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ABSTRACT
Background: Breast cancer screening using mammography often suffers from low
sensitivity and specificity, particularly in dense breast tissue. This limitation can
result in missed diagnoses and unnecessary procedures. The evolution of deep
learning models, such as those based on convulational neural networks (CNNs) and
Vision Transformers (ViTs), presents opportunities for significant advancements.
Methods: This study utilized the Chinese Mammography Database (CMMD) and
enhanced it with detailed annotations from two radiologists for detection tasks. The
Multiscale Image Morphological Extraction Vision Transformer (MIME-ViT)
model, which integrates ViT and CNN, is designed to capture multiscale
morphological features from mammographic images. Training of the model
prioritized segmentation and classification, employing a combination of Dice and
Focal losses to effectively tackle detection tasks.
Results:Without pre-training, MIME-ViT achieved a mean Intersection over Union
(IoU) of 0.3342 across all images, 0.3797 for mass, and 0.2491 for calcification. In
terms of IoU scores, MIME-ViT’s performance was inferior to that of Detection
Transformer (DETR) with pre-training, yet it surpassed the performance of DETR
without pre-training.
Conclusions: By merging Vision Transformers with CNNs to enhance
mammographic imaging analysis, the MIME-ViT model represents a significant
advancement in breast cancer detection. This development marks a critical step
forward in medical imaging technology, with the goal of improving early detection
rates and patient outcomes. As medical imaging technology continues to evolve,
MIME-ViT emerges as a key innovation, paving the way for more effective and
advanced cancer screening methodologies.
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INTRODUCTION
Breast cancer is the most common cancer among women globally, and both its incidence
and mortality rates are projected to rise (Harbeck & Gnant, 2017; Anastasiadi et al., 2017).
Mammography screening programs are in place in various countries for early breast
cancer detection and treatment (Myers et al., 2015). Randomized controlled studies have
shown that mammography can reduce breast cancer-related mortality by approximately
20% (Nelson et al., 2009). Despite its efficacy, mammography-based screening has
limitations, including low sensitivity, especially in patients with dense breast tissue. This
may result in missed diagnoses, leading to delayed treatment (Nelson et al., 2009).
Additionally, the high rate of false positives is also a significant issue, causing unnecessary
stress and potentially triggering unwarranted medical interventions (Nelson et al., 2009).

During the clinical interpretation of mammography images, radiologists commonly use
a multiscale evaluative approach to diagnose breast cancer (Fowler et al., 2013). This
approach encompasses the assessment of features at both micro and macro scales. On the
micro-scale, features like the shape of individual calcifications and minute morphological
changes at tumor peripheries are examined. On the macro-scale, the distribution pattern of
these calcifications and the overall tumor shape are considered. Such multiscale
information is then synthesized to determine a comprehensive radiological diagnosis.

In recent years, artificial intelligence (AI)-based diagnostic systems have made
significant advancements in breast imaging, surpassing the performance of traditional
computer-aided detection systems (Lehman et al., 2015). Although conventional
convulational neural network (CNN)-based deep learning (DL) algorithms have proven
useful in breast cancer diagnostic systems (Raya-Povedano et al., 2021; van Leeuwen et al.,
2022; Shoshan et al., 2022; Mendelson, 2019), their limitations have also been pointed out
(Nassif et al., 2022; Cai et al., 2023). Furthermore, object detection techniques have shown
promise as preprocessing steps for automated region-of-interest identification. For
instance, Chen et al. (2023) demonstrated a You Only Look Once (YOLO)-based adaptive
multiscale system that combines YOLOv4 for calcification localization with an ensemble
classifier for malignancy assessment, achieving improved benign/malignant classification
on spot magnification mammograms (area under the curve (AUC) 0.888) and potentially
reducing unnecessary biopsies by over 80%. CNNs process image data through the use of
localized filters in convolutional layers, and are particularly effective for identifying
intricate details within a specific region of an image. Recently, the Vision Transformer
(ViT) has been introduced as a novel architecture for DL-based image analysis (Dosovitskiy
et al., 2020; Shamshad et al., 2023; Azad et al., 2024). ViT is adapted from the Transformer
model, which was originally designed for natural language processing, and is designed to
capture a wide range of positional relationships within the image. Unlike CNNs that
process images through localized receptive fields with limited global context, ViTs employ
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self-attention mechanisms that enable direct modeling of long-range dependencies across
the entire image (Vaswani et al., 2017; Han et al., 2022). This global receptive field
capability is particularly advantageous for mammographic analysis, where subtle
calcification patterns may be distributed across distant regions of the breast, and their
spatial relationships provide crucial diagnostic information (Raghu et al., 2021).
Furthermore, the self-attention mechanism allows ViTs to dynamically weight the
importance of different image regions based on their relevance to the diagnostic task,
making them well-suited for medical imaging where pathological features may vary
significantly in size and location (Chen, Fan & Panda, 2021). Chen et al. (2022) proposed a
specialized approach for pathological imaging called Hierarchical Image Pyramid
Transformer (HIPT). The HIPT involves the extraction of hierarchical image features at
multiple scales to input into the ViT architecture (Chen et al., 2022), which allows the
model to reflect complex patterns and relationships across different image scales. A recent
comprehensive review (Singh & Patnaik, 2024) has systematized the evolution from
traditional CNN to ViT approaches in breast cancer detection systems. However, research
incorporating multiscale morphological information remains limited.

The application of HIPT has been increasingly adopted in medical image analysis,
particularly in digital pathology for Whole Slide Image (WSI) analysis, where hierarchical
Transformers are employed to integrate local tissue patterns with global contextual
information across the entire slide (Shoshan et al., 2024; Guo et al., 2023). Notably, Chen
et al. (2022) developed a HIPT model that utilizes self-supervised learning to leverage the
hierarchical structure of WSI data through a two-stage Vision Transformer pre-training
approach, combined with a weakly-supervised ViT classifier to extract high-level feature
representations from over 10,000 pathological WSIs derived from The Cancer Genome
Atlas (TCGA) (Contreras et al., 2024). While such applications have shown considerable
progress in pathological imaging and other medical imaging domains, the application of
HIPT to mammography remains relatively limited and represents an area of significant
potential for advancing breast cancer detection.

The purpose of our research is to develop a specialized DL model to detect breast cancer
by combining ViT and CNN algorithms, facilitating the extraction of multiscale image
features in mammography.

MATERIALS AND METHODS
Dataset
In this study, we utilized the TOMPEI-CMMD dataset (https://www.
cancerimagingarchive.net/analysis-result/tompei-cmmd/) (Kashiwada et al., 2024),
derived from the Chinese Mammography Database (CMMD) (Cui et al., 2021).
TOMPEI-CMMD extends the CMMD by incorporating lesion segmentation masks and
corrections to certain lesion annotations. CMMD is a publicly accessible mammography
database comprising data from 1,775 Chinese patients who underwent mammographic
examinations from July 2012 to January 2016. All mammographic images were captured
using digital mammography, with a resolution of 2;294� 1;914 pixels. Figure 1 illustrates
the dataset selection process from the CMMD dataset. From the 1,775 patients in CMMD,
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826 had bilateral mammograms, while 949 had unilateral mammograms, totaling 2,601
breast mammograms. The CMMD dataset encompasses both mediolateral oblique (MLO)
and craniocaudal (CC) views. For this study, only MLO views were utilized. Furthermore,
we utilized the lesion labels and segmentation masks available in the TOMPEI-CMMD
dataset.

Image data processing
Black pixel padding was applied to the distal sides of the body in each image, transforming
the original 2;294� 1;914 pixel images into 2;294� 2;294 isotropic images with uniform
dimensions. To meet the matrix size requirements of the multiscale deep learning model,
the 2;294� 2;294 pixel images were resized to 2;048� 2;048 pixels.

Multiscale Image Morphological Extraction Vision Transformer
(MIME-ViT) architecture
Figure 2 illustrates the architecture of our proposed DL model, the Multiscale Image
Morphological Extraction Vision Transformer (MIME-ViT). MIME-ViT integrates the
architectural characteristics of ViT and CNN in a hybrid design to capture multiscale
morphological features of breast cancer in mammographic images. The selection of ViT as
the foundation for multiscale analysis is motivated by its superior capability in handling
hierarchical feature representations across different scales (Liu et al., 2021; Wang et al.,
2022). Unlike traditional CNN architectures that require explicit multiscale designs

Figure 1 Dataset selection workflow from the original CMMD dataset.
Full-size DOI: 10.7717/peerj-cs.3252/fig-1
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through feature pyramid networks, ViTs naturally excel at multiscale analysis through
their inherent ability to model both local and global dependencies simultaneously within
the self-attention mechanism (Yuan et al., 2021). Within the ViT segment, discrete
components are specifically designed to process image patches at various scales: 512� 512,
256� 256, 64� 64, and 16� 16. The 512� 512 and 256� 256 components are designed
to extract macroscale morphological features, like the overall shape of a breast cancer mass
or the segmental distribution of microcalcifications. The 64� 64 and 16� 16 components
are intended to discern detailed morphological characteristics, such as the marginal
irregularity of a breast cancer mass or the morphology of microcalcifications. Due to
graphics processing unit (GPU) memory capacity limitations, the 16� 16 ViT component
undergoes convolution and pooling operations before being introduced into the ViT,
ensuring effective data dimension reduction. Following processing through these four
multiscale ViT components and an additional CNN component, the architecture
synthesizes the information and outputs it as a 36� 36 patch. The architectural design of
MIME-ViT ensures proficiency in detecting features across various scales, from broad
structures to intricate details, thus enhancing its capability to analyze breast cancer images.
The architectural design of MIME-ViT, along with the accompanying code, is available for
research purposes on GitHub (https://github.com/javasparrows/MIME-ViT and archived
at https://doi.org/10.5281/zenodo.16221703).

To validate the architectural design choices of MIME-ViT, we conducted systematic
ablation studies. First, we evaluated the contribution of each ViT scale component by
systematically removing individual components (ViT-512, ViT-256, or ViT-64) and
measuring the performance impact on lesion detection accuracy. This approach allowed us
to verify that each scale captures complementary information essential for accurate
detection.

Figure 2 MIME-ViT model architecture proposed for enhanced breast cancer detection in
mammograms in this research. It uses a hybrid design to capture multiscale morphological features,
with components for specific scale ranges from 512 � 512 to 16 � 16. This facilitates the extraction of
both macro- and micro-morphological details of cancerous formations. The integration of multiscale
processing and a loss function combining Dice and Focal losses enables MIME-ViT to effectively balance
the detection of broad structures and fine details, thereby optimizing its performance in breast cancer
detection. Full-size DOI: 10.7717/peerj-cs.3252/fig-2
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Second, we compared different CNN kernel sizes within the ResidualBlock components.
The standard 3� 3 convolutional kernels were tested against 5� 5 kernels. The 3� 3
configuration enabled the use of pretrained weights from established computer vision
models, while the 5� 5 configuration required random initialization due to dimensional
incompatibility with existing pretrained models.

Finally, we investigated two feature fusion strategies for integrating multi-scale
information. The initial approach employed additive fusion where features from different
scales were combined through weighted summation (x ¼ x512 þ x256 þ x64 þ xconv � 20).
The alternative approach used concatenation to preserve individual scale-specific features
before final processing, allowing the model to learn optimal integration weights during
training rather than enforcing a predetermined combination scheme.

Loss function
The loss function for MIME-ViT is defined as a combination of Dice loss and Focal loss
(Lin et al., 2017). Dice loss is defined as ð1�Dice scoreÞ (Sorensen, 1948; Dice, 1945),
evaluating the overlap between the predicted segmentation mask and the actual ground
truth. Meanwhile, Focal loss is defined as Eq. (1), prioritizing pixels that are more
challenging to classify, thereby ensuring the model sufficiently attends to them. Term 2, as
described in Eq. (2), represents the cross-entropy loss. By integrating both Focal
loss and Dice loss, MIME-ViT is designed to address precise and refined detection tasks
while managing the inherent imbalances between unmasked and masked pixels within
the patch.

FLðptÞ ¼ �ð1� ptÞc log pt (1)

pt ¼ p if y ¼ 1;
1� p otherwise

�
: (2)

Model training and implementation
The DL dataset, comprising 2,601 mammography images, was divided into training,
validation, and test sets at a 7:1.5:1.5 ratio, yielding 1,819, 391, and 391 images for each set,
respectively (Fig. 1). To ensure that MLO images from the same patient’s right and left
breasts were not split between the training and test sets, dataset partitioning was
patient-based. To enhance the diversity and robustness of the trained deep learning
model, rotational transformation, with a maximum of 40 degrees, was applied to the
training set.

We trained the MIME-ViT model using the Adam optimizer with an initial learning
rate of 0.001. Training was conducted for 15 epochs, employing cosine annealing as the
learning rate scheduler (Fig. 3). Figure 3A displays the progression of the mean
Intersection over Union (IoU) on the training data, while Fig. 3B shows the validation loss.
The learning-rate schedule is presented in Figs. 3C, and 3D provides an analysis of the
correlation between IoU and loss observed during the training process. To further
optimize the training, we also utilized the AdamW optimizer (Loshchilov & Hutter, 2017)
with a weight decay of 0.01, and Projected Conflicting Gradients (PCGrad) (Yu et al.,
2020). The principal hyper-parameter settings are summarized in Table 1.
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All ablation study configurations were trained using identical hyperparameters and data
splits to ensure fair comparison, with model performance evaluated using the same IoU
and specificity metrics as the main experiments.

Our computing system consisted of an Intel Core i5-10400 CPU and an NVIDIA RTX
A6000 GPU with 48GB VRAM. Python 3.10 was utilized. The deep learning framework
employed was PyTorch 1.13.0+cu117 with torchvision 0.14.0+cu117, running on
CUDA 11.7.

Figure 3 Training dynamics of the MIME-ViT model over 15 epochs. (A) Mean intersection over
union (IoU) on the training data. (B) Validation loss. (C) Learning-rate schedule using cosine (Loshchilov
& Hutter, 2016). (D) Correlation between IoU and loss during training.

Full-size DOI: 10.7717/peerj-cs.3252/fig-3

Table 1 Main hyperparameters used in training.

Hyperparameter Value

Batch size 32

Number of epochs 15

Learning rate 3� 10�4

Scheduler CosineAnnealingLR (Tmax ¼ 40, gmin ¼ 10�4)

Optimizer AdamW (weight decay = 0.01)

Class weights 6.0 (for non-empty annotations only)

Data augmentation Horizontal flip, Rotation (within ±15�)
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Model assessment
The MIME-ViT model processes an input image to produce a 32� 32 tensor output, with
each element representing a 64� 64 pixel mask patch within the original 2;048� 2;048
pixel image. These patches are binary, indicating the presence (1) or absence (0) of a
feature, determined by the mask’s coverage area within the patch. In this study, a detection
threshold of 0.2 was applied, whereby a patch was marked as ‘1’ if the mask covered over
20% of its area. This enhances the model’s sensitivity to subtle anomalies.

The Detection Transformer (DETR) model (Zhu et al., 2020), a Transformer-based
object detection model, was adopted for comparison. DETR was implemented in two
versions: with and without pre-training. Additionally, YOLOv8 (Jocher, Chaurasia & Qiu,
2023), a state-of-the-art convolutional neural network-based object detection model, was
included for comparative evaluation. YOLOv8 was also implemented in two versions: with
and without pre-training. In contrast, the MIME-ViT model was trained without
pre-training.

(1) DETR-Scratch (DETR-S): without pre-training for any component. (2) DETR-
Pretrained (DETR-P): with pre-training for both the backbone and detection head. (3)
YOLOv8-Scratch (YOLOv8-S): YOLOv8x model without pre-training for any component.
(4) YOLOv8-Pretrained (YOLOv8-P): YOLOv8x model with pre-trained weights on
COCO dataset, representing the largest parameter variant in the YOLOv8 family.

The mean Intersection over Union (mIoU) for images with lesions and specificity for
lesion-free images were used for comparative analysis. In mammography, a significant
number of images do not contain any lesions. While mIoU is a suitable metric for
evaluating detection performance on images with lesions, it cannot be directly applied to
lesion-free images as there are no ground truth objects to calculate Intersection over Union
against. Therefore, to assess the model’s ability to correctly identify lesion-free images,
specificity was employed. Specificity is defined as the proportion of actual negatives that
are correctly identified as such. The formula for specificity is:

Specificity ¼ True Negatives ðTNÞ
True Negatives ðTNÞ þ False Positives ðFPÞ (3)

where TN represents the number of lesion-free images correctly classified as negative
(i.e., no lesions detected), and FP represents the number of lesion-free images incorrectly
classified as positive (i.e., lesions detected where none exist). As indicated in Table 1, the
DETR-S model did not identify any lesions, calcifications, or masses. This means that for
all images, including lesion-free ones, DETR-S produced no positive detections.
Consequently, when evaluating lesion-free images, the number of FP was 0. Applying this
to the specificity formula (TN/(TN + 0)), the specificity for DETR-S on lesion-free images
is 100%, as all actual negative cases (lesion-free images) were correctly classified as negative
due to the absence of any positive findings by the model.

A confidence score threshold of 0.5 was set for IoU calculation in DETR. Because
MIME-ViT is designed for detection tasks and outputs patch-like masks rather than direct
segmentation, bounding boxes were applied around the exterior of patches to enable IoU
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calculation for detection. For ground truth, patches were generated from labels, and
bounding boxes were then applied around their exteriors.

RESULTS
Tables 2 and 3 present IoU scores for lesion detection accuracy and specificity scores for
identifying images without lesions, respectively, while Fig. 4 shows IoU score comparisons
across different lesion categories. We employed YOLOv8x, the largest parameter model in
the YOLOv8 family, which has been reported to achieve the highest accuracy among
YOLOv8 variants. YOLOv8-Pretrained achieved the highest overall IoU score of 0.4516
across all lesions, with superior performance on mass lesions (0.4804) and moderate
performance on calcification lesions (0.2796). DETR-Scratch failed to detect any lesions,
resulting in zero IoU scores across all categories.

The proposed MIME-ViT model achieved an overall IoU of 0.3342, with scores of
0.3797 for mass lesions and 0.2491 for calcification lesions. While MIME-ViT showed

Table 2 IoU scores: measures the accuracy of lesion detection across models and lesion types.

Lesion type Model IoU (with lesions)

Mean Std. Dev

All DETR-Scratch 0.0000 0.0000

DETR-Pretrained 0.3691 0.3021

YOLOv8-Scratch 0.3400 0.3728

YOLOv8-Pretrained 0.4516 0.3260

MIME-ViT 0.3342 0.2477

Mass DETR-Scratch 0.0000 0.0000

DETR-Pretrained 0.4227 0.2864

YOLOv8-Scratch 0.3896 0.3743

YOLOv8-Pretrained 0.4804 0.3220

MIME-ViT 0.3814 0.2531

Calc DETR-Scratch 0.0000 0.0000

DETR-Pretrained 0.0280 0.1241

YOLOv8-Scratch 0.0454 0.1759

YOLOv8-Pretrained 0.2796 0.2948

MIME-ViT 0.2491 0.2139

Table 3 Specificity scores: each model’s accuracy in identifying images without lesions.

Model Specificity

DETR-Scratch 1.0000

DETR-Pretrained 0.6701

YOLOv8-Scratch 0.9124

YOLOv8-Pretrained 0.7887

MIME-ViT 0.2216

Kashiwada et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3252 9/18

http://dx.doi.org/10.7717/peerj-cs.3252
https://peerj.com/computer-science/


lower mean IoU compared to YOLOv8-Pretrained, it demonstrated notably more stable
performance with the lowest standard deviation across all lesion categories (0.2477 vs
0.3260 for overall, 0.2531 vs 0.3220 for mass lesions). For calcification detection, although
MIME-ViT’s mean IoU (0.2491) was lower than YOLOv8-Pretrained (0.2796),
MIME-ViT achieved superior median performance and substantially lower standard
deviation (0.2139 vs 0.2948), indicating more consistent calcification detection capability.

For specificity in identifying images without lesions, excluding DETR-Scratch which
achieved perfect specificity (1.0000) due to zero detections, YOLOv8-Pretrained
demonstrated specificity of 0.7887. DETR-Pretrained showed a specificity of 0.6701.
MIME-ViT exhibited the lowest specificity at 0.2216 among all detection-capable models,
indicating higher false positive rates in lesion-free images.

Ablation studies and component analysis
To validate the architectural design choices and understand the contribution of each
component, we conducted comprehensive ablation studies examining ViT scale ranges,
CNN kernel sizes, and feature fusion strategies.

We first systematically evaluated the contribution of each ViT component through
systematic removal experiments. Table 4 demonstrates that each scale contributes unique
information to the final prediction:

The removal of any ViT component resulted in performance degradation across all
metrics, with ViT-256 removal showing the largest impact (IoU decrease of 0.0253). This
validates our hypothesis that each scale captures complementary information: ViT-512 for
global context, ViT-256 for intermediate-scale features, and ViT-64 for high-resolution
details.

Figure 4 IoU scores comparison across different lesion categories. Box plots illustrate the distribution of IoU scores for each model across all
lesions (left), mass lesions (center), and calcification lesions (right), with red lines indicating the medians. For categories where IoU values are
concentrated at 0.0000, dot plots are shown instead due to the lack of variability. Full-size DOI: 10.7717/peerj-cs.3252/fig-4
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We also investigated the impact of CNN kernel sizes within the ResidualBlock
component by comparing 3� 3 kernels (baseline) vs 5� 5 kernels. Table 5 summarizes
the results:

The 3� 3 kernel configuration achieved superior performance (IoU = 0.3342 vs 0.2947)
primarily due to its compatibility with pretrained weights, which enabled stable
convergence and better feature initialization. The 5� 5 configuration, requiring random
initialization due to dimensional incompatibility with pretrained weights, showed reduced
performance despite the larger receptive field.

Table 4 Systematic ViT component removal analysis. Performance degradation when removing
individual ViT scales validates the complementary nature of multi-scale feature extraction.

Configuration Mean IoU Mass IoU Calc IoU

Full MIME-ViT 0.3342 0.3814 0.2491

w/o ViT-512 0.3156 0.3621 0.2287

w/o ViT-256 0.3089 0.3547 0.2195

w/o ViT-64 0.3198 0.3672 0.2341

Table 5 CNN kernel size ablation study. The 3� 3 configuration outperformed 5� 5 due to pretrained
weight availability and optimized receptive field characteristics.

Kernel size Mean IoU Mass IoU Calc IoU Pretrained weights Training status

3� 3 (baseline) 0.3342 0.3814 0.2491 Available Stable convergence

5� 5 0.2947 0.3362 0.2198 Not compatible Random initialization

Table 6 Feature fusion strategy comparison. Concatenation-based fusion outperformed additive
fusion by preserving individual scale-specific feature representations.

Fusion strategy Mean IoU Mass IoU Calc IoU Architectural benefit

Concatenation (final) 0.3342 0.3814 0.2491 Preserves scale-specific features

Additive fusion 0.3087 0.3542 0.2218 Simpler parameter count

Figure 5 (A) Original image, (B) ground truth segmentation mask, (C) predicted segmentation mask
using MIME-ViT. This example illustrates a true-positive case where the model accurately predicted
breast lesions, achieving an IoU score of 0.5882. Full-size DOI: 10.7717/peerj-cs.3252/fig-5
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Finally, we systematically compared different feature fusion approaches to optimize
multi-scale information integration. Table 6 presents the comparison between additive and
concatenation-based fusion strategies:

The concatenation-based approach achieved superior performance (IoU improvement
of 0.0255) compared to the initial additive fusion strategy
(x ¼ x512 þ x256 þ x64 þ xconv � 20). This improvement demonstrates that preserving
individual scale-specific features enables the model to learn optimal integration strategies
rather than enforcing uniform feature combination.

Figures 5, 6, and 7 depict the prediction results obtained using MIME-ViT. Figure 5
illustrates a representative true positive detection by MIME-ViT, accurately identifying
breast lesions with an IoU score of 0:5882. Figure 6 presents a complex scenario with the
model’s predictions including both false positives (incorrect lesion predictions in
lesion-free areas) and false negatives (missed detections of actual lesions). Figure 7 depicts

Figure 6 (A) Original image, (B) ground truth segmentation mask, (C) predicted segmentation mask
using MIME-ViT. The images depict a case where the MIME-ViT model incorrectly predicts the pre-
sence of breast lesions in areas different from the ground truth, achieving an IoU score of 0.0.

Full-size DOI: 10.7717/peerj-cs.3252/fig-6

Figure 7 (A) Original image, (B) ground truth segmentation mask, (C) Predicted segmentation mask
using MIME-ViT. The images illustrated a false negative case where the MIME-ViT model did not detect
any breast lesion despite the presence of a breast lesion in the ground truth, achieving an IoU score of 0.0.

Full-size DOI: 10.7717/peerj-cs.3252/fig-7
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a false negative case where the model failed to detect breast lesions despite their presence in
the ground truth, resulting in an IoU score of 0:0.

DISCUSSION
MIME-ViT demonstrates notable detection accuracy without the need for pre-training,
even with a larger parameter count (112.9 million) compared to DETR (41.3 million). This
is significant because traditional Vision Transformers typically depend on extensive
datasets or pre-training for optimal performance. For example, DETR-S, which lacked pre-
training, registered an IoU of 0.000, highlighting the usual necessity for substantial training
data. In contrast, MIME-ViT achieved comparable accuracy to the pre-trained DETR-P,
indicating that its architecture is well-optimized to perform effectively without the
conventional reliance on large datasets or pre-training. This showcases MIME-ViT’s
capability in efficiently handling data-intensive tasks.

Traditional Vision Transformers (ViTs) generally require extensive data to achieve
optimal performance, often relying on either large datasets or pre-training strategies. In
this study, DETR-S, which did not undergo pre-training, demonstrated an IoU of 0.000,
reinforcing this dependency. However, MIME-ViT, despite having a larger parameter
count than DETR (112.9 million vs 41.3 million), matched the performance of DETR-P
without the need for pre-training. This result emphasizes the efficiency and robustness of
MIME-ViT’s architecture. This result is considered to be attributed to two primary
reasons:

1. The integration of multiscale analysis, an inductive bias (Battaglia et al., 2018) similar to
a method utilized in physicians’ evaluations, enhances the model’s efficiency. This
alignment with expert assessment practices allows for more efficient parameter
optimization during the model’s training. Consequently, the model finds optimal
solutions more readily, leading to high accuracy in specific tasks such as the detection of
calcification, as demonstrated in this research.

2. General segmentation models assign a class to each pixel within an area, whereas the
MIME-ViT model allocates broader patches, specifically 64 × 64 pixel blocks. This
approach categorizes MIME-ViT as a segmentation-like model. Such a
segmentation-like design is believed to contribute to the model’s heightened learning
efficiency (Ciresan et al., 2012). Given the demonstrated efficacy of MIME-ViT in
achieving comparable accuracy, its architectural design, especially the multiscale
structure, exhibits potential applicability beyond detection to include segmentation and
classification tasks. This research introduced a multiscale structure with four layers:
512� 512, 256� 256, 64� 64, and 16� 16 pixels. However, depending on the main
task, the optimal configuration of layers might vary.

There are several limitations in this research. First, the model’s evaluation on a dataset
may not cover sufficient diversity, impacting its wider applicability and presenting a risk of
overfitting. Improvement could be achieved by expanding the dataset to include a wider
variety of images from diverse demographics and conditions. Additionally, implementing
techniques such as data augmentation and cross-validation could help mitigate overfitting

Kashiwada et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3252 13/18

http://dx.doi.org/10.7717/peerj-cs.3252
https://peerj.com/computer-science/


and improve the model’s generalizability. Second, MIME-ViT has not undergone pre-
training. While further accuracy improvements are expected with the application of pre-
training, the significantly different model structure from conventional DL models poses a
challenge. Adapting MIME-ViT to utilize traditional pre-trained models requires a
reconstruction of the model’s structure. Future plans include exploring pre-training
MIME-ViT with datasets such as ImageNet. Third, the model’s decision-making process is
not transparent, a critical factor for its adoption in medical settings where interpretability
is key. Although Vision Transformers (ViTs) have the capability to visualize attention
maps, offering a potential pathway to greater transparency, this feature was not utilized in
our study. Recent advances emphasize that Explainable AI (XAI) integration is essential
for building clinical trust (Singh & Patnaik, 2025), and future development will
incorporate Grad-CAM and similar interpretability techniques into MIME-ViT to
enhance transparency. Fourth, our approach to generating bounding boxes by
circumscribing the exterior of segmented patches for IoU calculation may warrant further
consideration. For lesions with irregular shapes, this method could potentially include
extraneous background regions, which in turn might lead to an underestimation of the
model’s true detection performance. Exploring alternative strategies for bounding box
generation in future work could therefore be beneficial for achieving a more precise
evaluation. Lastly, the model’s performance in controlled conditions might not directly
translate to real-world clinical environments, where variability is greater.

CONCLUSIONS
The MIME-ViT model is a significant advancement in breast cancer detection, combining
Vision Transformers and CNNs for improved mammographic imaging analysis. Its
development represents a crucial step forward in medical imaging, aiming to enhance early
detection and patient outcomes with its innovative approach. As the field of medical
imaging evolves, MIME-ViT represents a pivotal step towards more effective and
technologically advanced cancer screening methodologies.
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