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ABSTRACT

Speech emotion recognition (SER) plays a pivotal role in enabling machines to
determine human subjective emotions based only on audio information. This
capability is essential for enabling effective communication and enhancing the user
experience in human-computer interactions (HCI). Recent studies have successfully
integrated temporal and spatial features to improve recognition accuracy. This study
presents a novel approach that integrates parallel convolutional neural networks
(CNNs) with a Transformer encoder and incorporates a collaborative attention
mechanism (co-attention) to extract spatiotemporal features from audio samples.
The proposed model is evaluated on multiple datasets and uses various fusion
methods. The parallel CNNs combined with a transformer and hierarchical
co-attention yield the most promising performance. In version v1 of the ASVP-ESD
dataset, the proposed model achieves a weighted accuracy (WA) of 70% and an
unweighted accuracy (UW) of 67%. In version 2 of the ASVP-ESD dataset, the model
achieves a WA of 52% and a UW of 45%. Furthermore, the model was evaluated on
the ShAEMO data set to confirm its robustness and effectiveness in diverse datasets,
achieving a UW of 68%. These comprehensive evaluations across multiple datasets
highlight the generalizability of the proposed approach.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and Machine
Learning, Natural Language and Speech, Sentiment Analysis

Keywords Speech emotion recognition, Parallel networks, Transformer encoders, CNN,
Co-attention mechanism, Deep learning

INTRODUCTION

Human emotion recognition is crucial for successful human communication. It involves
identifying and interpreting emotional states through cues such as facial expressions, body
language, and tone of voice. This understanding enhances communication, fosters
empathy, and strengthens social connections, thereby enriching our interactions and
relationships (Khare et al., 2023). Automated human emotion recognition is one of the
tasks that aims to enhance communication between humans and computers, which
improves HCI (Cowie et al., 2001). It infers human emotions from various sources,
including questionnaires, physical signals, and physiological indicators (Khare et al., 2023).
Speech, as a form of physical signal, is essential in human communication and serves as a
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fundamental way of expressing emotions. It is one of the most commonly used
mechanisms for identifying emotions among various physical signals (Shu et al., 2018).
SER entails the automated prediction of a speaker’s emotional state by analyzing acoustic
features in speech samples. The emotional state influences vocal characteristics, often
displayed through prosodic, spectral, and other acoustic features (Hashem, Arif ¢
Alghamdi, 2023). Therefore, research on SER systems has increased, as SER can be applied
in real-life scenarios to address challenges in different domains and enhance
communication between humans and computers (Cowie et al., 2001). Researchers have
explored various fields of real-life applications. In the medical domain, SER significantly
contributes to mental healthcare by automating the acquisition and analysis of emotional
states from recordings. This technological approach provides crucial insights for
formulating effective care strategies to monitor and treat mental illnesses (Madanian et al.,
2022). In customer service, real-time customer emotion recognition proves advantageous
in enhancing service quality and optimizing the overall customer experience (Han et al.,
2020). In the educational domain, SER is utilized to determine students’ emotional states
and measure their levels of engagement. This application contributes to advancing
adaptive learning systems and enhancing overall student performance (Abdelhamid, 2023).

Recognizing human emotions from speech poses inherent difficulty and complexity,
primarily attributed to the nuanced and subjective nature of emotions, which varies from
one person to another (Bondi ¢ Laurie, 2005). In SER systems, the fundamental
components typically involve data pre-processing, feature extraction, and classification.
Different algorithms used in SER incorporate machine learning (ML) and deep learning
(DL) methodologies. Numerous possible approaches in SER can be categorized into three
techniques. First, the process involves extracting handcrafted features and utilizing ML for
classification. Second, adopting DL for classification can involve using handcrafted
features or allowing DL to extract features through layers autonomously. Third, sound
waves can be converted into images, such as Mel-frequency cepstral coefficients (MFCC)
or spectrograms, and used as input for the DL model (Hashem, Arif & Alghamdi, 2023).
DL methods tend to outperform traditional ML approaches, as most state-of-the-art
results have been achieved using DL techniques due to their ability to learn hierarchical
representations from data automatically. This enables them to capture complex patterns
more effectively. DL models also demonstrate superior performance on tasks involving
unstructured data, such as images, audio, and text, due to their capability to learn
directly from raw inputs without the need for manual feature engineering (Sefara ¢
Mokgonyane, 2020).

Audio signals represent temporal and spatial features. Combining these features
provided a hybrid structure of information representations that contained important cues
for conveying content and emotional nuances in SER (Ullah et al., 2023). Temporal
features refer to the dynamic changes in the signal over time, including pitch modulation,
intensity variations, and the duration of phonetic units. These temporal dynamics encode
the rhythm, prosody, and timing of speech, contributing to the conveyance of emotion
(Rosen, 1992). Through techniques like Fourier analysis, spatial characteristics reveal the
spectral components of speech signals, where spatial features demonstrate energy
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distribution across various frequency bands (Radha, Bansal & Pachori, 2024). These spatial
attributes provide insights into phonetic distinctions and vocal tract shaping, further
enhancing the expressive capacity of speech. Thus, the fusion of temporal and spatial
features in speech signals can enhance emotion recognition systems by encompassing
various aspects of features, thereby enabling the interpretation of emotional states from
acoustic cues. Ullah et al. (2023) observed that many existing SER systems are weak due to
the absence of parallel neural architectures proficient at processing speech signals and
extracting high-level deep spatiotemporal features. Therefore, some studies have addressed
this issue by proposing a model that utilizes spatial and temporal feature representations of
speech emotions through parallelizing convolutional neural networks (CNNs) and a
Transformer encoder within the SER framework (Ullah et al., 2023; Han, Leng ¢ Jin, 2021,
Bautista, Lee ¢ Shin, 2022; Saleem et al., 2023).

In SER, many existing models rely heavily on traditional feature extraction techniques,
such as MFCC and spectrograms, which are often associated with CNNs. While these
methods have succeeded, they overlook the intricate relationships between temporal and
spatial features in speech data. Even when more advanced architectures, such as Parallel
CNNs combined with Transformers, have been explored, the simple concatenation of
feature outputs limits the ability to capture the complexity of emotions over time. It does
not take into account the relative importance of features. This creates a gap in achieving
reliable and robust performance in real-world applications where emotions are
dynamically expressed.

This work addresses these challenges and presents an approach that recognizes
emotions only from speech signals. The approach utilizes features extracted from these
signals and leverages the strengths of DL models by combining parallel CNNs with
Transformers and incorporating a collaborative attention mechanism (co-attention).
While prior SER approaches have shown promise, they often struggle to effectively
integrate spatial and temporal features within a unified framework, resulting in limited
performance in capturing subtle emotional expressions. Previous studies have explored the
combination of parallel CNNs and transformer encoders, often using simple
concatenation methods to combine feature outputs (Ullah et al., 2023; Han, Leng ¢ Jin,
2021; Bautista, Lee & Shin, 2022; Saleem et al., 2023), However, this study distinguishes
itself by introducing a co-attention mechanism into this architecture, allowing the model
to learn cross-representational dependencies between CNN and Transformer outputs
dynamically. This work suggests adding a co-attention mechanism to combine these
features more effectively. Instead of simply combining CNN and transformer outputs, the
model learns to focus on the most relevant aspects of both, allowing it to capture subtle
emotional cues in speech. The two-parallel CNN architecture extracts spatial features from
MFCC and spectrogram inputs while expanding the receptive field. Meanwhile, the
Transformer encoder captures long-term dependencies in the temporal domain. Unlike
previous methods that treat all features as equally important, co-attention integration
enhances the model’s ability to focus on global and local emotional cues within the speech
signals, allowing for a deeper understanding of how emotions unfold over time. By
focusing on the most salient features of the input data and mitigating the impact of less
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critical components, this framework offers a comprehensive analysis of speech data,
thereby directly addressing the limitations in previous SER models related to the ineffective
fusion of acoustic features.

The main contributions of this study are summarized as follows:

 Leveraged a natural speech dataset with real-world conditions and diverse emotional
labels, enhancing the model’s robustness and generalizability.

 Proposed a co-attention mechanism to focus on relevant features and reduce the
influence of less informative parts.

 Explored four fusion strategies combining CNN and Transformer features:

— Initial architecture: Simple concatenation of the three input streams.

— Second architecture: Concatenation with co-attention fusion applied to the two
CNN branches before integration with the Transformer.

— Third architecture: Hierarchical co-attention fusion, inspired by prior research
(Tian, Moore & Lai, 2016; Pascual et al., 2019), aiming to integrate features
progressively from low to high levels in line with the hierarchical nature of speech.

- Final architecture: A single co-attention mechanism applied across all three inputs
(two CNNs and the Transformer) simultaneously.

 Applied additive white Gaussian Noise (AWGN) for data augmentation to improve
noise robustness.

e Conducted ablation studies to evaluate the contribution of each system component.

The rest of the article is organized as follows: ‘Related Work’ presents the related work.
‘SER Framework’ covers the SER framework, explaining the SER model and the fusion
methods. ‘Experimental Setup” explains the experimental setup, which involves datasets,
pre-processing, data augmentation techniques, feature extraction, model training, and
evaluation metrics. ‘Results and Discussion’ presents the results and discussion. ‘Ablation
Study’ represents the ablation study, and ‘Conclusions’ concludes this study. A complete
list of acronyms used in this study is provided in ‘List of Acronyms’.

RELATED WORK

SER involves essential steps such as preprocessing speech signals, extracting salient
features, and classifying emotions, where each step influences the final result. Exploring
SER has been studied from different aspects for decades, focusing on different classifiers
and speech features. Prior studies mainly used classical ML methodologies for the
classification of emotions. During these earlier studies, researchers employed various ML
algorithms in SER, such as support vector machines (SVM) (Sinith et al., 2015), Gaussian
mixture models (GMM) (El Ayadi, Kamel ¢ Karray, 2007), hidden Markov models
(HMM) (Nwe, Foo ¢ De Silva, 2003), k-nearest neighbors classifiers (kNN) (Lanjewar,
Mathurkar & Patel, 2015).

Recent studies have turned towards using DL classifiers in emotion recognition. Various
DL approaches used include deep neural networks (DNN) (Fahad et al., 2021a), deep
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Boltzmann machine (DBM) (Poon-Feng et al., 2014), convolutional neural networks
(CNN) (Qayyum, Arefeen & Shahnaz, 2019), recurrent neural networks (RNN)
(Mirsamadi, Barsoum ¢ Zhang, 2017), and long short-term memory (LSTM) (Xie et al.,
2019). This change indicates a developing approach in the methods used for recognizing
emotions, where DL has become the most common (Sefara & Mokgonyane, 2020).
Significant advancements have been made in the field of recognizing emotions in speech.
These enhancements underscore a more robust emphasis on extracting and utilizing
spatial and temporal features to enhance the accuracy and reliability of emotion
recognition. This overview examines critical works within the domain, where researchers
have strategically employed frameworks such as CNNs with recurrent models, including
RNNSs, LSTM networks, and Transformer architectures (Lim, Jang ¢ Lee, 2016; Bautista,
Lee & Shin, 2022). Recognizing emotional nuances in speech involves leveraging the
spatiotemporal characteristics embedded in audio signals. Central to these investigations is
incorporating widely recognized feature representations, specifically MFCC and
mel-spectrograms, as input to the neural network architectures. Adopting these input
features is a pivotal step toward capturing both the spatial distribution of acoustic
information across frequency bands and the temporal dynamics inherent in spoken
expressions.

Given the recent success of Transformers, an increasing number of researchers in the
speech recognition field are combining them into their work, which has helped overcome
some limitations associated with other models (Ullah et al., 2023; Han, Leng & Jin, 2021,
Bautista, Lee & Shin, 2022; Saleem et al., 2023; Slimi, Nicolas & Zrigui, 2022).

Han, Leng ¢ Jin (2021) introduced a parallel network architecture for speech emotion
recognition, which combines three blocks: the Transformer encoder, CNN, and ResNet.
The activation function employed in the ResNet is named Gaussian Error Linear Unit
(GELU), which addresses the vanishing gradient problem that is often challenging in
deeper networks. Additionally, CNN decreases the number of parameters, which improves
the network’s expressive capability. To consider speech continuity over time, the
Transformer encoder utilizes a multi-head self-attention layer to predict the frequency
distribution of various emotions. The ResNet and CNN results are converted into
one-dimensional vectors through a flattening process to combine models, and these
vectors are concatenated with the Transformer result. Finally, a fully connected layer was
followed by a softmax layer to classify eight emotions. MFCCs were used as input features
and were tested on the RAVDESS dataset, achieving a classification accuracy of 80.89%.

A similar study was conducted by Bautista, Lee & Shin (2022), replacing ResNet with
parallel CNNs. They explored different neural architectures and investigated the impact of
various data augmentation methods. The evaluated data augmentation methods include
Room Impulse Response (RIR), SpecAugment, Tanh Distortion, and Additive White
Gaussian Noise (AWGN). The neural architectures under comparison include CNN2D
(VGG16), CNN+BiLSTM+Attention, and parallel CNNs+Transformer. They used a linear
layer for all three models to concatenate the inputs. The models employed the Mel
spectrogram as an input feature and were evaluated using the RAVDESS dataset, achieving
an accuracy of 89.33% for the Parallel CNN-Transformer network.
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Following this, Ullah et al. (2023) introduced a model based on building a framework
similar to the previous study (Bautista, Lee ¢ Shin, 2022), where they developed a method
to integrate temporal and spatial information in SER by utilizing parallel CNNs and a
Transformer. The approach involves stacking two parallel CNNs for spatial features
alongside a Transformer encoder for temporal features. They used a fully connected layer
to combine the embedding lengths obtained from the CNN and the Transformer, thereby
achieving the final result. However, this study incorporates skip connections between the
two CNN modules (CNN-Skip) to preserve gradient flow in deep neural networks, thereby
addressing the issue of vanishing gradients as the error signal propagates to prior layers.
This simultaneous expansion of filter depth and reduction of feature maps enhances the
hierarchical representation of features. The evaluation is performed on the RAVDESS
dataset, incorporating data augmentation using AWGN to minimize overfitting. For eight
emotions, the SER model achieves an accuracy of 82.31% using spatial and sequential
feature representations. Furthermore, the SER system is evaluated using the IEMOCAP
dataset, achieving a recognition accuracy of 79.42% for five emotions.

The co-attention mechanism proposed by Lu ef al. (2019) involves concatenating two
hidden-state vectors. In this mechanism, these vectors exchange key-value pairs in the
inputs, enabling the incorporation of features from one input channel into the other. The
co-attention mechanism has been utilized in SER for concatenation. To enhance the results
of the SER, some researchers attempted to incorporate additional resources beyond the
audio samples. Li, Bell ¢» Lai (2022) proposed a hierarchical co-attention fusion model that
integrates audio and text features. Different ASR outputs and fusion methods were
examined. The fusion techniques included concatenation, concatenation with co-attention
fusion, and hierarchical co-attention fusion. These techniques combine three encodings
from the self-attention layer to generate a comprehensive vector for the classification task.
The findings demonstrate that incorporating ASR and text through hierarchical
co-attention fusion significantly improves SER performance within the context of joint
ASR-SER training.

Zou et al. (2022) presented an end-to-end model for SER that utilizes multi-level
acoustic information with a co-attention. The model extracts multi-level acoustic
information using a CNN for spectrograms, BiL-STM for MFCC, and Wav2Vec2 for the
embedded high-level acoustic information. These multimodal feature inputs are fused
using a co-attention mechanism. The co-attention module combines different frames of
weighted Wav2Vec2 embeddings (W2Es) with frame weights generated by MFCC and
spectrogram features. The co-attention mechanism enables the fusion of multi-level
acoustic information by focusing on different frames of the W2Es based on the importance
assigned by the MFCC and spectrogram features. Recent studies have introduced
alternative architectures aimed at addressing key limitations in DL models for SER, where
proposed a capsule-enhanced neural network (CENN) (Zhang et al., 2024). This approach
combines multi-head attention, ResNet blocks, and capsule layers to capture hierarchical
and spatial relationships in acoustic features. This architecture demonstrated
improvements in both performance consistency and reproducibility across multiple SER
datasets. Unlike traditional CNN- or LSTM-based models, the CENN leverages capsule
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routing to retain pose and part-whole relationships within speech signals, providing a
more structured representation of emotional cues.

Due to a lack of a natural emotional database, Dejoli et al. (2020) aimed to collect a
realistic ASVP-ESD dataset containing six basic categories. Their approach consisted of
two stages. First, silence detection was applied to obtain sound segments. The
Mel-spectrogram feature was extracted from these segments, serving as the input for the
first stage of processing. CNN-BLSTM was used for the recognition task. The second stage
involved a combination of MFCC, ZRC rate, log-mel, and chroma features, with VGG
being utilized to recognize the emotion. As a result, they achieved a 74.39% success rate.
Zaiem et al. (2023) utilized the ASVP-ESD dataset to assess model generalization abilities
for zero-shot testing in emotion recognition tasks. They used it to test the impact of
larger-capacity probing heads on performance, inference costs, generalization, and
multi-level feature exploitation in speech self-supervised learning (SSL) benchmarking.
The best result on the dataset was a mean accuracy of 32.17% with the ECAPA-TDNN
probing head, compared to 20.97% with a time-pooling followed by a linear decode. Malik
et al. (2023) utilized the ASVP-ESD dataset and developed a non-speech emotion
recognition system for edge computing, with a focus on scream detection and
classification. Sawin (2023) studied the key aspects of SER, including feature extraction.
Mel spectrograms are used as input for ML algorithms and neural networks. Various ML
algorithms are compared, including SVM, Multi-layer Perceptron Classifier (MLP), and
Decision Tree Classifier (DTC), each with its preprocessing requirements. Neural
networks are central to the proposed framework, with a focus on CNNs and transfer
learning using EfficientNet-B4. Comprehensive experiments conducted using datasets,
preprocessing methods, algorithms, and network architectures demonstrate the
effectiveness of CNNs and the proposed framework in accurately classifying emotions
from audio files. The model achieved an accuracy of 50.27% and a recall (macro) of 51.01%
on the ASVP-ESD dataset. Kakuba, Poulose ¢ Han (2023) utilized the ASVP-ESD dataset
and combined it with other datasets, such as RAVDESS, TESS, and SAVEE, to create a
more diverse and realistic training set for bimodal speech emotion recognition
experiments. This approach aimed to tackle data scarcity issues and thus enhance
performance.

This study aims to integrate concepts from previous studies that leverage spatial and
temporal features extracted from parallel CNNs and Transformers. Our contribution
involves incorporating a co-attention mechanism with parallel CNNs and a Transformer
model. Different fusion methods have been tested and explored to determine the most
effective way of incorporating co-attention. Moreover, the study also investigates the
effectiveness of various features and augmentation techniques in increasing the dataset’s
diversity, thereby enhancing the robustness and generalizability of the proposed model.

SER FRAMEWORK

This section focuses on the main blocks of the model used to recognize emotional states
from speech signals. As illustrated in Fig. 1, the general framework of SER begins with the
input of an audio signal, followed by preprocessing steps such as denoising and
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—_ Pre-processing —— | Features Extraction | ———» Classifier ———» | Emotion Recognition

Sound Signal

Figure 1 The general flow of the SER models begins with input audio, the pre-processing step, extracting the acoustic features used to train the
classifier, and then recognizing the emotional state. Full-size K&] DOT: 10.7717/peerj-cs.3254/fig-1

pre-emphasis, and then feature extraction. The classifier analyzes the preprocessed features
and predicts the corresponding emotion labels. Finally, the SER system outputs the
recognized emotion based on the classification results obtained from the classifier. The
proposed SER model includes two CNN blocks, a parallel multi-head attention Transformer
encoder block, and a Co-Attention Mechanism. Using different methods, co-attention
components are employed to share weights between the two inputs, which will be discussed
in ‘Experimental Setup’. The approach combines a CNN for spatial feature representation
and a Transformer for temporal feature representation. A fully connected dense network
(FCDN) is incorporated to recognize the final emotional state from speech signals.

Parallel CNNs block

The size of the input region responsible for feature generation is known as the receptive
field. There is a strong correlation between classification accuracy and receptive field size,
indicating that an expanded receptive field contributes to improved classification
performance (Araujo, Norris ¢ Sim, 2019). To achieve this, two parallel CNNs are
employed to expand the receptive field and enhance feature extraction by combining
information from MFCC and spectrogram.

CNNs with 2D convolutional layers are the standard in image processing and are
designed to process input feature maps in the format (batch size, channel, height, width)
(Zenkov, 2020). The two parallel CNNss in this study are structurally identical and include
multiple layers for feature extraction, consistent with previous works (Han, Leng ¢ Jin,
2021; Bautista, Lee ¢» Shin, 2022; Ullah et al., 2023). Each CNN consists of three sequential
2D convolutional layers, followed by batch normalization, Leaky ReLU activation, max-
pooling, and dropout. The first CNN starts with an input channel depth of 1 and expands
the output feature map depth to 16, 32, and 64 across the three convolutional layers. Each
layer uses a 3 x 3 kernel with a stride of 1 and padding of 1. The max-pooling layers have
kernel sizes of 2 X 2,4 X 4, and 4 x 4, respectively. A 30% dropout rate is applied after
each max-pooling layer. Figure 2 illustrates the CNN block architecture.

The second CNN mirrors the first, using the same configuration and hyperparameters.
It also starts with an input channel depth of 1 and progressively increases the feature map
depth to 16, 32, and 64. This architectural symmetry ensures uniform and concurrent
processing of input data, enhancing feature extraction.
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Figure 2 The architecture incorporates one CNN, while the proposed model integrates two parallel CNNs.
Full-size K&l DOT: 10.7717/peerj-cs.3254/fig-2

Transformer encoder block

In prior studies, long short-term memory recurrent neural networks (LSTM-RNNs) were
employed to learn the sequences associated with each emotion (Senthilkumar et al., 2022).
However, these networks could only predict frequency distributions based on adjacent
time steps. To address this limitation, introducing a Transformer encoder (Vaswani et al.,
2017) allows the network to consider various previous time steps when predicting future
ones. This enhancement is driven by the understanding that emotions span broader
frequency distributions over multiple time steps rather than isolated ones (Han, Leng &
Jin, 2021; Bautista, Lee & Shin, 2022; Saleem et al., 2023; Ullah et al., 2023; Slimi, Nicolas &
Zrigui, 2022). Moreover, incorporating multi-head self-attention layers within the
transformer architecture enables the model to capture temporal features from the input
data based on its overall structure and content (Ullah et al., 2023).

The attention block functions as the third component, running in parallel with the two
CNNs. The input features are first passed through a max pooling operation within the
transformer to reduce the number of trainable parameters. Within the transformer,
context vectors are encoded as Key-Value pairs (K, V), where both represent hidden states
matching the input sequence length. At each time step, the previous output becomes a
query Q. The decoder then generates output terms by mapping the Q, K, and V'
triples. Outputs are computed as the weighted sum of all values from the encoded
representation:

Attenti K, V) = soft QK" 1% (1)
ention(Q, K, V) = softmax VA

Here, the dot product is scaled by the hidden state dimension n. As described by
Vaswani et al. (2017), self-attention mechanisms apply multiple scaled dot-product
self-attentions across different subspaces, where each Q, K, and V has its weight matrix.
This enables multi-head attention to assign varying importance to different parts of the
input. The outputs of all heads are then concatenated and linearly transformed:

MultiHead(Q, K, V) = [head,; head,; . .. ; head,,|Wo (2)
head; = Attention|QW;, KWk;, VWy;] (3)

where Wg;, Wi, Wy; are the learnable weight matrices.
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The transformer block, shown in Fig. 3, uses four self-attention heads. Each
self-attention layer consists of a feedforward network with two linear layers. A dropout
rate of 0.4 is applied to improve generalization, while ReLU activation prevents
saturation and improves computation efficiency. This transformer block captures
complex temporal dependencies and high-level representations from the input features
(Vaswani et al., 2017).

Co-attention-based fusion

Considering the similar roles of the three blocks of the acoustic information sources in the
final emotion recognition, the correlation among them was utilized to guide the feature
adaptation. Inspired by Li, Bell ¢» Lai (2022), this study investigates four different
methodologies for fusing input features to improve the model’s capabilities in SER. Here, a
co-attention module is introduced to combine various input features. Firstly, a direct
fusion approach is employed through concatenation, allowing the model to integrate
features from multiple inputs. Attention weights are calculated by taking the sigmoid of the
concatenated input as

X' = fatt(X; © X;) (4)

where fatt is the attention function used to compute the co-attention weights, and
X1, X, € RB*D are the input embeddings from two separate branches (e.g., two CNNs or a
CNN and Transformer), where B is the batch size and D is the embedding dimension. X’
represents the attention weights computed from the fused inputs.

These attention weights are applied element-wise to modulate the original embeddings,
enhancing the interaction between the two representations:

X =X -X

5
X, =X, X' ©)

where X| and X, are the scaled versions of the original embeddings.

The final co-attended representation is formed by fusing the two modulated
embeddings:
X/

coatt

=X + X). (6)

Here, X/, € RP*P denotes the final co-attended feature representation passed to the
next stage.

The co-attention mechanism is crucial for capturing intricate relationships
within input features (Lu et al, 2019). By calculating attention weights based on the
element-wise sum of tensors, the model dynamically adjusts the importance of each
feature. This process emphasizes informative elements while mitigating the impact
of less relevant ones. Such an adaptive mechanism refines feature representations
and facilitates the effective scaling of input features (Zou et al., 2022). This, in
turn, promotes cross-modal interactions, extracting pertinent information essential

for SER.
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EXPERIMENTAL SETUP

This section introduces the audio sources of the dataset used in the experiments and the
pre-processing implemented to enhance the speech signal quality. Extensive experiments
were conducted using two datasets, natural and semi-natural speech emotion datasets for
SER. Different features were utilized in the experiment, and various augmentation
techniques were applied to the datasets. Model training and architecture were also
discussed. The code used in this article is available to access (Ahlam7x, 2025). The datasets
used in this study include ASVP-ESD.v1 (Dejoli, He ¢» Xie, 2020), ASVP-ESD.v2

(Dejoli, He & Xie, 2021), and ShEMO (Mohamad Nezami, Jamshid Lou ¢ Karami, 2019).

Datasets

This section introduces the audio sources of the dataset used in the experiments and the
Pre-Processing implemented to enhance the speech signal quality. Extensive experiments
were conducted using two datasets, natural and semi-natural speech emotion datasets for
SER. Different features were utilized in the experiment, and various augmentation
techniques were applied to the datasets. Model training and architecture were also
discussed.

Two versions from the Audio Speech and Vision Processing Lab Emotional Sound
database (ASVP-ESD) were used as the natural datasets (Dejoli et al., 2020), and the Sharif
Emotional Speech Database (ShEMO) was used as a semi-natural dataset (Mohamad
Nezami, Jamshid Lou ¢ Karami, 2019). Table 1 summarizes the dataset utilized with
emotion and sample numbers. The first version of the ASVP-ESD dataset contains 6,350
audio files (Dejoli, He ¢ Xie, 2020). It is an emotion-based database containing both speech
and non-speech emotional sounds. The emotional sounds within the database include
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neutral, happy, sad, angry, fearful, surprised, and disgusted expressions. The audio files
were recorded and gathered from diverse sources such as YouTube channels and certain
utterances captured during real-life human interactions within natural environments
(Dejoli et al., 2020). Unlike other public emotional databases, the ASVP-ESD stands out for
its heightened realism, unscripted nature, and absence of language restrictions. In this
study, the disgust emotion was excluded because there was only a limited number of
samples. The second version of the ASVP-ESD dataset (Dejoli, He ¢~ Xie, 2021) contains
13,965 audio files. This version expands beyond the conventional set to include 13 distinct
labels for emotional expressions: boredom, neutral, happy, sad, angry, fearful, disgust,
surprise, excited, pleasure, pain, disappointment, and breath. The initial 5,105 audio files
were annotated by five individuals based on their emotional perception, followed by a
voting process to determine the predominant emotion. For subsequent audio files, three
annotators employed the same procedure. As in the first version, there are no language
restrictions, and the audio files cover Chinese, English, French, Russian, and other
languages. Figure 4 illustrates the distribution in both versions of the ASVP-ESD dataset,
representing the difference between versions 1 and 2, where complex emotions have been
added to the new version.

The ShEMO dataset (Mohamad Nezami, Jamshid Lou ¢ Karami, 2019) contains 3,000
semi-natural speech files, totaling 3 h and 25 min of speech samples sourced from online
broadcast radio plays. These audio files are provided in .wav format, with a 16-bit
resolution, a sampling rate of 44.1 kHz, and a single-channel configuration. It is also
orthographically and phonetically transcribed according to the International Phonetic
Alphabet (IPA). The dataset involves 87 individuals, including 31 females and 56 males,
whose native language is Persian. These participants expressed the five primary emotions
of anger, fear, happiness, sadness, surprise, and a neutral state. Emotion labels for the
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Table 1 Summary of the datasets used in terms of the number of emotions and samples.

Ref. Dataset Emotion number Samples number
Dejoli, He & Xie (2020) ASVP-ESD Version 1 7 6,350 samples
Dejoli, He & Xie (2021) ASVP-ESD Version 2 13 13,965 samples
Mohamad Nezami, Jamshid Lou & Karami (2019) ShEMO 6 3,000 samples

Emotion Distribution

1000 A

800 A

600 -

400 -

Number of Samples

200 A

sadness anger happiness surprise fear neutral
Emotions

Figure 5 Data distribution based on emotions for the ShEMO dataset.
Full-size 4] DOT: 10.7717/peerj-cs.3254/fig-5

speech files were assigned by 12 individuals, including six males and six females, through
tagging, and a voting mechanism determined the final labels. The average duration of
utterances in this dataset is 4.11 s, with a standard deviation of 3.41 s. Figure 5 shows the
distribution of the ShEMO dataset.

The use of cross-cultural datasets further supports the generalization ability of our
model. Employed ASVP-ESD Versions 1 and 2, which contain multiple languages,
including Chinese, English, and French, capturing a wide range of expressive variations.
Additionally, utilized the SAEMO dataset, which comprises Persian emotional speech in a
single language context. Since our approach focuses on acoustic features rather than
textual input, it allows the model to generalize emotional cues across languages. This is
particularly advantageous in speech emotion recognition, as it minimizes the impact of
linguistic differences and highlights the universal nature of emotional expression in audio
signals.

Pre-processing

The preprocessing pipeline for the audio data involves several critical steps to enhance the
quality and relevance of the input waveform data. Firstly, the silence removal process
utilizes the WebRTC voice activity detector (VAD) Wiserman (2016) (fied) to identify and
remove silent regions within the waveform. This is achieved by converting the waveform to
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an intl6 format for compatibility with Webrtcvad and then splitting the waveform into
frames, where each frame’s duration is represented in milliseconds. The minimum silence
duration represents the minimum duration required for a segment to be considered silent;
this study used 30 and 500 for frame duration and minimum silence duration, respectively.
The waveform is segmented into frames of the specified duration using the sample rate.
The VAD analyzes each frame to determine whether it contains speech or silence. Frames
classified as containing speech are considered “non-silent” frames. If no non-silent frames
are detected, indicating that the entire waveform is silent, the original waveform is
returned unchanged.

Following silence removal, the denoising methodology utilizes a technique known as
spectral subtraction (Lu ¢ Loizou, 2008). It involves transforming the input signal from
the time domain to the frequency domain using the Short-Time Fourier Transform
(STFT), which represents the time-frequency characteristics of the signal. The magnitude
spectrum is then computed by taking the absolute value of the complex-valued STFT
coefficients. By estimating the noise spectrum from portions of the signal containing only
noise and subtracting it from the magnitude spectrum of the original signal, spectral
subtraction effectively attenuates the noise components in the spectrum. The denoised
magnitude spectrum is then transformed back to the time domain using the inverse STFT
operation. This process reconstructs the denoised waveform from its frequency-domain
representation, yielding the final denoised waveform output.

The preemphasis process aims to enhance the high-frequency components of an audio
waveform, thereby improving its clarity and intelligibility (Paliwal, 1984). This process
begins by taking the input waveform and applying a mathematical operation, as shown in
Eq. (1), which emphasizes the differences between consecutive samples. For each sample in
the waveform, except the first one, a fraction of the previous sample is subtracted from the
current sample. The strength of this emphasis is controlled by a preemphasis coefficient,
with a default value of 0.97. By boosting the higher frequencies relative to the lower
frequencies, preemphasis helps mitigate the effects of noise and distortion in the audio
signal.

waveform_preemphasized[i] = waveform[i] — coefficient x waveform[i — 1] (7)

where waveform [i] represents the current sample in the waveform, waveform [i — 1]
represents the previous sample, coefficient is the preemphasis coefficient 0.97, and
waveform_preemphasized [i] is the preemphasized sample at index i. Combining these
techniques aims to prepare the audio data for subsequent analysis and modeling by
minimizing noise and irrelevant information. The input samples used in the experiments
have a fixed duration of 5 s. In cases where the original audio samples are shorter than 5 s,
padding is applied to ensure uniformity in the input duration across all samples.

Data augmentation techniques

The challenge of small and imbalanced natural data for emotion recognition is a common
problem, where certain emotions have more samples than others (Fahad et al., 2021b),
resulting in a model being prone to bias toward emotions that have a majority of samples.
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Additionally, small datasets are more sensitive to overfitting, which further complicates the
training process. To address this issue, data augmentation techniques are employed to
increase the dataset’s variety, ensuring a more balanced representation of emotions and
reducing overfitting. Several approaches have been used in the data to address this issue,
including various augmentation methods, class weighting, and the generation of synthetic
samples for minority classes (Haixiang et al., 2017; Alex et al., 2023; Abdelhamid, 2023;
Shih, Chen & Wang, 2017; Bautista, Lee ¢ Shin, 2022; Schliiter ¢ Grill, 2015). Data
augmentation serves as a method to enhance the performance of models by artificially
increasing the amount of data used in training (Bautista, Lee ¢ Shin, 2022). Additionally, it
also helps improve the small-sized dataset, which tends to overfit (Van Dyk ¢» Meng, 2001).
Therefore, more training samples will be generated to help mitigate this problem. In this
work, several attempts have been made using various techniques to increase the variety of
the data and prevent overfitting. These techniques include Additive White Gaussian Noise
(AWGN) and Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al.,
2002), as well as augmenting the data with pitch-shifting, class weights, and
under-sampling the majority class. To preserve emotional clarity, a small amount of noise
was added during the augmentation, ensuring that the emotional characteristics of the
speech signals remained recognizable and consistent.

SMOTE is specifically developed to handle instances of minority classes by generating
synthetic samples for that class. It specifies the minority class and creates synthetic
examples. This process involves discovering the minority class, locating k-nearest
neighbors, and creating synthetic instances along the line segments connecting the original
instance to its neighbors. By introducing synthetic samples, SMOTE helps balance class
distribution, contributing to improved model performance and mitigating bias toward
majority classes (Chawla et al., 2002). Figure 6 illustrates the process of generating
synthetic samples for the minority class.

Class weighting is a technique used to address imbalances in the distribution of classes
within a dataset. It involves assigning different weights to different classes based on their
representation in the dataset, where higher weights are given to classes with fewer samples
(minority classes) and lower weights to classes with higher samples (majority classes). By
assigning higher weights to minority classes and lower weights to majority classes, the
algorithm prioritizes the underrepresented classes during training (Singh, 2023). Sampling
techniques for addressing class imbalance involve adjusting the distribution of samples to
achieve a more balanced representation of the classes. One approach is under-sampling,
where the goal is to mitigate the impact of an imbalanced distribution by discarding
instances from the majority class. A straightforward and highly effective undersampling
method is Random Under Sampling (RUS), which involves randomly removing examples
from the majority class (Tahir et al., 2009). Pitch-shifting is a technique that involves
altering the audio signal’s pitch (frequency) to create variations in the dataset. It includes
modifying the pitch of the original audio signal without affecting its temporal
characteristics (Sturm, Daudet & Roads, 2006). This augmentation method is valuable for
training models that may encounter pitch variability across different speakers and
emotional states.
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Figure 6 The synthetic minority oversampling technique generates synthetic samples in the minority
class by creating new instances along the line segments that join the k-nearest neighbors of existing
minority class instances. Full-size Kal DOI: 10.7717/peerj-cs.3254/fig-6

The AWGN technique involves adding Gaussian noise to a signal. This noise, derived
from a normal distribution with a zero-mean time average, is evenly distributed across the
frequency range. The process involves combining two signals, and the resulting output is
the signal-to-noise ratio (SNR), which can be adjusted by signal scaling. The SNR is
randomly chosen between 15 and 30 dB. It follows a uniform distribution on the decibel
scale, corresponding to a logarithmic scale similar to the one used in human hearing. A
previous study (Huang et al., 2013) has noted that including AWGN has benefited the
performance of various classifications in audio tasks. Figure 7 illustrates the waveform
signal before and after applying AWGN, and Fig. 8 shows the number of samples per
emotion before and after augmentation, highlighting increased dataset size and improved
class balance.

Features and model training

This section focuses on the critical aspect of feature extraction within the SER
framework. Robust feature extraction enables the model to capture and understand the
intricate patterns in audio signals, facilitating accurate emotion recognition. In this
context, we explore the extraction of Mel Spectrograms and MFCCs as fundamental input
features for the SER model. Additionally, the architecture of the various models is also
covered. All experiments were conducted using Python v3.10.12 in Google Colab with
CUDA v11.8. The main deep learning framework used was PyTorch v1.13.1, along

with torchaudio v0.13.1 and torchvision v0.14.1. Feature extraction and signal processing
relied on librosa v0.10.1, while IPython v8.12.2 was used for audio and image display
during interactive analysis. These specifications ensure reproducibility and consistency of
results.

Features extraction

Two commonly used features in speech recognition tasks are the Spectrogram and MFCC.
Both have been extensively used in previous studies (Ullah et al., 2023; Han, Leng & Jin,
2021; Bautista, Lee ¢ Shin, 2022; Saleem et al., 2023), as each captures distinct aspects of
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the audio signal. Their key difference lies in how they represent frequency. The Mel
spectrogram transforms an audio signal’s spectrum into the Mel scale. This involves
segmenting the signal into small overlapping frames, applying a Fourier transform to
each frame to obtain the spectrum, and then mapping it onto the Mel scale. The Mel scale
is linearly spaced and derived through STFT (Joshi, Pareek & Ambatkar, 2023). In this
study, we used a window length of 512 samples and a hop length of 256 samples to
compute the Mel spectrogram features, which control the temporal resolution of the
analysis.

We experimented with 40 and 128 Mel bins to represent the frequency content of audio
signals. Mel spectrograms are effective in SER tasks as they capture variations in pitch,
tone, and rhythm—Lkey elements in emotional expression. Representing frequency content
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on a Mel scale allows the model to focus on spectral areas most relevant to human auditory
perception, which is essential for detecting subtle changes in vocal intonation.

MFCCs, on the other hand, use a quasi-logarithmic frequency scale. These coefficients
represent the short-term power spectrum of an audio signal (Bui, Oh ¢ Yi, 2020), obtained
by applying the Discrete Cosine Transform (DCT) to the log Mel power spectrum, with a
focus on the spectral envelope (Hashem, Arif & Alghamdi, 2023). The parameters are the
same, but MFCCs typically use 40 Mel bins. MFCCs are valuable in SER because they
compress the audio into a lower-dimensional space, emphasizing essential spectral features
while minimizing noise and irrelevant information. This enables the model to focus on
significant speech characteristics that vary with emotion, such as timbre (Abdul &
Al-Talabani, 2022).

In this work, we combined MFCCs and Mel spectrograms to help the model capture
both fine-grained frequency variations and broader temporal patterns in speech. This
combination, supported by a co-attention mechanism, enables the model to dynamically
weigh and focus on the most informative aspects of each representation based on the input
(Zou et al., 2022), allowing it to detect subtle emotional shifts in speech.

We also conducted experiments using MFCCs and Mel spectrograms separately to
assess their impact on emotion recognition. Figure 9 illustrates the steps involved in MFCC
extraction.

Features concatenation

A simple concatenation method combines Mel-spectrogram and MFCC features, which
leverage the complementary strengths of each feature set. Mel-spectrogram features
capture spectral information, offering insights into the frequency content of the audio
signal over time. At the same time, MFCCs represent temporal characteristics by depicting
the short-term power spectrum of the signal. This concatenation operation results in a
combined feature set where the features from both MFCCs and Mel-Spectrogram are
stacked vertically with the same timesteps. By concatenating these two feature sets along
the feature dimension, the resulting fused feature set provides a comprehensive
representation of the audio signal, integrating spectral and temporal information. This
fusion enhances the discriminative power of the features, enabling the SER model to
capture a broader range of acoustic cues associated with emotional expressions in speech,
thus improving the model’s performance in emotion recognition tasks.

Emotion recognition using proposed DL methods

Version one of the ASVP-ESD dataset was used in the four different models. Figure 10
illustrates all models utilized in this study, where M, is the mel spectrogram features,
Murce is MFCC features, and Moy, is @ concatenation of M, and Myrcc. The time steps
are represented as N. The mel spectrogram has a size of 128 x 313, while the MFCC has a
size of 40 x 313. After combining them, the resulting size is 168 x 313. Figure 10A
illustrates the outputs from the two parallel convolutional blocks and the transformer
block concatenated to form a complete embedding. Figure 10B shows a similar framework.
However, this model includes co-attention between the two parallel convolutional
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embeddings and combines them with the Transformer, identical to the previous model.
The third model in Fig. 10C resembles the one in Fig. 10B. Nevertheless, it incorporates an
additional co-attention mechanism between the outputs of the CNNs and the
Transformer, creating a hierarchical structure. The final model, depicted in Fig. 10D,
utilized co-attention among the three inputs, specifically parallel CNNs with Transformer
embeddings. All models share the same architecture, where a linear layer takes these
embeddings as input and produces output logits. The softmax function calculates
probabilities associated with each emotion label, generating the final output probabilities
for classification.

The input consisted of a combination of MFCC and mel spectrogram for all four
models. The models were trained using stochastic gradient descent (SGD) with focal loss
(FL) as the objective function. The initial learning rate was set to 0.01, with a weight decay
of 1 x 1072 and a momentum of 0.8. A batch size of 32 was selected based on empirical
testing; it offered a good trade-off between training stability, convergence speed, and model
generalization on the validation set. The learning rate value of 0.01 was determined
through a learning rate range test, where it was identified as the point at which the steepest
decrease in validation loss occurred. Early stopping was implemented as a
regularization strategy to prevent overfitting and reduce training time. The validation loss
was monitored during training, and if no improvement was observed for 10 consecutive
epochs, the training process was terminated. This approach ensures that the model
maintains good generalization performance while avoiding unnecessary computation and
overfitting (Ferro et al., 2023). Various values for key hyperparameters, such as learning
rate, batch size, and momentum, were systematically tested. The final values were selected
based on the combination that achieved the best validation performance across several runs.
All datasets were split into training, validation, and testing subsets using an 8:1:1 ratio,
ensuring that each stage of the training pipeline received an appropriate amount of data
coverage.

Evaluation metrics

Evaluation metrics, including WA, UW, precision, recall, F1-score, and confusion metrics,
were employed to assess the predictive performance of the models. WA and UW are two
metrics used to evaluate the performance of classification models, each with its
significance. Weighted accuracy considers the distribution of samples across different
classes by assigning a weight to each class based on its sample size. Classes with more
samples are more critical in calculating overall accuracy. Weighted accuracy is particularly
valuable in scenarios where the dataset is imbalanced, meaning some classes have
significantly more samples than others. By giving more weight to classes with larger sample
sizes, weighted accuracy provides a more accurate assessment of the model’s performance,
especially for most classes (Glodek et al., 2011). Unweighted accuracy treats all classes
equally, regardless of their sample sizes. Each class contributes equally to the overall
accuracy calculation, irrespective of whether it is a majority or minority class (Gupta,
Fahad & Deepak, 2020). Unweighted accuracy helps assess the model’s ability to classify all
classes correctly without bias towards any particular class. However, in imbalanced
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datasets, unweighted accuracy may not adequately reflect the model’s actual performance,
as the majority classes could disproportionately influence it.
The weighted accuracy and unweighted accuracy formulas are given by:

1 & TP; + TN;

WA= 23, 8
N;W TP, + TN, + FP, + EN, ®
1 & TP; + TN;

UW = — 9
NZTP,-+TN,-+FP,-+FN,- ©

i=1

where N represents the total number of classes, w; is the weight assigned to class i, TP; is
the number of true positives, TN; is the number of true negatives, FP; is the number of false
positives, and FN; is the number of false negatives for class i. Both weighted and
unweighted accuracies are reported as percentages in this article.

The precision is defined as follows:

Precisi TP (10)
recision = ——.
ecisio TP+ FP
The recall formula is:
TP
Recall = ——. 11
T TIP AN (1)

The F1-score is defined as follows:

Precision x Recall
Fl-score = 2 x — (12)
Precision + Recall

where TP is the number of true positive predictions, FP is the number of false positive
predictions, and FN is the number of false negative predictions.

RESULTS AND DISCUSSION

This section covers the performance evaluation and discusses different aspects of the
proposed SER models. The performance of various feature types is evaluated. The impact
of different augmentation techniques is considered, and the performance analysis of the
proposed models on the ASVP-ESD Version 1 dataset is discussed. The performance of
parallel CNNs with the Transformer and Hierarchical Co-Attention architecture is also
covered in this dataset. The evaluation includes the ASVP-ESD Version 2 and ShEMO
datasets. These comprehensive analyses provide insights into the effectiveness of the
models across various datasets, illuminating their potential for real-world applications in
speech emotion recognition.

Evaluation of different augmentation techniques

As covered in the experiments section, various data augmentation methods were applied to
the parallel CNNs with the Transformer model using MFCC features on version one of the
ASVP-ESD dataset, with their outcomes summarized in Table 2. The results demonstrate
the effectiveness of these techniques in enhancing model performance. When no
augmentation was applied, the model achieved the baseline performance. Applying RUS
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Table 2 Results of different augmentation techniques on parallel CNNs with Transformer model on
version one of the ASVP-ESD dataset.

Augmentation techniques Results (Accuracy)
No augmentation 51%
Class weighting 59%
RUS 59%
SMOTE 60%
Pitch-shifting 62%
AWGN 63%
Note:

Bold values indicate the best performance.

and class weighting enhanced the result by 8%, highlighting their impact on addressing
class imbalance. SMOTE and pitch-shifting also contributed positively, with pitch-shifting
leading to the most significant improvement. This technique, which modifies the pitch of
audio signals, introduces beneficial variations conducive to SER tasks. However, the
highest accuracy was observed with AWGN, which enhanced the result by 12%, reducing
the natural noise influence inherent in the natural dataset.

To evaluate the specific impact of AWGN on individual emotions, Fig. 11 presents the
result in confusion matrices with and without AWGN augmentation. The number of
emotion classes that were classified correctly increased, and the number of misclassified
samples decreased in most classes after applying the AWGN augmentation, with
improvements in correct predictions for the happy and neutral classes. Although there is a
slight decrease in some emotions, such as the surprise class, this is a minor change, given
the progress in other emotions.

Table 3 provides insights into the impact of AWGN augmentation on the
performance metrics of parallel CNNs with a Transformer and hierarchical co-attention
model across various datasets. The results demonstrate improvements ranging from 3% to
7% in WA and UW. Without AWGN augmentation, the model exhibited varying
performance across datasets. However, upon applying AWGN augmentation,
enhancements in WA and UW were consistently observed across all datasets. Upon
conducting a comparative analysis of these augmentation techniques and their
corresponding results, it becomes evident that AWGN was the most promising method for
performance enhancement in the experiments. This is attributed to its ability to introduce
diverse noise patterns in the new synthetic samples, which improves the training data,
balances the classes, and enhances the model’s robustness to various acoustic
environments and speech variations. Therefore, AWGN was selected as the augmentation
technique for all the following experiments due to its remarkable efficacy in enhancing
model performance.

Performance of different feature types
The influence of different input features on the model performance is explored. Mel
spectrograms were extracted using diverse configurations, including Mel bands set to 128
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Figure 11 Confusion matrices of emotion recognition using parallel CNNs with transformer and
hierarchical co-attention model with and without AWGN augmentation on ASVP-ESD version
one. (A) Confusion matrix without AWGN augmentation, and (B) confusion matrix with AWGN
augmentation. Full-size K&l DOT: 10.7717/peerj-cs.3254/fig-11

Table 3 Summary of results with and without AWGN augmentation.

Dataset No AWGN augmentation With AWGN augmentation
ASVP-ESD V 1 WA: 67% WA: 70%
UW: 62% UW: 67%
ASVP-ESD V 2 WA: 47% WA: 52%
UW: 42% UW: 45%
ShEMO WA: 70% WA: 76%
UW: 59% UW: 68%

and 40. The selection of Mel bands within the range of 40 to 128 is standard practice in
speech and audio processing, with higher Mel values offering finer spectral details.
However, this also increases feature vector dimensionality, potentially necessitating
more computational resources and memory. Additionally, MFCCs were computed with
40 Mel bands. The investigation focused on combining the Mel spectrogram and

MFCC under two scenarios: one with 80 features, where both Mel bands were set to

40, and another with 168 features, with Mel bands for the Mel spectrogram set to 128 and
Mel bands of the MFCC to 40. As depicted in Table 4, the results highlight the impact of
feature variations on model accuracy when utilizing parallel CNNs with a Transformer on
version one of the ASVP-ESD dataset. The combination of the Mel spectrogram with
128 Mel bands and the MFCC with 40 Mel bands yielded the highest accuracy. This
outcome underscores the efficacy of integrating these specific feature configurations, as it
harnesses both the rich spectral information captured by Mel spectrograms and the
temporal characteristics represented by MFCCs, thereby enhancing the overall model
performance.
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Table 4 Results of different features used with parallel CNNs with Transformer on version one of the
ASVP-ESD dataset.

Features Test accuracy
Mel spectrogram, Mel = 40 59%
Mel spectrogram, Mel = 128 61%
MFCC, Mel = 40 63%
MFCC, Mel = 128 62%
Combination of Mel spectrogram Mel = 40 and MFCC Mel = 40 65%
Combination of Mel spectrogram Mel = 40 and MFCC Mel = 128 66%
Note:

Bold values indicate the best performance.

Performance of the proposed models on ASVP-ESD version 1

Different architectural designs were tested on the three datasets to determine the most
effective way to incorporate co-attention mechanisms into the emotion recognition model.
For the ASVP-ESD version 1, the first model, which included no co-attention and parallel
CNNs with Transformer, yielded results as shown in Table 5. This low performance can be
due to the narrow interaction between the CNN and Transformer outputs. Simple
concatenation combines features and does not fully capture the complex relationships
between the local patterns found by CNNs and the broader, sequence-based context
handled by the Transformer. As a result, the model may ignore the important relationship
between different characteristics, resulting in less accurate representations of emotions and
poor overall performance. This baseline model establishes a reference point for evaluating
the effectiveness of subsequent enhancements. The second model, parallel CNNs with
Transformer and one co-attention between two CNNs, demonstrated improvements
across all metrics. This suggests that incorporating a single co-attention enhanced the
model’s ability to capture relevant features and relationships within the input data, thereby
improving emotion recognition. The third model, parallel CNNs with Transformer and
hierarchical co-attention, exhibited additional performance improvements. A hierarchical
co-attention mechanism enabled the model to focus on different features, thereby
improving its overall recognition capabilities. The model with One Co-attention fusion for
all three inputs. Although this approach utilizes a unified co-attention for multiple inputs,
it did not outperform the model with hierarchical co-attention. The results indicate that
incorporating co-attention has a positive impact on emotion recognition performance,
highlighting the significance of capturing both global and local dependencies within the
input data, thereby enhancing the accuracy and robustness of emotion recognition models.
Table 5 summarises the performance of the four models on the ASVP-ESD dataset version
1, giving more details about their accuracy in recognizing different emotions. The lower
accuracy for emotions like happy, angry, and fear in the parallel CNNs with Transformer
and hierarchical co-attention model may be due to its inability to capture complex
interactions between features, which reduces its ability to emphasize direct features that
simpler models can capture more effectively. Anger and Fear also share overlapping
acoustic characteristics with sadness, such as heightened intensity, which can lead to
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Table 5 Results for the four models on version one of the ASVP-ESD dataset.

Model used Happy Sad Angry Fear Surprised Neutral
Parallel CNNs with Transformer 70.33% 70.20% 72.58% 62.66% 58.73% 49.29%
Parallel CNNs with Transformer and one co-attention 59.32% 76.73% 75.80% 80.00% 60.31% 49.29%
Parallel CNNs with Transformer and hierarchical co-attention 66.10% 79.59% 70.97% 64.00% 74.60% 47.89%
One Co-attention fusion for all inputs 63.55% 81.42% 79.03% 72.00% 46.03% 43.66%

Note:
Bold values indicate the best performance.

confusion. Furthermore, since the data used in the experiment is natural, it contains
background noise, which makes the model sensitive to these emotions; this explains why
the model did not perform as well in those emotions, despite achieving the highest overall
result.

Performance of the parallel CNNs with transformer and hierarchical
co-attention on ASVP-ESD dataset version 1

A detailed examination is conducted on the performance of parallel CNNs with the
Transformer and Hierarchical Co-Attention model on the ASVP-ESD dataset. Building
upon the results presented in ‘Performance of the Proposed Models on ASVP-ESD
Version 1’, which highlighted the overall enhancements achieved with the inclusion of
hierarchical co-attention, this section focuses on this model, which shows promising
improvements. The hierarchical co-attention mechanism enables the model to distinguish
and prioritize different features within the input data, thereby enhancing its recognition
capabilities. The confusion matrix in Fig. 12 displays the model’s performance for emotion
recognition. Based on the diagonal values, which indicate correct predictions, the model
performs best at identifying sad, with the highest number of correct classifications,
followed by happy. This indicates that the model has learned features that are quite distinct
for these emotions, likely due to their expressive characteristics, which are easier to
distinguish. It also performs relatively well with surprise, anger, and fearful emotions.
However, the performance drops for the neutral class. The nature of the neutral samples in
the data has limited sample and high-level variation between neutral sounds, including
silence, yawn, and other similar sounds (Dejoli et al., 2020). After listening to the samples,
it was observed that the natural emotion carries a slow, low tone, which might have
contributed to the confusion with other emotions. This diversity introduces ambiguity in
labeling and model training, making it inherently difficult to distinguish neutral emotions.
Additionally, the overlapping acoustic features with other emotions, such as sadness or
boredom, further increase classification challenges. Additionally, samples from the
surprise class were misclassified as neutral. This aligns with the study introduced by the
dataset (Dejoli et al., 2020), which found that specific emotions, such as surprise,
realization, neutrality, and contempt, show close similarities in speech utterances. As Dejoli
et al. (2020) reported, their model achieved an accuracy of 74.39%. Due to the lack of
detailed information and the inability to communicate with the authors, we were unable to
reimplement their model for a fair comparison. Some of their data preprocessing steps,
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Figure 12 Confusion matrix for the parallel CNNs with transformer and hierarchical co-attention
model on ASVP-ESD dataset version 1. Full-size Kl DOTI: 10.7717/peerj-cs.3254/fig-12

Table 6 Summary of results in terms of precision, recall, and Fl-score for each emotion on
ASVP-ESD V1 dataset.

Emotion Precision Recall F1-score
Surprised 64% 75% 69%
Angry 66% 71% 68%
Fearful 83% 64% 72%
Happy 67% 66% 67%
Neutral 39% 48% 43%
Sad 84% 80% 82%

such as data removal, were not specified. Therefore, we have reported their results as
published. Table 6 comprehensively analyzes precision, recall, and F1-score metrics in the
ASVP-ESD V1 datasets used for various emotions.

Performance of the proposed models on ASVP-ESD version 2

Various architectural designs were tested on the ASVP-ESD version 2 dataset, mirroring
the process used in version one. The baseline model, Parallel CNNs with Transformer, was
compared against progressively enhanced versions. Adding a single co-attention layer
resulted in slight improvements across all metrics. However, the most significant
performance boost was observed in the third model, which incorporated hierarchical
co-attention. This model improved performance in WA and UW compared to the
baseline. The fourth model, which also utilized one co-attention layer, achieved results
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Table 7 Results for the four models on version two of the ASVP-ESD dataset.

Emotion Parallel CNNs with  Parallel CNNs with Transformer  Parallel CNNs with Transformer and One co-attention fusion
Transformer and one co-attention hierarchical co-attention for all inputs

Disgust 80% 6.6% 37.7% 27.7%
Surprised 4.4% 42.7% 35.8% 56.6%

Breath 38.8% 0% 61.1% 66.6%
Disappointment 0% 0% 13.5% 8.1%

Excited 0% 0% 26.8% 21.9%

Pain 39.2% 10.7% 38.0% 16.6%
Pleasure 5.4% 10.8% 32.4% 29.7%

Angry 23.9% 39.0% 43.8% 41.7%

Fearful 27.1% 53.3% 55.9% 61%

Happy 12.2% 18.1% 59.3% 52.4%
Neutral 55% 73.7% 53.1% 36.2%

Sad 79.2% 74.0% 79.2% 82.5%
Boredom 3.6% 0% 58.1% 69%

Note:

Bold values indicate the best performance.
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Figure 13 Confusion matrix for the parallel CNNs with transformer and hierarchical co-attention
model on ASVP-ESD dataset version 2. Full-size K&l DOT: 10.7717/peerj-cs.3254/fig-13

similar to those of the third model. Overall, the third model stands out as the most effective
across most emotional categories. Table 7 presents a detailed comparison of the
performance of the four models on the ASVP-ESD version 2 dataset, providing insights
into their ability to recognize various emotions.
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Table 8 Summary of results in terms of precision, recall, and Fl-score for each emotion on the
ASVP-ESD V2 dataset.

Emotion Precision Recall F1-score
Surprised 45% 36% 40%
Angry 41% 44% 42%
Fearful 63% 56% 59%
Happy 54% 59% 56%
Neutral 45% 53% 49%
Sad 78% 79% 79%
Disgust 55% 38% 45%
Breath 58% 61% 59%
Disappointment 42% 14% 20%
Excited 29% 27% 28%
Pain 32% 38% 35%
Pleasure 44% 32% 38%
Boredom 39% 58% 46%

Performance of the parallel CNNs with transformer and hierarchical
co-attention on ASVP-ESD dataset version 2

The second version of the ASVP-ESD dataset offers a more diverse and complex range of
emotional expressions, capturing a broader spectrum of human experiences. This version
includes emotions across multiple languages, including Chinese, English, and French. Our
model leverages acoustic features that capture universal vocal cues, enabling it to generalize
effectively across these languages without requiring language-specific adaptation. This
enhances its robustness for cross-lingual SER. However, the increased diversity introduces
challenges in capturing features, particularly complex emotions that may be difficult to
distinguish and easily confused with similar emotions. Despite these challenges,
implementing the dataset in parallel CNNs with a Transformer and hierarchical
co-attention model yielded significant performance improvements. These results shed
light on the complexities introduced by the expanded emotional categories and the
associated class imbalances (Griffiths, 2002). The confusion matrix presented in Fig. 13
provides insights into the performance of an emotion recognition model. It performs well
in identifying certain emotions, indicating a strong ability to capture the unique
characteristics or patterns associated with those states. Conversely, the model tends to
confuse certain emotions with others, which can be attributed to the subtle nuances and
complexity inherent in natural, real-world data. The misclassifications may be a result of
overlapping features between different emotional states. Emotions typically expressed with
similar vocal tones and patterns might be more difficult for the model to distinguish.
Moreover, since the data represents natural scenarios, the emotional expressions may not
be as exaggerated as those in a controlled environment, further challenging the model’s
accuracy. Table 8 represents the precision, recall, and F1-score metrics in the ASVP-ESD
V2 dataset. ASVP-ESD V2 introduces more emotions for evaluation. Disappointment,
breath, and excitement exhibit weaker overall performance than other emotions in the
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Table 9 Results for the four models on the ShEMO dataset.

Model used Anger Happiness Neutral Sadness Surprise
Parallel CNNs with Transformer 96.2% 0% 65% 13.3% 8.6%
Parallel CNNs with Transformer and one co-attention 83.9% 14.2% 85.4% 53.3% 52.1%
Parallel CNNs with Transformer and hierarchical co-attention 80.1% 28.5% 91.2% 48.8% 60.8%
One Co-attention fusion for all inputs 92.4% 14.2% 77.6% 57.7% 34.7%

Note:
Bold values indicate the best performance.

dataset. This could be attributed to their subjective and complex nature, which may involve
subtle cues and contextual nuances that are challenging for the model to accurately capture
and interpret.

Another experiment was conducted using the same filtering methodology as Sawin
(2023), which involved removing all audio files labeled with breath sounds and filtering out
all Chinese-language samples, resulting in 9,920 samples remaining. As a result, it
improved by almost 2%, reaching an accuracy of 52% compared to the result reported by
Swain (Sawin, 2023), which achieved an accuracy of 50.27%. Removing audio files labeled
with breath sounds and filtering out Chinese-language samples reduced the dataset noise
and eliminated potentially confusing elements. Breath sounds, while present in audio
recordings, do not directly represent specific emotional states and may introduce
ambiguity, thus confusing the model. Additionally, some Chinese-language samples
contain high background noise levels, which may hinder the model’s ability to
distinguish emotional features accurately. Excluding these sample results, more
apparent distinctions between different emotional states are evident, which enhances
performance.

Ekman’s theory posits six basic emotions: anger, neutrality, happiness, sadness, disgust,
and fear (Ekman, 1999), and most studies use these emotions for recognition purposes. In
light of this theory, an additional experiment was conducted using the second version of
the ASVP-ESD dataset. A filtering process was employed to retain only those samples
corresponding to the six basic emotions. As a result, out of the 13,965 samples in the
dataset, 9,693 samples were selected for further analysis. The experiment evaluated the
model’s performance when confronted with basic emotions. The results revealed a WA of
67%, UW of 65%, and accuracy of 68%. This outcome suggests that more complex emotion
models face challenges in recognition compared to their counterparts, which are designed
to identify the fundamental and widely recognized basic emotions.

Complex emotions often involve subtle variations in vocal tone, intensity, and timing,
making their detection challenging. Additionally, their subjective and context-dependent
nature makes interpretation from sound alone tricky. Unlike basic emotions, which have
clearer acoustic correlates and are relatively universal, complex emotions may involve
combinations of multiple emotions or exhibit overlapping features with other emotions,
leading to ambiguity in classification; furthermore, cultural and individual differences
further complicate the recognition of complex emotions, as expressions vary widely across
different contexts and individuals (Ekman, 1999).
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Figure 14 Confusion matrix for the parallel CNNs with transformer and hierarchical co-attention
model on ShEMO dataset. Full-size K&l DOT: 10.7717/peerj-cs.3254/fig-14

Performance of the proposed models on ShEMO dataset

In evaluating the emotion recognition models on the ShEMO dataset, the initial results of
the Parallel CNNs with Transformer showed moderate performance. The integration of
co-attention demonstrated discernible enhancements across various metrics. The parallel
CNNs with Transformer and hierarchical co-attention further improved the results
significantly. These findings highlight the crucial role of co-attention mechanisms,
particularly hierarchical co-attention, in refining emotion recognition models designed
explicitly for the ShEMO dataset. Table 9 summarizes the performance of the four models
on the ShAEMO dataset, providing detailed insights into their accuracy in recognizing
various emotions.

Performance of the parallel CNNs with transformer and hierarchical
co-attention on ShEMO dataset

The ShEMO dataset represents semi-natural data that mirrors real-world scenarios. The
experiment on Parallel CNNs with Transformer and hierarchical co-attention model
yielded satisfactory results. It achieved a good performance compared to the results of
Yazdani, Simchi & Shekofteh (2021), where a IDCNN achieved a WA of 78.29% and UW
of 65.20%. The baseline accuracy using SVM was reported as 58.2% in the article
introducing the dataset (Mohamad Nezami, Jamshid Lou ¢ Karami, 2019). Figure 14
shows the confusion matrix for this dataset. Table 10 provides a comprehensive analysis of
precision, recall, and F1-score metrics in the ShHEMO datasets. The ShEMO dataset
demonstrates high precision and recall for anger and neutral emotions, while happiness
shows difficulties in accurately capturing this emotion.
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Table 10 Summary of results in terms of precision, recall, and F1-score for each emotion on ShHEMO
dataset.

Emotion Precision Recall F1-score
Anger 85% 79% 82%
Happiness 47% 43% 45%
Neutral 82% 86% 84%
Sadness 69% 69% 69%
Surprise 56% 65% 60%

The performance evaluation across different datasets highlights the challenges and
complexities of accurately recognizing emotions, particularly those that are nuanced and
subtle. Despite these challenges, the model performs well across the datasets used,
particularly for the natural dataset, demonstrating its robustness and effectiveness in
capturing a wide range of emotional expressions. However, certain emotions pose
difficulties for recognition due to their complexity or similarity to other emotions, akin to
humans’ challenges in discerning subtle emotional nuances.

This study examined various architectures to determine the most effective way to
integrate co-attention. Table 11 summarizes the results of the four models’ different
experiments applied to versions one and two of the ASVP-ESD and ShEMO datasets.

Incorporating co-attention in emotion recognition models across all three datasets
improved the performance by enhancing the ability to capture relevant features and
relationships within the input data. Among the various methods employed, the parallel
CNNs with Transformer and hierarchical co-attention consistently yielded the most
promising results across all three datasets compared to the others, due to hierarchical
co-attention being useful in fusing different types of features. Further experiments have
been conducted on various datasets using the same model setup, yielding experimental
results that demonstrate the generalizability of the proposed model across multiple
datasets. The model consistently achieved good performance metrics, demonstrating its
efficacy in diverse real-world scenarios, as shown in Fig. 15. While previous studies often
focus on a single dataset, this study expands the scope by evaluating the model’s
performance across various datasets, particularly on natural and semi-natural datasets,
thereby providing a comprehensive assessment of its capabilities. The model’s
performance remained comparable despite the inherent complexities and challenges of
each dataset, including subtle emotional nuances. This highlights its versatility and
reliability in real-world applications.

Table 12 compares the performance of various models on three datasets, highlighting
the effectiveness of our proposed model. On the ASVP-ESD Version 1 dataset, the model
performed slightly below the results reported by Dejoli et al. (2020). When evaluated on the
more challenging ASVP-ESD Version 2 dataset, it outperformed the results reported by
Sawin (2023). Since Version 2 is an extended version of Version 1, the model’s consistent
performance across both versions is promising. Furthermore, on the ShEMO dataset,
the model outperformed the one presented by Yazdani, Simchi ¢ Shekofteh (2021).
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Table 11 Results of the four models on the three datasets used.

Model used ASVP-ESD V1 ASVP-ESD V2 ShEMO
Parallel CNNs with Transformer 66% WA 36% WA 67% WA
63% UW 28% UW 45% UW
66% TA 37% TA 68% TA
Parallel CNNs with Transformer and one co-attention 69% WA 39% WA 72% WA
66% UW 25% UW 57% UW
69% TA 40% TA 72% TA
Parallel CNNs with Transformer and Hierarchical co-attention 70% WA 52% WA 76% WA
67% UA 45% UA 68% UA
70% TA 52% TA 77% TA
Parallel CNNs with Transformer and one co-attention 69% WA 50% WA 72% WA
64% UW 43% UW 55% UW
69% TA 51% TA 72% TA
Note:

Bold values indicate the best performance.
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Figure 15 The performance of parallel CNNs with transformer and hierarchical co-attention model
on ASVP-ESD version one and two, and ShEMO. Full-size K&l DOT: 10.7717/peerj-cs.3254/fig-15

These outcomes demonstrate the effectiveness of our approach in improving classification
accuracy across diverse datasets.

To verify the reliability of the proposed model’s performance, we conducted a statistical
analysis comparing each model with the baseline. The Wilcoxon signed-rank test was
applied to assess whether the observed improvements were statistically significant. The
results confirmed that Model C (Parallel CNNs with Transformer and hierarchical
co-attention) achieved notably better performance, with a p-value of 0.001, which is below
the standard threshold of 0.05. This provides that Model C offers a statistically significant
enhancement over the baseline and other models.
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Table 12 Comparison of our results with the published results regarding accuracy and unweighted accuracy (UW).

Ref. Dataset DNN model Model input Result

Sawin (2023) ASVP-ESD CNN Mel spectrograms Accuracy:
Version 2 50.27%

Yazdani, Simchi ¢ Shekofteh  ShEMO CNN (1D) Raw Audio UA: 65.20%

(2021)

Our ASVP-ESD Parallel CNNs with Transformer and Hierarchical = Mel spectrogram + Accuracy: 70%
Version 1 co-attention MEFCC
Our ASVP-ESD Parallel CNNs with Transformer and Hierarchical = Mel spectrogram + Accuracy:
Version 2 co-attention MEFCC 52.00%
Our ShEMO Parallel CNNs with Transformer and Hierarchical = Mel spectrogram +  UA: 68.00%
co-attention MEFCC
Note:

Bold values indicate the best performance.

Table 13 Ablation study on the proposed model.

Model WA uw Test accuracy
1 CNN + Transformer 64% 62% 63%
2 CNN + Transformer 66% 63% 66%
1 CNN + Transformer with co-attention 67% 64% 68%
2 CNN + Transformer with co-attention 70% 67% 70%
Note:

Bold values indicate the best performance.

To assess the practicality of the proposed model in real-world HCI applications, we

evaluated three key metrics: the number of parameters, the number of floating-point

operations (FLOPs), and inference time. These metrics were included to provide a more

comprehensive view of the model’s efficiency beyond just accuracy, especially since SER

systems are often expected to run smoothly on devices with limited resources or in

real-time settings. The model contains approximately 13 million parameters, reflecting its
capacity to learn complex patterns from the data. The FLOPs, estimated at 23 GFLOPs,

represent the computational cost needed to process one input. The inference time,

measured at around 40 ms per sample, indicates how quickly the model can make

predictions.

ABLATION STUDY

To gain insights into the impact of different architectural components on the performance

of our emotion recognition model, we conducted an ablation study. We progressively

modified the model architecture, starting from a basic configuration and incrementally

adding components to evaluate their contributions. The ablation study was conducted on

version one of the ASVP-ESD dataset using a combination of MFCC and Mel spectrogram

features. We designed experiments to systematically analyze the performance of different

model configurations. Specifically, we examined the effects of different architectural

elements, including the number of CNNs used and the incorporation of a co-attention
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mechanism. These configurations included a single CNN and transformer model with
concatenation, a two-CNN and transformer model with concatenation, a single CNN and
transformer model with co-attention, and a two-CNN and transformer model with co-
attention. As depicted in Table 13, the single CNN and transformer model achieved a WA
of 64%, UW of 62%, and accuracy of 63%. Introducing a second CNN into the architecture
resulted in improvement, with the 2-CNN and transformer model achieving a WA of 66%,
UW of 63%, and accuracy of 66%. Furthermore, a more significant performance boost was
observed when co-attention was added to the architecture. The CNN and transformer
model with co-attention yielded a WA of 67%, UW of 64%, and accuracy of 68%. The most
substantial improvement was evident with the 2-CNN and transformer model with co-
attention, achieving a WA of 70%, UW of 67%, and accuracy of 70%.

Introducing a second CNN increases the receptive field, facilitating the detection of
subtle emotional nuances in speech (Zhu ¢ Li, 2020). This allows the model to capture
more complex spatial relationships within the input audio data, thus significantly
enhancing performance. Co-attention further enhances the model’s ability to
focus on critical features, thereby improving overall emotion recognition performance.
These findings underscore the positive impact of incorporating additional CNN layers and
co-attention mechanisms, enabling the model to capture complex features and
relationships within the audio data and significantly improving its performance.

CONCLUSIONS

This article proposes a model that effectively extracts spatiotemporal features from audio
samples by utilizing parallel CNNs with a Transformer encoder and incorporating a
co-attention mechanism. Different fusion methods were explored, and the parallel CNNs
with Transformer and hierarchical co-attention fusion approach outperformed the other
fusion approaches on three datasets: ASVP-ESD version 1, 2, and ShEMO. Despite these
improvements, the study has some limitations. One key challenge is recognizing neutral
emotion, which remains difficult due to its lack of distinctive acoustic features, high
intra-class variability, and overlap with low-intensity emotions such as calmness or
boredom. These factors often lead to misclassification, especially when compared to more
expressive emotional states. The model’s performance was also tested on a specific dataset
(Natural and Semi-natural), which may limit its generalizability to other dataset scenarios.
Additionally, while the current approach shows improvements, it is computationally
intensive, which may impact scalability in practical applications. In our future work, we
will evaluate the proposed model’s effectiveness on different emotional speech datasets to
understand its performance across different contexts and conditions. This will help assess
the model’s robustness and adaptability in various real-world scenarios. Furthermore, the
model can be further developed using self-supervised learning (SSL) techniques, such as
Wav2Vec2, as a feature extractor for an end-to-end network architecture. Also, we plan to
integrate additional modalities, such as images or transcripts, into the model. This
multimodal approach could enhance performance by incorporating diverse sources of
information, as suggested by recent research (Khan et al., 2024).
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APPENDIX A: LIST OF ACRONYMS

SER

WA

WA

CNN
Co-attention
HCI

ML

DL

DNN
ASVP-ESD
ASVP-ESD V1
ASVP-ESD V2
ShEMO
AWGN

FT

STFT
MEFCC
FFT

DCT

RUS

PCA

SVM
GMM
HMM
GELU
KNN

MLP

IPA

RNN

DTC
LSTM
BiLSTM
AM

FCDN
EMO-DB
DES

SNR
IEMOCAP
EMOV
RUS

Speech Emotion Recognition
Weighted Accuracy

Unweighted Accuracy
Convolutional Neural Network
collaborative attention mechanism
human-computer interactions
Machine Learning55

Deep learning

Deep Neural Network

Audio, Speech, and Vision Processing Emotion Speech Dataset
ASVP-ESD version 1

ASVP-ESD version 2

Sharif Emotional Speech Database
Additive White Gaussian Noise
Fourier Transform

Short-Time Fourier Transform

Mel Frequency Cepstral Coefficients
Fast Fourier Transform

Discrete Cosine Transform
Random Under Sampling

Principal Component Analysis
Support Vector Machines

Gaussian Mixture Mode

Hidden Markov Model

Gaussian Error Linear Unit
k-Nearest Neighbors Classifier
Multi-layer Perceptron
International Phonetic Alphabe
Recurrent Neural Networks
Decision Tree Classifier

Long Short-Term Memory
Bidirectional long short-term memory
Attention Mechanism

fully connected dense network
Berlin Emotional Database

Danish Emotional Speech
signal-to-noise ratio

Interactive Emotional Dyadic Motion Capture Database
Italian Emotional Speech Corpus
Random Under Sampling
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VAD Voice Activity Detector
SMOTE Synthetic Minority Over-sampling Technique
CPU Central Processing Unit
W2Es Wav2Vec2 embeddings
SSL self-supervised learning
RIR Room Impulse Response
DFT Discrete Fourier Transform
MTL Multi-Task Learning

FL Focal Loss

SGD Stochastic gradient descent
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Data Availability
The following information was supplied regarding data availability:

The code is available at GitHub and Zenodo:

- https://github.com/Ahlam7x/SER_Model_Code.git.

- Ahlam7x. (2025). Ahlam7x/SER_Model_Code: Initial Release of SER_Model_Code
(v1.0). Zenodo. https://doi.org/10.5281/zenodo.15863222.

The ASVP-ESD dataset is available at Zenodo: Tientcheu Touko Landry Dejoli,
Qianhua He, & Wei Xie. (2021). Audio, Speech and Vision Processing Lab Emotional
Sound database (ASVP-ESD). https://doi.org/10.5281/zenodo.7132783.
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