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ABSTRACT
You Only Look Once (YOLO) networks have demonstrated significant
advancements in fruit detection and instance segmentation. Nonetheless, challenges
remain in managing dense scenes, overlaps, occlusions, generalization difficulties,
dynamic environments, computational and deployment limitations, specifically
concerning the application of YOLOv5 to YOLOv11 for fruit instance segmentation.
This article tackles these issues by constructing a fruit image dataset with
segmentation annotations, having 11,546 images with six classes, and developing a
You Only Look Once version Fruit Instance Segmentation (YOLOvFIS) network for
fruit detection and instance segmentation. The results demonstrate that integrating
the backbone of YOLOvFIS into YOLO versions of YOLOv5n, YOLOv6n, YOLOv7t,
YOLOv8n, YOLOv9t, YOLOv10n, and YOLOv11n improved the networks,
surpassing the performance of the original networks. The improved YOLOv9t
outperformed other improved YOLO networks, even though it had a longer overall
detection time. The parameters (params) and giga floating point operations per
second (GFLOPs) of YOLOvFIS’s entire network are less than other YOLO networks.
The mean average precision (mAP) of YOLOvFIS is 1.6%, 1.0%, 1.0%, 1.0%, 0.3%,
0.8%, and 0.4% more accurate than YOLOv5n, YOLOv6n, YOLOv7t, YOLOv8n,
YOLOv9t, YOLOv10n, and YOLOv11n, respectively, for fruit detection. It also
exhibits superior mAP by 1.5%, 1.0%, 0.9%, 1.6%, 0.6%, 0.7%, and 0.7% compared to
YOLOv5n, YOLOv6n, YOLOv7t, YOLOv8n, YOLOv9t, YOLOv10n, and
YOLOv11n, respectively, in the context of fruit instance segmentation. Regarding
total detection time, YOLOvFIS is 14%, −7.2%, 112.2%, 0.0%, 84.8%, 9.9%, and 7.5%
faster than YOLOv5n, YOLOv6n, YOLOv7t, YOLOv8n, YOLOv9t, YOLOv10n, and
YOLOv11n, respectively. As a result, the network of YOLOvFIS is robust for
generalization, appropriate for real-time applications, robotic integration, and
low-power computing devices. Lastly, the obtained findings can serve as technical
assistance and suitable references for YOLO-based fruit detection and instance
segmentation.
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Neural Networks
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INTRODUCTION
Fruit instance segmentation is an important task in computer vision, particularly in
applications like agriculture and farming, robotic harvesting/picking, fruit quality control,
and supply chain management (Gené-Mola et al., 2020; Jia et al., 2022; Zhou et al., 2024). It
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involves detecting and delineating individual instances of fruits within an image and video,
allowing precise recognition and tracking of different fruit targets. The advancements in
deep learning have significantly improved the performance of detection and instance
segmentation over the years, with the You Only Look Once (YOLO) family of networks
playing a pivotal role in this evolution (Lawal, Zhu & Cheng, 2023; Mohamed et al., 2024;
Khan et al., 2024; Lawal, 2021a).

The original YOLO version of the network was introduced in 2015, and the recent
YOLOv11 represents a progressive enhancement in single-stage real-time object detection
and segmentation capabilities. These networks are renowned for their ability to balance
speed and mean average precision (mAP), rendering them well-suited for practical
applications of fruit detection and instance segmentation where the processing of
substantial volumes of data in real-time is frequently required. YOLO had difficulty
recognizing smaller items in clusters, struggled with shapes, and suffered from localization
errors. With these, the evolution from YOLOv2 to YOLOv4 has been characterized by key
innovations such as anchor boxes, feature pyramids, and spatial attention mechanisms that
enhance the detection of small and overlapping fruit instances (Gené-Mola et al., 2020; Jia
et al., 2022; Zhou et al., 2024;Mohamed et al., 2024; Khan et al., 2024). The enhancements
in multi-scale predictions in YOLOv3 established a strong foundation for detecting targets
of various sizes; meanwhile, YOLOv4 built upon this foundation with Cross Stage Partial
Network (CSPNet) and Mosaic data augmentation to further improve mAP and better
generalization. The modification of YOLOv3 was reported by Fu et al. (2021) for kiwifruit
detection in orchards, Zheng et al. (2019) for muskmelon detection, and Lawal (2021a) and
(Liu et al., 2020) for tomato detection. The pursuit for improved YOLOv4t for real-time
pear fruit detection and counting was published by Parico & Ahamed (2021); likewise,
Latha et al. (2022) reported on fruit and vegetable detection, Lawal (2021b) introduced
YOLOMuskmelon for muskmelon fruit detection, Tang et al. (2023a) detected each
camellia oleifera fruit target in an orchard, Lawal (2021c) developed a tomato detection
model for a robotic platform, Mei-Ling & Yang (2023) proposed GCS-YOLOv4t to detect
different growth stages of fruits, and (Lawal & Zhao, 2021) launched YOLOFig using deep
learning for fig fruit detection.

The introduced YOLOv5 for fruit detection and instance segmentation became more
modular, focusing on ease of use, training efficiency, and deployment. Using the YOLOv5
for target detection, the real-time cucurbit fruit detection in greenhouses was reported by
Lawal (2024). Gai, Li & Chen (2021) developed YOLOv5s-cherry for cherry detection;
Qiao et al. (2021) added ShuffleNetv2 for a counting method of red jujube. Zhang et al.
(2022) applied ghost network to detect a dragon fruit in the natural environment, Lawal
(2023a) developed a lightweight YOLOStrawberry for strawberry detection, Xu et al.
(2023) proposed YOLO-Jujube to detect jujube fruit automatically for ripeness inspection,
and (Lawal, Zhu & Cheng, 2023) incorporated feature concatenation with a coordinate
attention mechanism (CAM) to detect fruit. In the case of fruit instance segmentation,
Zhou et al. (2024) applied a lightweight network called YOLO-AppleSeg to detect apple
fruit, likewise YOLOv5-LiNet was proposed by Lawal (2023b) for fruit instance
segmentation; Lu et al. (2023) harnessed instance segmentation of lotus pods and stalks in
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unstructured planting environments, and (Paewboontra & Nimsuk, 2024) detected
multi-scale rose apple skin and defects using instance segmentation with anchors
optimization. YOLOv6 and YOLOv7 further refined the architecture with advancements
in training techniques, optimization algorithms, and feature extraction, enhancing the
detection and segmentation of fruits in complex scenes. Chowdhury, Said & Saruchi (2024)
adopted YOLOv6 to detect oil palm fruit ripeness levels. While Zhang et al. (2022) used the
YOLOv7 network to detect dragon fruit, Chen et al. (2022) improved it with the added
Convolutional Block Attention Module (CBAM) for citrus detection, and Zhou, Zhang &
Wang (2023) utilized the PSP-Ellipse technique to further detect the endpoints of the
dragon fruit after its localization and classification. Tang et al. (2023b) developed the
YOLOv7-plum to detect plum fruits in a complicated orchard setting, whereas Chen et al.
(2024) used MTD-YOLO to perform three tasks: cherry tomato detection, fruit and bunch
maturity rating, and cherry tomato detection. Tang et al. (2024) introduced EfficientNet-
B0 and CBAM modules into YOLOv7 to build YOLOC-tiny for citrus fruit detection at
various maturity levels. Selective fruit harvesting prediction and 6D pose estimation for
multi-parameter recognition was published by Zhao et al. (2025), and the Darknet
Framework YOLOv7 was harnessed by Nasution et al. (2023) for pineapple fruit ripeness
classification.

For a more modular and adaptable architecture with anchor-free YOLOv8 to YOLOv11,
incorporated cutting-edge approaches enabled the networks to perform instance
segmentation tasks with exceptional mAP and robustness. They also provided better
support for dense scenes, occlusions, and real-world variabilities in fruit appearance. Xiao,
Nguyen & Yan (2024) adopted the YOLOv8 network for fruit ripeness identification, while
Ang et al. (2024) called the improved network YCCB-YOLO for the detection of young
citrus fruits on trees, and Lawal et al. (2023) proposed a simplified topology of the network
to detect, track, and count fruit targets. Yang et al. (2023) added a Swin-Transformer into
the YOLOv8 network to increase the mAP of detected strawberry fruit, and Li et al. (2023)
leveraged the multi-head self-attention (MHSA) mechanism to detect, grade, and count
tomato maturity stages. YOLOv9 was built upon by Ye et al. (2024) to design CR-YOLOv9
for strawberry fruit maturity detection, andWang, Rong & Hu (2024) integrated HGBlock
and SPD-ADown modules to detect ripe tomatoes. Li et al. (2024) developed lightweight
D3-YOLOv10 based on improved YOLOv10 to identify tomatoes in facility situations. Fu
et al. (2024) incorporated a squeeze-and-excitation (SE) attention mechanism into the
YOLOv10 network to create MSOAR-YOLOv10 for multi-scale occluded apple detection
and improved harvest robotics. For instance segmentation, Neupane et al. (2024)modified
YOLOv8 for real-time detection of mango fruit in tree canopy images using an edge
computing device; Gamani, Arhin & Asamoah (2024) focused on instance segmentation of
strawberry fruit development stages in open field environments; Kim et al. (2024)
addressed lychee instance segmentation at various growth stages; Sapkota, Ahmed &
Karkee (2024) explored automated orchard operations in multi-apple segmentation;Wang
et al. (2024) conducted real-time detection and segmentation of tomato fruits at different
ripeness stages; and Yue et al. (2023) investigated instance segmentation of healthy and
diseased tomato plants during the growth stage. Sapkota & Karkee (2024) evaluated the
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efficacy of instance segmentation using YOLOv11 and YOLOv8 for both occluded and
non-occluded immature green fruits in a complex orchard setting, while Sapkota, Meng &
Karkee (2024) utilized LLM-generated datasets for YOLO11 and YOLOv10 to facilitate
apple detection via machine vision sensors. This progression has transformed YOLO
networks into a diverse and powerful tool for fruit instance segmentation. Applications for
automated fruit harvesting, picking, sorting, and inventory management have grown more
viable and effective as a result of their capacity to efficiently localize and segment fruit
targets.

While the versions of YOLO networks, particularly from YOLOv5 to YOLOv11, have
achieved remarkable progress in fruit detection and instance segmentation, certain
limitations persist in handling dense scenes, overlapping, occlusions, generalization issues,
dynamic environments, computational and deployment constraints, and domain-specific
variability. Meanwhile, these limitations are due to intrinsic complexities in real-world
applications, as well as specific architectural and methodological constraints. Furthermore,
the references to the application of YOLOv5 to YOLOv11 for fruit instance segmentation,
including the fruit image dataset, are limited. This article addresses these problems by
building a new fruit image dataset and integrating YOLO-based segmentation with robust
feature extraction modules to develop You Only Look Once version Fruit Instance
Segmentation (YOLOvFIS), which improves performance in fruit instance segmentation
tasks. The YOLO network relies heavily on these feature extraction modules because they
effectively extract important information from images, improving the network’s ability to
recognize, locate, and segment fruit targets under a variety of situations. Therefore, the
contributions are to:

(1) develop a robust fruit image dataset with segmentation annotation under complex
natural environments to limit the lack of the domain-specific variations found in
agricultural sectors.

(2) introduce the C4fR module that combines standard and concatenated
Pointwise-Depthwise convolutions into C4 for enhanced feature extraction and
processing, the spatial-channel downsampling (SCDown) module for downsampling
with separable convolutions, spatial pyramid pooling faster (SPPFr) for enhanced
feature extraction, and partial self-attention (PSA) for implementing position-sensitive
attention into the backbone network of YOLOv5n to YOLOv11n, and compare the
original to the improved network for fruit instance segmentation.

(3) design YOLOvFIS with the incorporated backbone network mentioned in (2), and
modified neck network of YOLOv11n with SCDown to foster low computation, fewer
parameters, high mAP, high speed, robustness, and deployable-friendliness for
low-power computing devices.

(4) compare the performance of the YOLOvFIS network to that of YOLOv5n, YOLOv6n,
YOLOv7t, YOLOv8n, YOLOv9t, YOLOv10n, and YOLOv11n for fruit detection and
instance segmentation, especially with the incorporation of YOLOvFIS’s backbone.
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The remainder of this article outlines the methodology pertaining to the proposed
YOLOvFIS and the created fruit image dataset. The ‘Results and Discussion’ section
contrasts the original network with the improved network of YOLOv5n to YOLOv11n and
the performance of YOLOvFIS with other mainstream YOLO networks. The ‘Conclusion’
section provides a final summary of the findings.

METHODOLOGY
Fruit image dataset
The fruit images used in this article were obtained from different locations within the
Wanghaizhuang greenhouses, Houcheng town, Jinzhong, Shanxi, China, using a regular
3,968 × 2,976 pixels digital camera. During the morning, midday, and afternoon hours, 665
images of bitter-melon, 664 images of cucumber, 382 images of fig, 1,959 images of jujube,
736 images of melon-boyang, and 404 images of muskmelon were taken, paying special
attention to a range of conditions like dense scenes, overlapping, occlusions, illumination,
and other fruit scenes. These images were selected due to their high variability in color,
texture, size, shape, and so on, which can enable the network’s ability to generalize across
different fruit datasets. Figure 1 provides the sample of images in the dataset. Neglecting
the images’ complex and changeable condition, all the ground truth bounding polygons of

Figure 1 The image sample of (A) bitter-melon, (B) cucumber, (C) fig, (D) jujube, (E) melon-boyang,
and (F) muskmelon. Full-size DOI: 10.7717/peerj-cs.3256/fig-1
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each target in an image were manually annotated and saved in Common Objects in
Context (COCO) format using the Labelme tool (https://github.com/wkentaro/labelme).

Using the Roboflow tool (Dwyer et al., 2024) for image pre-processing, the dataset was
artificially expanded with diverse augmentation as shown in Fig. 2 to create three versions
of each source image, allowing the YOLO networks to learn more robust features and
generalize better to unseen data. The following augmentations are applied: (1) equal
probability of one of the following 90-degree rotations: none, clockwise, counter-clockwise,
or upside-down; (2) random rotation of between −15 and +15 degrees; (3) random shear of
between −10� and +10� horizontally and −10� and +10� vertically; (4) random exposure
adjustment of between −10 and +10 percent; (5) salt and pepper noise to 0.1 percent of
pixels. The advantages of image augmentation are that it helps prevent overfitting, improve
mAP, and adapt to different scenarios (Iceland & Kanan, 2023). The pre-processed dataset
includes 1,512 images of bitter-melon, 1,520 images of cucumber, 994 images of fig, 5,044
images of jujube, 1,550 images of melon-boyang, and 926 images of muskmelon, having
instances of 5,137, 6,426, 6,643, 22,985, 3,734, and 1,693, respectively. And randomly
divided into 70% train, 20% valid, and 10% test sets as shown in Table 1. The network
learns patterns, relationships, and features in the training set, while the valid set is used to
evaluate the network’s performance during training, and the test set evaluates the
network’s generalization ability for real-world scenarios.

Figure 2 Augmented image sample of fig fruit at (A) 90º rotation, (B) rotation, (C) shear, (D) exposure, and (E) noise.
Full-size DOI: 10.7717/peerj-cs.3256/fig-2

Table 1 Details of final image dataset.

Dataset Images Instances

Train 10,134 41,338

Valid 947 3,806

Test 465 1,474

Total 11,546 46,618
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Architecture of YOLOvFIS
The architecture of YOLOvFIS, as shown in Fig. 3, which consists of an input, a backbone
in Fig. 3A, a neck in Fig. 3B, and a head in Fig. 3C, draws inspiration from YOLOv8
(Ultralytics, 2023), YOLOv10 (Wang et al., 2023), and YOLOv11 (Khanam & Hussain,
2024), offering end-to-end training capabilities through its fully differentiable design. The
input network integrates mosaic data augmentation and adaptive image scaling of 0.33
depth and 0.25 width. The backbone network is the primary feature extractor that utilizes
the combination of Conv, C4fR, SCDown, SPPFr, and PSA modules to transform image
data into multi-scale feature maps. The neck network serves as an intermediary processing
stage by leveraging the added C3k2, Conv, and SCDown modules to aggregate and
improve feature representations at various scales. It utilizes a path aggregation with feature
pyramid network (PAFPN) structure that is similar to the neck network of YOLOv11 with
an incorporated SCDown module. The head network acts as a prediction mechanism,
generating the final outputs for target classification, localization, and segmentation based

Figure 3 The YOLOvFIS includes (A) backbone, (B) neck, and (C) head network.
Full-size DOI: 10.7717/peerj-cs.3256/fig-3
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on the refined feature maps. YOLOvFIS employs the decoupled head structure of YOLOv8,
which adopts an anchor-free approach. This decoupling allows YOLOvFIS to optimize
each task independently. As depicted in Fig. 3, the v8seg. total loss is a weighted
combination of multiple losses: binary cross-entropy (BCE) loss for classification (Cls.
Loss), complete intersection-over-union (CIoU) loss with distribution focal loss (DFL) for
bounding box (Bbox. Loss), and BCE with pixel-wise loss for segmentation (Seg. Loss). The
loss ensures that each target instance receives an accurate pixel-level prediction, as well as
integration with target detection and flexibility.

. Conv: The Conv, as depicted in Fig. 4A, is the feature extraction process that utilized
convolutional layers to downsample the image, reducing spatial dimensions while
increasing the number of channels. It employs convolution (Conv2d) for extracting
relevant features, batch normalization (BN) for stabilizing and normalizing the data
flow, and the sigmoid linear unit (SiLU) activation function for non-linearity, which
improves network performance.

. C4fR: A significant improvement in YOLOvFIS is the introduction of the C4fR module
in Fig. 4C, which replaces the C2f adopted by YOLOv8. The C4fR module is a more
computationally efficient implementation of the C4 module in Fig. 4B that improves
mAP and speed. It enables learning multi-scale features and extracting contextual
information from images, especially beneficial for detecting and segmenting small
targets. The C4 module consists of two standard convolution and concatenated
Pointwise-Depthwise convolution (PDc) layers. This feature concatenation that enables
YOLOvFIS’ capacity to learn more diverse features is defined by Eq. (1),

C ¼ ½P;D� (1)

where P ∈ RH×W×C1 is for Pointwise, D ∈ RH×W×C2 is for Depthwise, C ∈ RH×W× (C1+C2)

is the concatenated features of C1+C2 channels, height (H) and width (W) (Lawal, Zhu
& Cheng, 2023). The number of channels changes produced by the Pointwise
convolution concatenates the multi-scale spatial features extracted by Depthwise
convolution to create new features (Dai et al., 2023), thus lowering the number of
parameters needed to be practical for low-power computing devices.

. SCDown: The SCDown module displayed in Fig. 4D is for downsampling with separable
convolutions. The downsampling operation utilizes the combination of pointwise and
depthwise convolutions, where the pointwise convolution reduces the number of
channels and the Depthwise convolution performs the spatial downsampling. The
module was incorporated because it reduces computational complexity and enables the
capture of larger contextual information, thereby enhancing the YOLOvFIS’s robustness
against occlusions or small targets.

. SPPFr: The added SPPFr in YOLOvFIS, as indicated in Fig. 4E, was a build on SPPF
designed by YOLOv5 (Ultralytics, 2020) and YOLOv8 (Ultralytics, 2023). It basically
enhances the feature extraction process by pooling features from different spatial scales
while keeping the computational cost manageable without sacrificing performance.
SPPFr takes only one maxpooling as shown in Fig. 4E, unlike the three maxpooling
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utilized by SPPF. The purpose of the incorporated SPPFr is to foster faster inference
times while improving overall robustness and multi-scale in fruit detection and instance
segmentation tasks.

. PSA: The last component of YOLOvFIS’s backbone network is the PSA module (Wang
et al., 2023). The PSA, as shown in Fig. 4F, includes two concatenated and fused
convolutions, and NPSA blocks that are comprised of a multi-head self-attention module
(MHSA) and a feed-forward network (FFN). The PSA was added because it enhances
spatial attention in the feature maps by allowing the backbone of YOLOvFIS to focus
more effectively on important regions within the image for the purpose of improved
mAP, faster processing, and better generalization.

Figure 4 The lists of modules that make up the network of YOLOvFIS (A) Conv, (B) C4, (C) C4fR, (D) SCDown, (E) SPPFr, (F) PSA,
(G) C3k2False, and (H) C3k2True. Full-size DOI: 10.7717/peerj-cs.3256/fig-4
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. C3k2: The C3k2False of Fig. 4G and C3k2True of Fig. 4H as introduced by YOLOv11
(Khanam & Hussain, 2024) are differentiated by bottleneck and C3k modules,
respectively. It is intended to be faster and more efficient, therefore improving the overall
performance of the feature aggregation process. The neck network of YOLOvFIS
incorporated the C3k2 module after upsampling and concatenation for computational
efficiency, enhancing feature extraction and speed performance.

Experiment details
The experiment involving YOLOvFIS and the comparison of networks such as YOLOv5n
(Ultralytics, 2020), YOLOv6n (Li et al., 2022), YOLOv7t (Wang, Bochkovskiy & Liao,
2023a), YOLOv8n (Ultralytics, 2023), YOLOv9t (Wang, Bochkovskiy & Liao, 2023b),
YOLOv10n (Wang et al., 2023), and YOLOv11n (Khanam & Hussain, 2024) was
conducted using the Ultralytics 8.3.39 platform, with the hardware and environment
detailed in Table 2. The networks, whose weight was randomly initialized from scratch,
received an input image of 640 × 640 × 3 pixels, 32 batch, 0.937 momentum, 0.0005 weight
decay, 1.0 mosaic, 7.5 Bbloss, 0.5 Clsloss, 1.5 DFloss, 4 mask-ratio, 200 epochs, and other
default values. The combined module that makes up the backbone network of YOLOvFIS
in Fig. 3A was used to replace the backbone of YOLOv5n, YOLOv6n, YOLOv7t,
YOLOv8n, YOLOv9t, YOLOv10n, and YOLOv11n, which are set for improved networks
and compared to original networks. Table 3 provides experimental details. The purpose of
this is to investigate the effectiveness of YOLOvFIS’s backbone network in application to
other YOLO-based networks for fruit detection and instance segmentation.

Evaluation metrics
The networks were evaluated using the metrics stated in Eqs. (2)–(8), respectively, for
precision (P), recall (R), average precision (AP), mAP, number of parameters (params),
giga floating point operations per second (GFLOPs), and detection time. TP is the true

Table 2 Hardware and environment details.

Hardware Configure Environment Version

System Ubuntu20.04 Python 3.8.16

CPU Intel(R) Xeon(R) E-2276M Conda 23.1.0

GPU Quadro RTX 5000 (16G) PyTorch 1.12.1

RAM 64G CUDA 11.3.1

Hard-disk 1.0T CUDNN 8.8.0

Table 3 Experimental details of networks.

Networks Backbone Neck Head

Original (YOLOv5n to YOLOv11n) Original Original YOLOv8

Improved (YOLOv5n to YOLOv11n) YOLOvFIS Original YOLOv8

YOLOvFIS YOLOvFIS YOLOvFIS YOLOv8

Cheng et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3256 10/28

http://dx.doi.org/10.7717/peerj-cs.3256
https://peerj.com/computer-science/


positive for correct detections, FN is the false negative for missed detections, FP is the false
positive for incorrect detections, P(R) means that P is a function of R, AP is the area under
the curve (AUC) for a single class, mAP is the mean AP value over multiple classes, C is the
total number of classes, j is the serial number, i is the input size, k is the convolution kernel
size, o is the output size, and H × W is the size of the outputted feature map. Params (106)
is the number of trainable parameters, GFLOPs estimate the number of floating-point
arithmetic operations, and detection time is used to measure the total real-time in
milliseconds (ms).

P ¼ TP
TPþ FP

: (2)

R ¼ TP
TPþ FN

: (3)

AP ¼
Z 1

0
PðRÞdR: (4)

mAP ¼
PC

j¼1 APj

C
: (5)

params ¼ i� k � kð Þ � o½ � þ o: (6)

GFLOPs ¼ H�W� params: (7)

Total ðmsÞ ¼Tpre þ Tinfer þ Tpost: (8)

RESULTS AND DISCUSSION
Backbone of YOLOvFIS incorporation
An examination of the findings reported in figures and tables revealed that incorporating
the backbone of YOLOvFIS into YOLOv5n, YOLOv6n, YOLOv7t, YOLOv8n, YOLOv9t,
YOLOv10n, and YOLOv11n networks is exceptional for fruit detection and segmentation.
The validation loss for both box and segmentation typically reflects the mAP performance
observed in both the original and improved networks. A decreasing loss constitutes an
increasing mAP, confirming that when the network learns, performance improves. The
mAP in Eq. (5) was chosen for this purpose instead of P in Eq. (2) and R in Eq. (3) because
it provides more comprehensive values across multiple classes. Nevertheless, it was noted
that the losses for the box are lower than the segmentation. This is due to the fact that box
loss involves rectangle targets with less complexity compared to segmentation loss, which
addresses pixel-wise masks.

According to Fig. 5A, the validation loss for the box and segmentation of the improved
network is lower than the original network of YOLOv5n (Ultralytics, 2020). These losses
resulted in the mAP displayed in Fig. 5B, where the 90.1% for the box and 89.6% for the
segment of the improved network are, respectively, greater than the 89.0% for the box and
88.2% for the segment of the original network. Utilizing the test set of the dataset for
assessment, Fig. 6 illustrates that both networks successfully detected and segmented the
quantities of fruit targets in the presented images; nevertheless, the confidence scores of the
improved network surpass those of the original YOLOv5n network. The original network
experienced missed and incorrect detection, unlike the improved network with only
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missed detection. The obtained results in Table 4 using the test set indicate that the
computing costs, measured in params and GFLOPs, of the original and improved
YOLOv5n networks exhibit no substantial difference. However, the improved network
achieves 90.2% mAP box and 89.6% mAP segment, surpassing the original network’s
88.4% mAP box and 87.9% mAP segment, respectively. Similarly, the total detection time
of the improved network is reduced in comparison to the original network. The improved

Figure 5 The results of original and improved networks of YOLOv5n using the valid set (A) valid
loss and (B) mAP50%. Full-size DOI: 10.7717/peerj-cs.3256/fig-5

Figure 6 The detected fruit targets differentiate between the original and improved networks of YOLOv5n.
Full-size DOI: 10.7717/peerj-cs.3256/fig-6
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network demonstrates superior mAP and speed compared to the original YOLOv5n
network for fruit detection and instance segmentation.

In the case of YOLOv6n (Li et al., 2022), as indicated in Fig. 7A, the validation loss for
the box of the improved and original networks shows no significant difference, but the loss
for the segmentation of the improved network is lower than the original network. Using
Fig. 7B, the resulting mAP of 89.6% for the box and 89.1% for the segment of the improved
network are, respectively, higher than the 89.5% for the box and 89.0% for the segment of
the original network. The networks’ ability to detect and segment a number of fruit targets
in the presented images is demonstrated in Fig. 8, while the improved YOLOv6n network’s
confidence scores are higher than those of the original. In contrast to the improved
network, the original network was linked to both missed and incorrect detection at the
time. Table 5 shows that the computation cost in terms of params and GFLOPs of the
improved network is lower than that of the original network. The improved network
achieves 89.4% mAP box and 88.8% mAP segment, surpassing the original network’s
89.0% mAP box and 88.4% mAP segment, respectively. However, the total detection time
of the improved network is slightly more than the original network. This indicated that the
improved network outperformed the original network of YOLOv6n, but not for detection
speed.

A different scenario was observed in YOLOv7t (Wang, Bochkovskiy & Liao, 2023a),
where the validation loss in Fig. 9A for both box and segmentation of the original network

Table 4 Comparison between the original and improved networks of YOLOv5n using the test set.

YOLOv5n
(test)

Computation Box@50% Segment@50% Time (ms)

Params GFLOPs P R mAP P R mAP Tpre Tinfer Tpost Total

Original 2.8 11.0 87.5 81.3 88.4 87.0 81.8 87.9 0.4 3.1 1.2 4.7

Improved 2.8 11.1 90.9 80.3 90.2 91.2 80.3 89.6 0.3 3.0 1.1 4.4

Figure 7 The results of original and improved networks of YOLOv6n using the valid set (A) valid
loss and (B) mAP50%. Full-size DOI: 10.7717/peerj-cs.3256/fig-7
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is lower than that of the improved network. Fig. 9B indicates that the mAP of 89.7% for the
box and 88.9% for the segment of the original network are, respectively, greater than the
88.7% for the box and 88.2% for the segment of the improved network. The results of
Fig. 10 support the findings of Fig. 9B, which show that the confidence scores, including
those without missed and inaccurate detection of the original YOLOv7t, outperformed the
improved network on the test set of datasets. However, both networks successfully detected
and segmented the numbers of fruit targets in the images. Interestingly, the obtained
computation cost, as shown in Table 6, indicated that the improved network is lower than
that of the original network. This resulted in the lower total detection time observed in the
improved network compared to the original network. Meanwhile, the original network
achieves 89.0% mAP box and 88.5% mAP segment, which are, respectively, more than the
improved network’s 88.8% mAP box and 88.1% mAP segment. An indication that the
improved network surpasses the original network of YOLOv7t, but not for detection mAP.

Based on the YOLOv8n (Ultralytics, 2023), the validation loss in Fig. 11A for both the
box and segmentation of the improved network is lower than that of the original network.

Figure 8 The detected fruit targets differentiate between the original and improved networks of YOLOv6n.
Full-size DOI: 10.7717/peerj-cs.3256/fig-8

Table 5 Comparison between the original and improved networks of YOLOv6n using the test set.

YOLOv6n
(test)

Computation Box@50% Segment@50% Time (ms)

Params GFLOPs P R mAP P R mAP Tpre Tinfer Tpost Total

Original 4.4 15.2 85.1 81.5 89.0 87.3 79.9 88.4 0.3 2.6 0.9 3.8

Improved 2.7 10.4 86.7 81.8 89.4 87.0 82.0 88.8 0.3 2.7 0.9 3.9
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Figure 9 The results of original and improved networks of YOLOv7t using the valid set (A) valid loss
and (B) mAP50%. Full-size DOI: 10.7717/peerj-cs.3256/fig-9

Figure 10 The detected fruit targets differentiate between the original and improved networks of YOLOv7t.
Full-size DOI: 10.7717/peerj-cs.3256/fig-10

Table 6 Comparison between the original and improved networks of YOLOv7t using the test set.

YOLOv7t
(test)

Computation Box@50% Segment@50% Time (ms)

Params GFLOPs P R mAP P R mAP Tpre Tinfer Tpost Total

Original 9.5 69.9 87.9 81.8 89.0 88.2 81.9 88.5 0.3 7.5 0.9 8.7

Improved 1.8 8.2 89.5 79.5 88.8 89.9 78.6 88.1 0.3 3.1 0.8 4.2
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These losses constitute the presented results in Fig. 11B, where the mAP of 90.2% for the
box and 89.6% for the segment of the improved network are, respectively, higher than the
89.1% for the box and 88.7% for the segment of the original network. Although both
networks used the test set of datasets to effectively detect and segment fruit targets in the
images as shown in Fig. 12, the confidence scores including those without missed and
incorrect detection of the improved YOLOv8n surpassed the original network. With
Table 7, the computation costs of the improved network outperformed the original
network. Furthermore, the improved network outperforms the original network with
89.9% mAP box and 89.1% mAP segment, compared to 89.0% and 87.8%, respectively.
Likewise, the total detection time of the improved network is lower than that of the original
network. This illustrated the advantage of improved YOLOv8n networks over the original
for fruit detection and instance segmentation.

For YOLOv9t (Wang, Bochkovskiy & Liao, 2023b), the validation loss of the box
between the improved and original networks, as depicted in Fig. 13A, experienced no
significant difference, but the validation loss for segmentation of the original network is
lower than that of the improved network. Fortunately, both the improved and original
networks attain similar mAP box scores of 90.0% and mAP segment scores of 89.5%, as
indicated in Fig. 13B. Based on the test set of the dataset, Fig. 14 illustrates that both
networks successfully detected and segmented the numbers of fruit targets in the presented
images; nonetheless, the confidence scores of the improved network are more than those of
the original YOLOv9t network. The original network was associated with both missed and
incorrect detection, in contrast to the improved network. Table 8 illustrates that the
computation costs of the improved network outrightly surpass the original network. The
improved network achieves 90.2%mAP box and 89.7%mAP segment, topping the original
network’s 89.7% mAP box and 88.8% mAP segment, respectively. For total detection time,
the improved network is less than the original network. Therefore, the improved network

Figure 11 The results of original and improved networks of YOLOv8n using the valid set (A) valid
loss and (B) mAP50%. Full-size DOI: 10.7717/peerj-cs.3256/fig-11
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is outstanding compared to the original network of YOLOv9t for fruit detection and
instance segmentation.

Using YOLOv10n (Wang et al., 2023), both validation losses of the box and
segmentation between the improved and original networks indicate no significant
difference, as displayed in Fig. 15A. Figure 15B shows that the original network slightly
outperforms the improved network with a 90.1% mAP box and an 89.6% mAP segment,
compared to 90.0% and 89.2%, respectively. Both networks used the test set of datasets to
effectively detect and segment fruit targets in the images, as shown in Fig. 16. Interestingly,
the improved YOLOv10n network’s confidence scores are higher than those of the original
network. The justification for these results is shown in Table 9. The computation costs of
the improved network surpassed those of the original network, as in Table 9. Meanwhile,
the improved network attains 89.9% mAP box and 89.0% mAP segment, exceeding the
original network’s 89.2% mAP box and 88.7% mAP segment, respectively. Simultaneously,
the improved network has a lower overall detection time than the original network. This

Figure 12 The detected fruit targets differentiate between the original and improved networks of YOLOv8n.
Full-size DOI: 10.7717/peerj-cs.3256/fig-12

Table 7 Comparison between the original and improved networks of YOLOv8n using the test set.

YOLOv8n
(test)

Computation Box@50% Segment@50% Time (ms)

Params GFLOPs P R mAP P R mAP Tpre Tinfer Tpost Total

Original 3.3 12.0 89.6 79.6 89.0 89.4 79.3 87.8 0.4 2.7 1.0 4.1

Improved 3.0 11.7 88.1 82.6 89.8 87.6 82.5 89.1 0.4 2.8 1.0 4.2
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Figure 13 The results of original and improved networks of YOLOv9t using the valid set (A) valid
loss and (B) mAP50%. Full-size DOI: 10.7717/peerj-cs.3256/fig-13

Figure 14 The detected fruit targets differentiate between the original and improved networks of YOLOv9t.
Full-size DOI: 10.7717/peerj-cs.3256/fig-14

Table 8 Comparison between the original and improved networks of YOLOv9t using the test set.

YOLOv9t
(test)

Computation Box@50% Segment@50% Time (ms)

Params GFLOPs P R mAP P R mAP Tpre Tinfer Tpost Total

Original 3.1 54.1 89.0 79.3 89.7 89.7 79.0 88.8 0.3 6.4 0.9 7.6

Improved 1.9 8.9 88.0 83.2 90.2 88.8 81.8 89.7 0.3 4.0 0.7 5.0
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means that the improved network outperforms the original YOLOv10n network for fruit
detection and instance segmentation.

With YOLOv11n (Khanam & Hussain, 2024), both validation losses of the box and
segmentation between improved and original networks show no significant difference, as
displayed in Fig. 17A. The improved network outperformed the original network,
achieving 89.9%mAP for the box and 89.2%mAP for the segment, compared to 89.6% and

Figure 15 The results of original and improved networks of YOLOv10n using the valid set (A) valid
loss and (B) mAP50%. Full-size DOI: 10.7717/peerj-cs.3256/fig-15

Figure 16 The detected fruit targets differentiate between the original and improved networks of YOLOv10n.
Full-size DOI: 10.7717/peerj-cs.3256/fig-16
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Table 9 Comparison between the original and improved networks of YOLOv10n using the test set.

YOLOv10n
(test)

Computation Box@50% Segment@50% Time (ms)

Params GFLOPs P R mAP P R mAP Tpre Tinfer Tpost Total

Original 2.8 11.7 87.0 81.6 89.2 90.1 79.0 88.7 0.5 2.8 1.2 4.5

Improved 2.7 11.5 88.7 81.7 89.9 88.4 81.0 89.0 0.4 2.9 1.1 4.4

Figure 17 The results of original and improved networks of YOLOv11n using the valid set (A) valid
loss and (B) mAP50%. Full-size DOI: 10.7717/peerj-cs.3256/fig-17

Figure 18 The detected fruit targets differentiate between the original and improved networks of YOLOv11n.
Full-size DOI: 10.7717/peerj-cs.3256/fig-18
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89.1%, respectively, as shown in Fig. 17B. Just like other YOLO variants, Fig. 18 indicates
that both networks successfully detected and segmented the numbers of fruit targets in the
displayed images. Nonetheless, the improved YOLOv11n network’s confidence scores are
greater than those of the original network. The original network was associated with
missed detection, but the improved network was linked to incorrect detection, which can
be accurately evaluated using Table 10. The evaluated results in Table 10 indicated that the
computation costs of the improved network outperformed the original network. The
improved network achieves 89.9% mAP box and 88.9% mAP segment, exceeding the
original network’s 89.6% mAP box and 88.7% mAP segment, respectively. Concurrently,
the improved network exhibits a reduced overall detection time compared to the original
network. This establishes the outstanding performance of the improved network
compared to the original network of YOLOv11n for fruit detection and instance
segmentation.

Comparison of YOLOvFIS with YOLO state-of-the-art
As shown in Fig. 19, the YOLO variants were able to detect and segment numbers of fruit
targets in sample images to determine robustness and generalization. Nevertheless, the
detected and segmented targets were associated with different confidence scores, missed
detection, and incorrect detection. For example, the entire networks from Fig. 19B to
Fig. 19I experienced incorrect detections against the actual label in Fig. 19A. In addition,
Fig. 19I of YOLOvFIS gets the highest confidence score of a single muskmelon target in an
image when compared to other YOLO networks from Fig. 19B to Fig. 19H. This is to say
that the inherent limitations in the architecture of YOLO state-of-the-art networks are
more than those of the YOLOvFIS network. Because it is very difficult to quantify the
performance comparison between networks using the displayed images in Fig. 19, Eqs. (5)
to (8) provide the evaluation metrics applied.

The complete network structure of YOLOvFIS, as in Fig. 3, was evaluated using a test set
and compared to YOLOv5n, YOLOv6n, YOLOv7t, YOLOv8n, YOLOv9t, YOLOv10n, and
YOLOv11n. The collected findings are shown in Table 11. Using the computation costs,
the params and GFLOPs of YOLOvFIS are 14.3%, 45.5%, 74.7%, 27.3%, 22.6%, 14.3%, and
14.3% decrease, and 9.1%, 34.2%, 85.7%, 16.7%, 81.5%, 14.5%, and 2.0% decrease of
YOLOv5n, YOLOv6n, YOLOv7t, YOLOv8n, YOLOv9t, YOLOv10n, and YOLOv11n,
respectively. The lower YOLOvFIS value results in a smaller weight size, making it more
efficient in terms of memory, storage, and inference time. Suitable for real-time
applications, edge devices, mobile devices, and other low-power computing devices.
Table 11 indicates that the mAP of YOLOvFIS is 1.6%, 1.0%, 1.0%, 1.0%, 0.3%, 0.8%, and

Table 10 Comparison between the original and improved networks of YOLOv11n using the test set.

YOLOv11n
(test)

Computation Box@50% Segment@50% Time (ms)

Params GFLOPs P R mAP P R mAP Tpre Tinfer Tpost Total

Original 2.8 10.2 87.5 81.9 89.6 87.4 81.8 88.7 0.4 3.0 1.0 4.4

Improved 2.5 10.0 88.3 81.7 89.8 89.1 80.6 88.9 0.4 3.0 0.9 4.3

Cheng et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3256 21/28

http://dx.doi.org/10.7717/peerj-cs.3256
https://peerj.com/computer-science/


0.4% more accurate than YOLOv5n, YOLOv6n, YOLOv7t, YOLOv8n, YOLOv9t,
YOLOv10n, and YOLOv11n, respectively, for fruit detection. Similarly, it is 1.5%, 1.0%,
0.9%, 1.6%, 0.6%, 0.7%, and 0.7% more accurate than YOLOv5n, YOLOv6n, YOLOv7t,
YOLOv8n, YOLOv9t, YOLOv10n, and YOLOv11n, respectively, for fruit instance
segmentation. The mAP of YOLOvFIS enables optimized practices, increased efficiency,
reduced wastage, and robotic integration compared to YOLO state-of-the-art networks.
Meanwhile, the total time divided by 103 to obtain the detection speed in frames per
second (FPS) shows that YOLOvFIS is 14%, −7.2%, 112.2%, 0.0%, 84.8%, 9.9%, and 7.5%
faster than YOLOv5n, YOLOv6n, YOLOv7t, YOLOv8n, YOLOv9t, YOLOv10n, and

Figure 19 The detected and segmented fruit targets obtained from (A) actual label (B) YOLOv5n, (C) YOLOv6n, (D) YOLOv7t, (E) YOLOv8n,
(F) YOLOv9t, (G) YOLOv10n, (H) YOLOv11n, and (I) YOLOvFIS networks. Full-size DOI: 10.7717/peerj-cs.3256/fig-19
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YOLOv11n, respectively. Apart from YOLOv6n, which offers the fastest speed among the
networks, the speed of YOLOvFIS drives efficiency, scalability, responsiveness, and better
deployment.

CONCLUSIONS
The designed YOLOvFIS for fruit detection and instance segmentation consists of
backbone, neck, and head networks. The backbone network utilizes the combination of
Conv, C4fR, SCDown, SPPFr, and PSA modules for the primary feature extractor. The
neck network incorporated C3k2, Conv, and SCDown modules to aggregate and improve
feature representations at various scales. It employs the head network of YOLOv8. A fruit
image dataset with segmentation annotation was created for training, validation, and
testing of YOLOvFIS, including other YOLO versions. The backbone of YOLOvFIS was
added into YOLOv5n, YOLOv6n, YOLOv7t, YOLOv8n, YOLOv9t, YOLOv10n, and
YOLOv11n to investigate its effectiveness for feature extraction, indicating that their
improved network surpasses the original network. The improved network of YOLOv9t
outperforms other YOLO networks but is lacking in total detection time. In comparison
with the YOLO state-of-the-art networks, the entire YOLOvFIS network exceeds
YOLOv5n, YOLOv6n, YOLOv7t, YOLOv8n, YOLOv9t, YOLOv10n, and YOLOv11n
networks in terms of computing costs, mAP, and speed for fruit detection and instance
segmentation. Consequently, YOLOvFIS demonstrates superior efficiency regarding
optimized practices, memory, storage, and inference time, making it appropriate for
real-time applications, robotic integration, and low-power computing devices compared to
state-of-the-art YOLO networks. Future investigations will need to incorporate lightweight
attention modules into the backbone to enhance the extraction of salient features. This
improvement aims to boost the detection and segmentation of fruit in complex
environments while ensuring real-time performance is maintained.
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Table 11 Comparison between YOLOvFIS and YOLO state-of-the-art networks using the test set.

Networks
(test)

Computation Box@50% Segment@50% Time (ms)

Params GFLOPs P R mAP P R mAP Tpre Tinfer Tpost Total

YOLOv5n 2.8 11.0 87.5 81.3 88.4 87.0 81.8 87.9 0.4 3.1 1.2 4.7

YOLOv6n 4.4 15.2 85.1 81.5 89.0 87.3 79.9 88.4 0.3 2.6 0.9 3.8

YOLOv7t 9.5 69.9 87.9 81.8 89.0 88.2 81.9 88.5 0.3 7.5 0.9 8.7

YOLOv8n 3.3 12.0 89.6 79.6 89.0 89.4 79.3 87.8 0.4 2.7 1.0 4.1

YOLOv9t 3.1 54.1 89.0 79.3 89.7 89.7 79.0 88.8 0.3 6.4 0.9 7.6

YOLO10n 2.8 11.7 87.0 81.6 89.2 90.1 79.0 88.7 0.5 2.8 1.2 4.5

YOLOv11n 2.8 10.2 87.5 81.9 89.6 87.4 81.8 88.7 0.4 3.0 1.0 4.4

YOLOvFIS 2.4 10.0 90.3 80.6 90.0 90.1 80.0 89.4 0.3 2.9 0.9 4.1
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