
A hybrid CNN-GRU model with
XAI-Driven interpretability using LIME
and SHAP for static analysis in malware
detection
Nisa Vuran Sarı and Mehmet Acı
Department of Computer Engineering, Mersin University, Mersin, Turkey

ABSTRACT
The increasing sophistication of evolving malware types and attack techniques has
rendered traditional antivirus solutions inadequate, particularly in mitigating
zero-day threats. To address this challenge, Machine Learning (ML) and Deep
Learning (DL)-based approaches have been developed, demonstrating significant
efficacy and high accuracy in malware classification. However, the black box nature
of these models raises significant concerns in terms of transparency and
interpretability. This study presents a comprehensive evaluation of Ensemble
Learning and Deep Learning methods for static analysis-based malware
classification, which allows joint analysis of Application Programming Interface
(API) calls and Dynamic Link Library (DLL) data. In the study, a specially designed
Convolutional Neural Network (CNN)-Gated Recurrent Units (GRU)-3 model is
trained using a tailored dataset consisting of malicious and secure software. In order
to better understand the model’s performance, feature importance analysis was
performed using SHapley additive exPlanations (SHAP) and Local Interpretable
Model-agnostic Explanations (LIME) Explainable Artificial Intelligence (XAI)
techniques and the reliability of model decisions was increased. The proposed model
was compared with DL models such as CNN, Long Short-Term Memory (LSTM),
and GRU, as well as traditional ML algorithms such as Extreme Gradient Boosting
(XGB), Extra Trees Classifier (ETC), K-Nearest Neighbor (KNN), and Random
Forest (RF). While the traditional XGB model achieved the highest overall
performance with a 99.81% accuracy rate, our proposed CNN-GRU-3 model
demonstrated the best performance among all DL models, reaching a 99.37%
accuracy rate. This study presents a powerful framework that provides both high
accuracy in malware detection and makes the decision mechanism more transparent.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Security and Privacy, Neural Networks
Keywords Explainable AI, Machine learning, Deep learning, Malware classification, Ensemble
learning, Static analysis, XGBoost, CNN, GRU, SHAP

INTRODUCTION
With the rapid advancement of computer technologies, malware has become a significant
threat to cybersecurity for individuals, organizations, and even entire nations. Therefore, it
is imperative to detect and eliminate malware as soon as possible. Malware analysis is the
process of understanding the behavior of malware or malicious code and determining the

How to cite this article Vuran Sarı N, Acı M. 2025. A hybrid CNN-GRU model with XAI-Driven interpretability using LIME and SHAP
for static analysis in malware detection. PeerJ Comput. Sci. 11:e3258 DOI 10.7717/peerj-cs.3258

Submitted 26 March 2025
Accepted 11 September 2025
Published 28 October 2025

Corresponding author
Nisa Vuran Sarı,
nvuran@mersin.edu.tr

Academic editor
Vicente Alarcon-Aquino

Additional Information and
Declarations can be found on
page 29

DOI 10.7717/peerj-cs.3258

Copyright
2025 Vuran Sarı and Acı

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.3258
mailto:nvuran@�mersin.�edu.�tr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3258
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

impact of malware on systems. Static analysis analyzes malware code without executing it
(Gunduz, 2022; Calik Bayazit, Koray Sahingoz & Dogan, 2023). It is also called non-
execution-based analysis. Static analysis focuses more on malware features (e.g., included
text, system calls, external calls, and libraries). Using this approach, aspects and behaviors
of malware such as Text/Strings/Patterns, Header, Application Programming Interface
(API) Call Trace/Graphics, and Imported Libraries and File Formats are examined.
Traditional techniques such as signature-based classification may not provide good results
in finding unknown malware. To overcome this, Artificial Intelligence (AI)-based methods
have been proposed (Yuan, Lu & Xue, 2016), which extract data from static analysis of
malware and automatically classify malware from regular files and applications. AI offers
techniques, approaches, and algorithms designed to address problems that require
intelligent behavior (Albu, Precup & Teban, 2019). Machine Learning (ML) and Deep
Learning (DL) are two of these techniques designed to protect against malware (Kadebu
et al., 2023). Since then, ML (Ma et al., 2019) and DL techniques have been applied to
various cybersecurity challenges, including multi-feature ensemble learning (Dai et al.,
2019), static analysis for Android malware detection where recurrent neural networks like
Bidirectional Long Short-Term Memory (BiLSTM) have shown high success rates (Calik
Bayazit, Koray Sahingoz & Dogan, 2023), comprehensive cyberthreat detection (Ullah
et al., 2022), and behavioral malware variant detection (Al-Hashmi et al., 2022). In all these
cases, these techniques have been useful and have been used to detect unknown malware.
Tree-based ensemble algorithms and other ML techniques have proven to be very useful in
reducing false positive rates and improving prediction and classification (Euh et al., 2020).
Additionally, DL algorithms have shown promise in malware identification (Aslan &
Yilmaz, 2021). Static analysis looks at the content and features of the file before the
malware is executed to determine the type and behavior of the malware and classifies it. To
determine the presence of malware, ML and DL models use static analysis detection, which
examines the code, API calls, bytes, Dynamic Link Library (DLLs), and other file attributes.
For example, a neural network uses the file’s features as input to predict the type of virus
and produces an output. When combined with static analysis, ML and DL models are fast
and suitable for real-time malware detection, which is critical for immediate protection.
This allows cybersecurity professionals to gain a deeper understanding of various malware
types, behaviors, and spreading methods, allowing them to take necessary precautions.
Another important advantage of ML and DL approaches is their ability to autonomously
identify malicious activity and discover previously undetected threats without relying on
predefined models. Despite the effectiveness of ML and DL-based malware detection, their
black-box nature poses a major challenge in cybersecurity applications. Explainable AI
(XAI) has emerged as a critical solution to address this issue by improving model
transparency, interpretability, and trustworthiness. XAI techniques such as Shapley
Additive Explanations (SHAP), Local Interpretable Model-agnostic Explanations (LIME),
and Layer-wise Relevance Propagation (LRP) enable security experts to understand the
reasoning behind a model’s decisions, making malware classification more reliable. This

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 2/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

interpretability is particularly crucial for ensuring regulatory compliance, as cybersecurity
regulations often mandate clear explanations for automated decisions, especially in
security-critical industries. Moreover, integrating XAI into malware analysis fosters
expert-human collaboration by allowing cybersecurity analysts to verify, refine, and
improve ML-based detection systems based on explainable insights. By identifying the key
features that influence model predictions—such as API call sequences, opcode patterns, or
permission requests—XAI also helps in detecting adversarial attacks and evasion
techniques used by sophisticated malware. Thus, the incorporation of explainability in
AI-driven malware analysis not only enhances detection accuracy but also contributes to a
more robust and secure cybersecurity ecosystem. Motivated by these observations, a new
dataset containing three different models was used to classify malware and compare the
effectiveness and reliability of the models. Model 1 uses Extreme Gradient Boosting (XGB),
Random Forest (RF), Extra Trees Classifier (ETC), K-Nearest Neighbor (KNN),
Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated
Recurrent Units (GRU) to classify malware. Model 2 applies an ensemble approach that
combines the best models through voting and stacking to improve classification accuracy.
Model 3 introduces a custom CNN-GRU-3 model designed to leverage both spatial and
sequential features for malware classification. The unique contributions of the research can
be summarized as follows:

. We introduce a novel hybrid CNN-GRU model specifically tailored for malware
classification. We demonstrate its effectiveness by comparing its performance against
not only standard ML and individual DL models but also against conventional ensemble
techniques, thereby providing a comprehensive benchmark on our curated dataset.
Using this dataset, we show how effective our proposed hybrid model is compared to
standard ML and single DL models.

. We present a tailored dataset containing various malware examples from real-world
data. By including unseen data, the dataset can be considered as a reference for future
research in malware classification. We provide a reliable evaluation of ML and DL
methods with XAI analysis that increases the reliability of the assessments.

. Unlike most studies that focus only on API calls or opcode sequences, this study
integrates API Calls and DLLs for malware classification. When used together, it has
proven to be more effective than analyzing API and DLL features alone. This approach
differentiates this study by providing a more accurate view of malware behavior.

. Although ensemble learning is well-known in other fields, it is rarely applied in
Windows-based malware classification. This study contributes to the literature by
demonstrating its effectiveness in this context.

. To address the black-box nature of models, we incorporate XAI techniques such as
SHAP and LIME to enhance interpretability in malware classification. This contribution
ensures that model decisions are more transparent, facilitating trust, regulatory
compliance, and expert validation. By identifying key features that influence

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 3/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

classification, XAI helps cybersecurity professionals detect adversarial attacks and
optimize malware detection strategies.

To guide our investigation, this study aims to answer the following research questions
(RQs): RQ1: how does the performance of a hybrid CNN-GRU deep learning model
compare to standalone deep learning models and traditional machine learning algorithms
for static malware classification? RQ2: how effective is the joint analysis of API calls and
DLL information for distinguishing between malicious and benign software? RQ3: what
key features are most influential in model predictions, and can XAI techniques like SHAP
and LIME provide transparent insights into the models’ decision-making processes? The
remainder of this article is structured to address these questions.

The rest of the article is organized as follows: ‘Related Studies’ presents related studies,
‘Materials and Theorical Background’ highlight theoretical background and dataset,
including malware classification methods and dataset pre-processing. ‘Experimental
Results and Analysis’ presents experimental results and analysis. The study concludes by
discussing research directions in ‘Conclusion’.

RELATED STUDIES
There are many studies in the literature investigating the effectiveness of ML and DL
techniques in malware classification and detection. Some of the studies on malware
classification and detection and their methods summarized as follows. To position our
research within the current academic landscape, we first provide a comparative summary
of recent and relevant studies in malware detection. Table 1 summarizes these key works,
outlining their methodologies, utilized features, datasets, and primary contributions.

Rezaei, Manavi & Hamzeh (2021) used K-means clustering with a deep neural network
to reach an accuracy rate of 97.75%. Haq, Khan & Akhunzada (2021) used CNN and
Bidirectional Long Short-Term Memory (BiLSTM) architectures to reach a high accuracy
rate of 99.47%. Azeez et al. (2021) produced impressive results across various techniques in
their investigation of ensemble learning for malware detection. Kabakus presented a
framework in Kabakus (2022) that used a CNN model to attain 90% accuracy. Maniriho,
Mahmood & Chowdhury (2023) demonstrated encouraging outcomes with their hybrid
approach, which blends DL techniques and API call analysis. A fusion feature set
technique was proposed by Chen & Ren (2023) that produced high classification accuracy
rates above 99%. Similarly, Yousuf et al. (2023) demonstrated the power of comprehensive
feature engineering by combining multiple static features from portable executable (PE)
files, including DLLs and PE headers. Their work, which also heavily utilized ensemble
learning techniques, achieved a 99.5% accuracy rate for Windows malware detection. A
technique named CogramDroid was proposed by Bhat & Dutta (2021) and is centered on
exploiting relative frequency patterns of opcode n-grams to detect Android malware. Some
studies highlight the necessity of XAI in improving transparency, feature interpretability,
and overall performance in malware detection models. Baghirov (2025) investigates the
application of SHAP and LIME in malware classification and finds that Light Gradient

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 4/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

Boosting Machine (LightGBM) achieves the highest F1-score of 94% while critical features
such as getDeviceId and access significantly affect the classification accuracy. In a similar
vein, Aslam et al. (2023) applied XAI techniques to a high-performance Extra Trees
classifier, identifying the most influential API and permission-based features that
contribute to the detection of Android malware, thereby adding transparency to a
traditional ML model. Another study proposed by Ma, Ryu & Lee (2024) is an inverse
analysis approach that uses XAI to backtrack malware detection results to their
contributing parameters, and highlights the effectiveness of SHAP values in identifying key
malware indicators. A different approach (Gunduz, 2022), uses Graph Variational
Autoencoder (GVAE) to generate embeddings from API call graphs, and demonstrates
improved malware detection accuracy by integrating GVAE reduced features with
classifiers such as SVM and LightGBM. Additionally, another study proposed by Galli
et al. (2024) evaluates XAI methods such as SHAP, LIME, LRP, and attention mechanisms

Table 1 Comprehensive summary of related works in malware detection.

Reference Methodology Features used Key result Contribution/Notes

Bhat & Dutta (2021) Opcode n-gram Freq.
analysis

Opcode n-grams 96.22% Acc. A lightweight, NLP-inspired statistical approach, avoiding
complex ML models.

Haq, Khan & Akhunzada
(2021)

Hybrid CNN-BiLSTM Permissions, API
calls, Intents

99.47% Acc. A hybrid DL architecture for multi-vector and persistent
malware.

Azeez et al. (2021) Stacking ensemble
(DL + ML)

PE Features 100% Acc. A sophisticated stacking framework using deep learning
models as base learners.

Rezaei, Manavi &
Hamzeh (2021)

DNN + K-Means
clustering

PE Header (Raw
Bytes)

97.75% Acc. A novel training approach where a DNN is guided by a
clustering algorithm.

Gunduz (2022) GVAE + LightGBM API-Call graphs 96.7% Acc. Use of GVAE for feature learning from API-call graphs.

Kabakus (2022) 1D-CNN Permissions,
Intents, API
calls

90% Acc. Proposing a novel 1D-CNN architecture for automated
feature extraction on 1D data.

Yousuf et al. (2023) Ensemble learning
(RF)

PE Features
(DLL, API)

99.5% Acc. Comprehensive fusion of different static PE feature sets for
improved performance.

Aslam et al. (2023) Extra Trees + XAI API &
Permissions

99.53% Acc. Adding transparency to a high-performance ML model
using Explainable AI (XAI).

Chen & Ren (2023) XGBoost, Feature
fusion

Binary &
Assembly
features

99.87% Acc. A forward stepwise selection algorithm for creating a highly
efficient fused feature set.

Maniriho, Mahmood &
Chowdhury (2023)

Hybrid CNN-BiGRU
+ LIME

Dynamic API
calls

99.07% Acc. Proposing an end-to-end framework and a public
benchmark dataset for dynamic API analysis.

Ma, Ryu & Lee (2024) XAI “Reverse
Analysis”

Multiple datasets 94.2% Avg. Proposing a “reverse analysis” process using XAI to trace
back detection results.

Galli et al. (2024) LSTM/GRU + XAI
comparison

Behavioral API
sequences

Comp. Analysis The first comprehensive comparison of multiple XAI
techniques for behavioral malware detection.

Baghirov (2025) LightGBM + XAI
(SHAP, LIME)

Android
Permissions/
APIs

94% F1-score Emphasizing the role of XAI in providing actionable
insights over merely boosting accuracy.

Our work Custom CNN-GRU,
XGBoost + XAI

API Calls &
DLLs

99.81% Acc. Proposal of a hybrid DL model with in-depth
interpretability analysis using LIME and SHAP.

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 5/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

in behavioral malware detection, comparing their effectiveness on DL models such as
LSTM and GRU.

MATERIALS AND THEORICAL BACKGROUND
Windows portable executable file format
A Windows operating system can manage executable code by using portable executables,
which contain the information needed. The headers and sections in a PE file instruct the
dynamic linker how to map the file into memory.

In the realm of malware detection, a critical focus lies in the analysis of Windows PE
files, where the examination of API call sequences and Dynamic Link Libraries (DLLs)
proves indispensable. Windows PE files encapsulate executable programs, and by
scrutinizing the API call sequences embedded within them, researchers gain profound
insights into the runtime behaviour of applications. This analysis becomes particularly
crucial in detecting and thwarting malware, as malicious programs often exhibit distinctive
API call patterns during execution. Investigating the interactions between Windows PE
files, API call sequences, and DLLs enables a nuanced understanding of malware behavior,
facilitating the development of effective detection strategies.

PE files are commonly used in static malware analysis techniques. Static analysis
involves examining the features of an executable code without executing it, making it
suitable for endpoint antivirus systems (Rhode, Burnap & Jones, 2018). Researchers have
developed various methods to analyse PE files for malware detection. One approach is to
extract distinguishing features from PE files using the structural information standardized
by the Windows operating system (Shafiq et al., 2009). These features can be computed in
real-time and used for classification between benign and malicious executables. Another
method involves the analysing of PE header and section table information to detect packed
malware (Maleki, Bateni & Rastegari, 2019). Features such as the count of suspicious
sections and the frequency of function calls can be used for detection by extracting
information from PE file format (Maleki, Bateni & Rastegari, 2019). A PE file also has
numerous sections which contain the executable’s code and data. In this study, the
following PE sections were used to obtain data within the scope of static analysis.

. The .idata section: the program imports data and functions from DLLs, and this section
specifies those imports.

. The .edata section: the list of data and functions that PE file exports for other programs
are found in this section.

. The .rdata section: the file’s type, size, and location of several sorts of debug information
are all saved in the file’s.rdata section, which also contains the debug directory.

Overall, static analysis of PE files for malware detection involves extracting features such
as structural information, API calls, and byte/entropy histograms from PE file format.
These features can be used for classification between benign and malicious executables.

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 6/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

Various techniques, including ensemble-based (EB) and DL algorithms, have been
employed for this purpose.

Dataset and data pre-processing
The executable code can be managed by the Windows operating system using portable
executable files with the necessary information. The analysis of Windows PE files,
especially the examination of API call sequences and DLLs, is a significant area of interest
in the field of malware identification (Rhode, Burnap & Jones, 2018; Maleki, Bateni &
Rastegari, 2019; Moreira, Moreira & Sales, 2024). API calls exchange data between two
software components, allowing one application to send requests to the other for specific
functions or data. On the other hand, DLLs contain ready-made code fragments and
functions that the software needs to perform certain functions (Yousuf et al., 2023). C-Prot
Cyber Security Technologies company provided the dataset for this study, which was
collected from real-world environments and consists of PE files with their corresponding
API calls and DLLs. The initial dataset contained a balanced collection of 1,000 malicious
and 1,000 benign software samples, for a total of 2,000 samples. To create a more
substantial dataset for training our deep learning models and to prevent class
imbalance, we applied an upsampling technique. This process expanded the dataset to
a final count of 8,000 samples, equally balanced with 4,000 malicious and 4,000
benign instances. The raw data for the initial samples can be accessed at https://c-prot.
com/en/research (both benign and malware samples). A sample table of the dataset is also
provided in Table 2.

The initial dataset consisted of a balanced set of 2,000 samples. A data augmentation
step was performed to provide more data specifically for our deep learning models. We
used a simple random oversampling (upsampling with replacement) technique using
Scikit-learn’s resampling function. This method involves randomly copying samples from

Table 2 Dataset samples.

SHA-256 Size Digital
sign.

Libraries Functions Label

e57d065… 1,564,672 0 WINMM.dll, comdlg32.dll, GDI32.dll,
KERNEL32.dll

GetProcessId, GetSystemTime, EnumCalendarInfo,
CloseClipboard, RegUnLoadKey

Malicious

9372bc5b… 59,528 1 WINMM.dll, VCRUNTIME140.dll,
ole32.dll

GetVersion, GetSystemTime, GetDesktopWindow, Sleep,
IsDebuggerPresent

Benign

4ea1879… 41,376 1 USERENV.dll, ntdll.dll, WINSTA.dll GetService, InitOnceExecuteOnce, GetVersion,
DelayLoadFailureHook

Benign

815b16e… 1,939,173 0 kernel32.dll, WS232.dll, ADVAPI32.
dll

SHA, ShowWindow, SetLastError, CreateProcess,
VirtualProtect

Malicious

7529eb8… 80,562 0 KERNEL32.dll, OLE32.dll, cygwin1.dll GetStdHandle, GetSystemDirectory, SetDllDirectory,
GetDriveType

Malicious

c5961d1… 116,280 1 ntdll.dll GetSystemTime, OpenThread, ZwQueryAttributesFile Benign

4368370… 90,448 0 GDI32.dll, user32.dll, KERNEL32.dll MapUserPhysicalPages, ReadConsoleOutputAttribute,
SetConsoleScreenBufferSize

Malicious

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 7/32

https://c-prot.com/en/research
https://c-prot.com/en/research
http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

the existing dataset until each class (benign and malignant) reaches a target size of 4,000
samples, resulting in a balanced final dataset of 8,000 samples. We chose this approach
over synthetic data generation methods like synthetic minority oversampling technique
(SMOTE) because our primary goal was to balance the class distribution for stable training
rather than generating new, artificial data points, which can be challenging and potentially
noisy for high-dimensional, sparse feature spaces like ours. To reduce the risk of overfitting
associated with oversampling, we incorporated powerful regularization techniques like
Dropout and Batch Normalization into our deep learning models, along with early
stopping during training. Then, CountVectorizer is applied to convert the text data into a
numerical form since API calls and DLLs consist of textual information. This step
generates a feature matrix based on word counts by calculating the frequency of each word
in each document (Goya, 2021). Thus, the frequency of each word is represented as a
numerical value, making this matrix suitable for use in ML and DL algorithms.
CountVectorizer is preferred instead of one-hot encoding because a large number of
unique API calls and DLL names can lead to a large size explosion. Following the
vectorization of textual features, which resulted in a high-dimensional and sparse feature
space, we employed a two-stage dimensionality reduction strategy to create a compact,
robust, and information-rich feature set. Stage 1: Feature Filtering with SelectKBest. As an
initial filtering step, we used the SelectKBest method with the analysis of variance
(ANOVA) F-statistic (f_classif). This univariate selection technique identifies and retains
features that have the strongest individual relationship with the target variable. We chose
to keep the top k = 1,000 features at this stage. This number was selected to be broad
enough to include all potentially significant features while discarding the vast majority of
irrelevant or noisy ones, effectively serving as a high-pass filter for feature relevance. Stage
2: Dimensionality Reduction with Principal Component Analysis (PCA). The 1,000
features selected by SelectKBest still contain significant multicollinearity. To address this,
we subsequently applied PCA. PCA transforms the correlated features into a smaller set of
uncorrelated variables called principal components, which preserve the maximum possible
variance from the original data. The number of components was set to 300. This value was
determined empirically by analyzing the cumulative explained variance, which confirmed
that 300 components are sufficient to retain over 93.39% of the total variance in the 1,000-
feature set. This two-stage approach is highly effective: SelectKBest first removes the
statistically weakest features, and PCA then condenses the remaining features into a
lower-dimensional space by eliminating redundant information. Also, it identifies the
features most strongly associated with the target variable, which improves model
performance and reduces computational complexity (Kilic, Essiz & Keles, 2023). This
process facilitates a more efficient and faster learning process for our models by reducing
computational complexity without significant information loss.

Model 1: vanilla ML and DL for malware classification
In malware classification through static analysis, ML and DL approaches are of critical
importance (Gibert, Mateu & Planes, 2020). These methods make it possible to identify

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 8/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

and classify malware at scale by automating the analysis process (Manzil & Naik, 2023).
Malware analysts can decrease the time and effort needed for manual analysis by utilizing
the power of ML and DL to boost the accuracy and speed of malware detection (Maniriho,
Mahmood & Chowdhury, 2023). In Model 1, we compared the classification performance
using four popular ML-based boosting algorithms (e.g., KNN, RF, XGB, and ET) and three
popular DL algorithms (e.g., CNN, LSTM, GRU). This model serves as a reference for
Models 2 and 3, and the results obtained from Model 2 and Model 3 will be compared
against this baseline. Each of these classifiers is briefly described in the following
paragraphs.

K-nearest neighbor

The K-Nearest Neighbor (KNN) algorithm is one of the supervised learning methods and
is used in classification and regression problems. KNN uses neighboring data points to
determine the class of a data point. The model uses the K nearest neighbors to determine
which class a point belongs to. For a new data point, the distances to all training examples
are calculated. Mathematically:

k̂ ¼ argmax
k

XK

i¼1
1ðyi ¼ kÞ: (1)

The labels of the K nearest neighbors are determined. The most frequently occurring
class is assigned as the class of the new point (Eq. (2)).

ŷi ¼
XT

t¼1
ftðxiÞ: (2)

K is the number of neighbors, k usually represents a specific neighbor or class, and yi
represents the class label of the i: neighbor selected in the KNN algorithm.

eXtreme gradient boosting
Gradient Boosting is an ensemble learning method that sequentially produces a number of
weak learners, typically decision trees. Each succeeding tree fixes the errors of the
preceding one, producing a robust and precise model (Friedman, 2001). Extreme Gradient
Boosting (XGB) is an optimized version of the gradient boosting technique (Chen &
Guestrin, 2016). It is basically a robust ensemble model that minimizes the error rate by
using decision trees as weak learners. XGB builds a model by improving the estimation
function step by step with the Eq. (3):

ŷi ¼
XT

t¼1
ftðxiÞ: (3)

Here, yi is the prediction of the i: sample, T is the total number of decision trees, ftðxiÞ is
the prediction made by the t: tree. XGB learns each new tree to correct the errors made by

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 9/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

the previous model and minimizes the error function by optimizing based on the second
derivative. The general loss function is defined as Eq. (4):

LðtÞ ¼
Xn

i¼1
lðyi; ŷðt�1Þi þ ftðxiÞÞ þ �ðftÞ: (4)

Here, lðyi; ŷiÞ is the loss function, OmegaðftÞ is the model complexity penalty function
(regularization), ŷðt�1Þi is the previous estimates, ftðxiÞ is the update done by the new tree.
These penalty terms create smaller and more generalizable trees.

�ðftÞ ¼ cT þ 1
2
k
X

j

w2
j : (5)

cT is the complexity penalty of the tree structure and k
P

j w
2
j is the L2 penalty applied

to the leaf node weights.

Random forest
Random Forest is an ensemble learning algorithm that combines decision trees to
form a strong model (Breiman, 2001). This method trains each tree on a different bootstrap
sample (random subsets created by re-selecting) and uses a randomly selected subset instead
of all features at each node. In this way, the similarity of the trees to each other is reduced
and the risk of overfitting is reduced. In the estimation process of the model, while majority
voting is used in classification problems, the average of the tree outputs is taken in
regression problems. Classification is done by majority vote:

k̂ ¼ argmax
k

Xn

i¼1
1ðTiðXÞ ¼ kÞ: (6)

Ti is the each decision tree, where 1 is an indicator function that counts how
many trees vote for class k. where TiðXÞ is the prediction from tree i, and n is the number
of trees.

Extra tree classifier

ETC is an ensemble learning method similar to the Random Forest algorithm but with some
fundamental differences. It focuses on reducing the risk of overfitting while increasing the
accuracy of tree-based models. While each decision tree in Random Forest is trained with
bootstrap samples (randomly selected subsets from the dataset), Extra Trees constructs trees
using the entire dataset. While Random Forest selects the best feature and the best split
point to determine the best split at each node, Extra Trees selects the split points of each
feature completely randomly. This randomness allows the trees to be more independent of
each other and increases the generalization ability by reducing the variance of the model.

Convolutional neural network
CNN is a feed forward neural network that consists of convolutional operations and a
depth structure, and is a typical algorithm for DL (Lecun, Bengio & Hinton, 2015). CNNs
consist of a series of layers, such as a convolutional layer, an activation layer, a pooling
layer, etc. The convolutional layer, often called the convolutional kernel, serves as the core

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 10/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

of the neural network. In addition, the features obtained by the convolution layer are
passed to the next layer, the pooling layer. Pooling layers usually act as an intermediate
layer between the convolution and fully connected layers. This layer reduces the number of
parameters in training and the computational cost while keeping overfitting under control
(Essiz et al., 2024).

Long short-term memory
Neural networks in the Recurrent Neural Network (RNN) class are designed to process
data sequentially. These networks employ recurrent connections to keep their memory of
previous inputs (Graves & Schmidhuber, 2005). Because RNNs excel at tasks with temporal
dependencies, they are suitable for time-series data analysis, which includes the analysis of
bytecodes and API calls for malware detection. RNN processes sequences by updating its
hidden state at each time step using the following equations:

ht ¼ rðWih � xt þWhh � ht�1 þ bhÞ (7)

yt ¼ rðWhy � ht þ byÞ: (8)

Here, ht is the hidden state, xt is the input vector,Wih andWhh are the weight matrices,
bh is the bias, r is the activation function and yt is the output.

LSTM was developed to solve the problems of gradient vanishing and exploding that are
frequently encountered in basic RNNs (Yalda et al., 2024). According to Hochreiter &
Schmidhuber (1997), it has memory cells and switching mechanisms that improve the
storage and utilization of important data across extended time periods. LSTM is powerful
in capturing long-term dependencies in sequential data, making it effective for analyzing
complex behavioral patterns in malware samples. Unlike LSTM, GRU is another type of
RNN intended to address the vanishing gradient issue and simplify the architecture. It
effectively captures long-term dependencies in sequential data because it employs
migration techniques to control information flow and maintain the memory of pertinent
data over time (Fu et al., 2024).

ft ¼ rðWf ht�1 þ Uf XtÞ (9)

it ¼ rðWiht�1 þ UiXtÞ (10)

ot ¼ rðWoht�1 þ UoXtÞ (11)

gt ¼ tanhðWght�1 þ UgXtÞ (12)

ct ¼ ðft � ct�1Þ � ðit � gtÞ (13)

ht ¼ ot � tanhðctÞ (14)

where W and U present the weight matrices for each gate, and r denotes the sigmoid
function (Liu et al., 2024). Equations (9), (10), (11) presents ft , it , and ot where are the
forget state, update state, and output state gates, respectively. hðt � 1Þ stands for the output
vector of the previous moment, while Xt presents the input vector. Equation (4) presents g
which is the hidden internal state calculated with the current input Xt and the previous
state hðt � 1Þ, Eq. (13) presents the cell state ct and Eq. (14) presents the output vector ht .

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 11/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

Gated recurrent units
Unlike LSTM, GRU is another type of RNN intended to address the vanishing gradient
issue and simplify the architecture. It effectively captures long-term dependencies in
sequential data because it employs migration techniques to control information flow and
maintain the memory of pertinent data across time (Fu et al., 2024). GRU uses fewer
parameters to simplify the LSTM structure. Equations are as follows:

zt ¼ r Wz � ht�1; xt½ �ð Þ: (15)

rt ¼ r Wr � ht�1; xt½ �ð Þ: (16)
~ht ¼ tanh Wh � rt � ht�1; xt½ �ð Þ: (17)

ht ¼ ð1� ztÞ � ht�1 þ zt � ~ht: (18)

Here, as presented in Eqs. (15), (16), zt and rt are the update and reset gates, Eqs.
(17), (18) present ~ht as the candidate and ht as the updated hidden states.

Model 2: ensemble learning for malware classification
Ensemble methods aim to achieve higher accuracy, generalization, and robustness
compared to individual models (weak learners) by leveraging model diversity and error
reduction to improve prediction results (Gurcan, 2025). Ensemble learning can be
particularly effective in malware classification because it combines multiple models to
capture complex patterns and subtle variations that a single model might miss (Euh et al.,
2020; Mihalache & Burileanu, 2023). Malware data presents unique challenges, such as
high dimensionality, diverse patterns across different malware families, and imbalanced
class distributions (malicious vs. benign). Different models specialize in capturing different
aspects. For instance, neural networks such as CNN and LSTMs excel at identifying
sequential patterns in API call sequences, while tree-based methods such as RF or XGB
effectively handle structured data with complex feature interactions. Combining these
models allows an ensemble to leverage each model’s strength in capturing distinct
characteristics of malware data. In Model 2, an ensemble framework is implemented by
integrating the predictions of top-performing models through a soft voting classifier,
where the probabilities generated by each model are averaged to determine the final
prediction (Mim, Majadi & Mazumder, 2024).

Model 3: custom CNN-GRU-3 model for malware classification
The custom CNN-GRU-3 model is designed to classify malware based on the API Calls
and DLLs. The model employs a combination of CNN and GRU networks to automate the
classification of sequential feature maps for this custom malware classification task. The
pseudocode for custom CNN-GRU-3model is given in Algorithm 1. The CNN component
extracts complex features, while the GRU component handles their classification. The
model has three convolutional layers, three pooling layers, three GRU layers, and one fully
connected layer. The size of the convolutional layer used for feature extraction is 3 × 3. We
use the ELU activation function (Clevert, Unterthiner & Hochreiter, 2015). Maxpooling
layers with 2 × 2 kernels reduce feature map dimensions, followed by a flattening layer that
converts the output into a one-dimensional vector. The model architecture includes a GRU

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 12/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

layer with 512, 256, 128 neurons, a depth 3, and a dropout rate of 0.3. Finally, a fully
connected dense layer with 64 neurons and a Rectified Linear Unit (ReLU) activation
function was added, followed by a dense layer with a single neuron and a sigmoid
activation function. This GRU component improves the model’s capacity to discern
intricate patterns within the sequential data. The optimization process for the model
involved 150 epochs and a batch size of 64 during training. The Adam optimizer, which
has a learning rate of 0.001, was preferred for its adaptive learning rate calculations,
making it a suitable choice for efficient optimization. The overall design of the malware
classification system used in the study is represented in Fig. 1 below.

Algorithm 1 The complete pseudocode of the CNN-GRU-3 model for malware classification.

Inputs: Draw: Raw dataset of malware and benign samples, k: Number of top features for SelectKBest (e.g., 1,000), ncomponents: Number of principal
components for PCA (e.g., 300).
Outputs: Mtrained: The trained classification model, Pmetrics: Performance metrics on the test set (Accuracy, F1-score, etc.).
— 1. Data Preprocessing —

1: Dupsampled UpsampleðDrawÞ 8 Upsample the dataset to 8,000 samples
2: Xtext ; y ExtractFeaturesAndLabelsðDupsampledÞ
3: Xvec CountVectorizer:fit transformðXtextÞ 8 Convert text to a numerical matrix
4: Xscaled StandardScaler:fit transformðXvecÞ
5: selector SelectKBestðscore func¼f classif ; kÞ
6: Xk best selector:fit�transformðXscaled; yÞ
7: pca PCAðncomponentsÞ
8: Xf inal pca:fit transformðXk bestÞ 8 Final feature vector after dimensionality reduction
— 2. Model Training and Evaluation —

9: Xtrain;Xtest ; ytrain; ytest train test splitðXf inal; y; test size¼0:2; stratify¼yÞ
10: // For Deep Learning Models (e.g., CNN-GRU-3):
11: Xtrainreshaped ReshapeForConv1DðXtrainÞ 8 Reshape data for CNN input, e.g., to (samples, 300, 1)
12: Xtestreshaped ReshapeForConv1DðXtestÞ
13: model Build CNN GRU ModelðÞ 8 See function below for architecture
14: model:compileðoptimizer¼‘adam’; loss¼‘binary crossentropy’;metrics¼½‘accuracy’�Þ
15: model:fitðXtrain reshaped; ytrain; validation data¼ðXtest reshaped; ytestÞ; epochs¼300; batch size¼64Þ 8 Early-stopping is applied
16: ypred model:predictðXtest reshapedÞ
17: Pmetrics CalculateMetricsðytest ; ypredÞ
18; Mtrained model
19: function Build_CNN_GRU_Model
20: input layer Inputðshape¼ð300; 1ÞÞ 8 Input shape based on n_components from PCA
21: x Conv1Dðfilters¼64; kernel size¼3; activation¼‘elu’Þðinput layerÞ
22: x MaxPooling1Dðpool size¼2ÞðxÞ
23: x Conv1Dðfilters¼64; kernel size¼3; activation¼‘elu’ÞðxÞ
24: x MaxPooling1Dðpool size¼2ÞðxÞ
25: x Conv1Dðfilters¼64; kernel size¼3; activation¼‘elu’ÞðxÞ
26: x MaxPooling1Dðpool size¼2ÞðxÞ 8 Output is a sequence for GRU layers
27: x FlattenðÞðxÞ
28: x GRUð512; dropout¼0:3; return sequences¼TrueÞðxÞ
29: x GRUð256; dropout¼0:3; return sequences¼TrueÞðxÞ
30: x GRUð128; dropout¼0:3; return sequences¼FalseÞðxÞ
31: x Denseð64; activation¼‘relu’ÞðxÞ
32: x Dropoutð0:3ÞðxÞ
33: output layer Denseð1; activation¼‘sigmoid’ÞðxÞ
34: model Modelðinputs¼input layer; outputs¼output layerÞ
35: return model
36: end function

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 13/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

Figure 1 The overall design of the malware classification system.
Full-size DOI: 10.7717/peerj-cs.3258/fig-1

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 14/32

http://dx.doi.org/10.7717/peerj-cs.3258/fig-1
http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

The overall computational complexity of our approach, detailed in Algorithm 1,
encompasses both data preprocessing and the CNN-GRU-3 model itself. The
preprocessing pipeline is primarily constrained by PCA, which has a complexity of
approximately OðNkÞ, where N is the number of samples and k is the number of features
before reduction. Following this, the complexity of the CNN-GRU-3 model is determined
by its most demanding components. While the 1D CNN layers are efficient, the dominant
factor is the stack of GRU layers. The complexity of a single GRU layer is OðTnðnþ dÞÞ,
where T is the sequence length (300 in our case, determined by PCA components), n is the
number of hidden units, and d is the feature dimension of the input to the layer. For each
of the T timesteps in the input sequence, a GRU layer performs matrix multiplications
between the input (dimension d) and the previous hidden state (dimension n). The
operations involving the recurrent n� n weight matrices are the most costly, resulting in a
per-layer complexity of OðTnðnþ ndÞÞ. As the number of hidden units (n) is a key
hyperparameter and typically large, this expression is dominated by the quadratic term,
simplifying to OðTnÞ. Consequently, the model’s training complexity per epoch is largely
driven by these operations. The inference complexity for a single sample, involving only a
forward pass, follows the same order, ensuring that despite the intensive training,
predictions remain computationally feasible for real-world applications.

Explainable artificial intelligence (XAI)
Explainable AI (XAI) is an approach that aims to make the decision-making processes of
artificial intelligence models transparent and understandable (Galli et al., 2024;Ma, Ryu &
Lee, 2024). Although ML and DL-based systems have high success rates, especially in the
field of cybersecurity, how their decisions are made is often unclear. This poses a serious
problem in terms of the reliability and applicability of the models. XAI provides security
analysts with more explainable results by understanding the internal processes of the
model through techniques such as LIME (Ribeiro, Singh & Guestrin, 2016), SHAP
(Lundberg & Lee, 2017), LRP (Bach et al., 2015), and the attention mechanism (Bahdanau,
Cho & Bengio, 2015). Understanding the reasons behind the decisions made by
autonomous models provides a more reliable system (Qamar & Bawany, 2023). In the field
of malware detection, AI techniques have been widely adopted due to the inadequacy of
traditional signature-based methods. In particular, static and behavioral analysis methods
are used to detect malware. However, the fact that these models are generally “black box”
makes it difficult for security analysts to understand which features the model classifies a
software as malicious (Aslam et al., 2023). At this point, XAI techniques play an important
role in making malware analysis more transparent and determining the basic attributes
that affect the decisions of the models (Baghirov, 2025). For example, by using SHAP
values, the most effective API calls and permissions in the model’s decisions can be
determined, while with the help of LIME, it can be explained on a local basis which inputs
the model made a certain classification. As a result, XAI not only increases model accuracy
in malware detection, but also contributes to the development of more reliable and
interpretable artificial intelligence systems in the field of cybersecurity.

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 15/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

SHapley additive exPlanations
SHAP (SHapley Additive Explanations) (Lundberg & Lee, 2017) is a game theory-based
approach to explain the predictions of a ML model. It mathematically determines how
much weight the model gives to which features and how each input contributes to the
prediction. SHAP is based on the concept of Shapley values (Shapley, 1953). Shapley values
are a method used in game theory to fairly measure the contribution of each player to the
game. SHAP adapts this approach to ML models and calculates the contribution of each
feature to the model’s prediction. SHAP measures the positive or negative impact of
features on the prediction by calculating the contribution of each feature on the model’s
prediction. For example, the i: Shapley value represents the contribution of the i: API call
in the sequence to the prediction. It increases transparency by explaining the decisions
made by the model.

Local interpretable model-agnostic explanations
LIME (Local Interpretable Model-agnostic Explanations) is a model-agnostic method
developed to explain the predictions of complex and unexplainable (black-box) models at a
local level (Ribeiro, Singh & Guestrin, 2016). The basic assumption of LIME is that
although a model has a complex decision function in general, this function can be
approximated by a linear model around a specific sample (local region). LIME applies the
following steps to explain a specific data sample predicted by a model: (i) Data
Perturbation: it creates a neighborhood set (pS) by randomly generating perturbed data
points around the targeted sample (S). For example, in a malware analysis model, LIME
creates different variations by changing certain parts of an API call sequence.
(ii) Generating Predictions with a Black-box Model: the newly created data points are fed
to the analyzed black-box model (e.g., a CNN or LSTM model) and its predictions are
obtained. (iii) Training a Weighted Linear Model: a local linear model (g) is trained using
the model’s predictions on these corrupted examples. The target function nðSÞ used here is
defined by the following optimization problem:

nðSÞ ¼ argmin
g2G

Lðf ; g;pSÞ þ �ðgÞ: (19)

ðLðf ; g; pSÞ þ �ðgÞÞ is the error (unfaithfulness) between the Black-box model f and the
local model g created, and �ðgÞ is a regularization term that limits the complexity of the
local model g (Galli et al., 2024). (iv) Extraction of Feature Importances: LIME analyzes
which features are weighted by the linear model created and explains the decision
mechanism of the model. In malware analysis, LIME can be used to understand why a
particular set of API calls is classified as malicious or safe. For example, it can show that a
model detects malware based on API calls such as ‘NtCreateFile’ and ‘RegOpenKey’.

In malware classification, the output of the model (e.g., probability of malware) is taken
and assigned to neurons in the last layer as an importance score R. The importance score
received by each neuron is distributed to neurons in the previous layer. Importance is
backpropagated using weighting rules. As a result, it is calculated how much each input
feature (e.g., API calls or opcode sequences) contributes to the model prediction.

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 16/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

EXPERIMENTAL RESULTS AND ANALYSIS
This study applies ML and DL on a real-world dataset for malware classification through
static analysis, with Google Colab PRO+ for high-performance processing, and uses Keras
2.10.0, Scikit-learn 1.5.2, and TensorFlow 2.10.0 as the back end to build, train, and
evaluate DL models (Google, 2024; Keras, 2024; TensorFlow, 2024). In this study,
hyperparameter optimization was performed with the Grid Search method to ensure the
best performance of the models. The hyperparameter configurations for all evaluated
models are provided in Table 3.

The evaluation of the models was conducted as follows: first, the entire upsampled
dataset of 8,000 samples was split into a training set (80%, 6,400 samples) and a final,
held-out test set (20%, 1,600 samples). For the traditional Machine Learning models

Table 3 Hyperparameter tuning ranges and final values for all models.

Algorithm Hyperparameter Value

RF n_estimators 100

max_depth 3

min_samples_split 2

min_samples_leaf 2

XGB n_estimators 100

max_depth 10

learning_rate 0.1

KNN n_neighbors 7

weights Distance

distance_metric Euclidean

ETC n_estimators 50

max_depth 20

min_samples_split 2

min_samples_leaf 1

CNN, GRU, LSTM
(Baseline)

Activation ReLU, Sigmoid

Dropout 0.3, 0.4

Learning rate 0.0001

Batch size 32

Epochs 150

Optimizer Adam

CNN-GRU-3
(Proposed)

CNN Layers 3 (64 filters each)

GRU Layers 3 (256, 128, 64 units)

CNN kernel size 3

Pool Size 2

Activation ELU, ReLU

Dropout 0.3, 0.4

Learning rate 0.0001

Batch size 64

Optimizer Adam

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 17/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

(XGBoost, RF, KNN, etc.), we performed hyperparameter optimization using the
GridSearchCV utility. This process involved a five-fold cross-validation scheme applied
only on the training set to find the optimal combination of hyperparameters for each
model. Subsequently, the model with the best-found parameters was retrained on the
entire training set and its final performance was evaluated on the single, held-out test set.
For the Deep Learning models (CNN, LSTM, GRU, and CNN-GRU-3), the models were
trained directly on the training set, and their performance was similarly evaluated on the
same held-out test set. The baseline DL models (CNN, GRU, LSTM) were structured with
three layers and a varying number of units (32, 64, 128), regularized with dropout rates of
0.3 and 0.4. These models were trained for 150 epochs with a batch size of 32 and a
learning rate of 0.0001, utilizing ReLU and sigmoid activation functions. For our proposed
CNN-GRU model, the optimized hyperparameters, including a batch size of 64 and the
Adam optimizer with a 0.0001 learning rate, are also listed in Table 3.

Evaluation metrics
Evaluating the model is one of the essential aspects of the assessment methodology
(Tharwat, 2022). Performance metrics include accuracy, precision, recall, F1-score and
Cohen’s kappa coefficient (j). The confusion matrix is a framework for assessing the
performance of any classifier, and it consists of four numbers: True Positive (TP):
represents the number of samples correctly classified as malicious. True Negative (TN):
represents the number of correctly classified benign samples. False Positive (FP):
represents the number of samples incorrectly classified as malicious. False Negative (FN):
represents the number of samples incorrectly classified as benign. The accuracy determines
how many malicious and benign samples are correctly classified. Evaluates the
effectiveness of the algorithm by calculating the ratio of the actual value of the class label
(Sokolova, Japkowicz & Szpakowicz, 2006). Accuracy is calculated as follows:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

: (20)

Recall determines the rate of correctly classified malicious samples to all malicious
samples. Recall is calculated as follows:

Recall ¼ TP
TP þ FN

: (21)

Precision determines the rate of correctly classified malicious samples to all malicious
predicted samples. Precision is calculated as follows:

Precision ¼ TP
TP þ FP

: (22)

The F1-score is a harmonic mean of precision and recall for a more precise evaluation of
the model performance. The F1-score is a composite metric that evaluates algorithms with
greater sensitivity and tests those with greater specificity. F1-score is calculated as follows:

F1-score ¼ 2� Precision� Recall
Precisionþ Recall

: (23)

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 18/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

Cohen’s kappa coefficient, denoted as j, is a statistical measure used to assess the level of
agreement between two raters or classifiers beyond that which would be expected by
chance. It is calculated as:

j ¼ P0 � Pe
1� Pe

: (24)

Po represents the observed agreement between the raters or classifiers. Pe represents the
expected agreement between the raters or classifiers by chance. j ¼ 1 indicates perfect
agreement between the raters or classifiers. j ¼ 0 indicates agreement equivalent to that
expected by chance. j < 0 indicates agreement worse than expected by chance.

Results of ML and DL models
This section addresses RQ1 and RQ2 by presenting a comparative performance analysis of
the evaluated models. Table 4 compares the accuracy, F1-score, precision, recall and
Cohen’s kappa values of ML and DL models. The highest accuracy (99.81%) was obtained
by the XGB model and it also exhibited a strong performance with the highest F1-score
(99.81%) and 100% recall. Among the traditional ML algorithms, KNN, RF and ETC
models show a strong performance with accuracy values ranging from 99.62% to 99.75%.
Among the DL models, CNN stands out with 99.25% accuracy, while LSTM (98.87%) and
GRU (96.31%) have lower accuracies. Custom CNN-GRU combination performed better
than the stand-alone DL models by providing 99.37% accuracy.

Table 4 Performance comparison of all models.

Model Accuracy (%) F1-score (%) Precision (%) Recall (%) Cohen’s kappa (%) Training time (s)

PCA (Ours) XGB 99.81 99.81 99.62 100.00 99.62 0.55

KNN 99.68 99.68 99.62 99.75 99.37 0.07

ETC 99.62 99.62 99.62 99.62 99.24 0.57

RF 99.75 99.75 99.62 99.87 99.49 4.62

CNN 99.25 99.25 99.25 99.25 98.50 47.57

LSTM 98.87 98.88 98.15 99.62 97.74 1,186.26

GRU 96.31 96.34 95.80 96.88 92.62 1,196.96

CNN-GRU-3 99.37 99.37 99.37 99.37 98.74 5,410.91

Stacking 99.18 99.17 98.86 99.49 98.37 1,078.36

Voting 99.25 99.23 98.98 99.49 98.49 980.72

Without PCA XGB 99.31 99.31 99.13 99.50 98.62 0.33

KNN 99.25 99.25 98.77 99.75 98.49 0.13

ETC 99.62 99.62 99.26 100 99.24 0.78

RF 99.43 99.44 98.89 100 98.87 1.02

CNN 99.81 99.81 99.62 100 99.62 61.17

LSTM 98.12 98.10 97.97 98.22 96.24 3,040.17

GRU 95.62 95.57 95.33 95.81 91.24 3,155.34

CNN-GRU-3 95.06 95.12 94.71 95.53 90.12 7,542.18

Stacking 98.11 97.47 95.97 99.17 96.03 2,740.32

Voting 98.91 98.59 98.02 99.17 97.73 2,530.06

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 19/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

Ensemble methods such as Stacking (99.18%) and Voting (99.25%) also showed stable
performance. The GRU model has the lowest Cohen’s kappa value (92.62%) and it is seen
that it makes more misclassifications compared to the other models. In general, the
ML-based XGB model provides the best performance, while hybrid DL models such as the
proposed custom CNN-GRU also give competitive results. The quantitative impact of
applying PCA is detailed in Table 4. The results present a compelling case for its inclusion
in our preprocessing pipeline, revealing a critical trade-off between predictive accuracy and
computational efficiency. For traditional machine learning models, particularly XGBoost,
applying PCA led to a significant improvement in performance, with accuracy increasing
from 99.31% to 99.81%. This suggests that PCA effectively reduced noise and collinearity
in the feature set, allowing the model to identify more robust patterns. Conversely, for our
deep learning models, an opposite trend was observed. The CNN model’s accuracy, for
instance, dropped from a remarkable 99.81% without PCA to 99.25% with PCA. This
indicates that deep learning architectures, especially CNNs, are capable of learning
valuable representations directly from higher-dimensional data, and that dimensionality
reduction via PCAmay lead to a loss of critical information for these models. However, the
most dramatic and consistent impact of PCA was on training efficiency across nearly all
models. As evidenced by the training times, applying PCA led to substantial reductions in
computational cost. For instance, the training time for the deep learning models was

Figure 2 Accuracy-loss curves of the CNN, LSTM, GRU models. Full-size DOI: 10.7717/peerj-cs.3258/fig-2

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 20/32

http://dx.doi.org/10.7717/peerj-cs.3258/fig-2
http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

drastically lowered, with the CNN-GRU-3 model’s training duration decreasing from over
2 h (7,542.18 s) to just over 1.5 h (5,410.91 s).

The confusion matrices of ML, DL models and ensemble models are represented in the
figure at https://doi.org/10.5281/zenodo.17403616. It is observed that top-performing
models such as XGBoost, RF, and CNN exhibit very few misclassifications. In contrast, the
GRU model shows a comparatively higher number of both false positives and false
negatives, which aligns with its lower overall accuracy reported in the figure at https://doi.
org/10.5281/zenodo.17403616. The proposed CNN-GRU-3 model demonstrates a more
balanced error distribution, indicating a robust performance.

Figure 2 shows the training and validation losses and accuracies of CNN, LSTM and
GRU models. The CNN model showed rapid learning in the early epochs and reached low
loss and high accuracy in a short time. The LSTM and GRU models became stable in a
longer time, and it was seen that the learning process was more irregular, especially in the
GRU model.

Figure 3 presents the changes in the training and validation losses of the CNN-GRU
hybrid model. It was observed that the model increased its accuracy rate rapidly in the
early epochs, but the validation loss became irregular after certain epochs. In particular,
although the training loss decreased rapidly, the fluctuations in the validation loss
indicated that the model could over-learn at certain points. However, as a result, the
CNN-GRU model reached high accuracy and became one of the best performing models.

While the XGB model achieved superior accuracy with a significantly shorter training
time (0.55 vs. 5,410.91 s), the value of the CNN-GRU-3 model lies in its fundamentally
different learning approach. As evidenced by our SHAP analysis, XGB, as a tree-based
ensemble, excels at identifying and exploiting highly discriminative, individual static
features. Its decisions are based on a series of splits on feature values, effectively learning a
set of powerful rules (e.g., ‘if API call X is present, the probability of malware is high’). This

Figure 3 Accuracy-loss curves of the CNN-GRU-3 model.
Full-size DOI: 10.7717/peerj-cs.3258/fig-3

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 21/32

https://doi.org/10.5281/zenodo.17403616
https://doi.org/10.5281/zenodo.17403616
https://doi.org/10.5281/zenodo.17403616
http://dx.doi.org/10.7717/peerj-cs.3258/fig-3
http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

approach is high-speed and effective when such clear indicators exist in the data. In
contrast, the CNN-GRU-3 architecture is designed to understand context and sequence.
The CNN layers act as pattern detectors, identifying local motifs of API calls or DLL
sequences, while the subsequent GRU layers learn the long-range temporal dependencies
between these patterns. Essentially, while XGB analyzes a ‘bag-of-features’, our hybrid
model analyzes the grammar of the executable’s behavior. This capability is crucial for
detecting more sophisticated malware that may avoid using obvious ‘red-flag’ features but
exhibits malicious behavior through the specific order of its operations. While this deep
architectural approach inherently leads to a substantially higher training time and
computational cost, its potential for greater generalization capacity against novel or
obfuscated threats presents a compelling trade-off. This investment in training is therefore
justified for scenarios where detecting the nuanced grammar of malware behavior is
paramount.

A notable result from our experiments is the 100% recall achieved by the XGBoost
model, indicating zero false negatives. To provide a technical explanation for this perfect
score beyond statistical chance, we performed a data-driven analysis of the feature
distribution, focusing on the most influential features identified by SHAP. Our
investigation revealed a nuanced and counterintuitive situation. A simple presence/
absence analysis of top features showed that they were not simple “smoking gun”
indicators of malignancy. In fact, many were paradoxically more prevalent in benign
software. For instance, in our test set: the API call setunhandledexceptionfilter, despite its
importance in the SHAP analysis, was present in only 31.73% of malicious samples but in a
vast 88.69% of benign samples. Similarly, rtlvirtualunwind was found in just 3.44% of
malicious executables compared to 75.98% of benign ones. This demonstrates that
XGBoost’s perfect recall is not achieved by relying on any single deterministic feature.
Instead, it is a direct result of the model’s sophisticated ability to capture complex feature
interactions and non-linear relationships. As a tree-based ensemble, XGBoost learns
decision paths where the predictive meaning of a feature is highly conditional on the
presence or absence of others. For example, the model may have learned a highly specific
rule such as: if Feature A is present AND Feature B is absent AND rtlvirtualunwind is also
present, then classify as malware with high confidence. Therefore, the 100% recall is a
testament to the model’s capacity to learn the subtle, combinatorial patterns within the
feature space that perfectly separate the malicious class in our dataset. This highlights that
the model’s strength lies in understanding the context of how features appear together,
rather than just their occurrences.

In summary, the results underscore the efficacy of both advanced ensemble methods
and hybrid deep learning architectures for malware classification. Our findings reveal a
compelling performance landscape: the XGBoost model emerged as the top-performing
model overall, demonstrating the power of gradient boosting on this type of feature-rich
dataset. Simultaneously, our proposed Custom CNN-GRU-3 model distinguished itself
as the most accurate among all deep learning models evaluated. This strongly suggests
that its architecture, which combines spatial and sequential feature extraction, is
particularly well-suited for identifying complex malware patterns. Collectively, these

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 22/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

findings highlight that both optimized traditional methods and custom DL architectures
are powerful tools for static malware analysis, providing a reliable foundation for future
research.

Statistical significance analysis
To rigorously assess whether the observed performance differences between the
top-performing models were statistically meaningful or merely due to chance, we
conducted McNemar’s test. This test is well-suited for comparing two classifiers on the
same dataset by analyzing their disagreements. We focused on key model pairs, including
the overall best model (XGBoost), our proposed hybrid model (CNN-GRU-3), and other
relevant benchmarks. The resulting p-values, evaluated at a significance level (alpha) of
0.05, are presented in Table 5.

The results from the statistical analysis provide several critical insights. Firstly, the
performance advantage of XGBoost over our proposed CNN-GRU-3 model is statistically
significant ðp < 0:05Þ. This confirms that for this specific dataset and feature set, the
XGBoost model is demonstrably superior in terms of predictive accuracy. The
performance difference between XGBoost and our proposed Secondly, our proposed
CNN-GRU-3 model shows a statistically significant improvement over the standalone
CNN model ðp < 0:05Þ. CNN-GRU-3 model is statistically significant (p = 0.0455),
confirming that XGBoost’s higher accuracy is not due to chance on this dataset. Crucially,
the analysis also reveals that our CNN-GRU-3 model performs significantly better than the
standalone CNN model (p = 0.0233). This provides strong evidence that the hybrid
architecture, specifically the addition of GRU layers, offers a meaningful and statistically
valid improvement over a standard CNN. As expected, the performance differences
between models from the same family (e.g., XGBoost vs. RF) were not statistically
significant. This finding is crucial as it validates our core architectural hypothesis: the
integration of GRU layers to process sequential patterns provides a tangible and
statistically meaningful benefit beyond what a standard CNN architecture can achieve
alone. The tests also confirm the large performance gaps between the top models and the
GRU model, as expected.

Explainable AI results
To answer RQ3, we employed XAI techniques to interpret the decisions of our
best-performing models. This analysis aims to identify the most influential features and

Table 5 Statistical significance analysis of the models.

Model pair P-value Statistically significant? (alpha = 0.05)

XGBoost vs. CNN-GRU-3 0.0455 Yes

CNN-GRU-3 vs. CNN 0.0233 Yes

XGBoost vs. CNN 0.4795 No

XGBoost vs. RF 1.0000 No

XGBoost vs. GRU 0.0000 Yes

CNN-GRU-3 vs. CNN 0.0000 Yes

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 23/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

enhance the transparency of the ‘black-box’models. Figure 4 is the SHAP Summary Plot of
the XGB model showing which features affect the predictions the most on all the test data
of the model. The most important features used in our model are listed. The Y-Axis
(Features) lists the most important features used in the model. The X-axis is the SHAP
value. It shows the effect of a feature on the model prediction. Negative values (<0)
decrease the model’s prediction (for example, it pushes it more towards the benign class).
Positive values (>0) increase the model’s prediction (for example, it pushes it more towards
the malware class). API calls such as rtlvirtualunwind, memcpy and rtlcapturecontext are
seen to be the strongest determinants in malware detection. The positive and negative
SHAP values show that whether these features are specific to malware varies depending on
the context. In particular, functions such as createevent and exitprocess are used in both
malicious and legitimate software, so their impact varies between samples. The color scale
in the SHAP graph highlights the impact of the feature values; red tones represent high
values and more malware contribution, while blue tones indicate low values and generally
unclear impact. These analyses show that certain API calls play a critical role in malware
detection, but attackers can manipulate these calls to evade detection. Therefore, it is

Figure 4 The shapely values of the top 20 features with the XGB (A) and CNN-GRU-3 (B) model (Summary plot).
Full-size DOI: 10.7717/peerj-cs.3258/fig-4

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 24/32

http://dx.doi.org/10.7717/peerj-cs.3258/fig-4
http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

understood that static analysis techniques should include more adaptive and multivariate
approaches.

From Fig. 4, it can be seen that features such as Digital Signature, _adj_fdiv_m32 and
.ctor play an important role in the model’s prediction.

Features such as asn1berdecnull, assignprocesstojobobject, assoccreate seem to have less
effect on the model. SHAP values vary between −0.15 and 0.10, meaning they have a strong
but balanced effect on the model’s decisions. Some features contribute to the model’s
malware prediction when they have high values (red dots are more intense at positive
SHAP values), and the top 20 impactful features based on SHAP values are illustrated in
the summary plot of Fig. 4.

Figure 5 is the dependence plot of the XGB model (a) shows the effect of the
rtllookupfunctionentry API call on malware detection. The disablethreadlibrarycalls
variable also contributes to the model as a secondary factor.

When the SHAP values are examined, it is seen that the contribution to malware
detection fluctuates as the rtllookupfunctionentry values increase. The fact that the
majority of the points are concentrated around zero indicates that this feature gains
meaning in interaction with other API calls rather than being a sole determinant. The fact
that the SHAP contribution is not significant, especially at low values, reveals that this API
call affects the decision mechanism of the model only under certain conditions.

In the dependence plot of CNN-GRU-3 (b), SHAP values tend to decrease slightly as the
value of size feature increases, but a very strong correlation is not observed. There is no
significant change in SHAP values, especially at negative and positive values, which may
indicate that this feature has a limited effect on the model’s decision. To summarize these
results, when the SHAP analysis of XGBoost and CNN-GRU models is compared, the
XGBoost model has a wider SHAP distribution, while the CNN-GRU model focuses more
on a few important features. XGBoost evaluates all features as independent variables and

Figure 5 SHAP dependence plot of the XGB (A) and CNN-GRU-3 (B) model. Full-size DOI: 10.7717/peerj-cs.3258/fig-5

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 25/32

http://dx.doi.org/10.7717/peerj-cs.3258/fig-5
http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

calculates the effect of each on the model output. On the other hand, since the CNN-GRU
model learns time series or sequential relationships, it filters out many features and uses
only the critical ones. Since the XGBoost model can use all features, it can be said that the
SHAP values are more widely and evenly distributed. Since the deep learning-based
CNN-GRU model performs data transformation operations through convolution and
GRU layers, it filters out many features and only considers the variables that directly
contribute to the predictive power of the model. This causes the SHAP distribution of the

Figure 6 LIME results of XGB model with random samples. Full-size DOI: 10.7717/peerj-cs.3258/fig-6

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 26/32

http://dx.doi.org/10.7717/peerj-cs.3258/fig-6
http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

CNN-GRU model to be sparser, while the XGBoost model provides a more widely and
evenly distributed SHAP values since it actively uses all features.

Figure 6 shows the analyses performed on two different random samples using the
LIME method for XGB model. The LIME analysis visualizes the contribution of certain
features to the classification decision to explain the model’s predictions. In the first
analysis, it is seen that the model classifies the sample as Benign with 94% probability.
These findings directly address RQ3 by revealing that API calls such as rtlvirtualunwind,
memcpy, open, and sleep played a decisive role; especially the high values of
rtlvirtualunwind and memcpy affected the model’s prediction. In the second analysis, the
model labeled the sample as Benign with 100% probability. In this analysis, functions such
as getprivateprofilestring, exitprocess, gettickcount64, and sysreallocstring were decisive.
In both analyses, it is seen that the features that guide the model’s decisions are different;
some features are associated with malware, while others show safe software characteristics.
This shows that the model uses a dynamic decision mechanism and that certain function
calls play a critical role in assessing the threat level.

Some of the functions mentioned,

. rtlvirtualunwind is a function called in debugging and exception handling mechanisms
and can be used by malware to check exceptions.

. getprivateprofilestring is a Windows API call used to retrieve data from system
configuration files and can be used by software trying to change system configurations. s
study by providing a more accurate view of malware behavior.

. exitprocess is a basic system call called when a process is terminated and can be used by
malware to abruptly stop a process.

. gettickcount64 returns the time elapsed since the system was started in milliseconds and
can be used for time-based attacks or analysis detection.

. sysreallocstring is a function used for memory management and can be exploited by
malware trying to manipulate dynamic memory management.

. assignprocesstojobobject is a function that used to limit system resources by assigning a
process to a specific Job Object.

. asn1berdecnull Used to parse NULL values when decoding Abstract Syntax Notation
One (ASN.1) Basic Encoding Rules (BER).

. _vswprintf_l One of the wide-character string creation functions, used to format strings
in memory.

. _beginthread Used to create multithreading, similar to _beginthreadex.

A comparative evaluation of the applied explainability techniques indicates that SHAP
offers a globally consistent and theoretically grounded framework by assigning Shapley
values to each feature, thereby enabling the identification of API calls and DLLs that
systematically influence malware classification. This global perspective enhances the
reliability of the interpretive analysis and allows for comprehensive assessment of the
model’s behavior across the entire dataset. Conversely, LIME provides locally faithful,

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 27/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

instance-specific explanations by approximating the decision boundary in the
neighborhood of individual samples. Such localized analysis is particularly useful for
illustrating why a specific executable is classified as malicious or benign, offering actionable
insights at the case level. Overall, SHAP contributes to capturing the overarching
importance of features with consistency, whereas LIME facilitates the interpretability of
individual predictions. Their combined application ensures both global reliability and local
transparency, thereby strengthening the trustworthiness of the proposed model in
practical malware detection scenarios.

CONCLUSION
This study conducted a comprehensive comparative analysis of various machine learning
and deep learning models for static malware classification. A range of models, from
traditional algorithms like XGBoost, RF, and KNN to deep learning architectures such as
CNN, LSTM, and GRU, were systematically evaluated. The methodology involved a
rigorous preprocessing pipeline, including data augmentation, feature vectorization with
CountVectorizer, feature selection using SelectKBest, and dimensionality reduction via
PCA. Our experimental results, validated by statistical significance testing, revealed a
nuanced performance landscape. The XGBoost model emerged as the overall top
performer, achieving a statistically significant accuracy of 99.81%. This finding
underscores the profound effectiveness of optimized gradient boosting methods on well-
structured, high-dimensional feature sets common in static analysis. Concurrently, our
proposed hybrid deep learning model, CNN-GRU-3, distinguished itself by achieving the
best performance among all evaluated DL models (99.37%). Crucially, statistical analysis
confirmed that this performance was a significant improvement over the baseline
standalone CNN model, thereby validating our core hypothesis that synergistically
combining CNNs for spatial feature extraction and GRUs for sequential pattern
recognition is a highly effective strategy for this task. While acknowledging the superior
accuracy of the simpler XGBoost model, we contend that the value of our more complex
CNN-GRU-3 model is multifaceted. The application of XAI techniques, namely SHAP and
LIME, on both the XGBoost and CNN-GRU-3 models provided deeper, complementary
insights into their decision-making processes, directly addressing the black-box problem.
This work, therefore, not only establishes strong performance benchmarks but also
highlights a promising research direction towards building more robust, transparent, and
potentially more generalizable malware detection systems. The findings provide a solid
foundation for future explorations into both high-performance ensemble methods and
advanced, interpretable deep learning architectures in the field of cybersecurity.

ACKNOWLEDGEMENTS
The DeepL artificial intelligence tool was used for sentence corrections and text
translations.

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 28/32

http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Nisa Vuran Sarı conceived and designed the experiments, analyzed the data, performed
the computation work, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

. Mehmet Acı conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The malware PE data and code are available in the Supplemental Files.
The C-Prot Research Datasets are available at: https://c-prot.com/en/research.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.3258#supplemental-information.

REFERENCES
Al-Hashmi AA, Ghaleb FA, Al-Marghilani A, Yahya AE, Ebad SA, Saqib M, Darem AA. 2022.

Deep-ensemble and multifaceted behavioral malware variant detection model. IEEE Access
10(4):42762–42777 DOI 10.1109/access.2022.3168794.

Albu A, Precup RE, Teban TA. 2019. Results and challenges of artificial neural networks used for
decision-making and control in medical applications. Facta Universitatis, Series: Mechanical
Engineering 17(3):285–308 DOI 10.22190/fume190327035a.

Aslam N, Khan IU, Bader SA, Alansari A, Alaqeel LA, Khormy RM, Hussain T. 2023.
Explainable classification model for android malware analysis using API and permission-based
features. Computers, Materials & Continua 76(3):3167 DOI 10.32604/cmc.2023.039721.

Aslan O, Yilmaz AA. 2021. A new malware classification framework based on deep learning
algorithms. IEEE Access 9:87936–87951 DOI 10.1109/access.2021.3089586.

Azeez NA, Odufuwa OE, Misra S, Oluranti J, Damasevicius R. 2021. Windows pe malware
detection using ensemble learning. Informatics 8(1):10 DOI 10.3390/informatics8010010.

Bach S, Binder A, Montavon G, Klauschen F, Müller K, Samek W. 2015. On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance propagation. PLOS ONE
10(7):e0130140 DOI 10.1371/journal.pone.0130140.

Baghirov E. 2025. A comprehensive investigation into robust malware detection with explainable
AI. Cyber Security and Applications 3(1):100072 DOI 10.1016/j.csa.2024.100072.

Bahdanau D, Cho KH, Bengio Y. 2015. Neural machine translation by jointly learning to align
and translate. In: 3rd International Conference on Learning Representations (ICLR 2015).

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 29/32

http://dx.doi.org/10.7717/peerj-cs.3258#supplemental-information
https://c-prot.com/en/research
http://dx.doi.org/10.7717/peerj-cs.3258#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3258#supplemental-information
http://dx.doi.org/10.1109/access.2022.3168794
http://dx.doi.org/10.22190/fume190327035a
http://dx.doi.org/10.32604/cmc.2023.039721
http://dx.doi.org/10.1109/access.2021.3089586
http://dx.doi.org/10.3390/informatics8010010
http://dx.doi.org/10.1371/journal.pone.0130140
http://dx.doi.org/10.1016/j.csa.2024.100072
http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

Bhat P, Dutta K. 2021. Cogramdroid an approach towards malware detection in android using
opcode ngrams. Concurrency and Computation Practice and Experience 33(20):e6332
DOI 10.1002/cpe.6332.

Breiman L. 2001. Random forests. Machine Learning 45(1):5–32 DOI 10.1023/a:1010933404324.

Calik Bayazit E, Koray Sahingoz O, Dogan B. 2023. Deep learning based malware detection for
android systems: a comparative analysis. Tehnicki Vjesnik 30(3):787–796
DOI 10.1109/hora55278.2022.9800057.

Chen T, Guestrin C. 2016. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
785–794.

Chen Z, Ren X. 2023. An efficient boosting-based windows malware family classification system
using multi-features fusion. Applied Sciences 13(6):4060 DOI 10.3390/app13064060.

Clevert D-A, Unterthiner T, Hochreiter S. 2015. Fast and accurate deep network learning by
exponential linear units (ELUs). ArXiv DOI 10.48550/arXiv.1511.07289.

Dai Y, Li H, Qian Y, Yang R, Zheng M. 2019. Smash: a malware detection method based on
multi-feature ensemble learning. IEEE Access 7:112588–112597
DOI 10.1109/access.2019.2934012.

Essiz UE, Aci CI, Sarac E, Aci M. 2024.Deep learning-based prediction models for the detection of
vitamin d deficiency and 25-hydroxyvitamin d levels using complete blood count tests.
Romanian Journal of Information Science and Technology 27(3–4):295–309
DOI 10.59277/ROMJIST.2024.3-4.04.

Euh S, Lee H, Kim D, Hwang D. 2020. Comparative analysis of low-dimensional features and
tree-based ensembles for malware detection systems. IEEE Access 8:76796–76808
DOI 10.1109/access.2020.2986014.

Friedman JH. 2001. Greedy function approximation: a gradient boosting machine. Annals of
Statistics 29(5):1189–1232 DOI 10.1214/aos/1013203451.

Fu X, Jiang C, Li C, Li J, Zhu X, Li F. 2024. A hybrid approach for android malware detection
using improved multi-scale convolutional neural networks and residual networks. Expert
Systems with Applications 249(2):123675 DOI 10.1016/j.eswa.2024.123675.

Galli A, Gatta VL, Moscato V, Postiglione M, Sperlí G. 2024. Explainability in AI-based
behavioral malware detection systems. Computers & Security 141:103842
DOI 10.1016/j.cose.2024.103842.

Gibert D, Mateu C, Planes J. 2020. The rise of ml for detection and classification of malware:
research developments, trends and challenges. Journal of Network and Computer Applications
153(4):102526 DOI 10.1016/j.jnca.2019.102526.

Google. 2024. Colaboratory. Available at https://colab.research.google.com/ (accessed 1 March
2024).

Goya R. 2021. Evaluation of rule-based, countvectorizer, and word2vec machine learning models
for tweet analysis to improve disaster relief. In: 2021 IEEE Global Humanitarian Technology
Conference (GHTC). Piscataway: IEEE, 16–19.

Graves A, Schmidhuber J. 2005. Framewise phoneme classification with bidirectional LSTM and
other neural network architectures. Neural Networks 18(5–6):602–610
DOI 10.1016/j.neunet.2005.06.042.

Gunduz H. 2022.Malware detection framework based on graph variational autoencoder extracted
embeddings from API-call graphs. PeerJ Computer Science 8(2):e988 DOI 10.7717/peerj-cs.988.

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 30/32

http://dx.doi.org/10.1002/cpe.6332
http://dx.doi.org/10.1023/a:1010933404324
http://dx.doi.org/10.1109/hora55278.2022.9800057
http://dx.doi.org/10.3390/app13064060
http://dx.doi.org/10.48550/arXiv.1511.07289
http://dx.doi.org/10.1109/access.2019.2934012
http://dx.doi.org/10.59277/ROMJIST.2024.3-4.04
http://dx.doi.org/10.1109/access.2020.2986014
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1016/j.eswa.2024.123675
http://dx.doi.org/10.1016/j.cose.2024.103842
http://dx.doi.org/10.1016/j.jnca.2019.102526
https://colab.research.google.com/
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://dx.doi.org/10.7717/peerj-cs.988
http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

Gurcan F. 2025. Enhancing breast cancer prediction through stacking ensemble and deep learning
integration. PeerJ Computer Science 11:e2461 DOI 10.7717/peerj-cs.2461.

Haq IU, Khan TA, Akhunzada A. 2021. A dynamic robust DL-based model for android malware
detection. IEEE Access 9:74510–74521 DOI 10.1109/access.2021.3079370.

Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation
9(8):1735–1780 DOI 10.1162/neco.1997.9.8.1735.

Kabakus AT. 2022. Droidmalwaredetector: a novel android malware detection framework based
on convolutional neural network. Expert Systems with Applications 206(18):117833
DOI 10.1016/j.eswa.2022.117833.

Kadebu P, Shoniwa RT, Zvarevashe K, Mukwazvure A, Mapanga I, Thusabantu NF, Gotora TT.
2023. A hybrid machine learning approach for analysis of stegomalware. International Journal
of Industrial Engineering and Operations Management 5(2):104–117
DOI 10.1108/ijieom-01-2023-0011.

Keras. 2024. API. Available at https://keras.io (accessed 1 March 2024).

Kilic U, Essiz ES, Keles MK. 2023. Binary anarchic society optimization for feature selection.
Romanian Journal of Information Science and Technology 26(3–4):351–364
DOI 10.59277/ROMJIST.2023.3-4.08.

Lecun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521(7553):436–444
DOI 10.1038/nature14539.

Liu J, Zhao Y, Feng Y, Hu Y, Ma X. 2024. Semalbert: Semantic-based malware detection with
bidirectional encoder representations from transformers. Journal of Information Security and
Applications 80(3):103690 DOI 10.1016/j.jisa.2023.103690.

Lundberg SM, Lee SI. 2017. A unified approach to interpreting model predictions. In: Guyon I,
Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R, eds. Advances in
Neural Information Processing Systems. Vol. 30. Red Hook, New York: Curran Associates, Inc.

Ma Z, Ge H, Liu Y, Zhao M, Ma J. 2019. A combination method for android malware detection
based on control flow graphs and machine learning algorithms. IEEE Access 7:21235–21245
DOI 10.1109/access.2019.2896003.

Ma KP, Ryu DJ, Lee SJ. 2024. Reverse analysis method and process for improving malware
detection based on XAI model. Computers, Materials & Continua 81(3):4485
DOI 10.32604/cmc.2024.059116.

Maleki N, Bateni M, Rastegari H. 2019. An improved method for packed malware detection using
PE header and section table information. International Journal of Computer Network and
Information Security 11(9):9 DOI 10.5815/ijcnis.2019.09.02.

Maniriho P, Mahmood AN, Chowdhury MJM. 2023. API-MalDetect: automated malware
detection framework for windows based on API calls and deep learning techniques. Journal of
Network and Computer Applications 218(6):103704 DOI 10.1016/j.jnca.2023.103704.

Manzil HHR, Naik SM. 2023. Android malware category detection using a novel feature
vector-based machine learning model. Cybersecurity 6(1):6 DOI 10.1186/s42400-023-00139-y.

Mihalache S, Burileanu D. 2023. Speech emotion recognition using deep neural networks, transfer
learning, and ensemble classification techniques. Romanian Journal of Information Science and
Technology 26:375–387 DOI 10.1109/sped53181.2021.9587430.

MimMA, Majadi N, Mazumder P. 2024. A soft voting ensemble learning approach for credit card
fraud detection. Heliyon 10(3):e25466 DOI 10.1016/j.heliyon.2024.e25466.

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 31/32

http://dx.doi.org/10.7717/peerj-cs.2461
http://dx.doi.org/10.1109/access.2021.3079370
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.eswa.2022.117833
http://dx.doi.org/10.1108/ijieom-01-2023-0011
https://keras.io
http://dx.doi.org/10.59277/ROMJIST.2023.3-4.08
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.jisa.2023.103690
http://dx.doi.org/10.1109/access.2019.2896003
http://dx.doi.org/10.32604/cmc.2024.059116
http://dx.doi.org/10.5815/ijcnis.2019.09.02
http://dx.doi.org/10.1016/j.jnca.2023.103704
http://dx.doi.org/10.1186/s42400-023-00139-y
http://dx.doi.org/10.1109/sped53181.2021.9587430
http://dx.doi.org/10.1016/j.heliyon.2024.e25466
http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

Moreira CC, Moreira DC, Sales C Jr. 2024. A comprehensive analysis combining structural
features for detection of new ransomware families. Journal of Information Security and
Applications 81(1):103716 DOI 10.1016/j.jisa.2024.103716.

Qamar T, Bawany NZ. 2023. Understanding the black-box: towards interpretable and reliable
deep learning models. PeerJ Computer Science 9(1):e1629 DOI 10.7717/peerj-cs.1629.

Rezaei T, Manavi F, Hamzeh A. 2021. A PE header-based method for malware detection using
clustering and deep embedding techniques. Journal of Information Security and Applications
60(2):102876 DOI 10.1016/j.jisa.2021.102876.

Rhode M, Burnap P, Jones K. 2018. Early-stage malware prediction using recurrent neural
networks. Computers & Security 77:578–594 DOI 10.1016/j.cose.2018.05.010.

Ribeiro MT, Singh S, Guestrin C. 2016. “Why should i trust you?”: explaining the predictions of
any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM.

Shafiq MZ, Tabish SM, Mirza F, Farooq M. 2009. Pe-miner: mining structural information to
detect malicious executables in realtime. In: Recent Advances in Intrusion Detection: 12th
International Symposium, RAID 2009. Saint-Malo, France, Berlin Heidelberg: Springer, 121–141
DOI 10.1007/978-3-642-04342-0_7.

Shapley LS. 1953. A value for n-person games. Princeton: Princeton University Press.

Sokolova M, Japkowicz N, Szpakowicz S. 2006. Beyond accuracy, f-score and ROC: a family of
discriminant measures for performance evaluation. In: Australasian Joint Conference on
Artificial Intelligence, 1015–1021.

TensorFlow. 2024. API. Available at https://www.tensorflow.org/learn?Hl=tr (accessed 1 March
2024).

Tharwat A. 2022. Classification assessment methods. Applied Computing and Informatics
17(1):168–192 DOI 10.1016/j.aci.2018.08.003.

Ullah F, Ullah S, Naeem MR, Mostarda L, Rho S, Cheng X. 2022. Cyber-threat detection system
using a hybrid approach of transfer learning and multi-model image representation. Sensors
22(15):5883 DOI 10.3390/s22155883.

Yalda K, Hamad DJ, Tapus N, Okumus IT. 2024. Network traffic prediction performance using
lstm. Science and Technology 27(3–4):336–347 DOI 10.59277/ROMJIST.2024.3-4.07.

Yousuf MI, Anwer I, Riasat A, Zia KT, Kim S. 2023.Windows malware detection based on static
analysis with multiple features. PeerJ Computer Science 9(1):e1319 DOI 10.7717/peerj-cs.1319.

Yuan Z, Lu Y, Xue Y. 2016. Droiddetector: Android malware characterization and detection using
deep learning. Tsinghua Science and Technology 21(1):114–123 DOI 10.1109/tst.2016.7399288.

Vuran Sarı and Acı (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3258 32/32

http://dx.doi.org/10.1016/j.jisa.2024.103716
http://dx.doi.org/10.7717/peerj-cs.1629
http://dx.doi.org/10.1016/j.jisa.2021.102876
http://dx.doi.org/10.1016/j.cose.2018.05.010
http://dx.doi.org/10.1007/978-3-642-04342-0_7
https://www.tensorflow.org/learn?Hl=tr
http://dx.doi.org/10.1016/j.aci.2018.08.003
http://dx.doi.org/10.3390/s22155883
http://dx.doi.org/10.59277/ROMJIST.2024.3-4.07
http://dx.doi.org/10.7717/peerj-cs.1319
http://dx.doi.org/10.1109/tst.2016.7399288
http://dx.doi.org/10.7717/peerj-cs.3258
https://peerj.com/computer-science/

	A hybrid CNN-GRU model with XAI-Driven interpretability using LIME and SHAP for static analysis in malware detection
	Introduction
	Related studies
	Materials and theorical background
	Experimental results and analysis
	Conclusion
	flink6
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

