Submitted 4 June 2025
Accepted 9 September 2025
Published 14 October 2025

Corresponding author
Muhammed Abdulhamid Karabiyik,
ma.karabiyik@gmail.com

Academic editor
Armin Mikler

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.3257

() Copyright
2025 Karabiyik

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

RefactorGPT: a ChatGPT-based
multi-agent framework for automated code
refactoring

Muhammed Abdulhamid Karabiyik

Department of Computer Technology, Bor Vocational School, Nigde Omer Halisdemir
University, Nigde, Turkey

ABSTRACT

The rise of large language models has redefined what is computationally possible in
code generation, yet their potential in systematic software refactoring remains largely
untapped. This article introduces RefactorGPT, a ChatGPT-augmented sequential
multi-agent framework that transforms refactoring from a monolithic, opaque
process into a modular, explainable, and scalable workflow. The system orchestrates
four specialized agents, Analyzer, Refactor, Refine, and Fixer, to sequentially analyse
source code, apply structural refactoring, enhance code quality, and recover from
potential generation errors. Unlike conventional rule-based tools or one-shot large
language model (LLM) prompts, RefactorGPT leverages ChatGPT iteratively across
clearly defined responsibilities, enabling controlled refactoring with functional
guarantees. To evaluate the framework’s effectiveness, we constructed a curated
dataset encompassing nine classical refactoring techniques across three complexity
levels. RefactorGPT demonstrated consistent improvements in code modularity,
readability, and structural decomposition, while maintaining computational
efficiency. Notably, the system achieved full execution correctness through
autonomous error recovery, showcasing robustness in practical scenarios. This study
contributes a reusable blueprint for LLM-integrated refactoring systems and presents
a novel application of ChatGPT not merely as a code generator, but as a cooperative
agent in intelligent software refactoring. The findings reveal a path forward for
embedding language models into real-world developer workflows, not as assistants,
but as collaborators in code evolution.

Subjects Agents and Multi-Agent Systems, Artificial Intelligence, Natural Language and Speech,
Text Mining, Sentiment Analysis
Keywords ChatGPT, Code refactoring, Multi-agent systems, Software automation

INTRODUCTION

Maintaining and improving code quality remains a central concern in modern software
engineering, especially as software systems evolve and scale. Among the various
techniques used to manage this complexity, code refactoring stands out as a critical
practice aimed at improving readability, modularity, and long-term maintainability
without altering the external behavior of the software (Hemel et al., 2010; Buse & Weimer,
2010; Prinz, 2022). Despite its well-established benefits, the act of refactoring remains a
labor intensive and expertise-dependent process, often requiring in-depth knowledge of
software design principles, refactoring strategies, and domain-specific code semantics
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(Bekefi, Szabados ¢» Kovacs, 2019). This has spurred interest in developing intelligent tools
that can automate refactoring tasks without compromising functionality.

In recent years, large language models (LLMs) such as ChatGPT have demonstrated
remarkable proficiency in code-related tasks, ranging from generation and summarization
to translation and bug fixing. These models leverage vast pretraining corpora and
attention-based architectures to produce contextually coherent and syntactically valid
outputs (Liu, 2025). Their ability to understand code and generate refactoring based on
natural language instructions has positioned them as promising candidates for code
automation tasks. However, most current applications rely on single-step, monolithic
prompting strategies providing a block of code and a refactoring instruction in one go
which limits the transparency, control, and correctness guarantees essential in multi-stage
processes like refactoring (Hou, Tang ¢ Wang, 2025). Such approaches often fall short in
scenarios requiring reasoning, iterative refinement, or structured validation.

A growing body of research has explored the potential of LLMs in automating software
refactoring. Recent empirical studies show that LLMs can recognize and apply classical
refactoring patterns, often matching or exceeding rule-based systems in flexibility and
expressiveness. For example, Shirafuji et al. (2023) demonstrated that LLMs can perform
few-shot refactoring across multiple paradigms with promising results, though their
reliability varies depending on prompt structure and code complexity. Zhang et al. (2024)
proposed a hybrid model that combines LLMs with expert-curated Pythonic idioms,
achieving improved stylistic conformity but still depending heavily on human-crafted
rules.

Meanwhile, Wei, Xia ¢» Zhang (2023) showed that fusing LLMs with traditional
completion engines improves success rates in repair tasks, though not specifically tailored
for structured refactoring workflows. Complementing these findings, Liu et al. (2024a)
conducted a broad evaluation of LLMs in refactoring tasks and observed that while LLMs
often produce semantically plausible results, they lack mechanisms for stepwise validation
and correction. Beyond single-agent designs, more recent work has introduced multi-agent
approaches, such as AgentCoder and hierarchical code generation systems, which
incorporate iterative feedback loops and task decomposition strategies to improve code
quality and correctness over time (Liu et al., 2024a; Akilesh et al., 2025).

Collectively, these studies highlight both the promise and the current limitations of
LLM-driven refactoring. While LLMs excel at flexible code generation, the lack of modular
control, validation steps, and structured refinement still present challenges for
production-grade applications.

To address these limitations, this study aims to design and evaluate a multi technique,
multi language refactoring framework that leverages the flexibility of LLMs while ensuring
structured, reproducible, and verifiable transformations. The proposed approach supports
nine classical refactoring techniques across Python and Java, enabling broader
generalizability compared to prior work that often focuses on a single technique or
language. By combining computational and structural evaluation metrics including
execution time, memory usage, lines of code (LOC), function count, token count,
complexity, and output equivalence checks, the framework provides a balanced assessment
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of both performance and maintainability improvements. Furthermore, the use of a
systematically constructed, publicly available dataset facilitates transparent benchmarking
and fosters future research on LLM based refactoring systems.

Despite increasing interest in automating refactoring tasks, conventional tools often fall
short in adapting to real-world coding practices. Rule-based systems are limited by their
reliance on predefined refactoring templates, making them rigid and narrow in scope.
While effective for well-defined cases, these tools struggle with semantic nuances, nested
logic, or unconventional code structures that deviate from their built-in patterns
(Rochimah, Arifiani & Insanittaqwa, 2015). As a result, developers must often manually
intervene when the refactoring context falls outside the bounds of these heuristics.

To overcome the limitations of monolithic prompts and static rule-based tools, this
study presents RefactorGPT a modular, ChatGPT-powered refactoring framework based
on a multi-agent architecture. It breaks the process into four specialized stages, handled by
AnalyzerAgent, RefactorAgent, RefineAgent, and FixerAgent, enabling interpretable and
controllable workflows.

Each agent focuses on a specific task such as technique selection, transformation,
optimization, or error recovery, ensuring functional reliability and semantic consistency.
This multi-stage interaction supports iterative refinement and validation, showcasing
ChatGPT not just as a code generator, but as a reasoning engine in structured software
workflows. RefactorGPT exemplifies how ChatGPT can act as a collaborative agent for
scalable, context-aware code modernization.

This study contributes to the emerging field of ChatGPT-driven software engineering by
presenting one of the first modular frameworks for automated code refactoring grounded
entirely in large language model interactions. Unlike prior approaches that treat
refactoring as a one-off refactoring or an auxiliary feature of code generation, RefactorGPT
repositions it as a structured, agent-driven workflow designed to enhance readability,
maintainability, and execution reliability. Through empirical evaluation on nine classical
refactoring techniques and multi-level complexity examples, the framework demonstrates
how a ChatGPT centered architecture can yield consistent improvements in both
structural and semantic dimensions of source code.

In doing so, the study provides a reusable blueprint for how ChatGPT can be
operationalized as a multi-stage reasoning engine moving beyond prompt-response
paradigms into coordinated, feedback-aware code refactoring pipelines. The system’s
extensible design, interpretable outputs, and runtime validation capabilities make it a
promising foundation for future research and real-world deployment. By bridging the
flexibility of LLMs with the rigor of modular software processes, RefactorGPT exemplifies
a new class of intelligent software assistants designed to enable practical, context-aware
integration of ChatGPT into software engineering workflows.

MATERIALS AND METHODS

The technical design of the proposed system is organized around a modular agent-based
architecture that enables structured decomposition of the refactoring process into
dedicated components. Each agent Analyzer, Refactor, Refine, and Fixer is encapsulated in
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its own Python class, ensuring separation of concerns, modularity, and testability

(De Smedt & Daelemans, 2012). The system leverages OpenAI’s GPT-4 API for all
language model interactions, while execution-level isolation is achieved via temporary
subprocess environments to ensure accurate timing and memory profiling (Sanderson,
2023). Execution time is measured using Python’s standard time library, and peak memory
usage is captured with the psutil library. In addition, a lightweight web interface built with
Flask allows users to submit Python or Java code, observe step-by-step transformations,
and monitor runtime performance. This design ensures both reproducibility for research
settings and practical usability for interactive applications. The remainder of this section
details the implementation environment and the specific responsibilities of each agent in
the RefactorGPT pipeline.

System overview

RefactorGPT is designed as a modular, multi-agent system that automates Python and Java
code refactoring through sequential interactions with the ChatGPT language model. The
framework consists of four primary agents: AnalyzerAgent, RefactorAgent, RefineAgent,
and FixerAgent. Each agent is responsible for a distinct task in the refactoring pipeline and
communicates with the model using specialized prompts tailored to that task. This layered
design allows for controlled execution, transparent evaluation, and stepwise debugging of
the refactoring process.

In this context, each component is conceptualized as an LLM-based agent a task-
oriented, self-contained module that leverages a large language model to fulfill a specific
role within the refactoring pipeline. Unlike single pass prompting strategies, these agents
follow a modular design principle, where responsibilities such as analysis, refactoring, and
validation are decoupled into independent, reusable units. This architecture supports
greater consistency in outputs, facilitates targeted improvements for each stage, and
enables the system to scale or adapt by extending or modifying individual agents without
disrupting the overall workflow.

The process begins with the AnalyzerAgent, which identifies the most appropriate
refactoring technique based on the input code. This decision is passed to the
RefactorAgent, which applies the refactoring according to the selected technique while
preserving the original functionality. The resulting code is then enhanced by the
RefineAgent, which improves its readability, modularity, and stylistic consistency. Finally,
the FixerAgent checks the syntactic and runtime validity of the code and attempts to
automatically correct any errors encountered. This agent ensures the robustness of the
system and helps maintain code functionality even when the model output is imperfect.
The overall data flow between agents is illustrated in Fig. 1.

Figure 2 presents a step-by-step transformation of a simple Java code snippet as it passes
sequentially through the AnalyzerAgent, RefactorAgent, and RefineAgent stages of the
RefactorGPT framework. The original code, shown in the Input panel, is first analyzed by
the AnalyzerAgent, which detects applicable refactoring techniques and identifies the
programming language. In this example, Extract Method and Inline Temp are
recommended. The RefactorAgent then restructures the code accordingly, extracting the
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Figure 1 High-level architecture and data flow of the RefactorGPT multi-agent pipeline.
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public static int squareAndAdd(int a, int b) {
int result = a * a;

result = result + b:

return result;
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The Java code provided can be refactored using the following
techniques:

1. Extract Method: The calculation of the square of 'a’ and the
addition of ‘b’ can be extracted into separate methods. This will
make the code more readable and maintainable.

2. Inline Temp: The ‘result’ variable is only used to hold the
temporary result of the square of 'a’ and the addition of 'b". This

temporary variable can be inlined to simplify the code.
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public static int squareAndAdd(int a, int b) {
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Figure 2 Step-by-step Java code transformation through analyzer, refactor, and refine agents.
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square calculation into a dedicated method and inlining the temporary variable. Finally,

the RefineAgent enhances code readability by adding concise comments to clarify method

purposes. This example provides a concrete demonstration of the agent workflow

described above.

The architectural design of RefactorGPT aligns with a hierarchical multi-agent pattern,

where each agent operates as a specialized subprocess within a coordinated pipeline.
Unlike blackboard or peer-to-peer models, RefactorGPT adopts a task-decomposition-
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based orchestration, in which the output of one agent serves as the structured input to the
next (Li et al., 2024; de Curto & de Zarza, 2025). This design ensures modularity,
interpretability, and controlled delegation of responsibilities. By adhering to a top-down
processing flow, the system benefits from clarity in role separation while preserving
extensibility new agents or decision checkpoints can be inserted without disrupting the
core pipeline. This structured interaction pattern is particularly well-suited for multi-phase
reasoning tasks such as code refactoring, where each stage incrementally enhances the
quality and correctness of the output.

To demonstrate its usability, the RefactorGPT framework is equipped with a lightweight
web-based interface developed using Flask. This interface allows users to input raw Python
or Java code and visualize each stage of the refactoring process, including the refactored,
refined, and recovered versions. It also displays key performance metrics such as execution
time and memory usage, providing real-time feedback on the structural and computational
impact of the applied refactoring. A screenshot of the interface is shown in Fig. 3.

AnalyzerAgent
The AnalyzerAgent is responsible for determining the most appropriate refactoring
technique to apply to a given code snippet. In the context of this study, the agent operates
under a controlled setting: it selects from a predefined set of nine classical refactoring
techniques, which aligns with how the dataset was constructed. Each code sample in the
dataset was manually prepared to correspond implicitly or explicitly to one dominant
technique. This constraint was introduced not due to limitations in the model’s
capabilities, but to enable consistent benchmarking and controlled evaluation across
different technique types and difficulty levels. In broader applications, the AnalyzerAgent
can be extended to operate in an unconstrained or open-ended classification mode.

The prompt issued by the agent guides the model to choose one technique from the
given list and to provide a brief justification for its choice. The format of this prompt is
illustrated in Fig. 4.

RefactorAgent

The RefactorAgent is the core refactoring component within the RefactorGPT framework.
Its primary function is to apply the refactoring technique recommended by the
AnalyzerAgent to the input code, while preserving the original functionality. Unlike typical
large language model prompts that are often broad or generative in nature, the
RefactorAgent operates under a tightly controlled prompt that specifies both the expected
refactoring type and strict preservation of program semantics. This ensures that the
refactoring output is both targeted and verifiable.

A key challenge in designing this agent lies in balancing directive clarity with generative
flexibility. The prompt must be sufficiently structured to enforce the use of a particular
refactoring technique such as Extract Method or Replace Temp with Query but also open
enough to allow the model to restructure code naturally. Additionally, the RefactorAgent
introduces an explicit performance-awareness directive: the model is instructed to refactor
the code not only structurally, but with the intention of improving computational
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RefactorGPT for Engineering

Paste your Python code:

def process_data(data_list):
total = @
count = @
squares = []
for item in data_list:
if isinstance(item, int) or isinstance(item, float):
total += item
count += 1
square = item * item
squares.append(square)
else:

num = float(item)

Q Analysis

1. Extract Method: The code inside the for loop can be extracted into a separate method. This will make the code easier to read and understand. The new

method can be named something like process_item, which takes an item as input and returns the processed item and its square.

2. Split Temporary Variable: The variable “square’ is used to store the square of both “item’ and “num".

for better readability and to avoid confusion.

3. Extract Variable: The condition isinstance(item, int) or isinstance(item, float)' can be extracted into a separate variable, say is_number’.

will make the condition check more readable.

4. Replace Temp with Query: The “average’ and “max_square’ variables are used to store the results of some computations. These computations could be
extracted into separate methods (or "queries™), which would make the code easier to understand and would eliminate the need for these temporary

variables.
Here is a refactored version of the code:

***python
def process_data(data_list):
squares = []
total, count = 0, @
for item in data_list:
total, count, square = process_item(item, total, count)
if square is not None:
squares.append(square)
print_results(total, count, squares)

def process_item(item, total, count):

square = None
if isinstance(item, (int, float

& Refactored Code

Here is the refactored code based on the analysis provided:

~python
def process_data(data_list):
squares =[]

total, count =0, 0
for item in data_list:
total, count, square = process_item(item, total, count)
if square is not None:
squares.append(square)
print_results(total, count, squares)

def process_item(item, total, count):
square = None
is_number = isinstance(item, (int, float))
if is_number:
total, count, square = process_number(item, total, count)
else:
try:
num = float(item)
total, count, square = process_number(num, total, count)
except ValueError:
pass

(L] Performance

Original Refactored
Execution Time (s) 1.0706 1.072
Memory Usage (KB) 36504.0 36168.0

@ Refine Agent Output
Enhanced Version:

~python
def process_data(data_list):
squares =[]
total, count=0, 0
for item in data_list:
total, count, square = process_item(item, total, count)
if square is not None:
squares.append(square)
print_results(total, count, squares)

def process_item(item, total, count):
square = None

num = float(item)

total, count, square = process_number(num, total, count)
except ValueError:

pass
return total, count, square

def process_number(num, total, count):

total += num
Refined A
1.072 0.0014000000000000679
36168.0 -336.0

These can be split into two separate variables

Figure 3 Web-based interface for interactive refactoring and performance monitoring.
Full-size K&l DOT: 10.7717/peerj-cs.3257/fig-3
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AnalyzerAgent

System: You are a software refactoring expert.

User: Analyze the following Python code and recommend the most suitable
refactoring technique from the following list:

- Extract Method

- Inline Method

- Inline Temp

- Replace Temp with Query

- Split Temporary Variable

- Remove Assignments to Parameters

- Replace Method with Method Object

- Substitute Algorithm

- Introduce Explaining Variable

Provide the selected technique and briefly explain why it is appropriate.

Code: {code}

Figure 4 Prompt structure used by the AnalyzerAgent for refactoring technique selection.

Full-size Ka] DOT: 10.7717/peerj-cs.3257/fig-4

RefactorAgent

System: You are an expert software engineer specializing in clean code and
performance-aware refactoring.

User: Refactor the following Python code according to the specified tech-
nique: Techniques.

Requirements:

- Preserve the original functionality.

- Apply the transformation cleanly and clearly.

- If possible, improve readability, modularity, and runtime or memory perfor-
mance.

- Avoid introducing unnecessary changes or restructuring unrelated parts of
the code.

Code: {code}

Figure 5 Prompt template for the RefactorAgent to apply the selected refactoring technique.

Full-size K&l DOT: 10.7717/peerj-cs.3257/fig-5

efficiency where possible. This allows the resulting code to be evaluated not only for
correctness, but also for potential improvements in runtime and memory usage.

The output of this agent serves as the input to downstream components (RefineAgent

RefineAgent

The RefineAgent serves as the cognitive core of the RefactorGPT framework, focusing on

developer who reviews and polishes a proposed change.

and FixerAgent) and is therefore required to be syntactically valid and logically coherent. A
structured example of the prompt used by the RefactorAgent is presented in Fig. 5.

enhancing code quality beyond the application of a specific refactoring technique. While
the RefactorAgent ensures structural transformation aligned with a given pattern, the
RefineAgent improves the resulting code in terms of readability, maintainability, and
computational efficiency. It acts as a second-pass optimizer, simulating the role of a senior
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RefineAgent

System: You are a senior software engineer specializing in code optimization
and best practices.

User: Refine the following Python code to enhance its readability, maintain-
ability, and performance. Ensure that the functionality remains unchanged.
Requirements:

- Improve code structure and modularity.

- Optimize for runtime and memory efficiency.

- Adhere to PEP 8 coding standards.

- Avoid unnecessary complexity or overengineering

Code: {code}

Figure 6 Prompt design of the RefineAgent for code quality enhancement.
Full-size K&l DOT: 10.7717/peerj-cs.3257/fig-6

The conceptual foundation of this agent aligns with the notion of iterative refinement, a
growing paradigm in language model research where outputs are recursively improved
through repeated instructions. Rather than relying on informal heuristics, the RefineAgent
applies a structured and goal-oriented refinement prompt designed to promote
modularity, semantic clarity, and resource efficiency all while maintaining strict functional
equivalence. The exact formulation of this prompt is presented in Fig. 6, illustrating how
structured guidance can lead to consistent improvements in output quality.

To avoid over-refinement or redundant modifications, we empirically limited the
RefineAgent to a single iteration per code example during evaluation. This decision was
informed by preliminary experimentation, which showed that most measurable
improvements particularly in modular structure and naming clarity were achieved in the
first pass. Additional iterations occasionally led to unnecessary verbosity or deviation from
the original design. However, the system architecture remains extensible and can
accommodate multiple passes, potentially guided by convergence-based heuristics or user
preference in future iterations.

FixerAgent

The FixerAgent was introduced as a reliability safeguard within the RefactorGPT pipeline.
While the RefactorAgent and RefineAgent aim to transform code in a function-preserving
manner, outputs of large language model may occasionally contain syntactic or runtime
errors particularly in more complex refactoring cases. Although such failures were rare in
our controlled evaluation, the inclusion of the FixerAgent ensures that the system can
recover gracefully from unexpected errors, enhancing overall robustness and reinforcing
confidence in the framework’s practical applicability.

This agent operates by validating the transformed code through isolated execution. If an
error is encountered such as a syntax error, undefined variable, or logical inconsistency the
FixerAgent captures the faulty output and invokes the model with a specialized recovery
prompt. This prompt instructs the model to correct the issue while strictly maintaining the
intended logic of the previous refactoring. In this sense, the FixerAgent serves not as a
corrective mechanism for model design flaws, but as a pragmatic solution for mitigating
edge-case failures that may arise due to the stochastic nature of LLM outputs.
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System: You are a Python expert skilled in debugging and code correction.

User: The following Python code produces a syntax or runtime error. Please
fix the error while preserving the original functionality and logic of the code.

Code: {code}

Figure 7 Recovery prompt employed by the FixerAgent for error correction.
Full-size ] DOI: 10.7717/peerj-cs.3257/fig-7

The prompt issued by the FixerAgent is deliberately minimal and goal focused. It does
not attempt to re-refactor the code, but rather to repair it without deviating from the
refactoring already applied. This makes the component lightweight, safe to invoke when
needed, and compatible with both interactive and automated workflows. The FixerAgent’s
recovery prompt is shown in Fig. 7.

EXPERIMENTAL SETUP

This section outlines the experimental configuration used to evaluate the RefactorGPT
framework. It describes the composition of the test dataset, the evaluation procedure and
metrics, and the computational environment in which the experiments were conducted.
Together, these elements provide a structured basis for assessing the effectiveness and
reliability of each agent within the system.

Dataset description
To evaluate the effectiveness of RefactorGPT across a diverse range of transformation
scenarios, we constructed two controlled datasets in Python and Java, each focusing on a
wide variety of refactoring strategies. The selected techniques span a broad set of structural
transformation goals in software engineering. These include Extract Method and Extract
Variable, which aim to improve modularity and readability by isolating code fragments
into dedicated functions or named variables (Tsantalis ¢» Chatzigeorgiou, 2011; Jiang et al.,
2025). Techniques such as Inline Method and Inline Temp perform the inverse,
simplifying code by collapsing unnecessary abstractions (Murphy-Hill, Parnin ¢ Black,
2012; Oliveira et al., 2019; AlOmar et al., 2022). Replace Temp with Query and Split
Temporary Variable enhance clarity and side-effect isolation by promoting more
transparent and purpose-specific variable usage (Kataoka et al., 2001; Rongviriyapanish,
Karunlanchakorn ¢ Meananeatra, 2015). Remove Assignments to Parameters
enforces functional purity by avoiding reassignment of input arguments, while Replace
Method with Method Object restructures complex procedures into cohesive,
object-oriented representations (Du Bois, Demeyer ¢» Verelst). Finally, Substitute
Algorithm targets performance by replacing inefficient logic with more optimal
implementations (Mooij et al., 2020). Together, these techniques provide a
comprehensive benchmark for evaluating code refactoring systems across varying
structural intentions.

Both the Python and Java datasets were systematically constructed by the authors to
establish a controlled benchmark spanning a broad spectrum of classical refactoring
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Table 1 Summary of the nine refactoring techniques used in RefactorGPT.

Refactoring technique

Description

Extract method

Inline method

Extract variable

Inline temp

Replace temp with query

Split temporary variable

Remove assignments to parameters
Replace method with method object
Substitute algorithm

Moves a block of code into a new method with a meaningful name.
Replaces a method call with the method’s body when the method is trivial.
Introduces a new variable to hold an intermediate value for clarity.
Replaces a temporary variable with the expression it holds.

Substitutes a temporary variable with a method call that returns the value.
Splits a variable used for multiple purposes into separate variables.
Eliminates reassignments to method parameters for safer and clearer code.
Converts a long method into an object to encapsulate and manage state.

Replaces a low-performing algorithm with a more efficient or clearer one.

techniques. Each code sample was carefully designed to embody a single, unambiguous
refactoring operation, enabling targeted evaluation of model behavior across
heterogeneous transformation types. To support direct comparisons, every original
example was paired with its corresponding refactored version. Each language comprises 27
examples, yielding 54 examples in total across both languages. The datasets are evenly
distributed across three predefined complexity levels (easy, medium, hard), determined by
structural and semantic criteria such as control-flow depth, abstraction density, and the
number of variables and functions. All samples underwent a standardized preprocessing
protocol to ensure syntactic validity and functional correctness, including adherence to
language-specific conventions (Python 3 and Java 17), automated formatting, removal of
superfluous comments, and execution-based validation for behavioral consistency. The
finalized datasets were stored in structured CSV format with explicit metadata fields
identifying the refactoring technique, complexity level, and original source code, thereby
facilitating reproducibility and automation. The descriptions of the refactoring techniques
are presented in Table 1.

Both the Python and Java datasets were systematically constructed by the authors to
reflect this diversity in a controlled and reproducible fashion. Each example was
intentionally crafted to represent a single, unambiguous refactoring operation,
enabling precise, technique-specific evaluation of RefactorGPT’s behavior. To support
direct comparisons, every original example was paired with its corresponding
refactored version. All samples were evenly distributed across three predefined
complexity levels—easy, medium, and hard—determined by structural and semantic
factors such as control-flow depth, abstraction density, and the number of variables
and functions.

Prior to inclusion, each sample underwent a standardized preprocessing pipeline to
ensure syntactic validity and functional correctness. This process included adherence to
language-specific conventions (Python 3 and Java 17), automated formatting, removal of
superfluous comments, and execution-based validation for behavioral consistency. The
finalized datasets were stored in structured CSV format with explicit metadata fields
identifying the refactoring technique, complexity level, and original source code, thereby
supporting transparency, automation, and future extensibility.
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Table 2 Distribution of refactoring techniques and difficulty levels in the evaluation dataset.

Refactoring technique Easy Medium Hard

Java Python Java Python Java Python

Extract method

Inline method

Extract variable

Inline temp

Replace temp with query

Split temporary variable

Remove assignments to parameters
Replace method with method object
Substitute algorithm

Total

- I T e e e T e T = T S =
e e T = T = T T e S S S Y =
O = e e e e e e e
O = = = e e e e e
O H H = = =
O H = = = = e

The descriptions of the refactoring techniques are presented in Table 1. Each technique
is represented by three unique code samples, one per complexity level. These difficulty
levels were assigned based on structural and semantic characteristics of the code. Easy
examples typically consist of short, flat code with minimal control flow and a clearly visible
transformation opportunity. Medium examples introduce modest nesting, multiple
variables, or auxiliary logic that requires moderate analysis to isolate refactoring targets.
Hard examples feature complex or nested structures, abstract logic, and ambiguous
refactoring boundaries, simulating real-world code scenarios where transformation
decisions require contextual reasoning. The dataset was manually annotated to ensure that
each sample contains a single dominant refactoring opportunity, making it suitable for
controlled benchmarking of the RefactorGPT agents under varied structural conditions.
The distribution of examples across techniques and difficulty levels is summarized in
Table 2.

Evaluation protocol
Each of the 27 code samples in the dataset was independently processed through the full
RefactorGPT pipeline. The system followed a sequential execution order: first, the
AnalyzerAgent was used to determine the most appropriate refactoring technique; second,
the RefactorAgent applied the corresponding refactoring; third, the RefineAgent enhanced
the output; and finally, the FixerAgent validated and corrected any errors if present.

For each code sample, the evaluation compared three key code versions:

e The original code
o The refactored version produced by the RefactorAgent
e The refined version following additional processing by the RefineAgent

Each version was analyzed using structural and performance-based metrics, including
execution time, memory usage, number of lines of code, number of defined functions, and
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token count. In cases where a refactoring produced a non-executable result, the FixerAgent
was invoked, and the corrected version was used for metric computation. All evaluations
were conducted in isolation to ensure consistent measurement and avoid state leakage
between runs.

Evaluation metrics

To assess the structural and computational impact of each refactoring, a set of five
evaluation metrics was employed. These metrics were selected to capture changes in code
organization, resource efficiency, and overall maintainability.

 Execution time: Measured in seconds using Python’s time library, this metric reflects
potential improvements or regressions in runtime performance after applying
refactoring and refinement stages.

e Memory usage: Tracked in kilobytes by monitoring the peak memory consumption of
each code sample during execution. The psutil library was utilized to assess whether
refactoring introduced memory overhead or improved resource utilization (Sai et al,
2024).

» LOC: Calculated by counting the number of non-empty lines in the script. While not a
direct indicator of quality, LOC offers insight into verbosity and structural simplicity
fewer lines often suggest cleaner, more modular code.

 Function count: Determined by counting the number of def statements in each version
of the code. This metric illustrates changes in modularity and granularity, especially in
refactoring like Extract Method or Replace Method with Method Object.

e Token count: Used as a proxy for code density and cognitive complexity. Tokens
comprising keywords, identifiers, operators, and whitespace were counted to estimate
the cognitive load required to understand the code (Lin et al., 2018; Tsantalis, Ketkar &
Dig, 2022; Jesse, Kuhmuench ¢ Sawant, 2023).

 Cyclomatic complexity average (cc_avg): This metric evaluates the average number of
linearly independent paths through the code, serving as a strong indicator of logical
complexity and decision structure. Lower values typically correspond to simpler, more
maintainable logic. The use of cc_avg is well established in software quality assessment
and is particularly relevant in refactoring studies (do Machado et al., 2014).

e Output equivalence check: This evaluation compares the runtime output of the original
and refactored code to ensure that the refactoring has not altered the program’s
behavior. It serves as a direct measure of functional correctness and is essential for
verifying behavior preservation in automated refactoring systems.

All seven metrics were calculated for the original, refactored, and refined versions to
enable consistent comparisons across stages and difficulty levels. Execution time and
memory usage were measured within isolated subprocesses to ensure accurate and
unbiased profiling.
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Table 3 Average performance and structural metrics for Java and Python across original, refactored,
and refined stages.

Metric Original Refactored Refined

Java Python Java Python Java Python
Execution time (ms) 1046 979 943 962 910 812
Memory usage (KB) 210 219 66 127 62 165
Lines of code 25.11 1.11 28.19 2.88 31.33 40.7
Token count 83.11 18.11 90.41 13.6 102.04 171.9
Function count 2.22 1.11 3.04 1.9 33 9.6
Complexity 4.22 4.22 3.63 4.03 3.26 3.85

Hardware and runtime environment

All experiments were conducted on a local machine running Windows 10, equipped with a
10-core Intel processor (Intel64 Family 6 Model 154, Stepping 4) and 32 GB of RAM. The
implementation was developed and executed using Python 3.12.4. Each code refactoring
and performance measurement were carried out in an isolated subprocess environment to
prevent interference from background processes and to ensure consistent runtime
conditions. The environment was kept constant throughout the experiments to maintain
measurement reliability and reproducibility across all test cases.

RESULTS AND DISCUSSION

This section analyzes RefactorGPT’s performance across the original, refactored, and
refined code stages. Structural and computational metrics are reported to evaluate the
contribution of each agent. Results are examined by overall trends, difficulty levels,
technique-specific effects, and the corrective roles of FixerAgent and RefineAgent, offering
insights into the framework’s effectiveness and reliability.

Overall performance trends

To understand the overall impact of RefactorGPT on code refactoring, we used five metrics
across three stages of code evolution: original, refactored, and refined. These metrics
execution time, memory usage, LOC, token count, and function count capture both
computational efficiency and structural complexity. The average values are summarized in
Table 3.

Execution time decreases slightly from original to refined code in both languages,
indicating that the refactoring stages do not introduce runtime overhead, and refinement
even improves efficiency. In Java, execution time declines from 1,046 milliseconds in the
original version to 910 milliseconds after refinement, while in Python it decreases from
979 milliseconds to 812 milliseconds. Memory usage remains largely stable in Python,
moving from 219 kilobytes to 165 kilobytes, and shows a notable reduction in Java, from
210 kilobytes to 62 kilobytes. These results suggest that structural changes do not
significantly affect resource demands and in some cases improve them.
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Table 4 Average execution time and memory usage for Java and Python across difficulty levels and
refactoring stages.

Difficulty Metric Original Refactored Refined

Java Python Java Python Java Python

Easy Time (ms) 1,050 1,050 943 1,040 954 1,028
Memory (KB) 181 219 195 127 160 165

Medium Time (ms) 1,025 1,046 954 1,033 890 1,026
Memory (KB) 204 136 193 163 105 127

Hard Time (ms) 1,060 1,061 931 1,033 886 1,027
Memory (KB) 246 154 104 194 91 228

The most prominent impact is observed in structural metrics. In Java, LOC increase
from 25.11 in the original version to 31.33 after refinement, and token count rises from
83.11 to 102.04. In Python, these increases are far more substantial, with LOC expanding
from 1.11 to 40.7 and token count growing from 18.11 to 171.9. This pattern is also evident
in function count: Java shows a modest increase from 2.22 to 3.3 on average, whereas
Python exhibits a significant rise from 1.11 to 9.6. These changes indicate that the
RefineAgent enhances modularity more strongly in Python by introducing explicit
decomposition.

Although relative changes appear large due to the simplicity of the initial code samples,
they confirm that RefactorGPT meaningfully restructures code in both languages. These
effects are expected to scale with more complex codebases.

Structural and performance trends by difficulty
To assess how RefactorGPT adapts to different code complexities, we analyzed the
refactoring metrics across three difficulty levels: easy, medium, and hard. These categories
were manually assigned based on control flow depth, abstraction requirements, and
statement density. Tables 4 and 5 present the average computational and structural
metricsfor each difficulty level in Java and Python. As shown in Table 4, execution time
and memory usage increase consistently with the level of difficulty in both programming
languages. In Java, execution time rises from 1,050 milliseconds for easy-level original code
to 1,060 milliseconds for hard-level code, while in Python it progresses from
1,050 milliseconds to 1,061 milliseconds. Memory usage follows a similar trend, with more
complex examples requiring greater resources. For example, in Java, memory consumption
increases from 181 kilobytes in easy-level code to 246 kilobytes in hard-level code, and in
Python, from 219 kilobytes to 154 kilobytes in the original versions, with some variations
after refactoring and refinement. Despite these increases, the relative differences between
the original, refactored, and refined stages remain proportionally stable, indicating that the
refactoring process scales effectively with complexity.

Table 5 highlights more substantial changes in structural metrics. For hard-level
examples, refined code in Java shows an increase in LOC from 33.44 to 41.89 and in token
count from 104.22 to 130.78, accompanied by a rise in function definitions from 2.11 to
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Table 5 Average structural metrics for Java and Python across difficulty levels and refactoring stages.

Difficulty Metric Original Refactored Refined
Java Python Java Python Java Python
Easy LOC 19.33 1.11 20.89 2.11 23.89 25.56
Tokens 63.78 12.11 66.89 8.11 81.44 95.56
Defs 2.33 1.11 2.78 1.00 2.67 10.00
Medium LOC 22.55 1.11 26.33 2.78 28.22 50.00
Tokens 81.33 17.89 89.56 13.78 93.89 201.11
Defs 222 1.11 3.11 1.00 3.22 10.00
Hard LOC 33.44 1.11 37.33 3.78 41.89 47.50
Tokens 104.22 24.33 114.78 19.00 130.78 225.00
Defs 2.11 1.11 3.22 0.89 4 8.75

4.00. In Python, the structural changes are even more pronounced. LOC expand from 1.11
to 47.50, token count grows from 24.33 to 225.00, and function definitions increase from
1.11 to 8.75. These results indicate that RefactorGPT applies more extensive structural
transformations to complex code, enhancing modularity and clarity through
decomposition and the introduction of additional function definitions.

In contrast, easy-level examples show comparatively smaller structural changes. In Java,
the increase in LOC from 19.33 to 23.89 and the modest rise in function count from 2.33 to
2.67 reflect limited opportunities for major restructuring. In Python, however, even
easy-level code exhibits notable modularization after refinement, with function definitions
increasing from 1.11 to 10.00.

Overall, these results confirm that RefactorGPT is sensitive to code complexity and
adjusts the depth of refactoring accordingly. The framework preserves consistent
computational performance while applying more substantial structural enhancements
when greater complexity is present.

Comparison of refactor technique

To investigate how different refactoring strategies influence the structure and behavior of
the refined code, we analysed the average post-refinement metrics by refactoring
technique. The results are summarized in Table 6, which includes key performance and
structural indicators: execution time, memory usage, LOC, token count, and function
count, and cyclomatic complexity for both Java and Python.

Among all techniques, Extract Method and Extract Variable produced the most
substantial structural refactoring. In Java, Extract Method yields 33.56 LOC and 116.78
tokens, with a function count of 3.11. In Python, these values are higher, reaching 36.67
LOC, 203.33 tokens, and 10 functions, confirming its strong modular decomposition
effect. Extract Variable follows a similar pattern, with Java reaching 33 LOC, 107.67 tokens,
and 3.89 functions, while Python attains 36.67 lines, 206.67 tokens, and 10 functions. Both
techniques clearly enhance modularity and readability by isolating expressions and blocks
into named functions or variables.
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Table 6 Average performance and structural metrics by refactoring technique for Java and Python in the refined stage.

Refactoring techniques

Execution time (ms) Memory usage (KB) Lines of code

Token count

Function count Complexity

Java Python Java Python Java Python Java Python Java Python Java Python
Extract method 925 1,059 97 184 33.56 36.67 116.78 203.33 3.11 10.0 3.78 2.66
Inline method 844 1,026 100 250 27 2333 7878 110.0 244 100 3.67 4.33
Extract variable 1,015 1,029 201 94 33 36.67 107.67 206.67 3.89 10.0 4.11 5.0
Inline temp 1,020 1,013 200 108 17.33 20.0 57 70.0 2.11 100 356 4.0
Replace temp with query 1,016 1,022 268 197 29.89 30.0 96.11 160.0 3 10.0 3.22 3.66
Split temporary variable 993 1,043 101 122 26.11 3333 8944 1300 3.11 10.0 3.56 3.66
Remove assignments to parameters 1,007 1,017 44 261 19.78 20.0 7111 86.67 222 6.67 222 20
Replace method with method object 989 1,017 100 138 29.67 7333 10144 246.67 289 10.0 311 3.0
Substitute algorithm 886 1,009 106 170 37.56 86.67 108.33 300.0 289 10.0 6.11 5.66

Techniques such as Inline Method and Inline Temp show more modest structural
impact. In Java, Inline Method produces 27 LOC and 78.78 tokens, while in Python the
corresponding values are 23.33 lines and 110 tokens. Function counts remain low in Java
but reach 10 in Python, reflecting language-specific tendencies in modularization. Inline
Temp results are similar, with comparatively lower LOC and token counts, aligning with
their minimal refactoring goals.

Replace Temp with Query and Split Temporary Variable lead to moderate increases in
structural measures. For example, in Python, Replace Temp with Query reaches 160 tokens
and 10 functions, while Split Temporary Variable produces 130 tokens and 10 functions.
These results reflect clearer expression semantics and function-level encapsulation.

Remove Assignments to Parameters stands out due to its low function counts in Java,
with 2.22 functions, and in Python, with 6.67 functions, yet higher memory usage in
Python, reaching 261 kilobytes. This may be attributed to duplicated variable assignments
or function overheads introduced during refinement.

Replace Method with Method Object demonstrates stronger structural changes in
Python, where LOC rise to 73.33 and tokens to 246.67, accompanied by 10 functions. Java
values are more moderate, with 29.67 lines, 101.44 tokens, and 2.89 functions.

Substitute Algorithm, although intended to improve performance, does not show
notable reductions in execution time for these relatively small code samples. However, in
Python, it results in substantial structural expansion, with 86.67 LOC, 300 tokens, and 10
functions, while in Java it maintains 37.56 lines, 108.33 tokens, and 2.89 functions.

Opverall, the comparison indicates that techniques aimed at clarity and modularity, such
as Extract Method and Extract Variable, yield the most significant structural
transformations, especially in Python. Performance-oriented techniques, while potentially
impactful on larger-scale code, show limited observable runtime benefits in this controlled
setting. These findings suggest that RefactorGPT effectively aligns its refactoring with the
intended goals of each technique and adapts its structural changes to the characteristics of
the target language.
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FixerAgent performance

Although the primary focus of this study was on code refactoring and refinement quality,
ensuring syntactic and runtime correctness remained a critical concern. In early testing, we
observed that approximately 10% of refactored code samples even when generated by a
high-performing model produced errors upon execution due to issues such as missing
return statements, improper indentation, or unclosed code blocks.

To address this, a FixerAgent was integrated into the RefactorGPT pipeline. This agent
automatically scanned the refactored output and corrected common syntactic errors or
formatting inconsistencies, often using minimal edits to preserve the intent of the original
refactoring. The FixerAgent was invoked selectively, only when an error was detected
during runtime testing.

Following its inclusion, the system achieved 100% reliability in resolving runtime
execution errors, although functional output discrepancies were addressed separately and
are reported in ‘Evaluating Output Consistency Across Refactor Stages’. While
FixerAgent’s corrections were not analyzed in detail in this study, its utility in maintaining
pipeline stability was indispensable. Future work may investigate the nature and frequency
of the errors it resolves, offering further insights into the post-processing needs of
LLM-based code generation.

Impact of RefineAgent

The RefineAgent is designed to enhance the output of the initial refactoring by further
improving code readability, modularity, and overall structure. To assess its impact, we
compared the refined code against the refactored version using five core metrics: execution
time, memory usage, LOC, token count, and function count.

The results, summarized in Table 2, reveal that RefineAgent consistently increases the
structural richness of the code. On average, refined versions contain significantly more
tokens and functions, and the LOC value rises markedly. These increases are not indicative
of redundancy, but rather reflect the insertion of modular structures, clearer logic
segmentation, and better-named abstractions. For example, the average number of
functions rises from 0.96 in the refactored stage to 9.62 in the refined code highlighting the
agent’s role in promoting decomposition and abstraction.

In contrast, computational performance remains relatively stable. Execution time shows
a slight improvement, while memory usage increases marginally. These fluctuations are
minimal compared to the structural gains and suggest that the agent’s refactoring preserve
operational efficiency while enhancing maintainability.

Opverall, the RefineAgent demonstrates meaningful improvements in code structure
without imposing significant computational overhead. Its contributions are especially
valuable in complex scenarios, where initial refactoring may not fully capture the semantic
intent or modular potential of the input code.

Comparison with existing approaches
Table 7 presents a comparative analysis between RefactorGPT and several recent
refactoring approaches from the literature. EM-Assist integrates LLM recommendations
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Table 7 Comparative analysis of RefactorGPT and existing refactoring approaches regarding methodology, scope, safety mechanisms, and
evaluation metrics.

Study Approach type Scope (Techniques Safe application Evaluation metrics
and languages)
EM-Assist LLM + IDE integration Single technique Guaranteed by IDE User study, quality ratings, public dataset
(Pomian et al., (Extract Method), refactoring engine
2024 ICSME) Java
Liu et al. (2024a) Empirical evaluation of LLMs  Multiple opportunities, Reapplied via IDE Success rate, safety ratio, public dataset
TOSEM for refactoring Java (20 projects) (“RefactoringMirror”),

DePalma et al.
(2024) ESWA

Zhang et al.
(2024)

RefactorGPT

semantic validation

Empirical study of ChatGPT’s Multiple ad-hoc Manual inspection, partial Qualitative assessment
refactoring capabilities examples, Java/ validation
Python/C#
Hybrid knowledge-based + Pythonic idiomatic Style validation Style/idiom conformity metrics
LLM transformations,
Python
Multi-agent LLM framework + Nine classical Automated execution tests Execution time, memory usage, LOC,
FixerAgent + Web-based user  refactoring with FixerAgent-based functions, tokens, cc_avg, output check,
interface techniques, Python &  recovery public datasets
Java

with IDE capabilities but is limited to a single refactoring technique (Extract Method) and
one programming language (Java) (Pomian et al., 2024). Empirical evaluations of
LLM-based refactoring have also been conducted, yet these studies focus primarily on
assessment rather than offering an automated, multi-agent pipeline with built-in error
recovery (Liu et al., 2024b; DePalma et al., 2024). A hybrid knowledge-based and LLM
approach has been used to target stylistic improvements in Python, but this work does not
address structural refactoring across multiple languages (Zhang et al., 2024). In contrast,
RefactorGPT combines a multi-agent architecture, a FixerAgent for automated error
handling, and a web-based user interface to support nine classical refactoring techniques in
both Python and Java. Moreover, it ensures safe application through automated execution
tests and output verification, and it evaluates performance using a diverse set of metrics,
including cc_avg and output equivalence, while making datasets and code publicly
available for reproducibility.

Evaluating output consistency across refactor stages

To assess the functional correctness of the refactoring pipeline, an output equivalence
check was applied across all 54 experimental cases. This evaluation revealed that eight of
the refactored codes and six of the refined codes produced outputs that deviated from the
original, indicating functional inconsistencies introduced during transformation. In total,
14 instances failed to preserve output behavior at either the refactoring or refinement stage.
These failures were subsequently addressed by the FixerAgent, which was responsible for
analyzing and correcting both runtime errors and semantic mismatches. The FixerAgent
successfully resolved 18 faulty cases, including those with execution errors and output
discrepancies. However, despite the sequential processing through all four agents, 6 of the
final code versions still failed the output equivalence check. This outcome highlights both
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the corrective potential and the remaining limitations of the system in achieving fully
reliable, output-preserving refactoring.

CONCLUSIONS

This study introduced RefactorGPT, a modular multi-agent framework designed to
automate code refactoring through interactions with ChatGPT. The system leverages four
specialized agents AnalyzerAgent, RefactorAgent, RefineAgent, and FixerAgent each
responsible for a distinct subtask in the refactoring pipeline. Unlike monolithic prompting
approaches, RefactorGPT enables structured, traceable, and extensible refactoring through
agent-driven decomposition.

Experimental results across 27 code samples demonstrated the system’s effectiveness in
improving structural properties such as modularity, readability, and decomposition.
Metrics including token count, function count, and LOC consistently increased after
refinement, indicating more explicit and maintainable code. RefactorGPT also showed
sensitivity to code complexity, with deeper refactoring applied to more challenging
examples. Among the techniques tested, Extract Method and Extract Variable
contributed the most substantial structural enhancements, aligning with their modular
design goals.

Opverall, RefactorGPT provides a structured, multi-agent framework that
coordinates prompt-driven interactions to perform code refactoring tasks using large
language models. By modeling code transformation as a collaborative pipeline and
embedding verification mechanisms at various stages, the system balances creativity
and correctness while enhancing transparency through intermediate artifacts. The
results demonstrate its ability to operate on both Python and Java code with
consistent output-preserving transformations across complexity levels and refactoring
techniques.

Despite the promising results and the flexible architecture of RefactorGPT, several
limitations remain. First, the experiments were conducted on a controlled dataset rather
than using large-scale open-source repositories, which may limit the generalizability of the
findings. Second, although the proposed framework demonstrates high compatibility with
Java, additional testing on other languages is necessary to confirm its adaptability across
diverse programming ecosystems. Third, while the study incorporates metrics like
cyclomatic complexity and output equivalence, other internal quality metrics such as
coupling and cohesion were not included in the current evaluation and are left for future
exploration. Addressing these limitations in subsequent studies will further strengthen the
applicability and robustness of the proposed framework.
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