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ABSTRACT
Inventory management faces increasing challenges, including data limitations and
demand uncertainty. To enhance inventory forecasting and optimization in supply
chain management, this study proposes a Transfer-learning Bayesian Network
(TBN) framework that integrates causal inference and transfer learning. Unlike
traditional inventory forecasting models that rely on historical data patterns, the
proposed framework introduces a causal inference-based Bayesian network to
establish explicit causal relationships between sales volume, sales revenue, and
inventory levels. To address data scarcity and improve generalization, a novel
transfer learning mechanism is incorporated, leveraging a balanced weight coefficient
method to optimize model adaptation from a source domain to a target domain. The
results indicate that the proposd approach ensures effective knowledge transfer and
maintains prediction accuracy with limited training data. The TBN model
consistently outperforms traditional machine learning methods and other
Bayesian-based models. On the self-constructed dataset, the TBN framework
achieved a mean squared error (MSE) of 4.97 and a mean absolute error (MAE) of
2.78, demonstrating superior predictive accuracy. Additionally, an analysis of the
balance weight coefficient further validated its role in enhancing transfer learning
efficiency and model robustness, which provides a scalable and adaptable solution for
intelligent inventory management in supply chain systems.

Subjects Adaptive and Self-Organizing Systems, Agents and Multi-Agent Systems, Computer
Aided Design, Data Science, Databases
Keywords Machine learning, Transfer learning, Supply chainmanagement, Data science, IoT, Edge
computing, Inventory optimization

INTRODUCTION
With the ongoing progression of globalization and the intensifying market competition,
supply chain management (SCM) has become a vital component of contemporary
enterprise strategy. Transitioning from traditional supply chain models to advanced
intelligent supply chain management systems, SCM has undergone substantial
development and transformation. The essence of the supply chain encompasses all links
and activities involved in the journey of a product from production to delivery to the final
consumer (Almahdy et al., 2021). This includes manufacturers, suppliers, logistics,
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distributors, retailers, and ultimately, the end consumers. Effective SCM can markedly
enhance operational efficiency, reduce costs, and improve customer satisfaction and
market competitiveness. Within the modern supply chain management system, inventory
management holds a pivotal role as the central link. The primary objective of inventory
management is to ensure customer demand is met while minimizing inventory levels,
thereby reducing costs and optimizing the use of funds. Effective inventory management
enhances the overall efficiency of the supply chain and mitigates the risks and losses
associated with inventory shortages or surpluses (Asadkhani, Fallahi & Mokhtari, 2022).
The transition from traditional supply chain models to intelligent supply chain systems
brings significant benefits, including improved operational efficiency through automation
and real-time analytics, enhanced supply chain transparency via end-to-end data
integration, reduced operational and inventory costs through process optimization, more
accurate demand forecasting enabled by advanced predictive models, and faster response
times supported by real-time monitoring and predictive alerts. These improvements allow
enterprises to respond rapidly to market fluctuations, maintain optimal inventory levels,
and ensure reliable product and service delivery, thereby enhancing customer satisfaction,
strengthening brand reputation, increasing adaptability to market changes, and ultimately
reinforcing overall market competitiveness and long-term sustainability.

However, inventory management encounters numerous challenges. Firstly, the
uncertainty and volatility of market demand heighten the complexity of inventory
management. Secondly, the increased complexity of supply chains due to globalization,
coupled with the greater diversity and decentralization of supply chain links, necessitates
the consideration of more variables and uncertainties in inventory management.
Additionally, the heightened risk of supply chain disruptions, such as natural disasters,
political unrest, and supplier bankruptcies, imposes greater demands on inventory
management (Chen, Liu & Zhang, 2022). To address these challenges, modern inventory
management has begun incorporating artificial intelligence and machine learning
technologies to forecast future demand changes and optimize inventory decisions by
analyzing historical sales data, market trends, and external environments. Machine
learning algorithms, including regression analysis, time series forecasting, and
classification models, can extract valuable insights from large datasets and identify
potential patterns and trends, thereby providing more accurate and timely inventory
forecasts (Cheng et al., 2021).

The improvement in the accuracy of inventory forecasting through artificial intelligence
(AI) and machine learning primarily stems from data-driven pattern recognition, dynamic
adaptability, and causal inference. Deep learning techniques can identify complex
temporal patterns and capture nonlinear relationships, avoiding reliance on the linear
assumptions of traditional statistical methods, thereby enhancing the precision of
long-term forecasting. Reinforcement learning further optimizes inventory decisions based
on real-time data, adapting to demand fluctuations and increasing supply chain resilience.
Causal inference methods provide a unique advantage in uncovering cause–effect
relationships between variables, allowing companies to distinguish genuine drivers of
inventory changes from spurious correlations. For example, Bayesian networks can model
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causal links between sales, promotions, and inventory turnover, enabling more reliable
predictions and policy simulations in real-world scenarios. Transfer learning complements
these capabilities by enabling models trained on one product category, season, or regional
market to be efficiently adapted to others, significantly reducing the need for large amounts
of new data and accelerating deployment in diverse operational contexts. This is
particularly valuable for enterprises managing heterogeneous product portfolios or rapidly
entering new markets. In practice, the Enterprise Resource Planning (ERP) system plays a
crucial role in optimizing inventory management by integrating multisource data and
intelligent analytics to improve inventory turnover, reduce excess stock, and prevent
stockouts. It supports real-time inventory monitoring and leverages AI, including causal
inference models, to predict demand fluctuations and inform precise replenishment
strategies. Meanwhile, the Vendor Managed Inventory (VMI) model allows suppliers to
directly manage inventory levels, leveraging transfer learning to adjust forecasting models
to the supplier’s product mix and demand patterns, thereby reducing supply chain
disruption risks and further improving forecasting accuracy. Causal inference is essential
in inventory optimization, as it analyzes the causal relationships between inventory,
demand, and supply chain factors, identifying key influences to optimize replenishment
strategies and enhance supply chain resilience. By combining ERP systems, VMI, and
causal inference methods, businesses can achieve more precise inventory control, improve
supply chain efficiency and market competitiveness, and realize refined operations. ERP
systems enhance inventory management by integrating real-time data across procurement,
production, and sales, enabling more accurate demand forecasting and coordinated
replenishment. This improves inventory turnover by aligning stock levels with actual
market needs, reduces excess stock through better visibility and control, and mitigates
common issues such as stockouts or overstocking, thereby increasing overall supply chain
efficiency.

Many organizations grapple with the issue of limited data volume in real-world
applications, leading to the challenge of insufficient data for training deep learning models.
To mitigate this problem, transfer learning techniques offer a viable solution. Transfer
learning enhances prediction performance with limited data by transferring the knowledge
from pre-trained models in the source domain to the target domain (Dag et al., 2023).
Consequently, this article integrates existing causal inference Bayesian networks with
transfer learning methods to optimize inventory management in supply chain
management, aiming to enhance the efficiency of intelligent optimization. The specific
contributions are as follows:

1. Addressing the need for inventory optimization in supply chain management, the
existing Bayesian network model is enhanced, and a TBN inventory management
optimization framework based on causal inference and transfer learning is established
by introducing a transfer learning mechanism, aiming to achieve high-precision
inventory forecasting and optimization.
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2. The constructed TBN framework achieves highly accurate inventory prediction using a
public dataset, with results significantly outperforming unimproved traditional
methods.

3. In practical inventory management applications, the challenge of limited data is
addressed by balancing the parameters of the source and target domains through a
method of balancing weight coefficients. It is demonstrated that the TBN framework
can achieve high-precision inventory prediction and optimization even with a self-built
dataset, as evidenced by comparisons with improved Bayesian network methods such as
Tree-Augmented Naïve Bayes (TAN) and Weighted Averaging Tree-Augmented Naïve
Bayes (WATAN).

The rest of the article is organized as follows: ‘Related Works’ reviews related works on
inventory management optimization and causality research. ‘Methodology’ presents the
proposed TBN framework. ‘Experiment Result and Analysis’ provides the experimental
details and results. Finally, the conclusion is drawn.

RELATED WORKS
Inventory management and optimization studies
To ensure the continuity of sales, it is necessary to stock some goods in reserve to cope with
potential changes. This buffer stock helps balance demand fluctuations and production
adjustments, which necessitates maintaining a certain inventory level to ensure the
presence of safety stock, originating from the theory of safety stock (Forney & Mueller,
2022). A higher safety stock reduces the likelihood of stock-outs but increases surplus
stock; thus, an optimal safety stock level must be maintained within a reasonable range.
This level can be determined from consumer demand or expected service levels, and
quantitatively established by examining demand changes (Goldberg, Reiman & Wang,
2021). Harris proposed the Economic Order Quantity (EOQ) model to control inventory
costs; the EOQ model is an inventory management method aimed at optimizing
operational efficiency (Ivanov, Tsipoulanidis & Schönberger, 2021). It addresses
mismatches between production and demand within enterprises, focusing on the rational
allocation of inventory costs. Chung et al. (2021) further refined the EOQ model for
perishable products (Kiciman & Sharma, 2019). With the evolution of supply chain theory,
traditional inventory control methods have continuously improved. Alongside analyzing
and researching the EOQ model, the classic inventory control method based on the Pareto
principle—ABC analysis—has been utilized. ABC analysis segments products
hierarchically, recognizing that many products follow this distribution (Kitson et al., 2023).
With advancements in computer information technology, Goldberg, Reiman & Wang
(2021) have enhanced the theory of multilevel inventory, promoting the development and
application of supply chain management concepts in inventory management. They
proposed two multilevel inventory control models (Luo et al., 2016), which have since been
widely adopted across various industries. The ERP system, which starts with supply chain
management, effectively improves inventory turnover and alleviates inventory problems.
Subsequently, the Vendor Managed Inventory (VMI) model emerged, employing
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just-in-time delivery technology to prevent stock-outs and enable downstream suppliers to
accurately predict enterprises’ purchasing needs (Ma & Fildes, 2021). The VMI model,
based on joint inventory management, has proven effective in supply chain inventory
management strategies, gaining academic recognition and widespread implementation.
VMI improves supply chain performance by allowing suppliers to directly monitor and
replenish inventory based on real-time sales and demand data. This proactive approach
reduces the risk of stock-outs, ensures timely product availability, and enhances the
accuracy of inventory forecasting through closer alignment between supply and actual
consumption patterns. Traditional inventory control methods typically use fixed order
quantity (EOQ), reorder point (ROP), or safety stock strategies, relying primarily on
historical data and statistical models to determine inventory replenishment rules. These
methods are relatively static and struggle to adapt to demand fluctuations in complex
supply chains. In contrast, the multi-echelon inventory model focuses on optimizing
inventory across different supply chain levels (such as suppliers, warehouses, and retailers).
By leveraging information sharing, demand forecasting, and dynamic inventory allocation,
it enhances overall supply chain efficiency, reduces total inventory costs, and minimizes
stockout risks, making inventory management more flexible and adaptive.

Causal reasoning studies
A causal inference model is an algorithm designed to explore causal relationships between
variables. Unlike the latent causation framework (Mishra, Wu & Sarkar, 2021) commonly
employed in economics and sociology, causal inference models in computer science often
utilize the structural causation framework. Typically, these models employ a Bayesian
network (Ntakolia et al., 2021) as the foundation to construct the causal structure between
variables, thus also known as causal Bayesian networks or causal networks. Pournader et al.
(2021) introduced an innovative strategy to transform the constrained problem of a
directed acyclic graph (DAG) into a sequential optimization problem on a matrix of real
numbers, addressing the limitations of combinatorial optimization. This smooth
representation was incorporated into the scoring function of linear structure learning,
resulting in the Non-combinatorial Optimization via Trace Exponential and Augmented
(NOTEARS) algorithm, which accurately learns the graph structure from continuous
variables. Building on this, numerous research efforts have optimized the algorithm with
structural constraints, applying it to nonlinear systems or ensuring algorithmic
consistency. Pramodhini et al. (2023) developed a maximum likelihood function as a
scoring function based on the Linear Non-Gaussian Acyclic Model (LiNGAM) model,
proposing the Bayes-LiNGAM algorithm to estimate the causal structure. To achieve
strong artificial intelligence, many scholars have leveraged causal theory to design
algorithms that help machines learn causal relationships from data, aiming for stable
predictions with high accuracy and interpretability. Sutejo, Suprayitno & Latunreng
(2023), from a data-driven perspective, proposed a framework to automatically collect
causal relationships from a large web corpus, which quantifies the strength of causal
relationships between various texts, addressing the common-sense causal reasoning
problem. Tadayonrad & Ndiaye (2023) introduced the StableNet method, which
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eliminates dependencies between features by learning the weights of training samples,
thereby focusing more on discerning the true connections between features and labels.
This method utilizes genuinely relevant causal features for prediction, achieving stable
performance in non-smooth environments. Wu, Wang & Wu (2022) applied Bayesian
network to investigate qualitative and quantitative causal relationships between context
and quality of service (QoS) metrics, deploying their findings in a real multimedia
conferencing system. Causal reasoning enables inventory management systems to move
beyond simple correlations by uncovering the true cause–effect relationships between
inventory levels, customer demand, and broader supply chain dynamics. By identifying
how changes in demand patterns, lead times, or supplier performance directly influence
stock levels, causal models allow managers to simulate potential interventions and predict
their outcomes with greater reliability. This deeper understanding supports more
optimized inventory decisions, such as adjusting safety stock, prioritizing replenishment,
or reconfiguring supply chain flows to balance service levels and costs.

The aforementioned study underscores the importance of maintaining safety stock for
enterprises to manage demand fluctuations and production adjustments effectively. The
essence of safety stock theory is to balance these fluctuations and adjustments, thereby
mitigating the risks of stock-outs and excess inventory. With advancements in supply
chain theory, multilevel inventory control methods and ERP systems have matured,
significantly enhancing the efficiency and precision of inventory management. In the
current era of data science, a substantial volume of data is essential for achieving
high-accuracy inventory analysis. Causal reasoning, distinct from the traditional latent
causal framework of economics and sociology, emphasizes the structural causal
framework. This approach constructs the causal structure between variables, enabling
precise causal relationship analysis. Consequently, optimizing inventory management
through causal reasoning can uncover the intricate causal relationships between inventory,
demand, and various supply chain links. This understanding facilitates the development of
more scientific and efficient inventory management strategies.

METHODOLOGY
Bayesian networks
Causal inference, particularly when implemented through Bayesian networks, enables the
explicit modeling of directional dependencies between sales and inventory, distinguishing
true causal effects from mere correlations. By capturing how changes in sales volume
directly influence inventory levels—and vice versa—Bayesian networks support more
accurate forecasting and allow scenario-based simulations for optimized inventory
decisions. There is a robust relationship between Bayesian networks and causal inference
models. Bayesian networks utilize DAGs to represent conditional dependencies between
variables, serving as a specific form of causal inference modeling. When a Bayesian
network not only represents probabilistic dependencies but also explicitly expresses causal
relationships, it is termed a causal Bayesian network. These networks are capable of
performing probabilistic reasoning as well as causal reasoning, such as calculating
intervention effects and counterfactual reasoning. Causal inference models construct
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causal structures between variables using Bayesian networks and leverage data to learn
these structures and parameters, achieving highly accurate causal analysis and prediction
(Yamayoshi, Tsuchida & Yadohisa, 2020).

A Bayesian network consists of a directed acyclic graph (DAG) and a set of conditional
probability distributions (CPDs). Suppose the Bayesian network contains n random
variables X1;X2; . . . ;Xn, and their joint probability distribution is denoted as.

P X1;X2; . . . ;Xnð Þ ¼
Yn

i¼1

P XijPa Xið Þð Þ (1)

where Pa Xið Þ denotes the set of parent nodes of node Xi. The conditional probability of
each node Xi is represented as the conditional probability distribution of the given parent
node set Pa Xið Þ P XijPa Xið Þð Þ. These conditional probability distributions are derived
through data learning and are typically represented in the form of probability tables. The
edge probabilities for any subset of variables are computed from the joint probability
distribution. For example, the marginal probability of variable A can be expressed by
Eq. (2):

P XAð Þ ¼
X

XnA

P X1;X2; . . . ;Xnð Þ (2)

where XnA denotes all variables except XA.
Bayes’ theorem is commonly used in Bayesian networks for probability updating and

inference. Given the observed evidence E, compute the posterior probability of some
variable of interest X:

P XjEð Þ ¼ P EjXð ÞP Xð Þ
P Eð Þ (3)

where, P Eð Þ can be obtained by marginalization

P Eð Þ ¼
X

X

P EjXð ÞP Xð Þ: (4)

This enables the updating and inferring of the probability distribution of the variable of
interest given new evidence. Bayesian networks efficiently represent and reason about
conditional dependencies and causal relationships in complex systems, and are widely
utilized across various research domains involving inference.

In practical applications, the reasoning process of causality is critically important. For
this article, considering market sales factors and inventory situations in the context of
management optimization, the general causal path topology can be illustrated as shown
in Fig. 1.

That is, causality in this article is primarily constructed based on sales volume. This
approach differs from traditional research, which typically relies on historical inventory
changes for data analysis. By focusing on changes in causality, the model’s performance
can be analyzed more effectively.
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Most current research on Bayesian network classifiers emphasizes learning the network
topology from training data. To study the dependencies between the learned attributes in
the network, this article employs the log-likelihood function to conduct an inference study
on the causal relationships. On the basis of the known probability distribution function
introduced in Eq. (1), we have a further log-likelihood function calculation, given the
dataset D ¼ D1;D2; . . . ;Dmf g, the log-likelihood function is:

L h;Dð Þ ¼
Xm

j¼1

logP Djjh
� �

(5)

where h denotes the model parameters and P Djjh
� �

denotes the probability of a data point
Dj under a given parameter h. The log-likelihood function is used to calculate the

log-likelihood value of the model thus enabling the assessment of the merits of different
causal models. The Bayesian network approach offers advantages over traditional time
series methods (e.g., Autoregressive Integrated Moving Average (ARIMA), long short-
term memory (LSTM)) in forecasting accuracy and training time for inventory prediction.
Firstly, Bayesian networks can capture causal relationships between inventory, sales, and
supply chain factors, rather than relying solely on historical data-based linear or nonlinear
patterns, improving interpretability and prediction accuracy. Secondly, Bayesian networks
use probabilistic inference, allowing effective predictions even with limited or incomplete
data, whereas time series methods typically require large datasets for training.
Additionally, Bayesian networks have lower computational complexity and shorter
training time, making them well-suited for real-time inventory management and dynamic
decision optimization.

Transfer learning methods
Transfer learning is a machine learning method that aims to utilize knowledge gained from
one task to improve performance on a related task. Unlike traditional machine learning
methods, transfer learning leverages existing knowledge to enhance the learning efficiency
and effectiveness of new tasks, particularly when data is scarce or costly to acquire, offering

Sales volume
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Inventory 
adjustmentSales volume
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Figure 1 The causal relationship of inventory changes. Full-size DOI: 10.7717/peerj-cs.3262/fig-1
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a significant advantage. The fundamental concept of transfer learning involves learning
models from the source domain and source task, then transferring this knowledge to the
target domain and target task (Zekhnini et al., 2021). Transfer learning mitigates the
limited data challenge in deep learning–based inventory optimization by leveraging
pretrained models from related domains to initialize network parameters with learned
feature representations. This approach reduces the reliance on large volumes of
task-specific data, accelerates convergence, and improves model generalization, enabling
accurate inventory predictions even in data-scarce scenarios. The crux of transfer learning
lies in effectively sharing and adapting knowledge from the source task to address
challenges in the target task. This often involves migrating some or all of the trained model
parameters from the source task to the target task, a method commonly employed in
neural network research. In transfer learning, a combination of source task loss LS and
target task loss LT is usually introduced. The goal is to minimize the combined loss
function:

L ¼ LT þ kLS (6)

where k is the hyperparameter that weighs the source task loss and the target task
loss. Suppose the source task model parameters are hS and the target task model
parameters are hT . Transfer learning is accomplished by fine-tuning the source task
parameters by Eq. (7).

hT ¼ hS þ Dh (7)

where Dh denotes the tuning of the model parameters in the target task. Transfer learning,
in scenarios where data is scarce or costly to obtain, leverages knowledge from similar tasks
or domains, reducing reliance on large amounts of labeled data. This enhances the model’s
generalization ability, making inventory forecasting more efficient and adaptable to
different business environments.

The establishment for the transfer-learning Bayesian network
Considering the inventory management requirements within the framework of causal
reasoning addressed in this article, we utilize Bayesian networks and transfer learning
techniques for network design. This approach is based on the dual integration of sales
volume and historical inventory data to achieve more precise optimization of inventory
items. During the Bayesian network parameter transfer process, it is assumed that the
target network in the target domain consists of parameters to be estimated. It is further
assumed that there are N resource domains comparable to the target network. Any
network comparable to the target network is referred to as a resource network, and these
networks can provide valuable information for learning the target network. The TBN
network constructed is illustrated in Fig. 2.

The target network can be expressed as DT ¼ DT ;GT ;VT
� �

, where the data of the
target network is characterized by DT , the structure of the target network is characterized
by GT , and the dimension of the target network is expressed by VT . The resource network
is expressed as DS ¼ DS;GS;VSf g, where the data of the resource network is represented

Xi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3262 9/21

http://dx.doi.org/10.7717/peerj-cs.3262
https://peerj.com/computer-science/


by DS, the structure of the resource network is characterized by GS, similar to the
dimension of the target network, and the dimension of the resource network is expressed
by VS. The corresponding data under the public dataset are analyzed, followed by
parameter transfer according to the characteristics of Bayesian networks.

Under the framework illustrated in Fig. 2, this article first normalizes the sales degree
and sales quantity data in the sales process, which are then fed into the Bayesian network.
The model’s output is the remaining inventory for the day, enabling an assessment of the
inventory status. To ensure the accuracy of the model parameters during the transfer
process, we employ a parameter adjustment method as exemplified in Eq. (7) for
parameter weighting adjustment. The migrated parameters can be expressed by Eq. (8):

hT ¼ ahS þ ð1� aÞDh (8)

where a represents the balance weight coefficient, the magnitude of its value varies in
[0, 1], which indicates the balance between the parameters concerning these two domains.
The optimal transfer of the model is realized after adjusting the size of a. Thus, it realizes
the sales degree and sales quantity assessment based on the actual sample in the real
scenario.

EXPERIMENT RESULT AND ANALYSIS
Dataset and experiment setup
After constructing the model, we proceed with testing and performance analysis. Initially,
we evaluate the model using a publicly available dataset. For this study, we have selected
the Retail Sales Forecasting dataset (Zhang, Jiang & Li, 2022), which contains extensive
historical sales data. This dataset originates from major retailers in Brazil, with data
transformations applied to ensure anonymity. In total, it comprises over 900 data points
from multiple retailers, offering a robust foundation for analyzing overall inventory
fluctuations and trends. A typical data sample from the dataset is illustrated in Fig. 3.

Figure 2 The framework for the TBN. Full-size DOI: 10.7717/peerj-cs.3262/fig-2
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After confirming the use of the public dataset, we proceeded with the construction of the
experimental environment. The specific details of the experimental environment are
shown in Table 1.

In this article, considering that the final inventory forecasting analysis is a fitting
analysis problem, we evaluate the model’s performance primarily using the mean squared
error (MSE) and mean absolute error (MAE) metrics. MSE is more sensitive to large
errors, making it particularly effective for inventory forecasting.

MSE ¼ 1
n

Xn

i¼1

yi � ŷi
� �2

: (9)

MAE is insensitive to outliers and is more robust, providing a balanced measure of
prediction accuracy.

MAE ¼ 1
n

Xn

i¼1

yi � ŷi
�� �� (10)
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Figure 3 The changes in product information according to the employed dataset.
Full-size DOI: 10.7717/peerj-cs.3262/fig-3

Table 1 The experiment environment.

Environment Information

CPU I5-13500

GPUs GTX02080

Language Python 3.4

Framework Scikit-learn
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where yi; ŷi represents the predicted and actual values, respectively. The two evaluation
metrics, MSE and MAE, are used for more accurate model evaluation. In our method
comparison, we analyze traditional time series machine learning methods such as MLP,
SVM, and KNN, alongside Bayesian causal inference methods, including TAN
(Zhang et al., 2021), WATAN (Zheng, 2020), and TAODE (Zhuang et al., 2020). Since this
article focuses on enhancing Bayesian inference performance using the transfer learning
approach, only the basic methods are compared on the public dataset. Meanwhile, the
migrated TBN is compared with traditional TAN and other improved Bayesian methods
on the self-constructed dataset.

Model comparison and result analysis
After finalizing the training dataset and comparison methods, we proceeded with the
model training and subsequent result analysis based on the public dataset using different
methods. The results are illustrated in Fig. 4.

In Fig. 4, it is evident that due to the simpler data, only shorter and lower-dimensional
time series methods have achieved more stable results after approximately 40 iterations.
The Bayesian network method used has the smallest MSE of only 2.7. In contrast, the
MLP method does not show a better advantage over longer iterations, likely due to falling
into local extrema, with its final MSE stabilizing around 3.2. To further analyze the
different models, we also compared their final MAE and training stabilization times, as
shown in Fig. 5.

In Fig. 5, we present a comparison between the MAE and training time for the
different models. The figure indicates that the overall trend for MAE is similar to

Figure 4 The training process and MSE result. (A) MSE convergence curves over epochs; (B) Final MSE values of each method.
Full-size DOI: 10.7717/peerj-cs.3262/fig-4
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that of MSE, with both metrics showing a relatively average performance across the
models. In terms of running time, network-based methods exhibit significantly
higher training times compared to the simplest KNN method. Notably, the
training efficiency of the Bayesian network method proposed is superior to that of the
MLP method, offering faster speeds and higher accuracy. Consequently, model transfer
through this method results in more efficient and precise inventory prediction and
analysis.

Model transfer analysis concerning self-established dataset
After completing the test on the public dataset, we find that the Bayesian network
approach based on causal inference achieves higher accuracy in inventory prediction by
combining historical inventory data with key information on sales volume and sales value.
To further validate the rationality of the TBN framework proposed, we migrated the
Bayesian network using the transfer approach detailed in ‘The Establishment for the
Transfer-Learning Bayesian Network’ and conducted an analysis on the self-constructed
database. In transfer learning, resource networks play a pivotal role in parameter
estimation by leveraging pretrained model weights and shared feature representations
from related tasks or domains. This enables the target model to initialize parameters closer
to their optimal values, reducing the need for large volumes of task-specific data and
accelerating convergence. However, network-based models, particularly deep
architectures, often require longer training times compared to simpler methods such as k-
neural network (KNN), due to their higher parameter complexity and iterative
optimization processes. While this increased computational cost can be a limitation, it is
generally offset by the superior generalization performance and adaptability achieved

Figure 5 (A) MAE and training time (B) for the model comparison result. Full-size DOI: 10.7717/peerj-cs.3262/fig-5
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through transfer learning in complex inventory forecasting and supply chain contexts.
Transfer learning enhances Bayesian causal models by enabling the reuse of structural
priors and parameter estimates learned from related datasets, thereby providing a strong
initialization for model training on self-constructed datasets. This approach mitigates the
limitations of small sample sizes by transferring domain-relevant causal dependencies and
probability distributions, which accelerates convergence and improves the stability and
accuracy of causal relationship estimation. As a result, the model can more reliably
uncover and quantify the links among sales, demand fluctuations, and inventory levels,
even when the target dataset is limited in scale. The self-built database primarily records
sales, sales volume, inventory, and inventory value data for specific product categories in
large regional shopping malls. The model is trained and tested according to the
requirements of the corresponding transfer framework. The four categories of features for
a particular product in our constructed database are illustrated in Fig. 6.

Based on the previously constructed transfer framework, it is evident that the task
undertaken involves fitting the current inventory analysis based on sales volume, sales
degree, and historical total inventory value. This approach aims to implement the
sequence-to-sequence regression method. The comparison methods used have been

Figure 6 Changes in product information in self-established dataset. (A) Daily sales volume, (B) Daily sales amount, (C) Daily inventory volume,
(D)Daily inventory value. Full-size DOI: 10.7717/peerj-cs.3262/fig-6
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described in ‘Dataset and Experiment Setup’. To compare the effectiveness of the Bayesian
network under transfer, we use the same MSE and MAE metrics. The results are shown in
Table 2 and Fig. 7.

Through the comparison of different Bayesian networks, it can be seen that under the
simpler model, we can form a better prediction effect on the smaller dataset used through
certain transfer of parameters. TBN, the method proposed, has a better prediction effect.
Compared to the single Bayesian network, the overall MSE of the transfer learning method
can be better in the limited dataset. The MSE and MAE of the proposed method are 4.97
and 2.78, respectively, which are significantly better than those of TAN and other methods
that make changes in the Bayesian network itself, i.e., better inventory prediction is realized
under the simpler causal inference model. To better analyze the effect of the transfer model
for causal inference Bayesian network-like methods, we analyzed the transfer balance
coefficient a in Eq. (8), and the results of MSE and MAE under different values are shown
in Table 3 and Fig. 8.

In the TBN framework, balanced weight coefficients play a critical role in enhancing
transfer learning across domains by controlling the contribution of source and target
domain knowledge during model training. Properly tuned coefficients prevent

Ours TAN WATAN TAODE 
2

3

4

5

6

7

Method

MSE
MAE

Figure 7 The MSE and MAE comparison on the self-established dataset.
Full-size DOI: 10.7717/peerj-cs.3262/fig-7

Table 2 The MSE and MAE comparison on the self-established dataset.

Methods MSE MAE

Ours 4.97 2.78

TAN 6.13 4.93

WATAN 6.83 5.16

TAODE 7.11 6.39
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over-reliance on the source domain while ensuring sufficient knowledge transfer, thereby
improving model adaptability, reducing negative transfer effects, and enhancing
predictive accuracy in cross-domain inventory forecasting. In Fig. 8, we observe that with
the increase of a, both MSE and MAE exhibit a decreasing trend, reaching the optimal
transfer effect near a. At this equilibrium coefficient, the model achieves an MSE of 4.97
and an MAE of 2.78. This indicates that in future applications, the optimal transfer
equilibrium coefficients can be determined by searching for the optimal balance under
simpler data conditions, thereby enhancing the model’s performance in practical
applications.

DISCUSSION
This article focuses on the optimization of inventory management in supply chain research
and proposes a TBN inventory management optimization framework based on causal
inference CBN and transfer learning. The framework utilizes causal inference to analyze
the relationships between key variables such as inventory, sales volume, and sales revenue,
improving inventory management accuracy and decision interpretability. Specifically, the
framework first normalizes sales volume and sales revenue data before inputting them into
the Bayesian network for modeling. The model outputs the remaining inventory for the
day, enabling inventory status evaluation and replenishment optimization. During the
parameter transfer process, to ensure model accuracy and adaptability across different
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Figure 8 MSE and MAE among different a. Full-size DOI: 10.7717/peerj-cs.3262/fig-8

Table 3 MSE and MAE among different a.

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MSE 6.59 6.71 5.11 5.13 5.01 4.97 5.21 5.35 6.09

MAE 3.11 3.29 3.07 3.15 3.05 2.78 3.13 3.47 3.59
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business scenarios, a balanced weight coefficient is introduced to dynamically adjust
parameters between the source and target domains, optimizing the transfer effect. This
method effectively reduces inventory overstock and stockout risks, enhances inventory
forecasting accuracy, and improves the intelligence and competitiveness of supply chain
management. Causal inference Bayesian networks provide greater explanatory power and
predictive accuracy compared to traditional machine learning methods such as support
vector machine (SVM), multilayer perceptron (MLP), and KNN. Inventory management
involves complex causal relationships between factors like demand and supply, which
traditional methods capture using large data volumes and complex model structures.
However, SVM, MLP, and KNN methods function as “black-box” models, making it
difficult to reveal causal relationships between variables and often perform poorly with
insufficient or unevenly distributed data. Bayesian networks offer significant advantages in
causal inference models by representing variables and their conditional dependencies in a
structured, probabilistic framework. This allows for the explicit quantification of the
strength and direction of causal relationships, enabling both predictive and explanatory
analysis. Their graphical nature facilitates the integration of expert knowledge with
empirical data, supports reasoning under uncertainty, and allows scenario simulation to
assess the potential impact of interventions, thereby providing deeper contextual
understanding of complex systems such as sales–inventory dynamics. In contrast,
traditional machine learning methods lack causal explanation capabilities, limiting their
effectiveness in complex supply chain environments. The TBN framework, through
transfer learning, achieves balanced adjustment between resource and target domain
parameters by introducing balanced weight coefficients, ensuring model accuracy and
robustness across different domains. Compared to traditional methods like TAN and
WATAN, the TBN framework offers superior performance in the transfer process.
Although TAN and WATAN address causality modeling to some extent, they are
vulnerable to differences between the source and target domains during transfer learning,
leading to degraded model performance. Integrating historical inventory data with sales
volume in a causal inference framework improves prediction accuracy by jointly capturing
stock dynamics and demand drivers. This approach disentangles the causal impact of sales
on inventory levels, enabling more reliable demand forecasts and optimized replenishment
strategies.

The TBN framework introduces balanced weighting coefficients to maintain model
simplicity while effectively adjusting and optimizing parameters between source and target
domains. This approach enables higher prediction accuracy and adaptability within a
simpler network structure. By combining the explanatory power of causal inference with
the flexibility of transfer learning, the TBN framework provides a superior solution for
complex inventory management scenarios. Inventory optimization is a crucial component
of supply chain management. While traditional methods often require extensive historical
data and complex model tuning, the TBN framework can maintain high prediction
accuracy with less data or significant changes in data distribution through a combination
of causal inference and transfer learning. This provides organizations with a flexible and
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efficient inventory management solution in a dynamically changing market environment.
Firstly, through causal inference Bayesian networks, we can more accurately assess the
remaining state of inventory and optimize inventory management strategies, thereby
reducing the risk of stockouts and excess inventory. This not only improves the overall
efficiency of the supply chain but also reduces inventory management costs and enhances
the competitiveness of the enterprise. Secondly, the introduction of transfer learning
makes the TBN framework more adaptable across different domains. Whether it involves
developing new markets or managing different product lines, the framework can be
quickly deployed and optimized through effective parameter adjustment. Beyond
inventory management, the application of the TBN framework in supply chain
management is equally promising. With the continuous development of big data and
artificial intelligence technologies, enterprises will be able to collect and process more
diverse and massive amounts of data, further enhancing the TBN framework’s
applicability. By integrating with Internet of Things (IoT) technology, real-time
monitoring of inventory and sales data, and applying causal reasoning and transfer
learning to more complex and real-time inventory management decisions, enterprises can
achieve more efficient and accurate supply chain management.

CONCLUSION
In this article, we propose a TBN inventory management optimization framework based
on causal inference Bayesian networks and transfer learning to address the inventory
management optimization problem in supply chain management. This framework aims to
achieve higher accuracy in inventory prediction and optimization within intelligent supply
chain management systems. The framework predicts the remaining inventory using sales
volume and sales quantity data and introduces a balanced adjustment of source and target
domain parameters through balanced weight coefficients to optimize the model’s transfer
performance. Experimental results demonstrate that on the public dataset, the TBN
framework achieves MSE and MAE values of 2.7 and 1.35, respectively, outperforming
traditional machine learning methods such as SVM, MLP, and KNN. During the transfer
process, the balanced coefficient-based transfer method surpasses improved Bayesian
network methods like TAN and WATAN, delivering superior inventory prediction fitting
analysis with simpler networks. Transfer analysis using both public and self-built datasets
reveals that the TBN frameworks consistently yield better inventory forecasting results,
effectively supporting the optimization and development of supply chain inventory
management systems.

Future research will focus on further optimizing the model’s dynamic adjustment
capabilities to enhance the accuracy of inventory forecasting and optimization by
integrating data from various dimensions, such as market dynamics and seasonal factors.
Additionally, we aim to establish a standard supply chain inventory management research
dataset to provide a reference for more researchers and business managers, thereby
supporting the optimization and development of intelligent supply chain management
systems.
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