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ABSTRACT

Accurate estimated time of arrival (ETA) predictions are critical for modern logistics,
influencing delivery reliability, operational efficiency, and customer satisfaction
across industries such as e-commerce, freight logistics, and ridesharing. This article
presents ten essential strategies for improving ETA accuracy, integrating advanced
machine learning techniques, real-time and historical data fusion, and traffic
behavior modeling. By analyzing real-world implementations from companies like
Uber, DoorDash, and Waze, we provide actionable insights for researchers and
industry professionals. Our recommendations address data variability,
accuracy-latency tradeoffs, and emerging challenges in dynamic transportation
networks, offering a roadmap for optimizing ETA systems.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and Machine
Learning, Data Science, Neural Networks

Keywords ETA prediction models, Machine learning for logistics, Deep learning for ET A accuracy,
Intelligent route planning, Big data in transportation analytics, Real-time traffic forecasting, Logistics
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INTRODUCTION

Accurate estimated time of arrival (ETA) predictions are central to modern logistics,
mobility services, and on-demand commerce. From dock scheduling and driver dispatch
to inventory staging and customer notifications, ETA forecasts shape critical

operational decisions across last-mile delivery, freight networks, and ride-hailing
platforms. Their economic impact is far from trivial—surveys show that nearly 70% of
consumers avoid repeat purchases after delayed deliveries, and detention fees at ports can
exceed $100 per container per day once free time expires (Amini et al., 2023; Evmides et al.,
2024). For high-volume shippers, even a 1% systematic ETA error can translate into
six-figure annual losses (He et al., 2014). In today’s competitive landscape, precise ETA
forecasting is not just a convenience—it is a strategic differentiator (Qi ¢ Shen, 2019;
Chowdhury, Dey & Apon, 2024).

Despite its importance, ETA modeling remains a deeply challenging task. Travel time is
shaped by a complex web of interacting factors including traffic flow, road geometry,
weather patterns, and driver behavior (Jiang et al., 2023; Yuan ¢ Li, 2021). Urban networks
introduce variability through signal timings, pedestrian interactions, and ride-hailing curb
stops, while rural corridors often suffer from sparse sensing and limited rerouting options.
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Sudden disruptions—like construction closures, flash floods, or mass gatherings—can
induce nonlinear travel time deviations that ripple across entire networks. Addressing
these realities requires ETA systems that can ingest heterogeneous data sources, adapt in
real time, meet strict latency constraints, and remain interpretable to both operators and
regulators. However, real-world deployment is often hindered by data sparsity, privacy
regulations, and the opacity of deep learning models.

In recent years, machine learning (ML) has transformed the field. Modern ETA
pipelines have shifted away from heuristics toward data-driven, spatiotemporal
approaches. Graph neural networks (GNNs) model road network structures with dynamic
edge weights (Li et al., 2017; Pan et al., 2019); Transformer architectures capture
long-range temporal dependencies; and probabilistic ensembles provide uncertainty
estimates essential for risk-sensitive applications (Wen et al., 2024). Hybrid approaches
now combine traffic flow physics with neural residuals to better handle extreme events.
Deployed systems like Uber’s DeepETA and DoorDash’s DeepETAv2 have reported up to
20% gains in long-tail accuracy while maintaining millisecond-level inference times.
Nonetheless, several challenges persist, including computational overhead, bias toward
over-represented corridors, and limited interpretability under high-frequency updates.
While the literature on ETA modeling continues to grow rapidly, it remains fragmented
across domains like transportation science, artificial intelligence, and supply-chain
operations. Academic and industrial research often speak in parallel but disconnected
terms, making it difficult for practitioners to consolidate best practices or identify
consistent design principles. This article aims to bridge that gap.

To guide this synthesis, we adopt a scoping review methodology aimed at identifying
and thematically organizing core strategies in ML-based ETA prediction. Rather than
following a formal systematic review protocol like Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA), we conducted structured searches
across Google Scholar, IEEE Xplore, arXiv, and industry reports from logistics platforms
such as Uber, Waze, and DoorDash. We used targeted search terms including “ETA

» <«

prediction,” “machine learning traffic forecasting,” focusing on peer-reviewed and
industry-validated works published between 2014 and 2024. Studies were included if they
addressed empirical or applied aspects of ETA modeling; non-English, redundant, or
methodologically vague works were excluded. Through thematic coding of various sources,
we identified recurring trends, technical challenges, and best practices, which are
consolidated into the ten tips that follow.

We present ten quick tips grounded in peer-reviewed research, industry case studies,
and open-source systems. These tips synthesize effective strategies across data acquisition,
model design, real-time adaptation, and fairness auditing. Our goal is not only to
summarize what works, but also to highlight where current approaches fall short—whether
due to data sparsity, concept drift, interpretability barriers, or equity risks. By translating
lessons from research into actionable guidance, we aim to support developers, researchers,
and logistics professionals in designing ETA systems that are accurate, scalable, and
resilient to real-world complexity. The remainder of this article is organized around ten
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core strategies, each focusing on a key component of ETA prediction. Together, they offer
a practical roadmap for building the next generation of intelligent transportation systems.

TIP 1: THE ROLE OF ACCURATE BASE MAPS IN ETA
PREDICTIONS

A base map is a digital representation of road networks and transportation infrastructure,
and it serves as the foundation for ETA prediction systems (Abdi ¢» Amrit, 2021). It
encodes road geometry, connectivity, and metadata such as speed limits, tolls, and traffic
regulations, thereby providing the static framework upon which dynamic data—such as
live traffic and weather conditions—can be overlaid to improve route calculations and
travel time predictions. Without an accurate base map, even the most advanced ETA
models risk producing unreliable results. A highly accurate base map ensures that all
computations within the ETA system, including routing, traffic analysis, and travel time
estimation, are grounded in precise spatial data (Wang, Fu ¢» Ye, 2018). However, modern
ETA systems must go beyond static maps by integrating real-time updates, which
introduces challenges related to data volatility, latency, and scalability (See Table 1 for
more details about base map comparisons.).

 Accurate road network representation is critical for improving ETA precision.
High-quality base maps incorporate road geometry details, such as lane widths,
curvature, and elevation, while metadata—including speed limits and intersection
rules—aligns predictions with real-world conditions (Chiang, Leyk ¢» Knoblock, 2014).
Studies indicate that refining base maps with high-resolution data can reduce ETA
prediction errors by up to 20%, underscoring their significant impact on model
performance.

» Topological details further enhance base maps by capturing road features such as
intersections, overpasses, and roundabouts. These elements play a crucial role in
estimating travel times because congestion-prone intersections and high-occupancy
vehicle (HOV) lanes significantly influence vehicle speeds. Platforms like Google Maps
use detailed topological metadata to dynamically adjust ETAs based on lane-specific
configurations and known traffic bottlenecks (De, 2022).

 Real-time updates and continuous accuracy maintenance are essential for keeping
base maps relevant. Roads frequently undergo construction, lane closures, or
realignments. Thus, without regular updates, ETA models may generate misleading
predictions. Platforms such as Waze and Google Maps mitigate this issue by
incorporating sensor data, satellite imagery, and crowdsourced reports (Sasson, 2023).
For instance, Waze’s user-driven reporting system reduces outdated map errors by
leveraging live feedback from millions of drivers.

» Integrating real-time data with static base maps: Static base maps alone are insufficient
for modern ETA systems, as real-time factors such as traffic congestion, accidents, and
weather conditions introduce unpredictable variations in travel times. Therefore,
effective ETA models must integrate dynamic inputs while maintaining computational
efficiency (Yang et al., 2022; Pan et al., 2019). Volatility in real-time data streams arises
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from sudden disruptions, such as multi-vehicle collisions or extreme weather events.
These anomalies create ripple effects that impact surrounding roads, necessitating
dynamic adjustments by ETA systems. For example, Uber’s DeepETA integrates
real-time traffic feeds to correct prediction deviations during periods of high traffic
variability (Pan et al., 2019). Latency in real-time data processing is another challenge.
Delays in updating congestion levels can result in outdated ETAs. For instance, if traffic
conditions are updated only every few minutes, a rapid build-up of congestion may not
be captured in time. To address this, edge computing frameworks process traffic updates
closer to users, which reduces data transmission delays and improves ETA reliability
(Kumar et al., 2021).

* Scalability and localization are critical considerations for ETA systems deployed across
diverse regions. Global ride-hailing and logistics platforms must tailor their base maps to
regional driving behaviors and infrastructure variations. For example, urban
environments may exhibit aggressive lane-switching behavior and congestion-prone
intersections, while rural areas may lack updated speed limit data due to infrequent
mapping updates (Shippeo, 2024). Google Maps and Uber leverage regional embeddings
to adapt predictions based on localized driving patterns, while edge-cloud architectures
enable the lightweight processing of real-time updates at a regional level (Chowdhury,
Dey & Apon, 2024).

o Advanced modeling techniques play a key role in merging real-time data with static
base maps. Graph based models road networks as dynamic graphs, where nodes
represent intersections and edges encode attributes like speed limits and congestion
levels. Consequently, these networks continuously adjust travel times based on live
updates, ensuring more accurate predictions (Jiang et al., 2023; Battaglia et al., 2018).
Additionally, multi-resolution grids optimize spatial data representation, allowing
models to efficiently process both local and global routing dynamics (Guo et al., 2019).

In conclusion, reliable ETA prediction depends on base maps that integrate both static
and real-time data. Without continuous updates, even advanced models risk obsolescence
under rapidly changing conditions (Niu ¢ Silva, 2020; Yang et al., 2022). Accurate and
dynamic base maps enable precise routing by reflecting up-to-date road network
conditions. Advances in satellite imagery further enhance their scalability and precision,
maintaining their relevance in increasingly complex transportation systems (Yang et al.,
2022; Rahman, Abdel-Aty & Wu, 2021).

TIP 2: IMPACT OF TRAFFIC BEHAVIOR ON ETA
PREDICTIONS

Accurately estimating arrival times in dynamic traffic environments represents a core
challenge in the domain of intelligent transportation systems (ITS), with widespread
applications across logistics, ride-hailing, and urban mobility planning. Variability in road
conditions, recurring congestion, and exogenous disruptions such as accidents or weather
events render ETA prediction a nontrivial task. Traditional approaches that rely on static
shortest-path algorithms are often insufficient in capturing stochastic traffic behavior. In
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response, researchers have adopted advanced methods—including deep learning,
probabilistic forecasting, and multi-source data fusion—to improve model precision,
responsiveness, and robustness. Nevertheless, critical challenges persist, particularly in the
localization of traffic behavior, scalability of prediction systems, and maintenance of
real-time responsiveness in diverse urban and rural contexts. Table 2 summarizes how
different traffic behaviors influence ETA performance.

A nuanced understanding of traffic behavior is essential for enhancing ETA accuracy.
Traffic flow is shaped by a complex interplay of systemic and stochastic factors, including
congestion cycles, human driving decisions, and external influences such as roadwork and
adverse weather. These elements produce significant fluctuations in travel time
distributions, demanding predictive models capable of capturing non-linear,
spatiotemporal dependencies. Scalable models must therefore optimize the trade-off
between computational tractability and predictive granularity while accommodating
localized mobility patterns across heterogeneous infrastructure. Several key factors
affecting ETA prediction accuracy are detailed below, each requiring targeted modeling
strategies:

e Fluctuating traffic conditions: The inherently nonstationary nature of traffic—affected
by commuting patterns, infrastructure bottlenecks, and disruptions such as collisions or
lane blockages—challenges predictive reliability. To mitigate this, real-time traffic
ingestion and anomaly detection mechanisms are increasingly integrated into ETA
pipelines. The fusion of deterministic models for structured flows with probabilistic
methods (e.g., Bayesian inference, deep temporal networks) has shown promise in
capturing short-term variability (Sasson, 2023; Uber Al Data/ML, 2022).

« Spatiotemporal dependencies: Traffic systems exhibit intricate temporal rhythms and
spatial correlations shaped by peak-hour usage, road geometry, and dynamic rerouting.
Graph-based models such as GNNs offer a structured framework for learning these
dependencies (Shi et al., 2024). Additionally, multi-agent reinforcement learning
approaches can simulate vehicle-to-vehicle interactions and congestion feedback
mechanisms, further refining real-time adaptability.

» Latency-induced discrepancies: Real-time data sources often introduce delays or
inconsistencies due to variable update intervals. These temporal misalignments can
propagate inaccuracies within the ETA estimation pipeline. Dynamic time warping and
recurrent fusion models have been employed to temporally synchronize disparate data
streams and reduce prediction lag (Mondal, 2022).

» Environmental disruptions: Road conditions are frequently influenced by exogenous
factors such as extreme weather, construction, or special events. The integration of
auxiliary datasets (e.g., meteorological feeds, infrastructure metadata) enhances
forecasting robustness (Gupta, Gulla & Mancini, 2023; Shippeo, 2024). Convolutional
neural networks (CNNs), applied to traffic camera streams, further aid in dynamically
assessing road state to fine-tune ETAs.

» Urban-rural contrast: Urban environments tend to exhibit congestion induced by
high-density intersections and signalized corridors, while rural areas often suffer from
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Table 1 Comparison of static and dynamic base maps for ETA predictions.

Feature

Static base maps

Dynamic base maps Frequency

Road geometry
representation

Route information

Update frequency
Accuracy impact
Use cases

Traffic conditions

Weather influence
Vehicle factors
Driver behavior

Delivery constraints

External disruptions

Examples

Fixed networks, limited lane detail; often

outdated.

Continuously updated with lane widths, elevation, new 6 months-1 s

roads.
Planned routes based on historic data. Real-time rerouting based on incidents, congestion. 3 months-
1 min
Real-time or near real-time updates. 1 year-1s

Monthly or yearly updates.
Susceptible to outdated road info.

Adjusts instantly for closures, detours, construction. 6 months-30 s

Suitable for stable, rural road networks. Critical for urban, high-change areas. 1 year-1h
Relies on historical congestion patterns. Integrates live traffic reports and closure alerts. 3 months-

1 min
Based on seasonal trends only. Uses real-time weather APIs (rain, fog, snow). 6 months-1 h

Fixed fuel assumptions, static vehicle specs.
Based on historical speed averages.
Fixed schedules and buffer logic.

Ignores unplanned events (e.g., protests).

OpenStreetMap, static GIS maps.

Tracks real-time fuel, EV battery, and health. 1 year-5 min

Real-time capture of speed, braking, fatigue. 1 year-10 s
Recalculates priorities, adjusts ETA on-the-fly. 6 months-
5 min

Adjusts for emergencies, real-time disruptions. 1 year-5 min

Google Maps Live, Waze, Uber Movement. 1ls

data sparsity due to limited sensor coverage. Federated learning allows for decentralized
training across geographically distributed data silos without compromising privacy,
addressing sparsity in rural settings (Uber AI, Data/ML, 2022). Data augmentation using
synthetic trajectories also contributes to model generalization in low-data environments.
Heterogeneous spatial representations: ETA models often struggle with inconsistent
road network representations arising from discrepancies across mapping providers.
Variability in granularity, edge segmentation, and topology necessitates harmonization
through spatial embedding and alignment strategies. Techniques such as graph
embedding and topological normalization improve interoperability and reduce
integration errors (Bast et al., 2016).

Cross-regional adaptability: ETA models trained in one city often exhibit degraded
performance when deployed elsewhere due to domain shifts in traffic behavior,
infrastructure design, and regulatory norms. Transfer learning and domain adaptation
frameworks address this by fine-tuning models on region-specific data while preserving
shared spatiotemporal features (Naik, 2024).

Integration of multimodal transportation: With the rise of multimodal systems—
including ride-hailing, public transit, and micromobility—ETA prediction must account
for mode-switching behaviors and intermodal interdependencies. Accurate ETA models
must incorporate dynamic transitions between transport modes, enabling seamless
predictions across hybrid networks.

In conclusion, integration of deep learning, graph-based architectures, and real-time

data fusion continues to advance the state-of-the-art in ETA prediction. As cities adopt
more complex and interconnected transit ecosystems, future research will need to address
challenges related to federated learning scalability, fine-grained spatiotemporal
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embeddings, and the simulation of multimodal traffic environments. Progress in these
areas will be pivotal to achieving real-time, transferable, and highly accurate ETA systems
in intelligent mobility infrastructures.

TIP 3: MODELING DRIVER BEHAVIOR FOR ETA
PREDICTIONS

Driver behavior is a fundamental determinant of travel time variability and introduces
stochastic elements that challenge traditional ETA models. Unlike static infrastructure
constraints, driver behavior dynamically adapts to traffic flow, road conditions, and
cognitive fatigue, which makes real-time adaptability essential for accurate ETA
predictions. Variability in driver decision-making contributes to 15-30% of ETA
deviations, particularly in mixed urban-highway environments (Abdi & Amrit, 2021).
Factors such as speed variability, lane-switching tendencies, braking patterns, and
cognitive stress responses significantly influence travel times. To mitigate these
uncertainties, modern ETA systems integrate real-time telematics, behavioral clustering,
and probabilistic adaptation techniques. (See Fig. 1 and Table 3 for details).

 Speed and acceleration variability: Variability in driver-specific speed regulation and
acceleration patterns is a major determinant of both average travel time and its variance.
Highway segments generally exhibit smoother and more predictable acceleration
profiles, whereas urban contexts necessitate frequent deceleration due to traffic signals,
pedestrian crossings, and congestion (Munigety ¢» Mathew, 2016). Segmenting drivers
into behavioural archetypes—such as cautious, moderate, and aggressive—has been
shown to improve ETA prediction accuracy by up to 12% (Pan et al., 2019). Aggressive
drivers tend to exceed speed limits, perform rapid accelerations, and initiate late braking,
which can reduce mean travel times but introduces higher unpredictability, particularly
in dense traffic (Szumska ¢ Jurecki, 2020). In contrast, cautious drivers maintain
extended following distances and exhibit smoother acceleration-deceleration cycles,
promoting consistency at the expense of longer travel durations. Adaptive drivers
dynamically adjust their behavior in response to contextual cues—such as traffic flow
and road geometry—thereby optimizing efficiency while minimizing variance (Singh ¢
Kathuria, 2021). Commercial platforms such as Uber and Lyft leverage real-time
telematics and historical driving data to tailor ETA predictions to individual driver
profiles. By integrating speed telemetry into routing algorithms, these systems mitigate
systemic underestimation for conservative drivers and enhance overall prediction
robustness.

o Lane-changing behavior and ETA variability Frequent lane-switching significantly
alters travel times, particularly in congested environments. While lane changes can
provide faster routes by avoiding bottlenecks, they also introduce braking-induced
delays for surrounding vehicles. Research shows that lane-switching tendencies increase
ETA variance by 10-15%, especially in urban traffic networks (Yang et al., 2022). To
model the impact of lane-switching more effectively, modern ETA frameworks employ
graph-based trajectory modeling techniques, to capture real-time adjustments. These
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Table 2 Impact of traffic behavior on ETA accuracy. This table outlines key traffic-related factors affecting ETA prediction, along with their effects
and mitigation strategies.

Traffic factor

Impact on ETA accuracy Data insights & mitigation strategies

Congestion (Peak
hours)

Spatial variability

Temporal
variability

Public events

Long-distance
freight routes

Highway vs. Urban
traffic

Traffic spillover
effects

Seasonal variability

Severe ETA underestimation due to bottlenecks and Real-time sensors, GPS, and ML congestion prediction; Reinforcement
unpredictable slowdowns. Learning (RL)-based rerouting.

Moderate ETA errors on rural roads due to limited Historical delay modeling, satellite imagery, hybrid offline/online ETA

detour options.

models.

Large errors during weekends or non-commute hours Time-series forecasting with Bayesian calibration for anomaly periods.
due to traffic irregularity.

Major localized disruptions often missed by standard Event calendars, crowdsourced data, predictive learning from past

models. disruptions.

ETA variability from tolls, stopovers, and load-based = Truck-specific GPS datasets and regulatory-aware route optimizations.
delays.

ETA distortion from highway bottlenecks or urban stop Multi-modal routing with lane-level and zone-specific ETA
delays. adjustments.

Secondary congestion undermines rerouting Flow modeling at intersections; predictive Al to avoid cascade effects.
effectiveness.

Holiday peaks and weather shifts increase ETA Seasonal trend modeling combined with real-time event feedback.
uncertainty.

models analyze historical lane-switching patterns to adjust ETA predictions
dynamically, compensating for driver-specific tendencies toward frequent or hesitant
lane changes. Google Maps and Waze incorporate similar strategies, utilizing
crowdsourced driver trajectory data to estimate the probability of lane-switching in
high-traffic zones. This method improves ETA stability in highway merging areas, where
aggressive lane changes can lead to significant travel time deviations.

» Braking patterns as a proxy for driver stress and fatigue. Braking intensity serves as a
key proxy for traffic congestion, driver stress levels, and cognitive fatigue. Hard braking
events are often indicative of stop-and-go traffic conditions, cognitive fatigue that delays
reaction times, or aggressive driving behavior, which may temporarily reduce travel
times but increase variability due to frequent deceleration events. The integration of
braking telemetry into ETA models has enabled the real-time recalibration of predicted
travel times, reducing errors by 9-11% in high-variance traffic conditions (Jiang et al,
2023). For instance, Amazon’s Zoox Robotaxi employs braking telemetry as a core
feature in its autonomous driving ETA model (O’Neill, 2022). By analyzing braking
intensity in real-world road tests, the system dynamically adjusts ETA predictions based
on different road types and driving behaviors.

Empirical studies converge on the conclusion that driver heterogeneity materially
impacts ETA precision; however, methodological approaches vary. Telematics-based
clustering (k-means, Gaussian mixture) yields interpretable archetypes but may
oversimplify continuous behavioural spectra. Deep representation learning
(e.g., behaviour embeddings in DeepETA (Uber AL, Data/ML, 2022)) captures subtler
nuances yet demands extensive labelled data and raises privacy concerns. Hybrid
pipelines—combining interpretable clustering for coarse adjustment with deep sequential
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models for fine-grained correction—currently offer the best trade-off between
transparency and predictive power.

Incorporating real-time behavioural telemetry into ETA models demonstrably reduces
prediction error across diverse driver populations. Future research should (i) explore
federated learning frameworks to preserve driver privacy while leveraging cross-fleet data;
(ii) integrate physiological proxies (e.g., eye-tracking, heart-rate variability) to capture
cognitive fatigue more accurately; and (iii) develop transfer-learning schemes that
generalise behavioural models across regions with differing regulatory environments.

TIP 4: REAL-TIME ADAPTABILITY IN FLEET ETA
PREDICTIONS

Accurate ETA prediction in fleet-based transportation systems requires real-time
adaptability to dynamic traffic conditions, continuous vehicle monitoring, and
individualized modeling of driver behavior. Traditional static routing
approaches—predominantly reliant on historical averages and fixed traffic
assumptions—frequently underperform in the presence of real-world disruptions such as
accidents, construction, or demand surges. In contrast, modern ETA frameworks integrate
real-time telematics, sensor fusion, and adaptive decision-making pipelines, allowing for
continuous model recalibration in response to evolving road conditions and stochastic
perturbations (Liu et al., 2024) (See Fig. 2 for a comparative illustration of static versus
dynamic map integration.).

This real-time adaptability is crucial for mitigating inefficiencies, optimizing route
allocations, and reducing delays arising from congestion, infrastructure changes, or driver
fatigue (Li, He & Wu, 2022). Industry platforms such as Uber Freight, Lyft, and DoorDash
exemplify this paradigm, employing advanced machine learning techniques, fatigue-aware
analytics, and dynamic routing algorithms to enhance ETA precision at scale. These
systems leverage deep learning architectures, historical trajectory embeddings, and
multimodal sensor data to produce accurate, context-sensitive arrival time estimates across
large and heterogeneous transportation networks. A comparative summary of major ETA
modeling techniques, highlighting their respective strengths, weaknesses, and deployment
constraints, is presented in Table 4.

« Fatigue detection and rest break optimization: Driver fatigue represents a significant
source of ETA variability in long-haul logistics, arising from prolonged driving
durations, circadian misalignment, and environmental stressors. Cognitive exhaustion
impairs reaction times and increases the likelihood of unscheduled stops or deviations,
thus impacting travel time reliability. Regulatory mandates, such as hours of service
(HOS) laws, prescribe rest intervals to mitigate these effects; however, empirical data
reveal substantial heterogeneity in compliance, influenced by factors including
individual circadian cycles, cumulative workload, and weather conditions.

To capture the stochastic nature of fatigue-induced slowdowns, modern fleet
management systems increasingly integrate multimodal sensor streams—such as
biometric telemetry, ocular tracking, and neurocognitive reaction-time assessments—to
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Figure 1 This flowchart illustrates the integration of driver behavior, road classification, and external conditions into ETA prediction. The
system processes GPS data, in-vehicle sensor readings, and real-time road and traffic conditions to refine travel time estimates. Lane-changing
behavior, including weaving, lane deviation, and frequency of lane changes, is assessed to gauge traffic fluidity. Road classification accounts for tolls,
road types, and speed adjustments based on infrastructure. Driver concentration analysis relies on in-vehicle sensors to detect drowsiness,
distractions, and reaction times, influencing driving efficiency. The nature of braking is monitored through acceleration changes, speed fluctuations,
and reaction times, providing insights into driving patterns. These inputs collectively enhance the ETA prediction model by adapting to real-time
conditions and ensuring more accurate and dynamic travel time estimates.

Full-size K&] DOT: 10.7717/peerj-cs.3259/fig-1

infer probabilistic fatigue onset. Through real-time sensor fusion and predictive

analytics, these systems support proactive interventions, including dynamic rest
scheduling and route adjustment, aimed at mitigating fatigue-related delays.

Commercial implementations underscore the efficacy of this approach: Amazon’s Zoox
platform incorporates real-time driver monitoring to recalibrate schedules dynamically,
achieving up to an 18% reduction in fatigue-related ETA deviations (Rahman, Abdel-Aty

Wani (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3259

10/32


http://dx.doi.org/10.7717/peerj-cs.3259/fig-1
http://dx.doi.org/10.7717/peerj-cs.3259
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Impact of driver behaviors on traffic flow and ETA prediction accuracy.

Driver behavior Traffic impact on ETA Error  Likelihood Mitigation
(%)
Drowsy/Fatigued Slower speeds and reaction time; ETA often underestimates trip 15-30% Occasional Fatigue detection, rest mandates
driving duration.
Aggressive driving ~ Speed spikes and higher accident risk; ETA underestimates true 10-25% Frequent  Speed monitoring, adaptive cruise

arrival time.

control

Distracted driving  Inconsistent motion; poor lane changes and delayed reactions reduce 10-25% Frequent  Driver monitoring, hands-free

ETA reliability.

rules

Hard braking/Stops  Stop-and-go driving lowers efficiency; ETA overestimates speed 10-20% Occasional Driver coaching, braking

consistency.

Inexperienced
drivers

Frequent lane
changes

assistance

Hesitant driving and braking disrupt flow; ETA overestimates speed. 10-20% Occasional Driver training, lane assist tools

Traffic instability and unpredictable slowdowns; ETA loses precision. 5-15% Frequent  Lane discipline programs

Strict law adherence Predictable but slightly slow; ETA may miss delays from compliance. 5-10% Frequent Not applicable (positive behavior)

¢ Wu, 2021). Likewise, Uber Freight employs machine learning-driven fatigue
modelling to continuously refine ETA estimates in long-haul freight contexts, enhancing
both prediction accuracy and regulatory compliance.

Personalized routing heuristics and algorithmic deviations. While navigation
algorithms optimize fleet routing based on shortest path heuristics and real-time traffic
data, empirical analyses reveal that experienced drivers frequently deviate from
algorithmically recommended routes. These deviations, often driven by heuristically
learned shortcuts, road familiarity, and traffic intuition, introduce variance into ETA
models that fail to account for human route selection biases. Graph-based trajectory
modeling techniques, provide an advanced methodological framework for embedding
driver-specific routing patterns into ETA predictions. By parameterizing historical
deviation behaviors, these models dynamically adjust route probability distributions and
refine the fidelity of travel time estimations under high-variance conditions.
Additionally, reinforcement learning-based adaptive routing frameworks iteratively
refine driver-specific reccommendations over extended operational durations,
incrementally improving prediction precision. Empirical studies indicate that hybrid
methodologies, integrating algorithmic routing intelligence with human heuristics,
improve ETA prediction accuracy by 15-20.

Variance-aware ETA predictions and probabilistic modeling. Traditional ETA models
generate point estimates that fail to capture the inherent uncertainty in driver behavior
and external disruptions. To address this limitation, probabilistic modeling techniques,
such as Gaussian mixture models and Bayesian inference frameworks, are employed to
represent travel time distributions as continuous probability densities rather than fixed
point values. Furthermore, multi-agent reinforcement learning (MARL) frameworks
enable fleet-wide optimization of travel time predictions by modeling vehicle
interactions as a collaborative system. Unlike conventional ETA models, which treat
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drivers as independent entities, MARL-based architectures optimize individual and
collective ETAs, thereby reducing congestion-induced errors by 9-14% (Chowdhury,
Dey & Apon, 2024).

o Fleet-wide coordination and multi-agent optimization: In large-scale fleet operations,
ETA inaccuracies frequently arise from inter-vehicle dependencies, congestion feedback
loops, and imbalances between supply and demand. Addressing these systemic
challenges requires collaborative optimization frameworks capable of real-time,
distributed coordination across agents (e.g., vehicles, depots, and control centers).
Multi-agent systems enable vehicles to exchange and assimilate route performance
metrics dynamically, enhancing global situational awareness and responsiveness.
Leading platforms such as Uber Freight and DoorDash leverage federated learning
architectures to aggregate driver-specific travel time data while upholding privacy
constraints. These decentralized training approaches obviate the need for centralized
data storage and reduce exposure to security vulnerabilities, all while maintaining model
fidelity. Empirical studies have demonstrated that cooperative ETA prediction models—
when integrated into fleet-wide decision-making—improve prediction accuracy and
increase resilience to stochastic transport disruptions. By modelling real-time
inter-vehicle interactions and incorporating telematics data streams, these systems
support the transition toward adaptive, data-driven logistics operations that scale across
dynamic and heterogeneous transportation networks.

In conclusion, future ETA frameworks will hinge on real-time telematics, probabilistic
modeling, and reinforcement-based fleet coordination. Key research priorities include
privacy-preserving driver models, fatigue-aware sensor fusion, and multi-agent
optimization. As models grow more adaptive, the convergence of Al, real-time data, and
uncertainty modeling will drive more resilient and accurate fleet-wide ETA predictions.

TIP 5: ACCOUNTING FOR WEATHER CONDITIONS IN ETA
PREDICTIONS

Weather conditions significantly influence travel times and, consequently, ETA
predictions. Factors such as rain, snow, fog, and extreme temperatures, along with their
indirect effects on vehicle performance and driver behavior, disrupt normal traffic flows.
This disruption necessitates robust mechanisms to model and incorporate weather effects
into ETA systems. Accounting for these primary and secondary influences is critical for
delivering accurate and reliable predictions. (See Fig. 3 for more details about the weather
API data ingestion process).

 Rain and snow are among the most disruptive weather conditions. Heavy rain reduces
visibility, makes road surfaces slippery, and increases braking distances, leading to slower
vehicle speeds and a heightened risk of congestion. Similarly, snow and ice create
hazardous driving conditions, forcing drivers to adopt lower speeds and potentially
causing road closures. To address these effects, modern ETA systems integrate real-time
weather data from Application Programming Interface (API) services and combine it

Wani (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3259 12/32


http://dx.doi.org/10.7717/peerj-cs.3259
https://peerj.com/computer-science/

PeerJ Computer Science

Monitor Dynamic
Conditions
Load Base .
Dynamic Ma
Static Map L Ubdat 2
Collects pdate
Real-Time
" Recalculate ETA &
Traffic Data Notify Users
Use's Real-Time
Predefined Traffic-Based
Road Networks Rerouting
(OSM, Google Detects Road Updates Travel
Maps) Closures & Lane Time Based on
Restrictions New Route
Applies
Reinforcement
Incorporates Learning for
. Hl.storlcal Monitors Route Ops AT
raffic Patterns Weather & = ENASIAICNISILO
Environmental Drivers & Dispatch
Factors Systems
. Adjusts Speed
Includes Fixed & Lane
Road Attributes Identifies Restrictions
(Lane.s,.Speed Construction Dynamically Evaluates
Limits) Zones & Efficiency of the
Temporary New Route
Barriers
Recomputes
Default Routing Shortest Path
Based on Checks for (A* Dijkstra,
Shortest Path Accidents & GNNs)
Algorithms Congestion v
Reports
P Revert to Static
Map if Error
[ Stabilizes
'
If Needed
Compare Adjust Optimize
Feedback & Predicted vs. Confidence PaLstcaSr\r/]viftrcoth Thresholds for| |
Contlngous Actual Traffic Score for Map Decisions 9 Future
Learning Flow Switching Transitions

Figure 2 This flowchart outlines the decision-making process for switching between a predefined static map and a real-time dynamic map to
enhance ETA accuracy. The system starts with the Static Map, using historical traffic data and shortest path algorithms. Dynamic conditions such as
traffic congestion, road closures, and weather changes are continuously monitored. If disruptions exceed a predefined threshold, the system switches
to a Dynamic Map, leveraging real-time rerouting, reinforcement learning, and adaptive speed adjustments. Once the new route is computed,
the system recalculates ETA, notifies users, and evaluates efficiency. If traffic stabilizes, it reverts to the Static Map to optimize performance. The

Wani (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3259 13/32


http://dx.doi.org/10.7717/peerj-cs.3259
https://peerj.com/computer-science/

PeerJ Computer Science

Figure 2 (continued)

Feedback & Continuous Learning module refines switching decisions, adjusts confidence scores, and optimizes thresholds, ensuring future tran-
sitions are more accurate and adaptive. This approach balances computational efficiency with real-time responsiveness, improving travel time
predictions and user experience. Full-size k] DOT: 10.7717/peerj-cs.3259/fig-2

Table 4 Integrated framework linking system layers to ETA prediction.

System layer ~ Primary role in ETA prediction Techniques Key gains

Spatial Improve accuracy using maps, traffic trends, =~ Map refinement, GNNs, temporal embeddings, Long- Reduced spatial error;
temporal long-term data, and engineered features. Short Term Memory (LSTM)/autoencoders. stronger generalization.
modeling

Behavioral Capture driver variability and enable real-time Telematics, behavioral clustering, RL, multi-agent RL. Personalized and
adaptation fleet recalibration. dynamic ETAs.

Environmental Handle weather disruptions and rare anomalies. Weather fusion, anomaly detection, ensemble models. Robustness in volatile
robustness settings.

Feedback and  Correct models via feedback and mitigate Crowdsourcing, federated learning, bias audits. Self-healing and equitable
fairness algorithmic bias. predictions.

with historical patterns to dynamically adjust speed predictions on affected routes. For
instance, Uber’s ETA models utilize weather overlays to predict delays due to snowfall,
ensuring that travel times reflect the reality of adverse conditions. Studies have shown
that snowstorms can reduce travel speeds in urban areas by up to 30%, while heavy rain
can increase highway travel times by 15-20%.

» Fog and reduced visibility pose additional challenges. Fog obscures road signs,
landmarks, and other vehicles, necessitating slower speeds and greater caution. Models
incorporate geospatial data along with visibility indices to identify areas prone to
fog-related delays. For example, routes traversing valleys or coastal regions with frequent
fog are weighted differently in models compared to urban routes with clearer visibility.
This differentiation helps systems better capture the variability in travel times caused by
reduced visibility.

¢ Localized weather patterns, such as sudden thunderstorms or hail, introduce unique
disruptions. These intense but short-lived events affect specific road segments, creating
unpredictable slowdowns. Advanced ETA systems address this variability by integrating
high-resolution, segment-level weather forecasts. For instance, DoorDash’s ETA models
leverage multi-task learning to combine real-time weather updates with traffic data,
enabling accurate predictions for localized disruptions. For example, during a
thunderstorm, segment-specific delays caused by localized flooding are incorporated
into the model, which enables real-time rerouting.

» Long-term seasonal effects, such as recurring winter storms or monsoon seasons, also
require careful consideration. Historical weather data is often used to train ML models to
anticipate seasonal disruptions. For instance, in snowy regions, models account for
typical snow-clearing times for major roads, ensuring ETAs are adjusted for delays
caused by recurring winter conditions. Similarly, monsoon-prone regions benefit from
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models trained to incorporate historical flooding patterns and road closures during peak
rainfall periods. These adjustments allow ETA systems to remain robust during
prolonged adverse conditions.

o Cold-start effects after adverse weather events also degrade ETA accuracy, particularly
during the first trips of the day following snowfall, freezing rain, or low temperatures. In
these conditions, vehicles may experience prolonged warm-up times, battery drain
(especially in Electric vehicles (EVs)), and traction loss on untreated roads. These delays
are often unaccounted for in standard ETA models, leading to systematic
underestimation of travel times in the early morning. Moreover, secondary and
residential streets may remain snow-covered long after main arteries are cleared, further
compounding delay. Incorporating cold-start flags, weather-time interactions, and
vehicle-level telemetry can help ETA systems dynamically adjust early-day predictions
under wintry or icy conditions.

* Quantifying uncertainty due to weather remains essential for user trust and system
reliability. Weather conditions are inherently unpredictable and vary widely across
regions, which introduces significant variability into predictions. Probabilistic modeling
approaches, such as those adopted by DoorDash and Shippeo, address this issue by
quantifying uncertainty through confidence intervals or ranges for ETAs. For
instance, during extreme weather events, systems may predict delays with a range
(e.g., 15-30 min) rather than a fixed ETA, thereby empowering users to plan accordingly.
Providing this transparency improves both user satisfaction and operational reliability.

» Weather as a secondary variable introduces indirect effects on ETA predictions, such as
driver behavior and vehicle performance: —Driver behavior and comfort adjustments:
Extreme temperatures prompt drivers to modify their vehicle’s internal environment. In
hot conditions, air conditioning usage increases, while in freezing temperatures, heaters
are used to maintain cabin comfort. These adjustments can increase fuel or battery
consumption, indirectly influencing travel times. Furthermore, extreme weather
conditions often lead to increased caution among drivers, who may adopt slower speeds
or take additional rest breaks. —Vehicle efficiency under varying weather conditions:
Weather impacts vehicle performance differently depending on the fuel source: Biodiesel
engines: Pure biodiesel (B100) experiences reduced efficiency in freezing temperatures
due to increased viscosity, thus necessitating preheating for optimal performance. Blends
like B20, which include conventional diesel, mitigate these cold-weather issues and
maintain better efficiency under such conditions. EVs: Extremely cold or hot
temperatures negatively affect EV battery performance. Studies indicate that sub-zero
temperatures can reduce EV battery range by 20-30%, because more energy is diverted
to heating the cabin or maintaining battery temperature. Conversely, moderate
temperatures improve efficiency, thereby enabling longer ranges.

Conventional fuel engines: Gasoline and diesel engines consume more fuel during cold
starts or in freezing conditions, when engines take longer to reach optimal operating
temperatures. This is particularly impactful during short trips in winter regions.
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Figure 3 End-to-end ETA prediction system with real-time adjustments and feedback loop. This flowchart illustrates the complete workflow of
an ETA prediction system, integrating historical and real-time data sources for accurate arrival time estimations. The process begins with data
ingestion, where traffic, weather, and GPS data are collected and preprocessed separately. Feature engineering extracts relevant attributes before
merging them in the feature fusion model. The ETA prediction model computes an initial estimate, which is continuously refined based on real-time
event monitoring. If significant deviations occur, dynamic ETA adjustments are applied, and the final ETA is updated for user notifications. A
feedback loop ensures continuous model refinement by improving feature fusion and preprocessing for future predictions, making the system

Full-size 4] DOTI: 10.7717/peerj-cs.3259/fig-3

¢ Advanced approaches to modeling weather effects include probabilistic models,
graph-based methods, and ensemble techniques. Probabilistic models quantify
variability, while ensemble methods combine historical weather data with real-time
updates to dynamically adapt predictions. Graph-based models, such as those used by
Google Maps, incorporate weather as an edge attribute, enabling the system to predict
delays and suggest reroutes during adverse conditions. Additionally, hyperlocal weather
APIs, combined with spatiotemporal embeddings, improve regional predictions,
ensuring that both short-term and localized disruptions are accounted for effectively.
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Weather affects ETA predictions both directly—via traffic disruptions—and indirectly
through driver behavior and vehicle performance. Integrating real-time weather data,
historical patterns, and secondary factors improves prediction accuracy, user trust, and
operational resilience across varied conditions.

TIP 6: LEVERAGING HISTORICAL DATA

Historical data plays a critical role in ETA prediction by enabling models to learn temporal
patterns, account for route-specific congestion, and adapt to long-term infrastructure
changes. By analyzing travel times across regions and timeframes, machine learning
models can uncover recurring trends and anomalies to improve prediction accuracy.
However, effective use of historical data requires addressing challenges such as temporal
inconsistencies, missing values, spatial misalignments, and noise. Mitigating these issues is
essential to ensure reliable, bias-free ETA forecasts.

o Temporal patterns challenges. Historical data enables ETA models to capture
long-term temporal patterns, such as rush-hour congestion, weekend traffic reductions,
and seasonal variations. For instance, weekday morning commutes often experience
travel times that are 20-30% higher than midday travel, while weekends generally exhibit
smoother traffic conditions. By incorporating these temporal trends, models can
dynamically adjust ETAs based on the time of day or season. This capability enables
context-aware forecasting, leading to more precise predictions. However, these temporal
patterns are often skewed by temporal imbalance, where models over-rely on high-traffic
periods (e.g., weekday commutes) and under-sample off-peak hours. This imbalance
leads to systematic inaccuracies, particularly under underrepresented conditions, such as
nighttime driving or holiday travel. Techniques such as data augmentation, transfer
learning, and reinforcement learning can mitigate these biases, ensuring that models
generalize effectively across all timeframes.

» Route-specific optimization and data challenges. By analyzing historical data, ETA
systems can identify recurring congestion patterns or bottlenecks that occur at specific
times on certain road segments. For example, a road segment near a school may
consistently experience delays during morning drop-off hours. Advanced systems, such
as Uber’s DeepETA and Google Maps, leverage this segment-level granularity to refine
predictions, achieving reductions in prediction error of up to 15% in congested urban
areas. Despite these benefits, inconsistent spatial representations across different
mapping providers pose a major obstacle to route-specific optimization. Variations in
granularity, segment classifications, and topological inconsistencies can lead to
discrepancies in travel time estimations. To address this, topological alignment methods
and graph embedding techniques are used to harmonize disparate spatial data, thus
ensuring a unified and reliable view of road networks (Bast et al., 2016).

» Model initialization and the impact of missing data. Historical data plays a critical role
in model initialization, particularly when assessing driver behavior early in a journey. At
the beginning of a trip, real-time data may be limited or unavailable, which makes
historical records essential for providing an initial baseline. For instance, if historical
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data indicates that a particular driver tends to drive conservatively during morning
routes, this information can be incorporated to improve early-stage ETA accuracy.
However, missing data frequently arises due to network interruptions, sensor
malfunctions, or GPS dropouts, particularly in remote areas or dense urban
environments. These data gaps distort trajectory models and can significantly degrade
ETA accuracy. Nearest-neighbor interpolation, and generative modeling have
demonstrated up to 90% accuracy in reconstructing short-term missing values, thereby
ensuring model continuity and robustness.

» Long-term adaptability and noise challenges: Historical data play a critical role in
enabling ETA models to adapt to long-term changes in traffic patterns resulting from
infrastructure development, road closures, and urban sprawl. For instance, the
introduction of a new bypass or arterial route can significantly redistribute traffic flow,
alleviating congestion on adjacent road segments. Empirical studies report that updating
predictive models to reflect infrastructure changes can reduce ETA prediction errors by
up to 20% in rapidly evolving urban regions.

o However, the utility of historical and real-time data is often compromised by noise
introduced through sensor inaccuracies, timestamp mismatches, or urban signal
interference. One common issue is GPS multipath distortion, where signals reflect off
buildings and result in erroneous vehicle positioning—often placing vehicles on adjacent
roads—thereby skewing travel-time calculations.

e To address these challenges, state-of-the-art ETA systems employ filtering and
correction techniques such as Kalman filters and redundancy-based sensor fusion. These
approaches smooth noisy observations and integrate data from multiple sources (e.g.,
GPS and inertial sensors) to improve positional accuracy and temporal alignment. Such
enhancements are particularly valuable in dense urban settings where signal obstructions
and high vehicle density exacerbate measurement noise, ultimately improving the
robustness of ETA predictions.

o Integrated framework for historical data utilization. Effectively leveraging historical
data requires a unified framework that integrates long-term patterns with real-time
updates. Hybrid models, which combine spatiotemporal embeddings, imputation
techniques, and noise filtering, enhance model reliability under diverse conditions. For
instance, graph-based frameworks represent road networks as graphs, where
intersections act as nodes and edges encode traffic flow, thereby enabling dynamic
reconciliation of spatial and temporal inconsistencies. Additionally, edge computing
processes localized corrections in real-time, reducing latency and ensuring that
predictions remain responsive to evolving conditions. These advancements enable ETA
models to dynamically integrate historical knowledge with real-time traffic signals,
thereby bridging the gap between past insights and current road conditions.

Effectively integrating historical data with real-time insights is crucial for achieving
high-precision ETA predictions. However, addressing challenges such as data sparsity,
spatial inconsistencies, and temporal imbalance is equally important. Future
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Table 5 Unexpected events and their impact on ETA predictions. This table outlines various disruptions, their effect on ETA accuracy, and
mitigation strategies.

Event type

Impact on ETA

Mitigation strategy

Road accidents
Flash floods
Public events

Strikes or
protests

Extreme weather

Infrastructure
damage

Wwildlife
crossings

Sudden traffic congestion, severe delays, and overflow into Real-time traffic monitoring and dynamic rerouting using AI

secondary roads.

congestion models.

Road closures and detours due to inaccessible routes. Integration of weather feeds with road data for proactive rerouting
using ML optimization.
Localized congestion from marathons, parades, or Use of event calendars and historical traffic to predict hotspots; apply
concerts. temporary routing rules.

Unpredictable disruptions and law enforcement blockades. Monitoring of news, social media, and police reports; route adaptation

using Al-based threat models.

Slower speeds and reduced visibility due to snow, fog, or High-resolution weather forecasting with vehicle sensor feedback to

storms.

adjust ETA dynamically.

Long detours due to bridge collapses or sinkholes. Structural monitoring systems feed into dynamic routing to avoid

affected zones.

Slowdowns in rural areas from frequent animal movement. Geofencing and seasonal data guide alerts and speed adjustments.

advancements in federated learning, Vehicle-to-Everything (V2X) communication,

and real-time anomaly detection will continue to bridge the gap between historical trends
and evolving traffic conditions, thereby enabling scalable, resilient, and adaptive ETA
models.

TIP 7: ACCOUNTING FOR UNEXPECTED EVENTS IN ETA
PREDICTIONS

Accurate ETA predictions require a balance between leveraging historical data to model
long-term traffic patterns and dynamically adapting to unexpected events that deviate
from established norms. Integrating these two approaches is essential for building robust
and reliable ETA prediction systems, capable of addressing diverse real-world scenarios
(Jiang et al., 2023; Yuan ¢ Li, 2021; Wen et al., 2024) (See Table 5 regarding the effects of
various unexpected events).

» Historical data serves as a robust foundation for ETA predictions. By capturing stable
traffic patterns and long-term dynamics, historical data enables models to anticipate
recurring phenomena such as diurnal congestion patterns, seasonal variations, and
route-specific delays (Alhudhaif & Polat, 2024). For example, predictable trends, such as
morning and evening rush hours or reduced congestion during midday, offer critical
insights for refining model accuracy under routine conditions. Moreover, gradual
changes in traffic dynamics—arising from urban expansion or new infrastructure—can
be integrated into historical datasets to ensure predictions remain relevant. For instance,
new bypass routes may reduce congestion on primary roads, thus necessitating updates
to model parameters (Bast et al., 2016).

o Unexpected large-scale disruptions, present significant challenges. These anomalies
deviate from routine traffic patterns and can drastically alter spatial and temporal
dependencies. Examples include multi-vehicle collisions that cause highway closures,
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flash floods that reroute traffic, or public events like protests that create bottlenecks
(Santhosh, Dogra ¢ Roy, 2020). Historical models often fail to anticipate such deviations,
which leads to inaccuracies in ETA predictions. To mitigate these challenges, real-time
data integration is crucial. Inputs from traffic sensors, crowdsourced reports, and live
GPS updates enable modern systems like Waze and Google Maps to dynamically
recalibrate predictions, adapting to disruptions as they unfold (De, 2022; Sasson, 2023).

» Long-tail events represent another critical category of unexpected scenarios in ETA
predictions. These events include rare and infrequent situations, such as deliveries to
remote rural areas, operations during extreme weather conditions, or travel at atypical
times, like late-night hours or holidays (Lu ¢ Parekh, 2021). Long-tailed scenarios are
often underrepresented in training datasets, making it difficult for models to effectively
capture their unique characteristics (Zhang et al., 2023). One significant challenge with
long-tail events is the variability of features specific to these scenarios. For instance, rural
deliveries often involve longer travel distances, fewer alternative routes, and
unpredictable road conditions (Shippeo, 2024). Similarly, extreme environmental
conditions—such as hurricanes or snowstorms—introduce disruptions like reduced
visibility, slower travel speeds, and prolonged delays (Huang, Wu ¢ Lv, 2021). These
factors deviate sharply from the structured, high-density patterns observed in urban
environments, leading to less accurate predictions in these edge cases. Temporal sparsity
further complicates long-tail events because reduced vehicle density or altered route
availability during holidays or off-peak hours introduces distinct traffic patterns that are
often overlooked during model training. To address long-tail events effectively, ETA
systems must incorporate mechanisms such as data augmentation, domain adaptation,
or ensemble approaches to improve generalization to these infrequent scenarios
(Gal & Ghahramani, 2016). Without these solutions, systems risk failing to provide
accurate ETAs when precision is most critical, such as during emergency logistics or
severe weather conditions (Gupta, Gulla & Mancini, 2023).

o Hybrid frameworks are essential for effectively integrating historical and real-time
data. Techniques such as graph-based neural networks and spatiotemporal embeddings
allow systems to encode spatial and temporal dependencies, enabling rapid updates to
predictions (Battaglia et al., 2018). For instance, graph-based models employed by
platforms like Google Maps analyze live traffic flows to provide real-time rerouting and
accurate ETAs (De, 2022). Recurrent neural networks and long short-term memory
networks further enhance a system’s ability to capture sequential dependencies in
historical data while dynamically adapting to real-time anomalies (Hochreiter, 1997).
Additionally, ensemble methods combine historical trend models with anomaly
detection modules, thereby ensuring robustness across diverse scenarios (Mondal, 2022).

» Event-based edge cases: Public events such as marathons, parades, protests, and large
festivals introduce complex, short-term disruptions that can render ETA models
ineffective. These scenarios often involve planned road closures, restricted zones, and
high pedestrian density—all of which may not be reflected in real-time traffic feeds or
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historical patterns. Failure to account for such events can result in significant ETA errors
and missed deliveries. Integrating city event calendars, crowd intelligence, and
event-detection APIs can improve system responsiveness and prediction accuracy
during these localized but high-impact disruptions.

» Quantifying uncertainty is critical for improving user trust. Unexpected events
inherently introduce variability into ETA predictions. Probabilistic models address this
by providing confidence intervals rather than single-point estimates. For example,
during traffic disruptions, platforms like Uber and DoorDash communicate ETA ranges
that account for potential delays, which allows users to set realistic expectations
(Jiang et al., 2024; Uber Al, Data/ML, 2022). Such transparency is particularly crucial in
high-stakes applications, such as logistics or emergency response, where timing accuracy
is paramount.

In conclusion, balancing historical trends and unexpected events is vital for the
development of reliable ETA prediction systems. By leveraging historical data for a stable
predictive baseline, integrating real-time data for an adaptive response, and quantifying
uncertainty to manage user expectations, modern systems achieve robustness and
accuracy (Naik, 2024; Gupta, Gulla ¢» Mancini, 2023; Shippeo, 2024). This dual approach
ensures that ETA predictions remain effective across routine scenarios and rare
disruptions, effectively addressing the dynamic demands of contemporary transportation
networks.

TIP 8: LEVERAGING USER FEEDBACK IN ETA
PREDICTIONS

ETA predictions are increasingly powered by models that synthesize real-time telemetry,
historical traffic patterns, and algorithmic optimization. Yet, despite these advancements,
predictive models often remain susceptible to bias, outdated assumptions, and failure to
account for rare but high-impact disruptions. In this context, user feedback—gathered
from drivers, passengers, and crowdsourced platforms—serves as a vital corrective
mechanism. By incorporating real-world insights, ETA systems can iteratively recalibrate
their forecasts, enhance local responsiveness, and improve accuracy over time (Naik, 2024;
Sasson, 2023). Contemporary implementations increasingly integrate driver-reported
anomalies, passenger feedback, and crowd-contributed traffic reports to strengthen model
adaptability. When systematically processed, such feedback enables machine learning
pipelines to more faithfully capture the nuances of complex transportation environments,
thereby enhancing both the resilience and long-term precision of ETA predictions (Jiang
et al., 2023; Wen et al., 2024).

» Balancing accuracy and latency is a key challenge when incorporating real-time
feedback. ETA models must simultaneously achieve high precision and low-latency
inference, particularly in applications such as ride dispatch and delivery routing. While
high-precision models necessitate significant computation, real-world systems demand
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sub-millisecond inference speeds. To optimize this trade-off, model compression
techniques, such as quantization—which converts model weights to lower-precision
formats—and pruning—which removes redundant neural connections—can
significantly reduce inference times. For example, Uber’s DeepETA system reduced
inference latency by 40% with minimal accuracy loss by using these optimizations
(Uber Al Data/ML, 2022). Another effective strategy is hybrid modeling. Companies
like DoorDash use precomputed offline models, trained on historical data, to generate
baseline ETAs, which are then refined in real time using lightweight, context-aware
models that integrate driver feedback and live traffic conditions. In large-scale logistics
operations, adaptive model selection further enhances scalability. For instance, Uber
Freight employs dynamic model switching, choosing between high-precision and
lightweight models based on traffic density, road complexity, and historical ETA
accuracy (Gupta, Gulla & Mancini, 2023).

» Ethical/privacy concerns must be addressed when integrating user feedback into ETA
models. Malicious or false reports can mislead systems if they are not properly validated.
Also, privacy concerns arise from the continuous monitoring of driver and passenger
locations. To mitigate these risks, companies employ data anonymization techniques
and automated filtering mechanisms to ensure that feedback is both accurate and
compliant with privacy regulations (Bengio, Courville & Vincent, 2013). Bias
mitigation strategies, such as diversifying feedback sources and balancing training
datasets, help to prevent models from overfitting to specific user-reported patterns
(Huang, Wu & Lv, 2021).

e Building user trust through transparent feedback handling is equally important. A
well-designed feedback system encourages more users to contribute valuable data. Many
navigation platforms now provide real-time updates on how user feedback is applied.
For instance, Waze updates road conditions within minutes of receiving validated driver
reports, thereby enhancing trust in the system (Sasson, 2023). Additionally, modern ETA
systems increasingly present confidence intervals rather than single-point estimates,
which helps users anticipate variability in arrival times. Companies like DoorDash and
Uber have adopted this approach, thus reducing user frustration when delays occur
outside the initial estimate (Zhang et al., 2024; Uber Al, Data/ML, 2022). Finally, closing
the feedback loop is crucial for long-term engagement. By notifying users that their input
has influenced ETA predictions—e.g., “Your report helped refine predictions for this
route”—companies reinforce the value of user participation and foster ongoing
collaboration in improving ETA reliability.

e User feedback provides critical real-time information that enhances ETA predictions
beyond what automated systems can detect. Drivers frequently encounter localized
disruptions—such as temporary road closures, event-related congestion, and sudden
construction zones—before such disruptions appear in map data. Uber’s DeepETA
system leverages driver-reported alerts to dynamically adjust road network edge weights,
prioritizing frequently flagged segments and ensuring more accurate route adjustments
(Uber Al Data/ML, 2022). Passengers also contribute valuable insights by identifying
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systematic overestimations or underestimations in travel times. For example, Lyft
clusters passenger complaints about ETA discrepancies by using spatial anomaly
detection. This enables the system to identify geographical hotspots where predictions
are frequently inaccurate. These insights are then used to prioritize model retraining
efforts, thereby improving accuracy in problematic areas (Naik, 2024). To ensure
effective feedback utilization, clustering algorithms group similar reports while anomaly
detection filters false positives by comparing flagged issues against historical traffic and
GPS data (Jiang et al., 2023).

e User feedback is valuable in managing rare but high-impact disruptions, such as
major protests, severe weather, or public events, where historical data alone is
insufficient. These anomalies introduce extreme variability in travel times, which
requires dynamic adjustments. Google Maps integrates event detection APIs to
preemptively recalibrate ETAs based on anticipated delays from large-scale events like
concerts and sporting matches (De, 2022). Similarly, Uber Freight leverages anomaly
detection models to identify sudden GPS velocity drops across multiple vehicles and
enable real-time ETA adjustments to account for emerging disruptions (Gupta, Gulla &
Mancini, 2023).

In conclusion, user feedback is essential for improving ETA predictions by capturing
real-world anomalies, guiding retraining, and addressing rare disruptions. Platforms like
Uber, Lyft, and Waze leverage driver alerts, passenger input, and dynamic retraining to
build more adaptive systems. Techniques like confidence-weighted updates and anomaly
detection help ensure scalability and accuracy, making real-time feedback a critical tool for
trustworthy ETA models (Naik, 2024; Sasson, 2023).

TIP 9: OPTIMIZING FEATURE ENGINEERING FOR
ACCURATE ETA PREDICTIONS

ETA prediction hinges on the selection and engineering of informative features that
capture the complexities of travel dynamics. By integrating spatial, temporal, and
contextual insights, models can enhance predictive precision and robustness against
real-world uncertainties. Effective feature engineering not only improves model accuracy
but also ensures adaptability across diverse transportation scenarios.

* Spatial features: mapping the road network for better predictions. A robust ETA
model must account for road infrastructure, traffic flow patterns, and geographical
constraints to enhance predictive reliability. (a) Road Network Attributes: The
classification of roads (e.g., highways, arterial roads, and residential streets), lane
capacity, toll structures, and elevation gradients significantly impact vehicle speed
(Molinero, Murcio & Arcaute, 2017). For example, Waze’s Smartsum model refines ETA
predictions by incorporating directional constraints, intersection densities, and
region-specific speed limits, thereby ensuring a context-aware approach to travel time
estimation. (b) Traffic Flow Patterns: Real-time congestion data, when combined with
historical traffic patterns, provides stronger predictive power than either source alone
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(Ma et al., 2019). For instance, DoorDash integrates live traffic feeds with historical route
performance to anticipate fluctuations, particularly during peak hours, consequently
improving ETA stability under varying demand conditions (Jiang et al., 2024).

(c) Geospatial Embeddings: Traditional road network models often struggle to capture
regional traffic variations. To address this, Uber’s DeepETA introduces geospatial
embeddings, which adapt models to different travel environments, such as dense urban
areas vs suburban or rural settings (Uber Al Data/ML, 2022). These embeddings
incorporate factors such as proximity to high-traffic zones, demographic movement
patterns, and localized driver behavior, thus improving travel time estimation by
leveraging deep representations of spatial context.

o Temporal features: capturing the dynamic nature of traffic. Traffic patterns are
inherently dynamic and require temporal signals that enable models to adjust to
real-time conditions and historical cyclic variations. (a) Time of Day & Day of the Week:
Traffic congestion follows predictable cyclic patterns; rush hours, weekends, and
nighttime travel all exhibit distinct flow characteristics. For example, Waze employs
time-sensitive embeddings that dynamically modulate ETA predictions to reflect
minute-level variations, effectively overcoming the limitations of static averaging
techniques (Petreanu, 2020). (b) Seasonality & Event-Based Disruptions: Large-scale
disruptions, such as holidays, major sporting events, and extreme weather conditions,
introduce short-term anomalies that can significantly alter traffic flow. For instance,
DoorDash integrates event-driven signals to incorporate these transient effects into its
predictive framework, which allows for a more adaptive and context-aware ETA
estimation (Lu ¢ Parekh, 2021). (c) Temporal Continuity: The evolution of traffic
conditions throughout a trip’s duration necessitates a model’s ability to track continuous
changes. Monitoring consecutive time windows enables the differentiation between
persistent trends (e.g., congestion buildup) and short-lived anomalies (e.g., temporary
road closures). This temporal continuity is particularly valuable for long-haul travel
predictions, where traffic conditions may evolve significantly during a single trip.

¢ Advanced feature engineering techniques: Advanced techniques further refine model
inputs and allow for greater predictive accuracy by capturing complex dependencies in
travel time estimation. (a) High-Cardinality Feature Embeddings: Many categorical
variables—such as unique road segments, merchant locations, and transit hubs—require
efficient encoding to avoid model inefficiencies. For example, DoorDash encodes
store-specific preparation times into dense representations, enabling models to
incorporate operational nuances without excessive computational overhead (Zhang
et al., 2024). (c) Feature Interactions & Nonlinear Relationships: Certain feature
interactions exhibit nontrivial dependencies that standard models may fail to capture.
For instance, Uber leverages engineered cross-features, such as the interaction between
traffic density and road type, to model congestion effects more accurately. For example,
heavy congestion on a multi-lane highway may have a different impact on ETA
compared to a similar level of congestion on a narrow urban street (Gupta, Gulla ¢
Mancini, 2023).
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Table 6 Summary of bias types in ETA prediction systems. The table highlights key sources of bias, their consequences, and actionable mitigation
strategies.

Bias type Challenges and consequences Mitigation strategies
Geographic Sparse rural data leads to poor generalization; models Augment data using satellite imagery and synthetic data. Transfer
underperform in low-density areas. learning from urban areas; crowdsource rural data.
Temporal Fails during holidays, extreme weather, or off-peak Time-weighted training, event-aware forecasting, and Bayesian
patterns; ETAs become unreliable. uncertainty modeling.
Demographic and Models favor affluent, well-connected regions; Impose fairness constraints, audit bias with demographic metrics,
socioeconomic marginalized groups receive worse ETA quality. and adjust loss functions.
Infrastructure Outdated or missing road data hurts ETA accuracy in Real-time updates from drivers and sensors; use online learning to
developing regions or rapidly changing areas. adapt to infrastructure changes.
Driver behavior Ignores variability in aggressive vs. cautious driving; Use driver embeddings, behavioral clustering, and RL-based
personal ETAs become inaccurate. real-time adaptation.
Weather and Limited extreme weather data leads to underestimated  Incorporate live weather APIs; use probabilistic models and simulate
environmental delays during storms or snowfall. adverse weather scenarios.
Feedback loop Heavily used areas get more data, reinforcing neglect of ~Dynamic sampling to rebalance training data; explore via RL;
less-traveled routes. capture real-time user feedback.
Ethical and Uniform behavioral assumptions ignore local road Regional model customization; adaptive learning for cultural
cultural customs, siesta hours, or etiquette. patterns; conduct fairness audits.

Feature engineering is crucial for building accurate and scalable ETA prediction models.
Integrating spatial, temporal, and learned features improves robustness and reduces drift
from real-time anomalies and latent factors. Companies like Uber, Waze, and DoorDash
leverage structured embeddings and event-driven signals to enhance predictive accuracy.
By optimizing geospatial and time-sensitive representations, organizations can create
adaptive ETA models that remain reliable under dynamic road conditions.

TIP 10: ADDRESSING ALGORITHMIC BIAS IN ETA SYSTEMS

Algorithmic bias in ETA systems manifests when ML models produce systematically
skewed predictions that disadvantage specific geographic, temporal, or demographic
groups (Abdi & Amrit, 2021; Wen et al., 2024). Such biases not only erode user trust but
also perpetuate inequities in service quality and operational efficiency. This section
categorizes prevalent bias types, analyzes their societal impacts, and establishes a
sequential auditing protocol to ensure equitable ETA predictions (See Table 6 for more
details regarding the different biases and their effects.).

» Taxonomy and societal impacts: —Bias in ETA systems arises from systemic gaps in
data representation, model design, and operational feedback loops. Geographic bias
occurs when sparse training data from rural or underserved regions leads to unreliable
predictions, disproportionately affecting service reliability in these areas (Jiang et al.,
2023). Studies might show that ETA accuracy in lower-income neighborhoods is 15-
20% lower compared to affluent areas, reflecting this data sparsity. Similarly, temporal
bias emerges from overemphasis on frequent patterns (e.g., weekday traffic) at the
expense of rare events like holiday surges or extreme weather (Lu ¢ Parekh, 2021). ETA
systems trained on weekday data may exhibit 30% higher prediction errors during
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late-night hours, disproportionately impacting shift workers. Demographic and
socioeconomic biases, often rooted in historical data reflecting systemic inequalities,
further marginalize low-income or minority communities (Huang, Wu ¢ Lv, 2021).
Wait times for ride-sharing in minority neighborhoods can be, on average, 25% longer
during peak hours. Additional biases include infrastructure bias (incomplete road
network data), driver behavior bias (overgeneralization of driving styles), and feedback
loop bias, where underprediction in certain regions reduces future data collection,
exacerbating neglect (Rahman, Abdel-Aty ¢» Wu, 2021). Data collection rates can be up
to 40% lower in underserved areas, creating negative feedback loops.

» Biased predictions amplify existing disparities. For instance, geographic bias limits
emergency vehicle routing efficiency in underrepresented neighborhoods, while
temporal bias compromises logistics during critical events like natural disasters (Lyu
et al., 2019). Demographic biases reinforce socioeconomic divides by deprioritizing
services to marginalized groups. Feedback loops compound these issues, as persistently
inaccurate predictions in underserved areas deter user engagement, further limiting data
collection (Shippeo, 2024).

 Sequential auditing: —A systematic audit of ETA systems requires sequential
evaluation across six stages. (a) Define fairness criteria by establishing context-specific
objectives, such as minimizing prediction error disparities between urban and rural
zones (Yuan ¢ Li, 2021). (b) Audit data representation by evaluating spatial, temporal,
and demographic coverage. Heatmaps of trip density and statistical disparity tests
(e.g., Kolmogorov-Smirnov for temporal distributions) reveal underrepresentation of
rural routes or peak-hour edge cases (Pan et al., 2019). (c) Select quantifiable bias
metrics, such as the disparate impact ratio (comparison of favorable prediction rates
across groups) and group-specific mean absolute error (MAE) (Battaglia et al., 2018). (d)
Analyze model behavior using explainability tools like SHAP (Shapley additive
explanations) to identify features disproportionately influencing biased outcomes
(Bengio, Courville ¢» Vincent, 2013). For instance, ZIP code embeddings may exhibit
outsized contributions to delays in low-income neighborhoods. (e) Validate
scenario-specific performance through synthetic data injections (e.g., simulated traffic
closures) & counterfactual queries (Che et al., 2018). (f) Implement continuous
monitoring via fairness dashboards tracking demographic parity gaps & user feedback
(De, 2022).

* Sequential mitigation: —Mitigation strategies span interdisciplinary collaboration.
(a) Data-centric approaches include geospatial oversampling, where underrepresented
regions are enriched with satellite-derived traffic patterns or crowdsourced GPS traces
(Niu & Silva, 2020). Temporal gaps are addressed through synthetic event generation,
such as simulating traffic patterns during cultural festivals using agent-based models
(Gal & Ghahramani, 2016). (b) Model-centric solutions involve fairness-aware
regularization, where loss functions penalize demographic or geographic error
disparities (Jiang et al., 2023). (c) Operational strategies emphasize dynamic
recalibration using Internet of Things (IoT) sensor data and real-time map correction
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L base maps disruptions )
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real-time data and adaptive profiles

Real-Time Adaptability & Fleet Ops

Tip 5 Ensure real-time Tip 6 Handle unexpected
adaptability in fieet and long-tail events with
L operations hybrid models )
[ Learning From Feedback & Data )
Tip 7 Leverage historical Tip 8 Incorporate user
patterns for route- feedback to refine
specific optimization predictions )
9
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Tip 9 Engineer spatial, Tip 10 Audit and mitigate
temporal, and interaction- algorithmic bias in ETA
L rich features systems )

Figure 4 Schematic overview of the ten evidence-based strategies for improving ETA predictions in
delivery logistics. The tips are grouped into five thematic domains—(1) spatial & environmental context,
(2) traffic & driver-behavior modeling, (3) real-time fleet adaptability, (4) learning from feedback &
historical data, and (5) engineering & ethics—highlighting how complementary data sources and model
practices collectively boost accuracy, robustness, and fairness.

Full-size K&l DOT: 10.7717/peerj-cs.3259/fig-4

pipelines. For example, systems like Baidu’s DuARE incorporate aerial imagery and
vehicle trajectory data to continuously extract and update road networks in
underrepresented or changing regions (Yang et al., 2022). This enables ETA models to
better reflect real-world infrastructure changes and reduce geographic bias. In addition,
transparency protocols—such as public fairness dashboards and periodic audit
disclosures—help build user trust and institutional accountability.

In conclusion, algorithmic bias in ETA systems is not merely a technical flaw—it is a
structural risk that deepens existing social inequities. Ensuring fairness requires a holistic
strategy: rigorous bias audits, equitable data practices, model-level corrections, and
operational transparency (Liu et al., 2024). By embedding fairness into every layer—from
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data collection to deployment—ETA systems can become not only more accurate,
but also more just, inclusive, and trustworthy in real-world transportation networks
(Guo et al., 2019).

FUTURE DIRECTIONS

Several research priorities can strengthen the next generation of ETA prediction systems.
First, there is an urgent need for standardized benchmarking frameworks. Despite rapid
model innovation, the lack of open datasets and unified evaluation metrics limits direct
comparison. Future work should focus on creating public, multimodal ETA datasets and
performance leaderboards to enable reproducible model evaluation across different
geographic and operational contexts. Second, future reviews should adopt transparent
synthesis methodologies, such as PRISMA-style frameworks, to improve replicability. This
includes reporting specific search strings, screening processes, and inclusion/exclusion
criteria, supported by flow diagrams or numerical summaries. Third, explainability and
interpretability must move beyond raw accuracy. Lightweight explainable AI that expose
feature importance and uncertainty estimates will be essential for regulatory oversight and
operational trust, especially in safety-critical environments. Finally, fairness and privacy
require urgent attention. Algorithmic bias—geographic, temporal, or demographic—must
be addressed through structured audits and mitigation strategies. Federated learning offers
a path toward privacy-preserving collaboration, especially for cross-fleet or cross-regional
model development. By advancing these directions—benchmarking, transparency,
explainability, and equity—the field can build scalable, ethical, and trustworthy ETA
systems for global deployment.

CONCLUSION

This review distilled a decade of research into ten actionable strategies to transform ETA
prediction from static point estimates into dynamic, context-aware systems. By integrating
advances in machine learning, spatiotemporal modeling, traffic physics, and real-time data
ingestion, we outlined how modern ETA frameworks can boost accuracy, reduce latency,
and remain resilient under volatile real-world conditions. However, technological progress
alone is not enough. The field still faces persistent limitations—model opacity, data
sparsity in underrepresented regions, vulnerability to disruptions, and algorithmic bias—
that constrain large-scale deployment and erode user trust. Addressing these challenges
will require a shift toward more transparent, interpretable, and equitable system design.
To this end, our ten tips are not isolated recommendations but interconnected
strategies. As illustrated in Fig. 4, these tips naturally cluster into five foundational
domains: Spatial & Environmental Context, Traffic & Driver-Behavior Modeling,
Real-Time Fleet Adaptability, Learning from Feedback & Historical Data, Engineering &
Ethics. This framework highlights how diverse modeling techniques, data sources, and
deployment practices can work in tandem to improve ETA system performance across
operational, technical, and societal dimensions. Ultimately, realizing robust and fair ETA
predictions will demand sustained efforts across algorithm design, infrastructure
modernization, and governance. Yet the foundations are now in place. With careful
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engineering and principled development, the next generation of ETA systems can deliver
not only operational efficiency for fleets and logistics platforms—but also safer, more
equitable mobility for users worldwide.
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