
Tiroumalmouroughane
(2022)

2022 CNN 98.02 97.62 98.82

Gandikota (2023) 2023 DESN 99.55 99.55 99.55

Cao et al. (2023) 2023 ANN 93.02 92.9 95.9

Bakasa & Viriri (2023) 2023 XGboost 97 – –

Li et al. (2023) 2023 GNN 98.56 98.02 98.55

Hussain et al. (2024) 2024 Echo State Network-Autoencoder (ESN-AE) 99.33 99.22 –

Nadeem et al. (2025) 2025 11-layer AlexNet 98.72 99.17 –

Chaithanyadas & King
(2025)

2025 ELC-Casnet-CNN 98.21 97.54 99.11

Gulsoy & Kablan (2025) 2025 FocalNeXt 99.81 99.70 –

Thanya & Jeslin (2025) 2025 DCCNN-ML 99.3 99.1 99.5

Kulkarni & Kansal (2025) 2025 LSTM 98.53 – –

Alaca & Akmeşe (2025) 2025 K-NN 92.10 – –

Proposed approach MResNext 99.85 99.76 99.72
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When image regions are transformed into network nodes in the GNN model, some
delicate spatial information must be recovered. Important image features, such as small
changes in pixel intensity surrounding tumor boundaries, may need to be more accurate.
Complex pre-processing is frequently required to create a graph from an image, such as
segmenting the image into regions or superpixels, which can introduce variability and
inaccuracies. The quality of this graph representation significantly impacts GNN
classification accuracy. In contrast, MResNeXt does not require this extra pre-processing
step because it can process raw images directly. The number of graph nodes and edges can
grow significantly when working with high-resolution photos, making GNNs
computationally costly and challenging to train. This can result in slower processing
speeds and increased memory requirements, especially for high-dimensional medical
images. Large images are frequently handled more effectively by MResNeXt, which is
well-optimized for image data.

To strengthen the evaluation of the proposed classification model, we incorporated
comparisons with several recent state-of-the-art deep learning methods applied to CT
image-based tumor classification. Specifically, FocalNeXt (Gulsoy & Kablan, 2025) utilizes
a hybrid ConvNeXt and FocalNet structure with transformer-style attention for improved
diagnostic accuracy; however, it is primarily designed for lung cancer detection and lacks
pancreas-specific adaptations. Thanya & Jeslin (2025) introduced a Deep Cascade CNN
with Multimodal Learning (DCCNN-ML), leveraging ResNet-50 for feature extraction,
but its complex architecture increases training time and computational overhead. Kulkarni
& Kansal (2025) used a hybrid CNN-LSTM approach with handcrafted texture features,
which may lead to over-fitting and limited generalization across datasets. Alaca & Akmeşe
(2025) adopted a graph-based pipeline involving Harris corner detection and transfer
learning, followed by k-nearest neighbors (k-NN) classification; while innovative, this
method relies heavily on graph quality and struggles with complex morphological
variations in pancreatic tumors. In contrast, our proposed MResNeXt model offers
significant advantages: it incorporates a modified ResNeXt architecture optimized via the
Tunicate Swarm Optimization algorithm, enabling efficient hyperparameter tuning and
improved generalization. Unlike prior methods, our model is tailored explicitly for
pancreatic cancer classification and achieves superior performance with a classification
accuracy of 99.85%, sensitivity of 99.76%, and specificity of 99.72%. The model benefits
from a deeper residual architecture with grouped convolutions that enhance feature
representation while maintaining computational efficiency. These improvements
underscore the robustness and diagnostic potential of our method in detecting pancreatic
malignancies.

MResNeXt’s usage of residual connections, which mitigates the vanishing gradient issue
and aids in training deeper networks, is one of its many noteworthy advantages. These
connections are frequently absent from standard CNNs, which makes it more challenging
to train deeper models successfully. Regarding specificity, sensitivity, and accuracy, the
proposed MResNext-TSOA model performs better than the previous deep-learning
models and effectively classifies pancreatic cancer. The significant properties that the
proposed model successfully captures indicate the inter-scale variability of the tumor,
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hence increasing classification performance. The suggested system shows promising
classification accuracy, enabling automated pancreatic cancer detection and pre-screening.

Table 6 compares the results of several segmentation approaches utilized in recent
existing methodologies with the proposed segmentation model. Lightweight Multiscale
Novel Semantic-Net (LMNS-Net) (Paithane & Kakarwal, 2023), MobileNet-U-Net
(MBU-Net) (Huang & Wu, 2022), U-Net (Saraswathi & Rafi, 2023), deep neural network
(DNN) (Kawamoto et al., 2023), Modified CNN (Paithane & Kakarwal, 2022), Selected
Multi-scale Attention Network (SMANet) (Gao et al., 2022a), CausegNet (Li et al., 2024),
nnU-Net (Yang et al., 2024), and CS module (Chen et al., 2024) and the suggested
technique are among the approaches investigated. The two metrics we utilized to compare
the efficacy of different strategies were DSC and IOU. Our proposed approach
outperformed the others in segmentation performance, with the most significant values
across all four categories. The SMANet technique performed well overall, although some
measures had slightly lower values.

With a computational time of only 6 s for each slice, the suggested segmentation model
demonstrates how lightweight EUNet is as a CNN. It can also identify edges and curves
quite successfully. Because the boundaries between the malignant and benign lesion
regions of pancreatic cancer are precisely and successfully delineated, the proposed model
achieves a more effective performance for early-stage diagnosis.

Comparative performance of general segmentation models
Table 7 displays the general segmentation model’s performance comparison with our
proposed model (EUNet) results for pancreatic tumor segmentation using the CT image
dataset. According to the comparative analysis, general-purpose segmentation models
such as DeepLabV3+ and Mask region-based convolutional neural networks (R-CNN)
perform rather well, but they have trouble capturing the irregular and fine-grained
boundaries of pancreatic tumors, especially in low-contrast CT images. After fine-tuning,
DeepLabV3+ and Mask R-CNN outperform SAM; nonetheless, they still have issues in
accurately delineating boundaries and preserving minute lesion features. The baseline

Table 6 Comparative study of deep learning-based pancreatic tumor segmentation models on CT image datasets.

Reference Year Model IOU (%) DSC (%)

Paithane & Kakarwal (2023) 2023 LMNS-Net 88.68 –

Huang & Wu (2022) 2022 MBU-Net 80.93 82.87

Saraswathi & Rafi (2023) 2023 U-Net – 88.2

Kawamoto et al. (2023) 2023 DNN 85.43 87.4

Paithane & Kakarwal (2022) 2022 Modified CNN 69.82 82.57

Gao et al. (2022a) 2022 SMANet 66.5 76.9

Li et al. (2024) 2024 CausegNet – 86.67

Yang et al. (2024) 2024 nnU-Net – 76.4

Chen et al. (2024) 2024 Channel and spatial self-attention (CS) Module 59.42 73.93

Wang et al. (2023) 2023 MFCNet – 76.20

Proposed approach EUNet 96.04 95.87
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U-Net performs satisfactorily, but its accuracy is slightly lower since it lacks the advanced
contextual aggregation and residual learning skills required for better gradient flow and
feature reuse. As compared to transformer-based or large-scale models like SAM, the
proposed EUNet continuously produces better IoU and DSC values, successfully striking a
balance between high segmentation accuracy and reduced computing complexity. The
proposed EUNet model is now better suited for practical medical imaging applications due
to the integration of WC blocks for improved multi-scale contextual feature extraction and
residual extended skip (RES) blocks for better gradient flow, decreased overfitting, and
enhanced fine-detail preservation.

Performance comparison of proposed EUNet with recent segmenta-
tion models
We used the same pancreatic CT dataset as in our proposed research to evaluate our
proposed Enhanced U-Net (EUNet) model with representative recent segmentation
models TransUNet, nnU-Net, Swin-UNet, and FocalNeXt as shown in Table 8. All models
were trained and tested under identical experimental settings, and segmentation
performance was evaluated using IoU and DSC as key metrics.

In both IoU and DSC, the proposed EUNet performed better than all other models
under comparison, exhibiting better tumor boundary preservation and segmentation
accuracy. This improvement can be attributed to the synergistic effect of RES blocks and
WC blocks, which enhance both multi-scale contextual understanding and fine-grained
detail preservation without excessive computational cost.

Table 7 Comparative performance of general segmentation models and the proposed Enhanced
U-Net (EUNet) for pancreatic tumor segmentation on CT images.

Model IoU (%) DSC (%)

SAM (Segment Anything Model) 81.25 82.1

DeepLabV3+ 87.42 88.05

Mask R-CNN 85.67 86.54

U-Net (Baseline) 91.32 90.85

Proposed EUNet 96.04 95.87

Table 8 Comparative performance of the proposed EUNet and recent representative models for
pancreatic tumor segmentation using CT images.

Model IoU (%) DSC (%)

TransUNet 93.12 92.85

nnU-Net 94.87 94.65

Swin-UNet 94.12 93.98

FocalNeXt 95.02 94.87

Proposed EUNet 96.04 95.87
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Discussion
In this work, we presented a unique technique for automatically classifying and
segmenting pancreatic cancer from CT scan pictures. Network layer training in deep
learning is a laborious process. The proposed method requires a very short time compared
to previous deep learning methods. The suggested method’s F-measure value for the same
dataset is better than alternative CNN network models. The values of the F-measure,
precision, specificity, accuracy, and sensitivity using the proposed approach are better than
those of other techniques. In comparison to cutting-edge methods, DSC and IOU scores
are high.

Combining the EUNet and MResNext models yields a reduced misclassification rate
compared to other models, as seen in Fig. 10, demonstrating the model’s ability to detect
infected areas correctly. Our technique can accurately detect such positive regions even in
cases where the input patch contains only a small amount of pancreatic tumor. According
to these findings, our proposed model identified pancreatic cancers mainly using nuclear
characteristics. With large, crowded, dark, and irregular regions, the tumor cell nuclei were
effectively identified by our EUNet model. These features are essential for the identification
of tumors.

ResNeXt’s “cardinality” concept enhances its capacity to collect several features by
enabling numerous parallel channels for information flow. In contrast to AlexNet, VGG,
or ResNet, which lack this parallel pathway structure, this is especially helpful for
pancreatic cancer, where features can be subtle and complicated, improving the model’s
capacity to distinguish between malignant and benign tissues.

EUNet incorporates enhancements such as dense skip connections and deeper decoder
layers to maintain spatial information and boundary detail. This is more efficient than the
basic UNet, which may lose boundary information because of resolution limitations,
resulting in a finer delineation of tumor boundaries, which is crucial for medical imaging.

Enhanced UNet models are frequently more computationally efficient than
conventional segmentation networks since they have optimized layer structures and fewer
parameters. Compared to the more computationally demanding UNet+ or SegNet, EUNet
is more appropriate for real-time or resource-constrained environments because of its
performance and efficiency balance.

ResNeXt improves upon ResNet by introducing the grouped convolution mechanism,
which allows for a more efficient and scalable architecture. The following are the key
advantages of the ResNext model over the ResNet model: ResNeXt introduces cardinality;
it splits feature maps into multiple groups and processes them separately before
aggregating the outputs. This enhances diversity in learned features compared to ResNet,
which relies solely on deeper or wider networks. This is particularly useful for medical
image classification, where fine-grained patterns (e.g., tumor textures) need to be captured
more effectively; ResNeXt achieves better accuracy with fewer parameters compared to
ResNet. This is critical for medical imaging, where models need to balance accuracy and
computational feasibility. The grouped convolutions reduce redundancy and enhance
feature extraction while keeping computational costs similar to ResNet.
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For segmentation tasks, ResNeXt’s grouped convolutions can be leveraged in several
ways: Using ResNeXt as the feature extractor in UNet, DeepLabV3+, or other
segmentation models can improve feature representation for tumor boundaries and lesion
areas. The increased cardinality allows for capturing diverse spatial features, which is
crucial for medical image segmentation. In segmentation tasks, multi-scale contextual
information is essential. ResNeXt’s ability to process multiple transformations in parallel
improves the detection of both fine-grained and large-scale structures. This is particularly
useful in pancreatic tumor segmentation, where tumors vary in size and shape. Grouped
convolutions in ResNeXt help in better edge detection and reduce segmentation artifacts,
which is crucial for accurately segmenting medical images. Incorporating ResNeXt in the
encoder of DeepLabV3+, UNet++, or an improved UNet variant can improve
segmentation precision.

Compared to the state-of-the-art, the suggested technique values are high according to
the assessment matrix parameters. The proposed approach uses the dice loss function as
the loss function in the segmentation network. The classification network’s accuracy
increases, and network loss is reduced using the SD-Reg approach. Although the proposed
approach effectively segments data, it cannot identify the percentage of areas impacted by
pancreatic cancer. The proposed approach yields a 2D image of the size and shape of the
pancreas. Future applications of the suggested technique include 3D pancreatic image
detection.

Ablation study
This section includes accuracy ablation experiments to illustrate the effectiveness of our
proposed methodology. Four modules comprise the proposed framework: pre-processing
(Noise filtering + contrast Enhancement), segmentation (EUNet), feature extraction
(DenseNet-169), and classification (MResNext). The test results above showed that the
proposed method can produce positive results on the datasets of pancreatic CT images. In
this section, we carried out the ablation experiment to investigate the effects of each
constituent in the proposed structure in more detail. Table 9 displays the results of the
ablation experiments.

Table 9 demonstrates the relative importance of the EUNet-based segmentation and the
DenseNet-169-based feature extraction. The accuracy and other performance measures are
significantly reduced if specific modules are removed. The DenseNet-169 model efficiently
reduces dimensionality, focuses on the most relevant features, and extracts and fuses static
and dynamic features, all essential for enhancing the classifier’s performance. The handle is

Table 9 Ablation study: performance impact of each module in the proposed pancreatic cancer framework.

Pre-processing Segmentation Feature Extraction Classification Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

✓ ✓ ✓ 99.23 99.10 99.15 95.01

✓ ✓ ✓ 98.92 98.67 98.24 94.64

✓ ✓ 98.54 98.03 98.54 96.65

✓ ✓ ✓ 99.34 99.53 99.64 95.24

✓ ✓ ✓ ✓ 99.85 99.76 99.72 97.40
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complicated, and high-dimensional data is effectively handled using the EUNet
segmentation model, which guarantees accurate pancreatic tumor segmentation.
Additionally, we discovered that the pre-processing module, which uses hybrid filtering for
noise reduction and HRLG for contrast enhancement, can aid in the classification of
pancreatic cancer. This is because the hybrid filtering and HRLG contrast enhancement
technique improves the quality of classified output images. Without the pre-processing
phase, the proposed method achieved only 99.23% accuracy, 99.10% sensitivity, and
99.15% specificity. Integrating all modules improved the accuracy of the MResNext model
for pancreatic tumor classification. Based on the ablation test results, it was clear that
adding these modules to the proposed model would improve performance.

External clinical validation
To further validate the effectiveness of the proposed Modified ResNeXt (MResNeXt)
model, we conducted an external clinical validation using an independent dataset from a
different medical institution. A total of 100 pancreatic cancer patients were included in this
study, and their CT images were collected for classification into benign and malignant
cases. Three experienced radiologists reviewed the imaging data and verified the ground
truth labels through pathology reports.

Once the images were preprocessed, segmented, and relevant features extracted, they
were fed into the trained Modified ResNeXt model. The classification results were then
compared with expert diagnoses to assess the model’s reliability. Performance metrics,
including accuracy, sensitivity, specificity, and AUC, were evaluated to determine the
robustness of the proposed approach. Our model consistently achieved performance above
90% in clinical validation, demonstrating its strong generalization capability.

Additionally, we analyzed the true positive rate (TPR) and false positive rate (FPR) at
different probability thresholds to compute the ROC curve. As shown in Fig. 13, the AUC
value of 0.9650, calculated using the trapezoidal method, indicates a highly accurate

Figure 13 ROC curve for clinical validation. Full-size DOI: 10.7717/peerj-cs.3263/fig-13
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classification system. AUC values above 0.9 reflect strong diagnostic capabilities,
confirming the model’s reliability in real-world scenarios.

Furthermore, the proposed method significantly improves diagnostic efficiency. Each
patient’s imaging data was analyzed within 0.2 s, enabling a fully automated diagnosis
within 3 s, compared to the 8 min required by a radiologist for manual assessment. These
findings highlight the clinical feasibility of the Modified ResNeXt model, demonstrating
higher accuracy, faster processing time, and improved diagnostic effectiveness compared
to conventional diagnostic methods. The results from external clinical validation confirm
the robustness and generalizability of our approach, with minimal performance drop and
strong agreement with expert annotations.

ANOVA test
To evaluate the effectiveness of the proposed model in comparison to existing state-of-the-
art models, we conducted a one-way Analysis of Variance (ANOVA) test to assess
significant differences in key performance metrics: accuracy, sensitivity, and specificity.
The ANOVA test yielded an F-statistic of 7 and a p-value of 0.01, indicating a statistically
significant difference in performance among the models. A p-value of 0.01 suggests that
there is only a 1% probability that the observed improvements in accuracy, sensitivity, and
specificity occurred due to chance. This strongly supports the claim that the proposed
model significantly outperforms existing models. The obtained F-value of 7 is relatively
high, meaning that the variation in performance between the proposed and existing
models is much greater than the variation within the models themselves. Based on the
ANOVA test results, the proposed model demonstrates significant improvements in
accuracy, sensitivity, and specificity compared to state-of-the-art models, robust
performance, validated through statistical analysis, strong confidence (99%) in the
reliability of the observed improvements (p = 0.01), and meaningful variance (F = 7),
confirming that the enhancements are not due to random fluctuations. The statistical
analysis strongly supports the effectiveness of the proposed model. The observed
performance improvements are statistically significant, confirming that the model offers
superior classification accuracy, sensitivity, and specificity over existing approaches. This
reinforces its potential as a reliable and efficient solution for pancreatic cancer
classification.

Computational complexity
The computational efficiency of the proposed method for diagnosing pancreatic cancer is
shown in Table 10. Floating point operations (FLOPs), testing execution time, storage
consumption, and parameters are used to evaluate the method’s computational efficiency.

Table 10 Resource usage and execution time analysis of the proposed deep learning models.

Proposed models Parameters Flops Memory Computation cost Execution time for testing

EUNet model 3M 25M 0.8 GB 1.15 GB 3 s

MResNext model 4M 30M 0.95 GB 1.2 GB 2.5 s
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As the table shows, the proposed method for identifying pancreatic tumors requires less
computational work. The proposed segmentation (EUNet) model takes 1 to 3 s to segment
medical CT images during the testing process for pancreatic tumor segmentation.
Compared to other segmentation models, the proposed EUNet model takes less time
to test.

Limitations
One significant drawback of this proposed research is that just one publicly accessible
pancreatic cancer CT imaging dataset was used to train and evaluate the proposed models.
The availability of diverse and annotated datasets for pancreatic cancer remains a
challenge, limiting the ability to test the model’s generalizability across populations with
varied demographics, scanner types, or acquisition protocols.

The dataset has a higher representation of benign cases compared to malignant ones,
which could introduce a class imbalance bias during training.

The transition of the proposed models from research to clinical environments poses
several challenges. These include ensuring compatibility with existing radiology systems,
real-time processing capabilities, and ease of use for radiologists without requiring
extensive training.

The proposed models need rigorous validation in clinical settings across multiple
healthcare institutions to ensure robustness and reproducibility under varying conditions.

Future scope
To address the limitation of dataset diversity, future research will involve testing the
models on multiple large-scale and multi-institutional pancreatic cancer datasets,
including private and public repositories. This will help evaluate the generalizability and
robustness of the proposed approach.

To address the class imbalance, data augmentation techniques such as flipping, rotation,
and contrast adjustments are applied to underrepresented classes in the future to ensure a
balanced training set.

Future work will explore domain adaptation and transfer learning methods to adapt the
models to different imaging modalities (e.g., MRI, PET-CT) and scanners to increase the
versatility of the proposed system.

Develop a user-friendly interface to enable seamless integration with clinical workflows.
Collaborate with radiologists and oncologists to conduct prospective validation studies in
real-world clinical settings, focusing on assessing model interpretability and diagnostic
accuracy.

CONCLUSION
The pancreas is a vital organ that secretes substances inside and outside the body. It is also
susceptible to various diseases. There is currently an inferior prognosis for pancreatic
malignancies, which are deadly. To track, diagnose, and classify cancer incidence,
computerized segmentation and classification of pancreatic cancer using a CADmodel are
required. Deep learning systems can give precise image interpretation for medicinal

Dodda and Muneeswari (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3263 38/43

http://dx.doi.org/10.7717/peerj-cs.3263
https://peerj.com/computer-science/


purposes. The research created a novel deep learning-based segmentation and
classification (EUNet-MResNext) model for CT images to accomplish this goal.
Pre-processing is applied to the images to eliminate noise from the acquired dataset. A
hybrid filtering technique is employed for pre-processing. The EUNet model is used for
segmentation to identify the affected pancreatic region. Using the DenseNet-161 model,
the essential features of the affected lesion region are retrieved. The next step is to classify
pancreatic cancer as benign or malignant using MResNext-TSOA. The classification
performance is improved due to the TSOA’s ability to prevent the manual trial-and-error
hyper-parameter selection procedure. With a 99.85% overall accuracy, 99.76% sensitivity,
99.72% specificity, 95.87% dice score, and 96.04% IOU, the proposed integrated method
segments and classifies pancreatic cancer. Comparing the proposed (modified DenseNet-
201-IDRSN) model to other approaches, such as U-Net, Modified CNN, DNN, GNN,
ANN, particle swarm optimization (PSO), support vector machine (SVM), XGboost, and
others, the proposed models outperformed the others in segmentation and classification
tasks, according to the experimental data.

We intend to gather additional samples from various central institutions in the future
and develop a classification model that performs better; consequently, it has more clinical
value for using CT imaging for the preoperative diagnosis and staging of pancreatic cancer.
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