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ABSTRACT

Image classification with long-tailed distribution (i.e., a few classes occupy most of
the training samples, while most classes have only a small number of representations)
is a challenging visual task at present. In this article, we propose a novelty
Mixup-based data augmentation technique, which uses two sampling mechanisms
(i.e., instance-based sampling and class-based sampling) to independently sample
and mix the training samples. Specifically, we obtain a conventional sample
distribution from instance-based sampling and a balanced sample distribution from
class-based sampling. The two sets of samples are then mixed to provide a more
balanced sample distribution for model training and effectively reduce the
under-fitting of tail classes. In addition, we also design a decay mixing strategy to
dynamically adjust the sample mixing weights during the training process. By doing
so, we can gradually guide the model training and prevent over-fitting. We validate
the proposed method on the long-tailed version of datasets created by CIFAR-10,
CIFAR-100, CINIC-10, Tiny-ImageNet, Fashion-Mnist, and ImageNet-LT.
Experimental results demonstrate that our method achieves better classification
performance than other advanced Mixup-based techniques in data imbalanced
scenarios.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision,
Optimization Theory and Computation, Neural Networks
Keywords Long-tailed distribution, Mixup, Data augmentation, Over-sampling

INTRODUCTION

Deep convolutional neural networks (CNNs) have advanced performance in image
classification (He et al., 2016; Krizhevsky, Sutskever ¢» Hinton, 2012). However, the
classification performance may decline when the data presents a long-tailed distribution
(Buda, Maki & Mazurowski, 2018; Park et al., 2021; Yang & Xu, 2020; Zhang et al., 2023).
Due to the dominant role of the sample sufficient classes (i.e., head classes), the model’s
fitting to the sample lacking classes (i.e., tail classes) is inadequate, which impairs the
classification performance of the model.

To mitigate the adverse effects caused by long-tailed distribution, many solutions have
been developed in relevant works (Huang et al., 2016; Pang et al., 2023; Wang et al., 2023;
Zhang et al., 2021, 2022a). Among these methods, re-sampling and re-weighting are the
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basic techniques to solve the long-tailed distribution problem. Re-sampling technique is
mainly to preprocess the training samples and achieve the balance of training sample
distribution through over-sampling or under-sampling (Ando ¢ Huang, 2017; Morais ¢
Vasconcelos, 2019; Zhu, Liu & Zhu, 2022; Zhao et al., 2023). These methods improve the
representation ability of tail classes by synthesizing the tail class samples. Re-weighting
technique usually provides greater weight compensation for tail classes to alleviate the
shortage of tail classes learning (Ren et al., 2018; Santiago et al., 2021; Shu et al., 2019).

Although the above techniques have certain advantages on the long-tailed distribution
problem, some studies have found that the rebalancing methods (i.e., re-sampling and
re-weighting) can impair the representation learning and inhibit the performance of the
model (Cao et al., 2019; Zhou et al., 2020). Therefore, some related works (Kang et al.,
2019; Zhou et al., 2020) decouple the training process and coordinate the combination of
conventional training and rebalancing training to achieve better performance. The typical
method is bilateral-branch network (BBN) (Zhou et al., 2020), which designs a two-branch
network to consider both representation learning and rebalancing learning, so as to
effectively avoid the damage of rebalancing learning to features. Besides, some related
works use data augmentation to increase the diversity of tail class samples (Li et al., 2021;
Mullick, Datta ¢ Das, 2019), like adaptive synthetic (ADASYN) (He et al., 2008) or
Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al., 2002). These
methods improve the representation ability of tail classes by synthesizing the tail class
samples.

Our approach is the improvement method of the well-known Mixup (Zhang et al.,
2017) data augmentation. Mixup is a common data augmentation that enhances the
generalization performance of the model through the weighted mixing of training sample
pairs. However, Mixup randomly combines training samples regardless of their classes,
and mixing in a long-tailed distribution will introduce noise and reduce the performance
of the model. Some approaches involving Mixup and long-tailed distribution have been
explored recently (Baik, Yoon ¢ Choi, 2024; Chou et al., 2020; Galdran et al., 2021; Kabra
et al., 2020; Zhang et al., 2022b). Remix (Chou et al., 2020) retains part of the tail class labels
to alleviate the lack of tail classes in the process of mixing. Balanced Mixup (Galdran et al.,
2021) performs both instance-based sampling and class-based sampling during mixing to
create a balanced distribution of synthetic samples. Label-Occurrence-Balanced Mixup
(Zhang et al., 2022a) combines Mixup with over-sampling so that the occurrence of labels
in each class remains statistically balanced. In contrast, Curriculum of Data Augmentation
(CUDA) (Ahn, Ko & Yun, 2023) mitigates class imbalance by adjusting augmentation
strength based on class difficulty.

In this article, we proposed a novel mixing mechanism based on the Mixup data
augmentation named progressive decay Mixup. First, the mechanism simultaneously
performs instance-based sampling and class-based sampling to provide a balanced sample
distribution for mixing. Figure 1 shows the sample distribution diagram of the above
sampling strategies. Second, we propose a progressive decay strategy which uses a linear
decay factor instead of the random mixing factor in Mixup. By doing this, the proposed
strategy can adaptively adjust the mixing weights of the two sampling batches and avoid
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Figure 1 Distribution diagram of mixed samples obtained from two sampling strategies. By taking
advantage of class-balanced sampling, the proposed mechanism can effectively increase the proportion of
tail class labels in mixed samples, to alleviate the label imbalance.

Full-size K&l DOT: 10.7717/peerj-cs.3261/fig-1

model overfitting by guiding the model learning gradually. Third, compared with the
classical bilateral-branch network (BBN) (Zhou et al., 2020), the proposed method can
availably guide the model training by assigning label distribution without introducing
additional models (Zeng et al., 2024). The main contributions of our work are:

(a) We provide a more complete form of the Mixup algorithm for long-tailed distribution
scenario, and the modified Mixup successfully integrates oversampling with Mixup
organically.

(b) For the process of sample mixing, we propose a novel progressive decay strategy which
enables the model to focus on tail classes progressively.

(c) By evaluating our method in various long-tailed versions of datasets, the proposed
method outperforms other Mixup-based techniques in the long-tailed distribution.

RELATED WORK

Re-sampling

Re-sampling aims to pre-process imbalanced data, which mainly includes over-sampling
and under-sampling (Buda, Maki ¢ Mazurowski, 2018). For over-sampling, the usual
practice is to randomly repeat the tail class samples and add them to the original samples.
However, the appearance of repeated tail class samples may lead to overfitting of tail
classes. Therefore, some data augmentation techniques have been proposed to further
improve the diversity of tail class samples, and the classical methods include SMOTE
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(Chawla et al., 2002) and ADASYN (He et al., 2008). Recently, some newfangled
over-sampling techniques have been presented. Li et al. (2021) produced diverse tail class
samples by translating deep features along many semantically meaningful directions. Park
et al. (2022) proposed an over-sampling method that generated tail class samples by using
the rich background of head class samples. Zhu, Liu & Zhu (2022) proposed an
interpolating over-sampling method which generated minority samples by identifying
clean tail class subregions. For under-sampling, it achieves the relative balance of sample
distribution by randomly eliminating part of the head class samples (Wan, Zhou & Wang,
2024). However, this approach has an obvious drawback, which may inevitably lose
important features (Wang et al., 2019), thus affecting the performance of the network.
Niu et al. (2022) addressed the class imbalance problem by introducing a reliability-based
approach grounded in Dempster-Shafer theory, aiming to alleviate the dominance of
majority classes. Zhang et al. (2025) employed belief function theory in evidential
clustering to better represent data uncertainty and imprecision. To improve classification
on imbalanced datasets, Tian et al. (2022) developed an evidential ensemble method that
combines hybrid-sampling (incorporating over-sampling and under-sampling) at the
decision level.

Re-weighting

Re-weighting mainly assigns greater weight compensation to tail classes (Ren et al., 2018;
Tan et al., 2020), thereby narrowing the gap between various classes in the classifier. The
basic method is weighted by the reciprocal of class frequency or weighted by the reciprocal
of the square root of class frequency (Tan et al., 2020). Lin et al. (2017) proposed a focal
loss, whose principle was to introduce a weight coefficient to reduce the weight of negative
samples in the total loss, so as to give higher weight to hard-classified tail classes. Cui et al.
(2019) proposed a class-balanced loss, and the weight was assigned by considering the
overlap of each sample. Ren et al. (2020) proposed a balanced-meta softmax, where
predicted values were nuancedly weighted to counteract the misclassification bias arising
from class imbalance. Zhao et al. (2023) conducted collaborative training of loss
re-weighting and sample re-sampling, which significantly improved the performance of
the tail classes.

Representation and classifier learning based on decoupling

The method based on decoupling learning (Kang et al., 2019; Zhou et al., 2020) is a research
field that has attracted much attention in recent years, and such methods have achieved
excellent performance in long-tailed distribution. Decoupling learning is to decouple the
training process, which tends to learn features in the early stage of training and then tends
to re-balance in the later stage of training. Kang et al. (2019) proposed a two-stage training
strategy in which the original unbalanced sample distribution was used in the first stage of
training for the representation learning, and re-sampling was used in the second stage to
enhance the attention of tail classes gradually. Zhou et al. (2020) designed an end-to-end
bilateral-branch network (BBN) to consider both classifier learning and representative
learning, and its accumulative learning strategy completed the modeling of the tail classes
during the training process. BBN received extensive attention in recent years because of its
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excellent performance in image recognition. For example, Baik, Yoon ¢ Choi (2024) added
data augmentation in two-branch network architecture to strengthen the representation
learning of tail classes. Guo ¢» Wang (2021) proposed a cross-branch training strategy to
improve the synergy of the two branches and consider the performance improvement of
both head classes and tail classes.

Mixup-based data augmentation

Mixup (Zhang et al., 2017) is a classical data augmentation that imposes linear constraints
on the model through linear interpolation between samples to improve the generalization
performance of the model. However, mixing under a long-tailed distribution may create
noise samples and lead to an imbalance of mixed labels. To solve this problem, many
Mixup-based improvements have been presented (Chou et al., 2020; Galdran et al., 2021;
Zhang et al., 2022a). Chou et al. (2020) proposed a Rebalanced Mixup which retained part
of the tail class labels during the mixing process to address the imbalanced problem.
Galdran et al. (2021) proposed a Balanced Mixup which performs class-based sampling to
create a balanced distribution of synthetic samples. Kabra et al. (2020) proposed a synthetic
over-sampling method that uses Mixup to supplement the mixed samples into the original
samples. Zhang et al. (2022a) proposed a Label-Occurrence-Balanced Mixup which
combined Mixup with over-sampling to keep each class label statistically balanced. Ahn,
Ko & Yun (2023) introduced CUDA, a curriculum-based data augmentation approach that
dynamically determines both the classes to be augmented and the corresponding
augmentation strength for each class. Baik, Yoon ¢ Choi (2024) proposed an effective
augmentation strategy, referred to as Bilateral Mixup Augmentation, which enhances
long-tailed visual recognition by mixing head and tail class samples in a balanced manner.
Pan et al. (2024) presented Contrastive CutMix, which constructs semantically consistent
augmented samples to further improve performance in long-tailed recognition tasks. Zhao,
He & Zhao (2025) developed a dual progressive augmentation framework that
progressively balances the learning process to mitigate class imbalance in long-tailed
classification scenarios.

PROPOSED METHODS

In this section, we first introduce the concepts of the Mixup data augmentation and the
traditional over-sampling strategy, and then we explain the details of the proposed
progressive decay Mixup algorithm.

Review of Mixup technique

Mixup (Zhang et al., 2017) is a common data augmentation, which creates mixed samples

by linear weighting between samples to improve the linear representation of the model.
Specifically, assuming any training sample x and its label y, Mixup generates mixed sample
(x,7) by linearly weighting two random training samples (x,,y,) and (xp, ). The
expression is as follows:

X = 2xa + (1=2)xp

5= iyat (1-2)ys. W
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The mixing factor 4 € (0,1) is sampled from the beta(a, o), where o is the
hyperparameter that controls the beta distribution. Due to the randomness of data
sampling, Mixup technique may synthesize noise samples when the data distribution is
extremely class-imbalanced, and it also leads to the reduction of classification

performance.

Data sampling strategies

When the training data presents a long-tailed distribution, tail classes are usually
suppressed by head classes during the training process, which causes the underfitting of tail
classes, and even tail classes are completely ignored by the model. Data-level based
sampling strategies can be used to relieve this effect, such as over-sampling, although
repeatedly showing the same tail class samples to the model may result in overfitting of tail
classes. The general sampling strategy can be described as follows:

()"
Zle (”j)k

where j refers to the index of classes. p; represents the sampling frequency from the class j.

pi= (2)

n; is the total sample number of class j. K denotes the number of classes. g is a parameter
setting.

When g = 1, the sampling frequency is equal to the frequency of the samples on the
training set (i.e., instance-based sampling). In this case, the classes with more samples have
a higher sampling frequency, and it obtains an imbalanced sample batch B;.

When g = 0, the sampling probability p; = # remains the same for each class
(i.e., class-based sampling), and class-based sampling strategy receives a balanced sample
batch Bc.

Proposed double sampler mixup

The two sets of data batches obtained from the above sampling strategies are then linearly
weighted. By doing so, we leverage class-based sampling to effectively enhance the
proportion of tail classes, while incorporating the linear mechanism of Mixup to prevent
overfitting. Meanwhile, we hope to achieve the guiding effect of the model by dynamically
adjusting the weights of the two sample groups. The specific mixing process is shown as
follows:

X = px;+ (1—p)x. 3)
y=pyr+ (1-p)yc

where (%,7) is the generated new sample. (x;,y;) denotes the sample from the
imbalanced batch By, and (x,, y.) represents the sample from the balanced batch Bc. p is
the proposed linear decay factor.

Proposed decay mixing strategy
The mixing factor in the original Mixup is acquired from the beta distribution beta(x, ),
but it still relies on a hyperparameter «. Motivated from cumulative learning of
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bilateral-branch network (Zhou et al., 2020), we propose a decay mixing strategy which
designs a linear decay coefficient instead of the random mixing factor. The specific mixing
factor is as follows:

Tepoch
Tnax

p=1- (4)

where p is the proposed linear decay factor, and Tepocr, refers to the specific number of
training epochs. T, is the total number of training epochs. As the training epochs
increased, the value of p is gradually decreasing. The training samples of generated batches
are fed into the network for training. For each class j € {1,2, ..., K}, the probability of
output via the softmax is as follows:

e
K
D ke €%

where p denotes the probability of output. z is the predicted score. The weighted cross

p= (5)

entropy loss is formulated follows:

L = pE(p,y1) + (1—p)E(p, yc) (6)

where E(p, y) is expressed as cross entropy loss. The specific process of the proposed
method is shown in Fig. 2.

The proposed decay mixing strategy abandons the random mixing factor and thus
eliminates the control of hyperparameter «. More importantly, the proposed strategy can
adaptively adjust the weights according to the specific training epochs. During the training
process, the two sampling branches coordinate with each other to create mixed samples
with different label distributions by adjusting the mixing weights of each training epoch. At
the early stage of training, imbalanced sample batches occupy the main weights, and it
helps the model quickly establish the basic representation. As the mixing factor decays, the
samples from the balanced batches dominate the mixing weights in the later training
period, which can strengthen the learning of tail classes.

EXPERIMENTS

In this section, we introduce the image recognition datasets used in this experiment, which
are CIFAR-10/100 (Krizhevsky ¢ Hinton, 2009), CINIC-10 (Darlow et al., 2018),
Fashion-Mnist (Xiao, Rasul & Vollgraf, 2017), Tiny-ImageNet (Li, Karpathy ¢ Johnson,
2017), and ImageNet-LT (Olga et al., 2015). Then we illustrate the partitioning method of
the long-tailed distribution and construct the long-tailed version of the above datasets.

Datasets introduction and long-tailed settings

CIFAR-10/100 (Krizhevsky ¢» Hinton, 2009): The CIFAR dataset is a classic image

classification dataset, which can be divided into CIFAR-10 and CIFAR-100 subsets

according to the different numbers of categories. Both CIFAR-10 and CIFAR-100 include

50,000 training samples and 10,000 testing samples, and the size of images is 32 x 32.
CINIC-10 (Darlow et al., 2018): the CINIC-10 dataset consists of 270,000 images, which

is 4.5 times the size of the CIFAR-10 dataset. It is built on two datasets, ImageNet
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Figure 2 The specific process of the progressive decay MIxup data augmentation. Firstly, we create
balanced sample batches and imbalanced sample batches by using two samplers with different sampling
properties. Secondly, the two sets of sample batches are mixed to generate new batches for model
training. Moreover, the proposed linear decay factor is designed as a mixing coefficient to adjust the
weights of the two batches, which guides the model training.

Full-size K&l DOT: 10.7717/peerj-cs.3261/fig-2

(Deng et al., 2009) and CIFAR-10. The CINIC-10 dataset is divided into three equal subsets
(training, validation, and testing), each containing 90,000 images. Due to its ample number
of samples, it is possible to construct the long-tailed distribution while ensuring a sufficient
number of samples for each category. In our experiments, we use the training set and the
validation set for training and testing, respectively.

Fashion-Mnist (Xiao, Rasul ¢» Vollgraf, 2017): the Fashion-Mnist is a clothing image
dataset with a training set of 60,000 samples and a testing set of 10,000 samples. The
samples in the dataset are divided into 10 classes and each sample is a 28 x 28 grayscale
image.

Tiny-ImageNet (Li, Karpathy ¢ Johnson, 2017): the Tiny-ImageNet dataset is a
common visual dataset with images derived from the ImageNet dataset. The dataset
contains 200 categories, where each category is assigned 500 images for training, 50 images
for validation, and 50 images for testing. In our experiments, we only use the training set
and validation set.

ImageNet-LT (Olga et al., 2015): the ImageNet-LT dataset is a long-tailed variant of the
large-scale ImageNet dataset, which was created by sampling 1,000 classes according to a
Pareto distribution with « = 6. Its sampling leads to significant class imbalance, with head
classes exceeding 1,280 samples and tail classes having fewer than 5. The ImageNet-LT
dataset contains approximately 115,000 images in total and is widely used as a benchmark
for evaluating performance under extreme class imbalance.

Long-tailed Settings: before training, we preprocess the above dataset to construct the
long-tailed version of the dataset by adjusting the sample number. The long-tailed datasets
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are created based on an exponential decay function (i.e., N; = Ny X ol (Cfl))). N;
denotes the sample number of class i, and N, indicates the sample number of the most
frequent class. C is the number of categories. The imbalance ratios d (i.e., = Nyax/Npin)
we used in the experiments are 10, 50, and 100, where N,,;, is the sample number of the
rarest class.

Implementation details

In the data preprocessing stage, we apply usual data augmentation strategies, including
random crop and random horizontal flip. We train the model by using the mini-batch
gradient descent with momentum 0.9 and weight decay 0.0002, and the batch size is set to
128. By following the work of Cao et al. (2019), we set the initial learning rate to 0.1 and
adopt a warm-up learning rate schedule in the first 5 epochs. The number of training
epochs is 300, and we decay the learning rate at the 150" epoch and 225" epoch by 0.01,
respectively. For CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets, we use ResNet-32
as the backbone network. For CINIC-10 and Fashion-Mnist datasets, we adopt ResNet-18
for all experiments. For ImageNet-LT dataset, we use ResNet-50 as the backbone and train
the model for 200 epochs.

Experiment results

We verify the classification performance of the proposed method on the above datasets.
Moreover, we compare the proposed method with the vanilla method, rebalancing
strategies, and some novel Mixup-based techniques. To ensure the fairness of the
experiment, all methods are set with the same random seeds. The comparison methods are
as follows: (1) CE: Cross-entropy loss. (2) Focal loss (Lin et al., 2017): Reweighted
cross-entropy loss. (3) DRW, DRS (Cao et al., 2019): Deferred re-weighting and deferred
re-sampling. (4) LDAM-DRW (Cao et al., 2019): Label-distribution-aware margin loss
integrate with re-weighting. (5) Mixup-based data augmentations: Mixup (Zhang et al.,
2017) and other variants such as Remix (Chou et al., 2020), Balanced-Mixup (Galdran
et al., 2021), Label-Occurrence-Balanced Mixup (Zhang et al., 2022a). For Balanced-
Mixup, we follow the two sets of parameter settings beta(0.2,1) and beta(0.3,1) in its
original article (Galdran et al., 2021). The experimental settings of CUDA are adopted as
specified in the original article (Ahn, Ko & Yun, 2023).

The top-1 classification accuracies of the above methods on long-tailed CIFAR-10 and
long-tailed CIFAR-100 are reported in Table 1. We discover that the proposed method
achieves better classification performance than other compared methods on both
long-tailed CIFAR-10 and long-tailed CIFAR-100. For example, we get 78.80% top-1
accuracy for long-tailed CIFAR-10 with ¢ = 100, which is 2.83% higher than that of
Label-Occurrence Balanced Mixup, and we get 43.90% top-1 accuracy for long-tailed
CIFAR-100 with 6 = 100, which is 2.20% higher than that of Balanced-Mixup
(beta(0.3,1)).

The top-1 accuracies of the involved methods on long-tailed CINIC-10 and long-tailed
Fashion-Mnist are shown in Table 2. It can be found that the proposed method still
achieves better performance under most imbalanced settings. Specifically, we get 66.66%
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Table 1 Experimental results (Top-1 accuracy) on long-tailed CIFAR-10 and long-tailed CIFAR-100
under different imbalance ratios. The imbalance ratio 6 = 10, 50, 100 correspond to different degrees of
long-tailed distribution, respectively. Bold fonts perform the best performance.

CIFAR-10 CIFAR-100

Methods 10 50 100 10 50 100

CE 86.94 7736 7099 5695 43.83 39.01
Focal (Lin et al., 2017) 8720 7680 71.71 56.51 44.17 3837
DRW (Cao et al., 2019) 8737 7798 74.07 57.17 4454 39.39
DRS (Cao et al., 2019) 87.11 7740 74.06 56.70 44.12 3848
LDAM-DRW (Cao et al., 2019) 8724 7936 7466 56.29 45.07 40.56
CUDA (Ahn, Ko ¢ Yun, 2023) 8756 7796 74.89 59.09 46.74 38.56
Mixup (Zhang et al., 2017) 88.01 78.75 73.05 5821 4460 40.04
Remix (Chou et al., 2020) 88.25 79.28 72.11 58.13 4522 40.66

Balanced-Mixup (beta(0.2,1)) (Galdran et al., 2021)  88.42 7939 7438 59.15 4625 40.11
Balanced-Mixup (beta(0.3,1)) (Galdran et al., 2021)  88.56 79.28 74.96 59.66 46.84 41.70
Label-Occurrence Mixup (Zhang et al., 2022a) 88.82 8125 7597 59.51 47.16 40.66
Ours 88.83 83.33 78.80 60.52 50.04 43.90

Table 2 Experimental results (Top-1 accuracy) on long-tailed CINIC-10 and long-tailed
Fashion-Mnist under different imbalance ratios. The imbalance ratio 6 = 10, 50, 100 correspond to
different degrees of long-tailed distribution, respectively. Bold fonts perform the best performance.

CINIC-10 Fashion-Mnist

Methods 10 50 100 10 50 100

CE 7779 6690 6146 9290 89.62 87.88
Focal (Lin et al., 2017) 7745 6621 60.79 92.81 89.07 88.44
DRW (Cao et al., 2019) 77.89 67.14 61.05 9247 90.08 88.53
DRS (Cao et al., 2019) 77.79 6695 61.04 92,58 8994 88.51
LDAM-DRW (Cao et al., 2019) 7821 6942 6492 92.76 9190 9148
CUDA (Ahn, Ko & Yun, 2023) 78.65 65.53 61.06 9241 90.52 88.65
Mixup (Zhang et al., 2017) 79.70 6837 6335 9396 9049 89.11
Remix (Chou et al., 2020) 7935 6842 6345 93.73 90.23 89.54

Balanced-Mixup (beta(0.2,1)) (Galdran et al., 2021) 7853  67.72 62.86 93.75 91.07 89.55
Balanced-Mixup (beta(0.3,1)) (Galdran et al., 2021) 7931  67.69 6152 93.83 90.96 89.73
Label-Occurrence Mixup (Zhang et al., 2022a) 79.41 68.65 62.88 9328 92.68 93.28
Ours 81.92 73.06 66.66 9399 92.00 9047

top-1 accuracy for long-tailed CINIC-10 with 6 = 100, which is 3.78% higher than that of
Label-Occurrence Balanced Mixup. For long-tailed Fashion-Mnist with 6 = 50, we get
92.00% top-1 accuracy, which is 1.04% higher than that of Balanced-Mixup beta (0.3, 1).
The top-1 accuracies of the compared methods on long-tailed Tiny-ImageNet are reported
in Table 3. Building upon these results, our propose method also demonstrate strong
performance on the large-scale ImageNet-LT dataset, achieving a top-1 accuracy of
43.21%, which exceeded that of Mixup by 1.36%, as shown in Table 4. Although Mixup
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Table 3 Experimental results (Top-1 accuracy) on long-tailed Tiny-ImageNet under different
imbalance ratios. The imbalance ratio é = 10, 50, 100 correspond to different degrees of long-tailed
distribution, respectively. Bold fonts perform the best performance.

Tiny-ImageNet

Methods 10 50 100

CE 36.23 25.15 22.06
Focal (Lin et al., 2017) 35.73 25.26 21.79
DRW (Cao et al., 2019) 36.92 25.26 22.26
DRS (Cao et al., 2019) 36.92 25.03 22.37
LDAM-DRW (Cao et al., 2019) 34.14 24.71 21.49
CUDA (Ahn, Ko ¢ Yun, 2023) 38.64 24.89 22.34
Mixup (Zhang et al., 2017) 39.61 28.19 25.00
Remix (Chou et al., 2020) 40.72 28.12 25.03
Balanced-Mixup (beta(0.2,1)) (Galdran et al., 2021) 39.56 26.96 23.69
Balanced-Mixup (beta(0.3,1)) (Galdran et al., 2021) 40.49 28.19 24.61
Label-Occurrence Mixup (Zhang et al., 2022a) 37.77 23.98 19.25
Ours 42.60 30.88 25.55

Table 4 Experimental results (Top-1 accuracy) on ImageNet-LT with pareto a = 6. Bold fonts perform
the best performance.

Methods ImageNet-LT
CE 38.72
Mixup (Zhang et al., 2017) 41.85
Balanced Mixup (Galdran et al., 2021) 42.26
Ours 43.21

alleviates class imbalance to some extent, it still fails to sufficiently improve the
performance on tail classes. In contrast, the dual-sampler strategy proposed in our
approach enables more effective learning under long-tail distributions, significantly
enhancing its applicability in real-world scenarios. The trend of experimental results is
basically consistent with other datasets, which further confirms the wide applicability of
the proposed method.

The proposed method is an improved version of Mixup in the long-tailed distribution
scenario. To intuitively demonstrate that the proposed method is superior to Mixup, we
present their confusion matrices on long-tailed CIFAR-10 with 6 = 100, and the specific

» o«

visual confusion matrices are shown in Fig. 3. There into, “airplane”, “automobile” are
head classes, and “ship”, “truck” are tail classes. It can be seen from the two confusion
matrices that the proposed method can significantly improve the classification

performance of tail classes.
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Figure 3 The visualization of confusion matrices on long-tailed CIFAR-10 with the imbalance ratio
of 100. (A) When the Mixup operation is carried out under long-tailed distribution, the correct classi-
fication number of tail classes is low due to insufficient representation of tail classes. (B) When the
proposed method is applied, the correct classification number of tail classes is significantly increased,
while the number of misclassifications is obviously reduced. It denotes that our method improves the
overall classification level by improving the performance of the tail classes.

Full-size 4] DOT: 10.7717/peerj-cs.3261/fig-3

DISCUSSIONS

Analysis of weighting factors

The proposed method adopts a linear decay factor to adjust the mixing weight of the two
sample batches in the mixing process. To further illustrate the applicability of the adopted
mixing strategy, this section conducts comparative experiments on different mixing
factors. Referring to the work of Zhou et al. (2020), different weighting coefficient strategies
(including parabolic decay, cubic decay, linear decay, equal weight, and beta distribution)
are used in the comparative experiments. The weighting strategies are shown in Fig. 4. The
comparison experiment uses the above weighting schemes in the long-tailed CIFAR-10/
100 datasets, and the experimental results are shown in Table 5.

As can be seen from Table 5, the model of linear decay strategy has the highest
classification accuracy under different imbalance ratios, while that of equal weight has the
lowest accuracy. Compared with the equal weight method, the top-1 accuracy of
long-tailed CIFAR-10 and long-tailed CIFAR-100 datasets with 6 = 100 is improved by
+8.97% and +5.17%, respectively. This shows that the proposed linear decay strategy has a
better fit with the double sampler, and the representation learning and classifier learning
are established by dynamically adjusting the label distribution of the mixed samples during
the training process, so the model achieves the expected performance of classification.
However, the equal weight factor loses the ability to adjust the mixing weight to some
extent, and cannot be effectively combined with the double sampler. It can even damage
the performance of the model, and the final performance is lower than the benchmark
level.
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Figure 4 The coefficients of different weighting strategies change with the number of epochs.
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Table 5 Performance comparison of linear decay and cubic decay in the CIFAR-10 and long-tailed
CIFAR-100 datasets. The imbalance ratio 6 = 10, 50, 100 correspond to different degrees of long-tailed
distribution, respectively. Bold fonts perform the best performance.

CIFAR-10 CIFAR-100
Methods 10 50 100 10 50 100
Equal weight (4 = 0.5) 83.34 75.16 69.83 51.63 42.77 38.73
Parabolic decay (Zhou et al., 2020) 87.83 80.40 74.73 58.77 45.50 39.95
Cubic decay 76.76 68.64 62.39 36.62 31.09 26.18
Radom weight (beta(1,1)) 88.96 80.82 76.68 59.88 47.09 41.30
Ours 88.83 83.33 78.80 60.52 50.04 43.90

According to the motivation in “Proposed decay mixing strategy” section, the purpose
of decay mixing strategy is to help model learn the basic fundamental representations in
the initial training phase while preventing overfitting. Then we gradually transition to
classifier learning to strengthen the model’s focus on tail classes. To validate our
motivation, we show the accuracy of the model in different training epochs under different
weighting factors. In Fig. 5, the experimental results of long-tailed CIFAR-10 and
long-tailed CIFAR-100 with 6 = 100 are shown from left to right.

As can be seen from Fig. 5, the random weights follow the practice of Kabra et al. (2020)
and sample from beta(1,1), and it obtain a relatively good classification accuracy. The
proposed linear decay trend is in good agreement with the expected training process. In the
early stage of training, the imbalanced batch occupies a large mixing weight to establish the
basic representation ability of the model. At this time, the classification accuracy of the
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Figure 5 The graph of accuracy variation under different weight coefficient strategies. The experimental datasets based on (A) long-tailed

CIFAR-10 and (B) long-tailed CIFAR-100 with the imbalance ratio of 100.
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model does not improve obviously. With the increase of the training epochs, the branch of
the class-balanced sampling dominates the mixing process, and the training attention of
the model turns to tail classes.

In the process of gradual convergence, the classification accuracy is significantly
increased, and the final classification accuracy exceeds the random weight. However, the
parabolic decay strategy does not quickly transition to the rebalancing learning in the late
training epochs, and the performance is lower than ours. It can be seen that a reasonable
weight decay strategy is important for the mixing of double sampler samples, and an
inappropriate mixing strategy will even injure the learning effect of the model.

Ablation studies
To prove the rationality of instance-based sampling combined with class-balanced
sampling, this section firstly sets different control groups for the selection of sampler,
namely ours (instance-based sampling) and ours (class-based sampling), which means
sampling only with instance-based sampling or class-based sampling, respectively. As a
Mixup-based approach, we still use the regular Mixup as one of the comparison groups. In
addition, in order to eliminate the influence of decay strategies on experimental results, a
new control group Label-Occurrence Balanced Mixup is set up in this section, which is the
state of the art for long-tailed problem based on Mixup. It adopts two class-balanced
sampling to obtain two balanced sample batches, and the beta(1, 1) is used to generate the
mixing factors. The above comparative experiments are trained on the long-tailed CIFAR-
10/100, and the relevant results are shown in Table 6.

As can be seen from Table 6, the performance of the classifier obtained by using only
instance-based sampling or only class-based sampling is inferior to that of the double
sampler method, which indicates that the single sampling property cannot fit well with the
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Table 6 Top-1 accuracy of different sampler combinations in long-tailed CIFAR-10 and long-tailed
CIFAR-100. The imbalance ratio 6 = 10, 50, 100 correspond to different degrees of long-tailed
distribution, respectively. Bold fonts perform the best performance.

CIFAR-10 CIFAR-100
Methods 10 50 100 10 50 100
Mixup (Zhang et al., 2017) 88.01 78.75 73.05 58.21 44.60 40.04
Ours (instance-based sampling) 86.99 78.17 73.06 56.08 43.12 38.63
Ours (class-based sampling) 8865 8194 7715 58.84 4626  39.92
Label-Occurrence Mixup (Zhang et al., 2022a) 88.82 81.25 75.97 59.51 47.16 40.66
Ours 88.83 83.33 78.80 60.52 50.04 43.90

decay mixing strategy. When the two sample batches have similar class distributions, the
decay mixing factor cannot adjust the label distribution to guide model training. Moreover,
compared with the Label-Occurrence Balanced Mixup, the proposed method still obtains a
superior effect, which certifies that the double sampler method with different sampling
properties can receive better performance.

Analysis of sampler order

The proposed method has regulations on the order of the two data batches (i.e., balanced
sample batch and imbalanced sample batch). In the early stage of training, imbalanced
sample batches from instance-based sampling occupy a higher mixing proportion to
ensure the model’s representation learning. With the increase of training epochs, the
mixing factor decreases linearly, and the mixing weights are dominated by the balanced
sample batches. In the later stage of training, the model gradually switches to classifier
learning for tail classes. Regarding representation learning and classifier learning, Zhou
et al. (2020) have made a detailed explanation. To further illustrate the effect of the sampler
order, we reverse the original sampler order (i.e., reversed sampler), that is, the balanced
sample batches have a higher mixing weight in the early stage of training, and the
imbalanced sample batch dominates the mixing weight in the late stage of training.
Experimental comparison results are shown in Table 7.

As can be seen in Table 7, our method performs much better than the reverse sampler.
This just confirms the mainstream view that premature application of rebalancing
techniques can impair representation learning and thus reduce classification performance.
In comparison, our method successfully applies the idea of decoupling learning to Mixup
data augmentation and achieves good performance.

Comparison with bilateral-branch network

The proposed mixing decay strategy is motivated from the bilateral-branch network
(BBN), but there are clear distinctions between the two approaches. The practice of BBN is
to construct two network branches and mix the predicted scores of the network branches,
while the proposed method is the mixing of the input data. As a Mixup-based data
augmentation, the proposed method gets rid of the inherent network architecture of BBN,
and the weights of the labels are adjusted by the linear attenuation coefficient to guide the
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Table 7 Top-1 accuracy of different sampler sequences in long-tailed CIFAR-10 and long-tailed CIFAR-
100. The imbalance ratio 6 = 10, 50, 100 correspond to different degrees of long-tailed distribution,
respectively. Bold fonts perform the best performance.

CIFAR-10 CIFAR-100
Methods 10 50 100 10 50 100
Ours (reversed sampler) 86.33 75.36 72.26 57.18 42.04 37.82
Ours 88.83 83.33 78.80 60.52 50.04 43.90

Table 8 Comparison of the proposed method with both BBN and DBN-Mix under long-tailed
CIFAR-10/100 dataset. { denotes the experimental results cited from the original article. The imbal-
ance ratio 6 = 10, 50, 100 correspond to different degrees of long-tailed distribution, respectively. Bold
fonts perform the best performance.

CIFAR-10 CIFAR-100
Methods 10 50 100 10 50 100
BBN' (Zhou et al., 2020) 88.32 82.18 79.82 59.12 47.02 42.56
Ours 88.83 83.33 78.80 60.52 50.04 43.90
DBN-Mix' (Baik, Yoon & Choi, 2024) 90.87 86.82 83.47 62.37 50.39 45.07
Ours + BBN 92.55 84.23 83.98 62.45 50.52 44.21

model training. To verify the advance of the proposed method, this section compares the
classification performance of the proposed method with that of BBN in long-tailed
CIFAR10/100, and the experimental results are shown in Table 8. Furthermore, Dual-
branch Network with Bilateral Mixup (DBN-Mix) (Baik, Yoon ¢ Choi, 2024) is a method
that integrates the dual-branch network with Mixup. To further validate the superiority of
our approach, we incorporate it with BBN and conduct a comparative analysis against
DBN-Mix.

It can be seen from the experimental results in Table 8, the accuracy of our method is
higher than that of the classical BBN under the long-tailed CIFAR-10 and long-tailed
CIFAR-100. Although BBN has a significant improvement, this comes at the expense of
additional model parameters, because the two-branch network means the doubling of
model parameters, which requires more training time, resulting in low training efficiency.
The proposed method effectively avoids this problem, because it does not involve the
modification of the overall model architecture, and it guides the training by adjusting the
label proportion of the mixed samples. Compared with the BBN, our method improves the
classification performance without increasing the extra model parameters. Meanwhile, in
comparison to DBN-Mix, our BBN-integrated approach still demonstrates superior
performance by enabling more effective model training adjustments.

Comparison of methods using F1-score

Due to the extreme class imbalance in long-tailed classification tasks, accuracy is often
insufficient to fully capture a model’s effectiveness. Therefore, we adopt the F1-score,
which combines both precision and recall to provide a more comprehensive
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Table 9 Experimental results (F1-score) on long-tailed CIFAR-10 and long-tailed CIFAR-100 under
different imbalance ratios. The imbalance ratio 6 = 10, 50, 100 correspond to different degrees of
long-tailed distribution, respectively. Bold fonts perform the best performance.

CIFAR-10 CIFAR-100

Methods 10 50 100 10 50 100

CE 84.07 68.14 5933 5261 31.74 27.15
Focal (Lin et al., 2017) 8346 67.84 5941 51.18 32.68 27.75
DRW (Cao et al., 2019) 8542 69.24 5824 51.61 3154 29.15
DRS (Cao et al., 2019) 8691 64.85 59.33 54.61 4025 31.87
LDAM-DRW (Cao et al., 2019) 8743 6882 6870 5433 40.69 33.05
CUDA (Ahn, Ko & Yun, 2023) 88.96 79.62 7548 5836 41.67 36.21
Mixup (Zhang et al., 2017) 84.67 71.18 6241 46.08 37.15 26.76
Remix (Chou et al., 2020) 85.05 67.64 6194 4736 3731 2646

Balanced-Mixup (beta(0.2,1)) (Galdran et al., 2021) 9024  80.68 73.75 58.69 41.58 36.43
Balanced-Mixup (beta(0.3,1)) (Galdran et al., 2021)  90.67 80.77 75.14 5934 42.74 31.80
Label-Occurrence Mixup (Zhang et al., 2022a) 89.48 81.02 7642 59.71 40.01 34.55
Ours 91.18 82.46 76.59 64.38 43.61 38.31

evaluation of classification performance. As shown in Table 9, our proposed method
consistently outperforms the listed Mixup-based approaches across all evaluated
imbalance ratios (0 = 10, 50, 100) on both long-tailed CIFAR-10 and long-tailed CIFAR-
100 datasets. In particular, on long-tailed CIFAR-100 with ¢ = 10, our approach achieves
an Fl-score of 64.38%, outperforming Balanced-Mixup beta(0.3,1) by 5.04%. These
gains confirm our method’s novel fusion of oversampling and progressive decay mixing,
critically advancing tail-class representation learning.

CONCLUSION

This work proposes a Mixup-based data augmentation technique called progressive decay
Mixup for long-tailed image classification. The method integrates Mixup augmentation
with re-sampling to provide a balanced sample distribution for mixing. In addition, we
design a decay mixing strategy to dynamically adjust the mixing weights during the
training process. Through the above practices, we provide a more complete form of the
Mixup augmentation for long-tailed distribution. Experiments illustrate that our method
has achieved good results on long-tailed CIFAR-10/100, long-tailed CINIC-10, long-tailed
Fashion-Mnist, long-tailed Tiny-ImageNet and ImageNet-LT.
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