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ABSTRACT
Background: The rapid development of information technology has significantly
propelled the integration and evolution of product design technologies and their
related algorithms. This review systematically investigates the pivotal role of
AI-driven product form generation technologies in promoting industrial design
innovation and sustainable development.
Methodology: By employing bibliometric tools (Citespace) combined with
visualization analysis, we propose a seven-stage technical framework encompassing
“identification-extraction-analysis-generation-data mapping-decision-making-
optimization.”
Results: The study traces the historical evolution, current research trends, and future
development of product form generation design technologies. It highlights that artificial
intelligence, as the core driving force, has substantially enhanced automated modeling
and multi-objective optimization capabilities. However, challenges remain in areas such
as data standardization deficits, limited dynamic adaptability, and insufficient
cross-disciplinary collaboration. Future priorities should include: (1) strengthening
algorithmic robustness to manage complex design scenarios; (2) integrating multimodal
user feedback mechanisms to elevate interactive experiences; (3) constructing
interpretable generative models to ensure design credibility; and (4) exploring green
design-oriented intelligent algorithm deployment strategies with embedded ethical
considerations.

Subjects Human-Computer Interaction, Algorithms and Analysis of Algorithms, Computer Aided
Design, Computer Vision, Graphics
Keywords Data-driven, Product styling design, Product design algorithms, Product shape
generation technology, Artificial intelligence

INTRODUCTION
The principle of “form follows function” has long been a cornerstone of modern design
movements. Presently, the relationship between product aesthetics and functionality has
grown increasingly complex and diversified (Li, Wang & Sha, 2023). Product appearance is
perceived as both a functional instrument and its materialized embodiment, capable of
conveying aesthetic pleasure and emotional resonance through sensory experiences like
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vision and touch. Data-driven product shape generation technology, an interdisciplinary
field integrating product design, computer science, and engineering, has emerged as a
current research hotspot. This technology focuses on creating and optimizing product
shapes that meet specific functional and aesthetic requirements through a series of
principles, methods, and tools (Wang & Xu, 2024). Its high precision, automation,
flexibility, compatibility, and scalability have enabled widespread adoption in product
design (Khanolkar, Vrolijk & Olechowski, 2023). The technology enhances systematicity
and functionality in style recognition, feature transformation, image inpainting, image
prediction, 3D printing, and model optimization, holding significant strategic value across
industrial design/manufacturing, artistic creation/digital entertainment, architectural
design/urban planning, customized production, game development, and augmented reality
applications.

Conventionally, product shape design workflows encompass stages such as requirement
gathering, creative ideation, design refinement/modeling, evaluation/improvement,
testing, and production. In contrast, data-driven shape generation pipelines involve data
identification/acquisition, shape extraction, data analysis, data mapping/transformation,
shape generation, decision evaluation, and optimization iteration (Biswas et al., 2022).
Figure 1A illustrates disparities between traditional design and data-driven approaches
across five dimensions: design efficiency, precision, personalization, adaptability, and cost.
Figure 1B presents performance comparisons of various shape generation techniques,
demonstrating superior capabilities and expansive prospects for data-driven
methodologies in product form design.

To systematically review and explore recent advancements, technical challenges, and
future trends in this domain, this study analyzes the application status of data-driven shape
generation in product design, evaluates its advantages in efficiency, personalization,
adaptability, and cost-effectiveness, and elucidates how these technologies transform
industrial design workflows through rapid exploration, optimization, and
condition-specific design prediction. The findings provide actionable insights for
researchers and stakeholders leveraging these technologies.

This review introduces a three-tier analytical framework: “technological
evolution-contemporary innovation patterns-future fusion development,” establishing
theoretical foundations for exploring the full-spectrum value of product form generation
technologies. Three breakthrough contributions are proposed: Methodological
dimensional expansion: A novel dissection of product shape generation within a “data-
algorithm-manufacturing-experience” quadrilateral framework, revealing its operational
mechanism as a product value converter. Interdisciplinary dialogue: Bridging traditional
divides between computer graphics and industrial design through a techno-artistic
interaction model, achieving quantitative unification of geometric precision and aesthetic
value. Future scenario forecasting: A technology evolution roadmap constructed via
meta-analysis of 389 literature sources, defining critical pathways for transitioning from
the current “algorithm-driven” phase to a “cognitive intelligence” stage. This provides
forward-looking decision frameworks for researchers and policymakers addressing
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multifaceted developmental demands of the contemporary era. Subsequent sections will
elaborate on the methodology and conclusions of this research.

LITERATURE REVIEW
Currently, artificial intelligence (AI) has been deeply integrated into multiple stages of
industrial design, from conceptualization to market validation, comprehensively
enhancing design efficiency and quality. Kretzschmar et al. (2024) summarized ten key
findings on the application of generative AI in engineering design and product
development (Paetzold-Byhain et al., 2024) covering technical challenges such as data
quality, privacy protection, and cross-modal capabilities, as well as application potentials
like output accuracy, providing a foundational framework for its in-depth adoption.
Sharma & Mishra’s (2020) review further revealed that AI drives the intelligent
transformation of product design and development by processing massive complex data,
shortening time-to-market, and optimizing lifecycle management. Hu et al. (2023) refined
the technical pathway by proposing a design methodology leveraging multi-modal big data
to assist AI algorithms, clarifying the limitations of traditional approaches and future
research directions. Yüksel et al. (2023) emphasized that while AI efficiently addresses
human capability gaps in engineering design, its adoption requires selecting
context-appropriate methods, offering theoretical guidance for technological selection.

Figure 1 Elements of data-driven shape generation technology. (A) The significant differences traditional and modern product design approaches
across five dimensions: design efficiency, precision, personalization, adaptability, and cost. The blue area represents data-driven modern design
methods (e.g., shape generation techniques), while the pink area denotes traditional product form design methods. The larger blue area indicates that
modern, technology-driven design approaches are more efficient and cost-effective. (B) A performance comparison of various shape generation
techniques, covering seven key aspects: data recognition & acquisition, data analysis, shape generation, optimization, shape extraction, data
transformation, and decision-making. The high scores across all metrics demonstrate the superior capabilities and expansive prospects of data-
driven methodologies in product form design. Full-size DOI: 10.7717/peerj-cs.3251/fig-1
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In specific design phases, the collaborative model between generative AI and humans is
particularly critical. Fang et al. (2025) proposed a conceptual design framework that
clarifies AI’s supportive role in idea generation. Heigl (2025) expanded research
perspectives on AI’s application in early design stages by analyzing trends in creative
contexts. Chen et al. (2025) further delineated collaborative division of labor, noting that
AI primarily supports problem definition and idea generation, while idea selection and
evaluation remain human-dominated.Holzner, Maier & Feuerriegel (2025)’s meta-analysis
validated this model, finding that human-AI collaboration significantly enhances creative
performance but requires balancing the reduction in creative diversity, recommending AI
as an “augmentation tool” rather than a replacement. The integration of AI in industrial
design now exhibits diversified trends: highlighted its accelerating role in rapid
prototyping, sustainable material selection, and predictive analytics. Khare pointed out
that AI optimizes decision-making processes through quantitative data analysis, avoiding
impractical design directions. Yadav (2023) demonstrated generative AI’s innovative
potential in electronic design and chip manufacturing, showcasing its ability to generate
high-quality materials. Balasubramaniam et al.’s (2024) review expanded technological
boundaries by proposing that breakthroughs in computer vision and natural language
processing (e.g., data augmentation, medical image interpretation) could provide
cross-domain tools for industrial design.

Looking ahead, the integration of AI with edge computing, the Internet of Things (IoT),
and blockchain will foster a more robust industrial ecosystem (Leong et al., 2025; Ige,
Adepoju & Akinade, 2025), advancing design toward intelligence, efficiency, and
sustainability. Simultaneously, intelligent automation and data-driven decision-making
will become core to manufacturing, while Industry 4.0-driven smart factory creation and
human-machine collaborative production models will further unlock AI’s potential.
Despite challenges in data quality, algorithmic interpretability, and ethical considerations,
the deep application of AI in industrial design is inevitable. By eliminating tedious
processes, supporting designer decision-making, and stimulating creativity, AI is
redefining the essence and boundaries of design.

METHODS
We utilized search terms such as “product form design”, “product form generation”,
“product form creation”, “product design technology”, “form generation technology”,
“form extraction technology”, “form recognition technology”, “Design concept
evaluation”, “product design decision-making”, and “product design optimization” in the
core database of the Science Network to collect and organize literature data from 2002 to
2024. After manual screening, we obtained 385 relevant literature articles, which primarily
focused on shape generation based on product form design.

We imported these literature articles into CiteSpace 6.0, adjusted the parameters,
selected a time slice of 1, chose “keyword” as the node type, and set the threshold (Top
N%) to 25 to avoid an overly sparse or dense network. We then selected Cosine with a
value of 0.4 and chose the minimum spanning tree (MST). Subsequently, we obtained
Fig. 2, with detailed numerical values in the upper left corner (g-index (k = 12), LRF = 2.5,

Yang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3251 4/36

http://dx.doi.org/10.7717/peerj-cs.3251
https://peerj.com/computer-science/


L/N = 10, LBY = 5, e = 1.0). Network analysis of this database (N = 284 nodes, E = 620
edges, density = 0.0154) revealed that the largest connected component (LCC) contained
164 nodes (coverage rate of 57%) and 1.0% labeled nodes. It can be observed that relevant
algorithms and technologies mainly include information equipment, emotional
engineering, data models, additive manufacturing, design evaluation, green design, and
others.

Next, literature screening was performed using the PRISMA process and appropriate
literature was selected following the JBI evidence-based criteria. The literature screening
criteria and process are shown in Fig. 3.

RESULTS
Historical evolution and theoretical foundation of data-driven product
shape generation
In the field of engineering design, massive amounts of data have driven the development of
design, which has spawned a new research field, data-driven design. Data-driven design is

Figure 2 Keyword and cluster distribution of research articles related to product shape generation algorithms and techniques in the past 10
years. Full-size DOI: 10.7717/peerj-cs.3251/fig-2
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a design paradigm grounded in the results of data research, and the process lies in
understanding the multiple factors that influence design, mining the associations between
the data of the design influencing factors, and applying such data relationships to design
decisions through data analytics (especially big data cumulative analysis).

Figure 4 summarises the evolution of algorithms and methods used in the field of shape
generation up to the present time. scholars such as Velayutham & Kumar (2005) were the
first to introduce the concept of fuzzy inner product in fuzzy mathematics to construct a
design strategy, while Tay & Gu (2003) used mathematical functions to characterise the
evolutionary paths of product form design. These studies show that design not only relies
on intuition and creativity, but also requires the integration of rigorous analytical methods,
quantitative evaluation criteria, and systematic theoretical frameworks. 2006 saw the
emergence of ‘Adaptive Design’, which emphasises the need to flexibly adapt design to the
scenarios, devices, and needs, and has given rise to the concepts of ‘Customised Matrix’,
‘Customised Parameter Matrix’, ‘Customised Configuration Matrix’, and so on. Since then,
there has been a growing interest in the correlation between shape generation and
emotional quality, and knowledge discovery has become a hot topic since 2011, focusing
on analysing and mining data for design decisions. Since then, software such as CAD has
further promoted the study of data model syntax. Concurrent engineering (CE)
emphasises the parallel implementation of multiple design phases and processes to
improve efficiency and quality. Meanwhile, assembly feature (AF) enables designers to
consider assembly relationships during the part design phase. Axiomatic design provides a
more scientific theoretical basis for design decisions. 2014 saw branding become a core
issue in the design and marketing field, with the demand for corporate image building

Figure 3 Literature screening criteria and process. Full-size DOI: 10.7717/peerj-cs.3251/fig-3
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Figure 4 History and evolution of data-driven product shape generation.
Full-size DOI: 10.7717/peerj-cs.3251/fig-4

Yang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3251 7/36

http://dx.doi.org/10.7717/peerj-cs.3251/fig-4
http://dx.doi.org/10.7717/peerj-cs.3251
https://peerj.com/computer-science/


driving the development of shape generation technology, and the emergence of concepts
and methods such as perceptual engineering, data-driven feedback, big data engineering
and production, and data-driven simulation, which continue to drive innovation in the
design field.

Big data technologies spawned new business and decision-making models in 2016. User
experience (UX) design improves user satisfaction. Configuration management aims to
integrate data from multiple sources for sharing and collaborative processing. Additive
manufacturing and algorithmic optimisation shorten product development cycles and
reduce costs. During the same period, information-physical fusion technology continues to
deepen its development, and the application of computer-aided design technology is
becoming more diverse and popular. By 2018, the future of product shape generation will
rely more on deep learning and machine learning technologies to make the product
development process more efficient and flexible by optimising performance and
architecture. Recent studies (Wang et al., 2024a) have shown that product shape
generation prediction methods based on the SSA-LSTM-Attention model exhibit higher
accuracy compared to traditional methods.

The data-driven product shape generation process is mainly divided into three parts (as
shown in Fig. 5): firstly, the data source acquisition, data collection and classification by
type; secondly, the driver model selection, need to match the appropriate data processing
model according to the type of data, such as for the user’s semantic sample library,
semantic association metrics model can be selected or combined with the encoder for
semantic extraction in order to generate design concepts; and finally, the generation
process, including seven steps of data identification, extraction, analysis, transformation,
shape generation, decision evaluation and optimisation iteration. The last is the generation
process, which includes seven steps of data identification, extraction, analysis,
transformation, shape generation, decision evaluation and optimisation iteration, and each
stage requires the selection of suitable tools to assist the analysis, such as data collector,
shape generation organiser, shape generation retriever, design concept generator and so on.

Shape generation techniques and applications in product design
Data identification and acquisition phase

Product shape data recognition algorithms can be classified into various categories based
on their characteristics and implementation strategies. Shape-based methods include
geometric invariants (e.g., corner features), descriptors (Gaussian, Fourier, wavelet),
skeletonization, moment invariants, wavelet moments, and ICA. Performance benchmarks
show that geometric invariant methods achieve 78–85% accuracy on standard datasets,
while wavelet-based descriptors demonstrate 82–89% accuracy with 25% faster processing
speeds. The implementation involves image preprocessing (grayscale conversion, filtering,
binarization), feature extraction (edges, contours, corners, shape descriptors), classifiers
(support vector machine (SVM), neural networks (NN), decision tree (DT)), and deep
learning techniques. Algorithm selection depends on task type (classification, regression,
clustering), data type (text, image), data scale and quality, algorithmic properties (stability,
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correctness, efficiency, scalability), and application requirements (interpretability, resource
demands, bias-variance tradeoff).

Shape generation algorithm literature was categorized by algorithm type and visualized
as a circular diagram using Illustrator cc2019 (Fig. 6), illustrating the application of
product shape requirement extraction techniques in natural language processing (NLP).
Studies by Yuan, Marion & Moghaddam (2022), Cong et al. (2023), Huang, Zhu & Huang
(2024) and Yang, Liu & Chen (2023) provide effective methods for product shape
requirement extraction using deep learning models (convolution neural networks (CNNs),
bidirectional encoder representations from transformers (BERT), long short term memory
(LSTM), vision transformers).

In text mining, Lai et al. (2022) used bidirectional long short-term memory (BiLSTM),
conditional random field (CRFs), multilayer perceptron (MLP) and sequential perceptual
engineering for text analysis and Apriori+ and SEM to explore relationships in user
comments. Liu et al. (2022) proposed a tf-epa-based strategy for screening sentiment word
pairs. In time series analysis, Zhang, Li & Zheng (2024) introduced Dynamic Mode
Decomposition with Conditional Correlation (DMDCC) based on Decomposition with
Conditional Correlation (DCC) theory, and Jing et al. (2022) proposed an
Electroencephalogram (EEG)-driven programming (DP) prediction approach using BP
neural networks. Classification algorithms include MF-SVM with EC model, graph-based
encoding with SVMs, spherical harmonics with conditional variational autoencoders
(CVAEs), and Riemannian manifold mapping with Binary Particle Swarm
Optimization (BPSO).

Figure 5 Basic process of data-driven product shape generation. Full-size DOI: 10.7717/peerj-cs.3251/fig-5
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Dimensionality reduction algorithms, such as user knowledge networks with
Girvan-Newman algorithm and linear discriminant analysis (LDA), were used by
Li, Wang & Sha (2023) to quantify product evolution. Sequence pattern mining

Figure 6 Shape generation algorithms and models currently applied in the data acquisition stage. Full-size DOI: 10.7717/peerj-cs.3251/fig-6
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techniques, like pattern tree mining (PTM) algorithm, were introduced by Tucker & Kim
(2011). In regression analysis, Bushra et al. (2023) utilized GPR surrogate models.

Shape data extraction is constrained by data source characteristics, extraction methods,
computational resources, and environment. Extraction methods include filter methods
(median filtering, Wiener filtering, non-local means (NLM), BM3D) and learning-based
models (convolutional neural networks (CNNs), recurrent neural networks (RNNs),
generative autoencoders (GANs)). Feature extraction algorithms for image data (Local
Binary Patterns (LBP), Histogram of Oriented Gradients (HOG)) and 3D model data
(surface reconstruction, voxelization) are also utilized. Rule-based reasoning algorithms,
such as expert systems, are applied as well.

Li, Roy & Saltz (2017) established an evolution model integrating user knowledge
network, Girvan-Newman algorithm, LDA, information axiom, and evolutionary graphs.
Additionally, Shao et al. (2020) employed wadaptiveos-elm for dynamic simulation data
mining.

Current technologies enhance designer efficiency by automatically extracting
requirements from user reviews via deep learning (ResNet-50+BERT) and incorporating
user feedback into the design process, promoting a shift from “designer-led” to “user
co-creation.”

Data analysis phase
We utilized MATLAB 2023b (The MathWorks, Natick, MA, USA) to develop cyclic
network graph code, encompassing parameter definition, adjacency matrix creation,
network visualization, node setup, cyclic graph definition, and label addition. Keywords
from selected literature were compiled into an Excel file and imported into the code to
generate the effect depicted in Fig. 7. Shape generation data analysis is a complex process
that relies on various tools and methods to achieve final design goals. The process varies
with design objectives (e.g., bionic design, particle swarm optimization), data types
(predictive, inferential, descriptive), and analytical tools (simulation, visualization,
statistical analysis). According to Abiodun et al. (2018), deep learning approaches in shape
analysis demonstrate superior performance with classification accuracy ranging from 85%
to 97% depending on dataset complexity and size.

Current product shape analysis algorithms are diverse, including constraint-based
solutions (Ren et al., 2024). comparative analysis, edge detection, Hough transform,
contour tracking, shape matching, and deep learning. Real-time feedback and adjustment
mechanisms are crucial for off-standard inspection to ensure process stability and
exception handling. Diagnostic analysis delves into data causes and correlations.
Perceptual engineering maps user perception to product design features, and combining it
with neural style migration enhances model efficiency. Grey correlation and hierarchical
analysis clarify relationships between shape elements and consumer perception (Chen,
Song & Ge, 2023).

Lin et al. (2013) proposed a probabilistic factor graph model using Markov chain Monte
Carlo (MCMC) sampling for 2D pattern coloring. Exploratory data analysis employs
visualization and statistical methods to uncover dataset patterns, with factor analysis
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aiding dimensionality reduction. TOPSIS determines demand weights for neural network
evaluation. Yuan, Marion & Moghaddam (2022) developed dynamic data envelopment
analysis (DDE) and dynamic multi-objective data envelopment analysis (DMDE) models,
while Sharma (2023) used DSE for design scenario analysis. Chen, Song & Ge (2023)
introduced ‘Mutational Reasoning on Graphs’ with probabilistic self-attention. Yang &

Figure 7 Shape generation algorithms and models currently applied in the data analysis phase. Full-size DOI: 10.7717/peerj-cs.3251/fig-7
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Xiao (2011) created a 3D model feature similarity tool, and Yang et al. (2023) proposed a
second-order method for Fisher matrix computation.Wang et al. (2022) presented a shape
topology design method based on Quantization Theory I. For predictive analysis, neural
networks and regression models are used, including BP, GNN, Bayesian, higher-order, and
linear networks.Hayakawa, Noji & Kato (2025) applied regression models for design space
and tyre tread prediction. Decision trees, such as DTM classifiers, also offer predictive
capabilities.

Statistical inferential analysis often uses SEM. Choi et al.’s (2024) Spnr framework
incorporates semantic mask diffusion models, and Ghosh et al.’s (2016) network-centered
design uses SEM for parameter estimation. Common methods for design data relationships
include correlation analysis, multiple linear regression, NA-IPA, and IGDT-MFP.

Data transformation phase
Data mapping is a key process designed to ensure compliance, eliminate data redundancy
and facilitate analysis by depicting and visualising correlations between data component
fields and integrating them into a unified schema or database (Zhao et al., 2023). In the
product design domain, data mapping is particularly important for shape generation,
involving the transformation (Wu, 2021), integration and standardisation of data from
different sources, formats and structures to support various attributes of the product
design. After selecting and categorising the relevant techniques, we have used Illustrator
CC 2019 to map the shape generation algorithms and models applied in the current data
transformation phase (shown in Fig. 8).

The product shape data mapping mechanism consists of a series of algorithms designed
to transform shape data into a form that facilitates analysis (Khosravi et al., 2024),
optimisation and design generation. These algorithms can be classified into four broad
categories based on the type of method: (1) Feature-based mapping methods aim to extract
geometric features (e.g., contour lines, axes of symmetry), topological features
(e.g., number of holes, connectivity relationships), or physical features (e.g., material
properties, stress distributions) from the data, and construct a feature vector space for
mapping. Typical methods include morphological graph methods (for cross-domain
mapping through graph matching) and fuzzy set theory (for dealing with the ambiguity of
feature boundaries). (2) Model-driven mapping methods, which realise data
transformation through a library of predefined mapping rules (e.g., ontologies, patterns or
templates). For example, both Theory of Inventive Problem Solving (TRIZ) contradiction
matrix and quality function deployment (QFD) quality house map functional
requirements to structural or design parameters. Integrated QFD-TRIZ methodologies
demonstrate significant improvements in innovative product design, with studies showing
30–40% reduction in design cycle time and 25% improvement in design solution quality
compared to traditional methods (Sharma & Mishra, 2020). (3) Learning-based mapping
methods, which use training data to learn input-output mapping relationships, typical
algorithms include neural networks, decision trees, random forests and graph neural
networks. These methods require a large amount of labelled data and have poor
interpretability due to their ‘black box’ nature. (4) Theory-guided mapping methods such

Yang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3251 13/36

http://dx.doi.org/10.7717/peerj-cs.3251
https://peerj.com/computer-science/


as FBS theory, which establishes a hierarchical mapping from function to behaviour to
structure, and Effect-based System Method (ESM) effect theory, which optimises shape
parameters based on physical effects (e.g., thermal expansion and contraction). It can be
seen that traditional design data conversion methods are still necessary, and that relying
only on AI for design is not yet a complete substitute for the applicability of traditional
models, especially in highly creative projects or projects involving human subjects, where
traditional designer-led methods are still advantageous (Hu, Fu & Zhao, 2024).

Currently, there are three types of mapping relationships: function-to-structure
mapping, feature-to-image mapping, and requirement-to-function relationship mapping.
Function-to-structure mapping focuses on three types of mapping relationships:
(1) function-to-structure mapping, such as relying on theoretical frameworks such as
TRIZ, QFD, and FBS. Liu et al. (2025) constructed a biologically-inspired design model for
innovation based on TRIZ. Mettas (2010) utilised a hierarchical design structure matrix
(HDSM) to enhance device performance. Geiger & Sarakakis (2016) set reliability through
design for reliability (DfR). Endress, Rieser & Zimmermann (2023) uses effects-based
system approach (ESM) to optimise component geometry. QFD applications in product
design show significant improvements in converting customer requirements into
engineering characteristics, with studies reporting 20–35% reduction in development time
and 15–30% improvement in customer satisfaction scores (Shin, Shin & Kang, 2023). (2)
The feature-to-image mapping aspect covers morphology map approach, symbolic
semantics theory (Liu & Yang, 2022), text-to-shape transformation, fuzzy set theory and

Figure 8 Shape generation algorithms and models currently applied in the data transformation phase.
Full-size DOI: 10.7717/peerj-cs.3251/fig-8
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KJ method. (3) Requirements-to-function relationship mapping includes functional
structure concept network (FSCN), rapid application development (RAD), generative
axiomatic design (PCGA-DLKE), and axiomatic design extended version, which provide
strong support for requirements-to-function mapping (Wang, Liu & Yang, 2022).

Current technologies can break through the limitations of the designer’s personal
experience, e.g., learning mapping (e.g., GNN) to obtain style characteristics from case
study learning, or function-structure mapping (e.g., TRIZ contradiction matrices) to
transform abstract requirements into concrete design parameters, e.g., ‘lightweighting’ to
automatically correlate with material selection and topology optimisation.

Shape extraction phase

Currently, product shape extraction methods are profoundly influenced by data sources
and tools. To systematically analyze these methods, we first clustered the keywords in the
literature and categorized them into five major groups based on differences in objectives
and methodologies: edge-based, region-based, contour-based, data reduction-based shape
extraction methods, and other shape extraction methods, encoded as 1 to 5 respectively.
Subsequently, we counted the names and literature quantities of specific shape extraction
methods within each category, distinguishing between standalone and combined uses, and
visualized this information through a circular heatmap (as shown in Fig. 9). The
implementation steps of the circular heatmap include: converting the data matrix into an
annular distribution in the polar coordinate system, determining the position of each data
block using polar coordinate formulas, mapping numerical values to color spaces, creating
concentric rings to represent different data layers, and adding annotations to the angular
and radial axes.

Edge-based shape extraction: Edge detection, a fundamental technique in image
processing, is widely used to identify significant changes in images. The Harris corner
detection algorithm demonstrates superior performance compared to SUSAN corner
detection algorithm in comprehensive evaluations, with improved accuracy in
distinguishing between edges and corners through differential corner score analysis
(Emmert-Streib et al., 2021). Ji et al. (2020) utilized the Geometric Decontouring Network
(GDCNet) to effectively eliminate false contours. Ma & Kim (2014) proposed the
predictive data-driven product family design (PDPF) model, incorporating the Harris
corner detection algorithm. Stoler, Lorusso & Capodieci (2006), based on design-based
metrology (DBM), employed the Roberts operator to extract patterns, enabling an
automated process. Yang et al. (2024) introduced a mesh denoising (EMD) and real mesh
noise generation (RMNG) model based on the rotated squared model, addressing the
challenge of feature-preserving mesh denoising.

Region-based shape extraction: Research on region-based shape extraction is relatively
scarce and primarily combined with other methods for data acquisition. Rios et al. (2021)
validated autoencoder representations, enhancing optimizer performance by providing
potentially complementary degrees of freedom.

Contour-based shape extraction: Image segmentation is a key contour extraction
technique. Bae, Tai & Zhu (2017) proposed an image segmentation model using the L-1
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Figure 9 Generative algorithms and models currently applied in the shape extraction phase. Full-size DOI: 10.7717/peerj-cs.3251/fig-9
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variant of Euler’s elastica energy as boundary regularization, effectively representing
curvature. In feature selection, Cdna Microarray adopted multiple features to avoid
treating noise as individual pixels and processed poor-quality spots through an adaptive
adjustment algorithm. Zhao, Tang & Gong (2024) introduced a novel curvature-driven
multi-stream graph convolutional neural network (CDMS-Net) architecture. Huang et al.
(2021) utilized VGG16 for feature extraction, enhancing the efficiency and generation
speed of local image style transfer. VGG16 neural network achieves 92.7% top-5 test
accuracy on ImageNet dataset containing over 14 million images belonging to 1,000
classes. VGG16-XGBoost hybrid models demonstrate superior performance with accuracy
of 0.97 and weighted F1-score of 0.97 in medical image analysis tasks (Howland et al.,
2023).

Data reduction-based shape extraction: Extraction methods based on data
dimensionality reduction are more of a way of thinking, utilizing mathematical or
statistical methods to reduce the number or dimensions of data features while preserving
important information from the original data.

Other innovative methods: Furthermore, scholars have innovated various methods and
models tailored to different extraction purposes. Ahmad, Hassan Amin & Khan (2010)
extended the study of grammatical style definitions using Scale-Invariant Feature
Transform (SIFT). Chen et al. (2023) proposed a novel deep learning module called
“Variant Reasoning on Graphs” to effectively utilize variational knowledge.He et al. (2016)
applied Gaussian filtering, segmentation, and Gaussian-shaped Fast Fourier Transform
(FFT) to fMRI image reprocessing. Fotopoulou, Oikonomou & Economou (2019) designed
linear matrix operators through optimal projection, proposed a graph-based encoding
technique, and utilized Support Vector Machines (SVM) for category prediction.

Technological advancements and applications: The technology at this stage can assist
designers in working away from high-performance workstations. For example, algorithms
like GDCNet can reduce noise while preserving sharp features (e.g., product corners),
solving the problem of excessive smoothing caused by traditional denoising. Additionally,
the automatic conversion from point cloud to parametric model (e.g., L − 1 Eulerian elastic
model) supports the direct use of 3D scanning data in CAD modeling.

Shape generation phase
In the shape generation process, data transformation and mapping play a crucial role in
bridging the gap between abstract design concepts and concrete geometric representations
(Fazeli & Peng, 2022) We reviewed and defined shape generation algorithms in literature,
organized these algorithms using Excel, and created a stacked circular diagram (Fig. 10).
The algorithms are categorized into three main types: graph-based generation algorithms,
technical feature-based algorithms, and other algorithms. Graph-based mapping models
aim to represent shapes and their components using graph structures, where nodes
represent geometric primitives (e.g., points, lines, arcs) and edges represent topological
relationships (e.g., adjacency, connectivity). Transformations such as scan conversion and
region filling are applied to these graphs to generate final shapes. Recent studies show that
these transformations achieve computational complexity ranging from O(n) for
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simple line algorithms to O(n2) for complex polygon filling operations, with modern
implementations achieving processing speeds of 104−105 operations per second
(Alzubaidi et al., 2021). Technical feature-based modeling focuses on capturing and
processing technical features such as dimensions, tolerances, material properties, and
functional requirements. They typically employ parametric modeling and optimization
techniques to generate shapes satisfying specific engineering constraints. Examples include

Figure 10 Generative algorithms and models currently applied in the shape generation phase. Full-size DOI: 10.7717/peerj-cs.3251/fig-10
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Range-GAN, CycleGAN, FCGAN for fault diagnosis, and CGAN-CNN hybrids
(combining conditional GANs with CNNs for topology optimization and performance
prediction).

Figure 10 shows that graph-based generation algorithms are primarily used for
generating basic shapes, including line scan conversion, arc generation, polygon scan
conversion, and region filling methods. Techniques such as Bresenham’s algorithm, polar
coordinate algorithms, and boundary clipping are involved. Empirical evaluations
demonstrate that Bresenham’s algorithm achieves pixel-level accuracy with computational
efficiency improvements of up to 40% compared to traditional floating-point methods
(Foley, 1996). Technical feature-based algorithms are widely applied in 3D data generation
and parametric shape generation. With rapid advancements in deep learning algorithms,
shape generation methods based on latent variables and generative adversarial networks
(GANs) have gained significant attention. In latent variable models, the conditional deep
generative model Range-GAN proposed by Heyrani Nobari (2022) addresses sparse
condition challenges in data-driven inverse design, enabling automated design synthesis
with range constraints. GAN modeling methods are often combined with other
approaches, such as CycleGAN proposed by Cabezon Pedroso, Ser & Díaz-Rodríguez
(2022) (a GAN architecture integrated with other methods for style transfer or domain
adaptation in shape generation). Additionally, Wang & Xue (2024) utilized the fuzzy
clustering generative adversarial network (FCGAN)model (enhancing GAN capabilities in
pattern recognition tasks related to shape analysis through fuzzy clustering) for fault
diagnosis. Herath & Haputhanthri (2021) combined conditional generative adversarial
networks (CGANs) with convolutional neural networks (CNNs) for topology optimization
and performance prediction. Comparative studies demonstrate structural optimization
efficiency gains of 25–35% compared to conventional finite element analysis methods, with
solution convergence achieved in 60–80% fewer iterations. Other algorithms include
parametric shape generation as a research hotspot. Parametric mapping models use
coordinate systems (e.g., spherical, Euclidean, polar) and mathematical functions to
parameterize shapes. Various shapes can be generated and modified by adjusting
parameters (McKay & de Pennington, 2022). Main methods involve spherical, Euclidean,
and polar coordinate parameterization. Hybrid modeling combines elements from
multiple categories to leverage their respective advantages. For instance, integrating
graph-based representations with technical feature-based optimization. Another example
combines FCGAN with parametric models to enhance shape diagnosis and generation
capabilities.

General evaluation factors for shape generation algorithms include: Quantitative and
qualitative metrics: Depending on application scenarios, either or both may be
combined. For example, quantitative metrics for accuracy and efficiency, and qualitative
metrics for aesthetics and design innovation. Benchmark testing: Comparing performance
against existing algorithms or industry standards. User feedback: Incorporating
feedback from designers and engineers to assess practical usability and value.
Computational resources: Considering the trade-off between model complexity and
computational demands (Ma et al., 2024).
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The technologies in this stage can assist designers to focus on creative expression rather
than technical realization, such as CycleGAN to realize automatic conversion of sketches
to high-precision models, Range-GAN to generate diverse solutions under constraints,
expanding design possibilities, and helping enterprises to deploy an AI-assisted design
pipeline to achieve a 15–30% reduction in load.

Decision-making assessment phase
Shape generation decision-making algorithms represent a core component of design
automation and intelligence (Arbabi et al., 2022). Their primary value lies in assisting
designers to efficiently generate product shapes that meet functional requirements and
constraints through algorithmic means. The development of this field has always been
closely integrated with optimization algorithms, forming a multi-layered and
multi-paradigm technical system.

Core algorithms include bio-inspired algorithms and data-driven algorithms.
Bio-inspired algorithms encompass genetic algorithms (GA) (which simulate biological
evolution through mechanisms of population initialization, crossover, mutation, and
selection to perform global searches in shape spaces, progressively approaching optimal
solutions), Empirical studies demonstrate that GA-based shape optimization achieves
convergence rates of 85–95% within 200–500 generations, with parallel implementations
reducing computational time by 40–60% compared to sequential approaches (Gad, 2022).
Ant colony optimization (ACO) (which draws on ant foraging behavior to construct path
optimization models for shape combinations, suitable for multi-objective shape design
problems), particle swarm optimization (PSO) (based on swarm intelligence particle
collaboration mechanisms, balancing exploration and exploitation through information
sharing and local search to enhance global optimization efficiency), Performance
benchmarks show that PSO algorithms typically converge 30–50% faster than traditional
genetic algorithms, with multi-objective PSO variants achieving Pareto front coverage of
90–95% in engineering design problems. Simulated annealing (SA) (which introduces
thermodynamic annealing processes, accepting probabilistic inferior solutions to break
through local optima and enhance global exploration capabilities in shape design).
Data-driven algorithms include generative adversarial networks (GANs), such as those
developed by scholars like (Goodfellow, Bengio & Courville, 2016) which can create novel
designs by learning from existing design data (Wang et al., 2023).

During the decision-making phase, we reviewed the application history of relevant
algorithms and models. As shown in Fig. 11, since 2002, active learning frameworks and
real-coded genetic algorithms have become widespread, driving the transition of shape
generation from rule-based to data-driven approaches. After 2012, academic research
shifted its focus to the mapping relationships between functional and physical domains,
proposing multi-criteria decision-making methods (such as quality function deployment
(QFD), ideal final result (IFR), artificial neural networks (ANN), axiomatic design (AD),
etc.). Notable achievements include the decision-making model proposed by Song et al.
(2024), which integrates behavioral analysis, failure mode and effects analysis (FMEA), and
TRIZ theory. In terms of evaluation method innovation, Yu et al. (2025) employed the
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Multinomial Logit (MNL) model to quantify consumer acceptance of new designs,
providing market feedback for design iteration (Chen & Xu, 2024; Chen & Bian, 2024).
Ranscombe, Kinsella & Blijlevens (2017) introduced the holistic shape analysis (HSA)
method, combining 3D geometric comparison tools to extract shape difference features
and support design optimization decisions.

Since Adeli (2002) first applied neural networks in the field of structural engineering
research in 1989, the role of neural networks in the design industry has become
increasingly prominent. Currently, neural network-based shape generation
decision-making algorithms are more comprehensive and scientific, examples include the
niching artificial fish swarm algorithm, multi-level artificial neural networks, and
multi-layer perceptron genetic algorithm neural networks. In actual decision-making
processes, decision-making algorithms generally form closed-loop interactions with
evaluation methods, innovating around decision-making objectives and evaluation
criteria. There are three main approaches: the generate-evaluate cycle (e.g., GANs generate

Figure 11 Generative algorithms and models currently applied in the decision evaluation phase. Full-size DOI: 10.7717/peerj-cs.3251/fig-11
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candidate shapes—HSA/MNL evaluation—feedback to optimize the generator),
multi-criteria decision-making (QFD defines requirement weights—PSO/GA
multi-objective optimization—ANN verifies performance), and interdisciplinary
integration (Game Theory (e.g., Nash equilibrium) optimizes multi-stakeholder design
objectives, Markov Decision Processes model design state transitions). Techniques at this
stage can assist designers in avoiding unidimensional decision-making pitfalls, such as
PSO + QFD frameworks to simultaneously optimize cost, performance and user
satisfaction. Another example is the combination of FMEA and behavioral analysis to
identify potential failure modes early in the design.

Optimisation iteration phase
Product shape optimization algorithms constitute a complex, multidisciplinary field
focused on achieving functional, efficient, and aesthetic balance in product geometry via
mathematical methods (Sheikh et al., 2022). By judiciously selecting algorithm
combinations, effective product shape design generation and shape data analysis can be
conducted, enhancing design efficiency and product quality (Ebrahimi & Jahangirian,
2017). We analyzed algorithm usage frequency during the optimization iteration phase
using mountain landscape visualization code, primarily employing the surf function to
render landscapes with color, axis, and label adjustments (Fig. 12). The technological
evolution and cross-disciplinary integration of this field follow these trajectories:

Algorithmic system innovation: As cross-disciplinary design research deepens, shape
optimization algorithms become increasingly critical in the design generation process.

Figure 12 Generative algorithms and models currently applied in the iterative phase of optimisation.
Full-size DOI: 10.7717/peerj-cs.3251/fig-12
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Optimization frameworks based on Poisson equations, coupling Boundary Element
Method (BEM), FEM, and LSM, enable high-precision modeling of physical field
distributions and structural characteristics, demonstrating advantages in fluid mechanics
optimization (Moosavi, Jablonka & Smit, 2020). Computational fluid dynamics
optimization using coupled BEM-FEM approaches achieves accuracy improvements of
15–25% while reducing computational time by 30–45% compared to traditional
single-method approaches (Mirjalili et al., 2023). Mirjalili & Lewis (2016) proposed novel
swarm intelligence algorithms like WOA and SOA, offering new paradigms for
multi-objective optimization. These algorithms simulate biological swarm behaviors,
requiring precise parameter tuning but exhibiting strong global search capabilities for
high-dimensional complex problems. WOA demonstrates superior performance on 29
benchmark functions with convergence rates 20–35% faster than traditional genetic
algorithms, while achieving solution accuracy within 98% of global optima for engineering
design problems.

Integrated algorithm applications: When applying optimization algorithms, factors
such as data quality, algorithmic complexity, and computational resources must be
considered. Integrated algorithm applications are now mainstream, including deep fusion
of GA with neural networks for data-driven optimization efficiency and combined
applications of PSO with Adam algorithms, performing well in performance prediction
and hybrid optimization. Notable studies include Li et al.’s (2021) PSO-SVM prediction
model and Tan et al.’s (2023) PSO-Adam hybrid optimization strategy.

Topology optimization technologies: Since 2019, deep learning-accelerated topology
optimization has emerged as a hotspot, with three directions: preprocessing enhancement,
system-level optimization, and numerical method innovation (e.g., Regenwetter Lyle’s
solver, increasing efficiency by >40%).

Emerging research areas: Uncertainty Optimization: Kim (2023)modeled uncertainty in
product degradation signals, while Ao et al. (2023) proposed a degradation-based
multi-objective image optimization framework to enhance design robustness.

Human-computer collaborative design: Zhao, Sharudin & Lv (2024) combined Kansei
Engineering with WOA algorithms, pioneering emotion-driven shape generation and
bridging affective computing and optimization.

Evaluation system: Product shape optimization algorithms adopt a multi-dimensional
evaluation system, including objective function formulation (balancing mechanical
performance, material use, and costs), constraint handling mechanisms, convergence
metrics, computational complexity, and robustness verification.

Current technologies promote a shift from deterministic optimization to resilient
design, e.g., the electronics industry adopting impact optimization frameworks. They solve
NP problems using group intelligence algorithms like Whale Optimization Algorithm
(WOA) and enhance human-computer interaction (Kansei+WOA), incorporating
emotional data into optimization goals to boost product emotional value.

Design concept evaluation phase
Design concept evaluation has become a critical phase in product development,
systematically assessing early-stage creative concepts across feasibility, innovation, user
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preferences, functionality, and emotional appeal (Xue & Wu, 2022). Traditionally
dominated by qualitative methods (e.g., focus groups, expert reviews), the field now
integrates multi-criteria decision-making (MCDM) approaches like Analytic Hierarchy
Process (AHP), Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS), and fuzzy logic to enhance objectivity.

Recent advancements focus on multimodal evaluation, incorporating
neurophysiological data (eye-tracking, EEG, functional near-infrared spectroscopy
(fNIRS), galvanic skin response (GSR)) to model implicit cognitive-emotional responses.
This fusion of physiological signals and subjective feedback enables data-driven,
user-centered refinement of design solutions.

As a pivotal bridge between ideation and realization, design concept evaluation supports
evidence-based decision-making (Sharma, 2023), reduces development risks, and informs
preference modeling. This article positions it as a foundational prerequisite for modeling
strategies, integrating multimodal metrics to quantitatively evaluate concepts and guide
iterative design optimization.

DISCUSSION
Opportunities of AI-empowered product form generation
Performance prediction: AI-driven innovative form design
AI-assisted design technology enables the generation of product forms that meet specific
stylistic or functional requirements, Wang et al. (2024b) assisting designers in precisely
controlling key parameters such as geometric features, Miao et al. (2024) material
properties, and loading conditions. Additionally, by integrating dimensionality reduction
algorithms (e.g., t-Distributed Stochastic Neighbor Embedding (t-SNE), Uniform
Manifold Approximation and Projection (UMAP)) with Bayesian optimization, it
effectively addresses the complexities of high-dimensional design spaces, accelerating
design iteration (Arjomandi Rad, Cenanovic & Salomonsson, 2023). In terms of real-time
performance prediction, the deployment of edge computing nodes for distributed
inference enables real-time performance prediction and optimization, meeting the
demands of instant feedback scenarios such as additive manufacturing and Augmented
Reality/Virtual Reality (AR/VR). At the level of design paradigm innovation, generative
adversarial networks (GANs) mine potential design patterns by analyzing vast amounts of
form data, further enhancing immersive design experiences. Furthermore, while
traditional trial-and-error-based design is gradually being replaced by AI-driven methods,
human-centric innovation projects (e.g., QFD, FBS models) still rely on traditional design
logic. In the future, it is recommended to establish a cross-domain database that integrates
multi-source data such as materials, processes, and user behavior, utilizing transfer
learning to address data sparsity issues. Moreover, developing explainable AI modules will
provide transparent decision-making support for safety-critical designs (e.g., medical
devices, aerospace) (Chen et al., 2023).

Reverse design: multimodal data-driven technology upgrade path
Reverse design technology, centered on data-driven approaches and intelligent algorithms,
enables precise transformation and innovative optimization from physical objects to
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digital models (Zhang & Chen, 2024). In terms of multimodal data acquisition and digital
reconstruction, it leverages computer vision-based high-precision 3D scanning, point
cloud processing, and deep learning algorithms to construct an integrated “scan-design-
manufacture” platform.

Regarding multimodal data fusion, between 2018 and 2020, the field of physiological
signal acquisition encountered interference issues in the fusion of EEG/ECG/EMG
modalities. However, after 2023, the adoption of parameter-free modal modulation
modules eliminated such interference, resulting in a 40% improvement in reconstruction
accuracy (Hou, Tuerhong & Wushouer, 2023).

In terms of application innovation in vertical fields, a library of parametric models and a
matrix of style transfer algorithms have been established to support topology optimization
and innovative form generation based on 3D reconstruction (Xu et al., 2023). For instance,
Tesla achieved a 15% weight reduction in battery packs and a 30% improvement in
thermal management efficiency through topology optimization and generative design.

In the future, by combining multi-objective optimization algorithms and integrating
“top-down” system modeling with "bottom-up" generative design, reverse design
technology will promote the co-evolution of form, structure, and function.

Structure optimization: deep integration of algorithms and manufacturing

techniques
The field of structural optimization is currently undergoing a paradigm shift driven by the
deep integration of algorithms and additive manufacturing technologies. By combining
topological optimization frameworks with the global search capabilities of genetic
algorithms and the nonlinear mapping advantages of neural networks, and taking into
account the constraints of additive manufacturing processes such as overhang angle
limitations, it achieves collaborative optimization of lightweighting and load-bearing
performance. The algorithms in this field have evolved from early homogenization
methods that relied on manual input (prior to 2015) to the current stage where, after 2020,
the Bi-directional Evolutionary Structural Optimization (BESO) method combined with
AI tools enables form-force collaborative design (reducing iterations by 70%). In 2023, the
Time-Varying Concurrent Topology Optimization (TVCTO) framework supports parallel
optimization of three variables (macroscopic density, microscopic structure, and
deformation parameters), resulting in a 60% reduction in computational load (Chen et al.,
2023). Future developments in this area will focus on the construction of cloud-based
collaborative platforms, integrating multi-physics simulations to create a closed-loop
process of “digital twin-algorithmic optimization—virtual verification.” This will
significantly enhance structural efficiency and shorten the R&D cycle in fields such as
aerospace and automotive. The core advantages of this approach lie in multi-scale
collaborative design, AI-driven intelligent iteration, and manufacturing integration.

AI-driven transformations and challenges in product form generation
Technological revolution and multidimensional challenges
As the core driving force of modern technology, artificial intelligence (AI) and machine
learning (ML) have enabled intelligent product form generation design. Algorithmic
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automated optimization of design parameters significantly enhances design efficiency and
precision. AI-driven design methodologies can generate personalized forms based on user
needs and market trends, satisfying customized product demands. However, practical
applications face multiple challenges: dataset quality defects, such as noise and
incompleteness, compromise model reliability; the “black-box” nature of ML models lacks
decision transparency, posing challenges for safety-critical designs; high-dimensional
design spaces and complex algorithmic models increase computational burdens and
resource requirements.

Technology empowerment and cross-domain innovation
AI and ML demonstrate vast potential in the field of form generation (Ren & Xiong, 2022;
Xiong, Yue &Wu, 2023) driving synergistic advancements in automated intelligent design,
personalized customization, performance prediction and optimization, sustainable design,
and additive manufacturing. In automated design, hybrid models integrating expert
knowledge graphs with generative adversarial networks (GANs) need to be constructed to
simulate the creative thinking of human designers. Combining digital twin technology
with additive manufacturing establishes a real-time feedback loop for “design-validation-
production.” For performance prediction and optimization, multiphysics coupled
simulation models should be developed to analyze the mapping relationships between
product form parameters and material properties, with reinforcement learning enabling
dynamic optimization. In the dimension of sustainable design, a life-cycle carbon footprint
assessment model must be built (Zhao, Tang & Gong, 2024). Through topological
optimization and materials genome technology, redundant structures and material
consumption can be reduced, promoting green design and circular manufacturing.

Ecosystem co-construction and ethical governance
While advancing algorithm-manufacturing collaborative design, ethical issues raised by AI
must be considered. First, vigilance is required against bias amplification effects in
data-driven design—if training data contains cultural, gender, or economic biases,
algorithms may generate solutions that reinforce inequalities in social resources. Second,
the a mbiguous intellectual property ownership of AI-generated designs necessitates
establishing rights allocation mechanisms to balance the interests of algorithm developers,
data providers, and users. Furthermore, the “black-box” issue in the design process
demands enhanced algorithmic transparency, especially in critical product areas such as
medical implants, where decision interpretability and traceability must be ensured.
Additionally, from an environmental perspective, excessive design tendencies must be
evaluated to avoid material waste and electronic waste issues. Finally, a multi-stakeholder
governance framework involving ethicists, designers, and engineers, along with relevant
policies, needs to be constructed. Through technical standards and certification systems,
technology can be guided toward responsible innovation.

CONCLUSIONS
This article delves into the historical context, current research trends, and future
development directions of product shape generation design technology. Through a
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systematic analysis of 385 relevant literature pieces, it defines the basic concepts and
processes of data-driven product shape generation and comprehensively discusses the
characteristics and applications of major generation technologies. The research indicates
that the development of shape generation technology is highly dependent on abundant
database resources and advanced algorithm software, providing support for crucial
industries such as industrial manufacturing, automobiles, aviation, and furniture.

This study has the following limitations: (1) Insufficient interdisciplinary data: The
primary data in this study is largely focused on a single industry (product manufacturing),
and there are fundamental differences in shape generation techniques across different
industries. (2) Limited discussion on dynamic interaction generation: Most of the analyzed
techniques are based on static data for shape generation, without adequate consideration of
dynamic changes during actual manufacturing processes and their impact on shape
generation (e.g., deformation scenarios in wearable devices). (3) Ethical and fairness
concerns: The algorithms discussed may implicitly contain design biases (e.g., overly
catering to mainstream aesthetics, prioritizing functionality while neglecting user core
needs).

In the future, these limitations can be addressed through the following strategies:
(1) Develop a multimodal physical-geometric relational database: Encode

manufacturing constraints from diverse industries (e.g., fluid dynamics formulas, material
fatigue parameters) into reproducible knowledge nodes to enable hybrid modeling that
integrates “physical rules + data-driven” approaches. (2) Embed virtual simulation in the
shape generation process: Utilize digital twin technology to simulate the real-time
performance evolution of products in complex scenarios and dynamically adjust
generative parameters through reinforcement learning. (3) Establish an ethical review
framework: Develop “fairness evaluation metrics for generative outcomes” to
systematically assess and mitigate algorithmic biases. Future product form generation
technology will be driven by advancements in emerging technologies, pursuing
intelligence, efficiency, customization, and sustainability. It will focus on optimizing design
processes and production efficiency while deeply integrating user experience and aesthetic
standards to meet personalized demands and deliver products with emotional and
aesthetic value.

APPENDIX: ABBREVIATIONS
Acronym Full Name

AI Artificial Intelligence

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-
Analyses

JBI Joanna Briggs Institute

CE Concurrent Engineering

SSA-LSTM-Attention Sparrow Search Algorithm-Long Short-TermMemory-Attention

UX User Experience

CNN Convolutional Neural Network

BERT Bidirectional Encoder Representations from Transformers
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Bi-LSTM Bidirectional Long Short-Term Memory

CRF Conditional Random Field

MLP Multilayer Perceptron

DMDCC Dynamic Mode Decomposition with Conditional Correlation

EEG Electroencephalogram

MF-SVM Multi-Factor Support Vector Machine

EC Model Evolutionary Computation Model

CVAE Conditional Variational Autoencoder

LDA Latent Dirichlet Allocation

PTM Pattern Tree Mining

GPR Gaussian Process Regression

NLM Non-Local Means

BM3D Block-Matching and 3D Filtering

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution

DDE Dynamic Data Envelopment Analysis

DMDE Dynamic Multi-objective Data Envelopment Analysis

DSE Design Space Exploration

MCMC Markov Chain Monte Carlo

GNN Graph Neural Network

SEM Structural Equation Modeling

NA-IPA Non-linear Analysis-Interpretive Phenomenological Analysis

IGDT-MFP Information Gap Decision Theory-Multi-objective Fuzzy
Programming

TRIZ Theory of Inventive Problem Solving

QFD Quality Function Deployment

FBS Function-Behavior-Structure

ESM Effect-based System Method

HDSM Hierarchical Design Structure Matrix

DfR Design for Reliability

FSCN Functional Structure Concept Network

RAD Rapid Application Development

PCGA-DLKE Product Concept Generation Axiomatic Design-Deep Learning
Knowledge Embedding

GDCNet Geometric Decontouring Network

PDPF Predictive Data-Driven Product Family Design

DBM Design-Based Metrology

EMD Edge Mesh Denoising

RMNG Real Mesh Noise Generation

Range-GAN Conditional Deep Generative Model with Range Constraints

CycleGAN Cycle-Consistent Generative Adversarial Network

FCGAN Fuzzy Clustering Generative Adversarial Network

Yang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3251 28/36

http://dx.doi.org/10.7717/peerj-cs.3251
https://peerj.com/computer-science/


CGAN-CNN Conditional Generative Adversarial Network-Convolutional
Neural Network

GA Genetic Algorithm

ACO Ant Colony Optimization

PSO Particle Swarm Optimization

SA Simulated Annealing

QFD Quality Function Deployment

IFR Ideal Final Result

ANN Artificial Neural Network

AD Axiomatic Design

FMEA Failure Mode and Effects Analysis

MNL Multinomial Logit Model

HSA Holistic Shape Analysis

WOA Whale Optimization Algorithm

SOA Seagull Optimization Algorithm

BEM Boundary Element Method

FEM Finite Element Method

LSM Level Set Method

PSO-SVM Particle Swarm Optimization-Support Vector Machine

PSO-Adam Particle Swarm Optimization-Adaptive Moment Estimation

t-SNE t-Distributed Stochastic Neighbor Embedding

UMAP Uniform Manifold Approximation and Projection

GANs Generative Adversarial Networks

ECG/EMG Electrocardiogram/Electromyogram

BESO Bi-directional Evolutionary Structural Optimization

TVCTO Time-Varying Concurrent Topology Optimization

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was funded by the Youth Fund for Humanities and Social Science Research
of the Ministry of Education in China, Grant Number 21YJC760017. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Youth Fund for Humanities and Social Science Research of the Ministry of Education in
China: 21YJC760017.

Competing Interests
The authors declare that they have no competing interests.

Yang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3251 29/36

http://dx.doi.org/10.7717/peerj-cs.3251
https://peerj.com/computer-science/


Author Contributions
. Xinyan Yang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Ling Zhu conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

. Lei Fu conceived and designed the experiments, performed the experiments, analyzed the
data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

. Jiufang Lv analyzed the data, performed the computation work, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

This is a literature review.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.3251#supplemental-information.

REFERENCES
Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NAE, Arshad H. 2018. State-of-the-

art in artificial neural network applications: a survey. Heliyon 4(11):e00938
DOI 10.1016/j.heliyon.2018.e00938.

Adeli H. 2002. Neural networks in civil engineering: 1989–2000. Computer–Aided Civil and
Infrastructure Engineering 16(2):126–142 DOI 10.1111/0885-9507.00219.

Ahmad R, Hassan Amin S, Khan MAU. 2010. Scale and rotation invariant recognition of cursive
Pashto script using SIFT features. In: IEEE 6th International Conference on Emerging
Technologies (ICET), 299–303 DOI 10.1109/ICET.2010.5638470.

Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría JJ, Fadhel
MA, Al-Amidie M, Farhan L. 2021. Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions. Journal of big Data 8(1):53
DOI 10.1186/s40537-021-00444-8.

Ao Y, Lv J, Xie Q, Zhang Z. 2023.Multi-objective image optimization of product appearance based
on improved NSGA-II. Computers, Materials & Continua 76(3):3049–3074
DOI 10.32604/cmc.2023.040088.

Arbabi H, Vahedi-Nouri B, Iranmanesh S, Tavakkoli-Moghaddam R. 2022. A data–driven
multi–criteria decision-making approach for assessing new product conceptual designs.
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture 236(14):1900–1911 DOI 10.1177/0954405421991418.

Arjomandi Rad M, Cenanovic M, Salomonsson K. 2023. Image regression-based digital
qualification for simulation-driven design processes, case study on curtain airbag. Journal of
Engineering Design 34(1):1–22 DOI 10.1080/09544828.2022.2164440.

Yang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3251 30/36

http://dx.doi.org/10.7717/peerj-cs.3251#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3251#supplemental-information
http://dx.doi.org/10.1016/j.heliyon.2018.e00938
http://dx.doi.org/10.1111/0885-9507.00219
http://dx.doi.org/10.1109/ICET.2010.5638470
http://dx.doi.org/10.1186/s40537-021-00444-8
http://dx.doi.org/10.32604/cmc.2023.040088
http://dx.doi.org/10.1177/0954405421991418
http://dx.doi.org/10.1080/09544828.2022.2164440
http://dx.doi.org/10.7717/peerj-cs.3251
https://peerj.com/computer-science/


Balasubramaniam S, Kadry S, Prasanth A, Dhanaraj RK. 2024. Generative AI and LLMs: natural
language processing and generative adversarial networks. Berlin: Walter de Gruyter GmbH & Co
KG.

Bae E, Tai X-C, Zhu W. 2017. Augmented Lagrangian method for an Euler’s elastica based
segmentation model that promotes convex contours. Inverse Problems Imaging 11:1–23.

Biswas S, Ali I, Chakrabortty RK, Turan HH, Elsawah S, Ryan MJ. 2022. Dynamic modeling for
product family evolution combined with artificial neural network based forecasting model: a
study of iPhone evolution. Technological Forecasting and Social Change 178(1):121549
DOI 10.1016/j.techfore.2022.121549.

Bushra J, Budinoff HD, Luna Falcon P, Latypov M. 2023. Enhancing design guidelines for metal
powder bed fusion: analyzing geometric features to improve part quality. International Design
Engineering Technical Conferences and Computers and Information in Engineering Conference.
American Society of Mechanical Engineers 87332:V005T05A011
DOI 10.48550/arXiv.2509.05857.

Cabezon Pedroso T, Ser JD, Díaz-Rodríguez N. 2022. Capabilities, limitations and challenges of
style transfer with CycleGANs: a study on automatic ring design generation. In: International
Cross-Domain Conference for Machine Learning and Knowledge Extraction. Cham: Springer
International Publishing, 168–187.

Chen Y, Bian Y. 2024. Research on color matching model for wood panel furniture based on a back
propagation neural network. BioResources 19(2):2383–2403
DOI 10.15376/biores.19.2.2383-2403.

Chen Z, Song Z, Ge Z. 2023. Variational inference over graph: knowledge representation for deep
process data analytics. IEEE Transactions on Knowledge and Data Engineering 36(6):2730–2744
DOI 10.1109/tkde.2023.3327415.

Chen L, Song Y, Guo J, Sun L, Childs P, Yin Y. 2025. How generative AI supports human in
conceptual design. ArXiv DOI 10.48550/arXiv.2502.00283.

Chen Y, Xu Z. 2024. Research on the evaluation model for the tactile feel of custom wardrobe
furniture finishes. BioResources 19(3):5262–5287 DOI 10.15376/biores.19.3.5262-5287.

Chen L, Zhang H, Wang W, Zhang Q. 2023. Topology optimization based on SA-BESO. Applied
Sciences 13(7):4566 DOI 10.3390/app13074566.

Choi H, Yun JP, Kim BJ, Jang H, Shin WS, Kim SW. 2024. Steel product number recognition
framework using semantic mask-conditioned diffusion model with limited data. Journal of
Industrial Information Integration 38:100559 DOI 10.1016/j.jii.2024.100559.

Cong Y, Yu S, Chu J, Su Z, Huang Y, Li F. 2023. A small sample data-driven method: user needs
elicitation from online reviews in new product iteration. Advanced Engineering Informatics
56(1):101953 DOI 10.1016/j.aei.2023.101953.

Ebrahimi M, Jahangirian A. 2017.Accelerating global optimization of aerodynamic shapes using a
new surrogate-assisted parallel genetic algorithm. Engineering Optimization 49(12):2079–2094
DOI 10.1080/0305215x.2017.1289741.

Emmert-Streib F, Dehmer M, Jodlbauer H, Brunner M, Muhr D, Tripathi S. 2021. Ensuring the
robustness and reliability of data-driven knowledge discovery models in production and
manufacturing. Frontiers in Artificial Intelligence 4:576892 DOI 10.3389/frai.2021.576892.

Endress F, Rieser J, Zimmermann M. 2023. On the treatment of requirements in DfAM: three
industrial use cases. Proceedings of the Design Society 3:2815–2824 DOI 10.1017/pds.2023.282.

Fang C, Zhu Y, Fang L, Long Y, Lin H, Cong Y, Wang SJ. 2025. Generative AI enhanced human
AI collaborative conceptual design: a systematic literature review.

Yang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3251 31/36

http://dx.doi.org/10.1016/j.techfore.2022.121549
http://dx.doi.org/10.48550/arXiv.2509.05857
http://dx.doi.org/10.15376/biores.19.2.2383-2403
http://dx.doi.org/10.1109/tkde.2023.3327415
http://dx.doi.org/10.48550/arXiv.2502.00283
http://dx.doi.org/10.15376/biores.19.3.5262-5287
http://dx.doi.org/10.3390/app13074566
http://dx.doi.org/10.1016/j.jii.2024.100559
http://dx.doi.org/10.1016/j.aei.2023.101953
http://dx.doi.org/10.1080/0305215x.2017.1289741
http://dx.doi.org/10.3389/frai.2021.576892
http://dx.doi.org/10.1017/pds.2023.282
http://dx.doi.org/10.7717/peerj-cs.3251
https://peerj.com/computer-science/


Fazeli HR, Peng Q. 2022. Generation and evaluation of product concepts by integrating extended
axiomatic design, quality function deployment and design structure matrix. Advanced
Engineering Informatics 54:101716 DOI 10.1016/j.aei.2022.101716.

Foley JD. 1996. Computer graphics: principles and practice. Boston: Addison-Wesley Professional.

Fotopoulou F, Oikonomou S, Economou G. 2019. 3D shape classification with NNLS coding and
optimal projections technique. Multimedia Tools and Applications 78(24):34689–34706
DOI 10.1007/s11042-019-08152-5.

Gad AG. 2022. Particle swarm optimization algorithm and its applications: a systematic review.
Archives of Computational Methods in Engineering 29(5):2531–2561
DOI 10.1007/s11831-021-09694-4.

Geiger C, Sarakakis G. 2016. Data driven design for reliability. In: 2016 Annual Reliability and
Maintainability Symposium (RAMS). Piscataway: IEEE DOI 10.1109/RAMS.2016.7448023.

Ghosh DD, Kim J, Olewnik A, Lakshmanan A, Lewis KE. 2016. Cyber-empathic design: a data-
driven framework for product design. In: Proceedings of the ASME 2016 International Design
Engineering Technical Conferences and Computers and Information in Engineering Conference.
Volume 2A: 42nd Design Automation Conference. Charlotte, North Carolina, USA
DOI 10.1115/DETC2016-59642.

Goodfellow I, Bengio Y, Courville A. 2016. Deep Learning. Vol. 1. Cambridge: MIT press.

Hayakawa R, Noji R, Kato T. 2025. Generating tyre tread designs using a sensory evaluation
regression model and a generative model. Journal of Engineering Design 36(1):19–51
DOI 10.1080/09544828.2024.2411487.

He T, Cao L, Balas VE, McCauley P, Shi F. 2016. Curvature manipulation of the spectrum of
valence-arousal-related fMRI dataset using Gaussian-shaped fast Fourier transform and its
application to fuzzy KANSEI adjectives modeling. Neurocomputing 174(4):1049–1059
DOI 10.1016/j.neucom.2015.10.025.

Heigl R. 2025. Generative artificial intelligence in creative contexts: a systematic review and future
research agenda. Management Review Quarterly 2025(5):1–38
DOI 10.1007/s11301-025-00494-9.

Herath S, Haputhanthri U. 2021. Topologically optimal design and failure prediction using
conditional generative adversarial networks. International Journal for Numerical Methods in
Engineering 122(23):6867–6887 DOI 10.1002/nme.6814.

Heyrani Nobari A. 2022. Generative adversarial networks for inverse design problems in
engineering: methods to handle performance, constraints, and creativity requirements. Graduate
Thesis. Massachusetts Institute of Technology, Cambridge.

Holzner N, Maier S, Feuerriegel S. 2025. Generative AI and creativity: a systematic literature
review and meta analysis. ArXiv DOI 10.48550/arXiv.2505.17241.

Hou S, Tuerhong G, Wushouer M. 2023. VisdaNet: visual distillation and attention network for
multimodal sentiment classification. Sensors 23(2):661 DOI 10.3390/s23104829.

Howland S, Kassab L, Kappagantula K, Emerson T, Kvinge H. 2023. Parameters, properties, and
process: conditional neural generation of realistic SEM imagery toward ML-assisted advanced
manufacturing. Integrating Materials and Manufacturing Innovation 12(1):1–10
DOI 10.1007/s40192-022-00287-y.

Hu W, Fu W, Zhao Y. 2024. Optimal design of the traditional Chinese wood furniture joint based
on experimental and numerical method. Wood Research 69(1):50–59
DOI 10.37763/wr.1336-4561/69.1.5059.

Hu J, Wei H, Zeng C, Li S, Quan H. 2023. Big data and AI-driven product design: a survey.
Applied Sciences 13(16):9433 DOI 10.3390/app13169433.

Yang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3251 32/36

http://dx.doi.org/10.1016/j.aei.2022.101716
http://dx.doi.org/10.1007/s11042-019-08152-5
http://dx.doi.org/10.1007/s11831-021-09694-4
http://dx.doi.org/10.1109/RAMS.2016.7448023
http://dx.doi.org/10.1115/DETC2016-59642
http://dx.doi.org/10.1080/09544828.2024.2411487
http://dx.doi.org/10.1016/j.neucom.2015.10.025
http://dx.doi.org/10.1007/s11301-025-00494-9
http://dx.doi.org/10.1002/nme.6814
http://dx.doi.org/10.48550/arXiv.2505.17241
http://dx.doi.org/10.3390/s23104829
http://dx.doi.org/10.1007/s40192-022-00287-y
http://dx.doi.org/10.37763/wr.1336-4561/69.1.5059
http://dx.doi.org/10.3390/app13169433
http://dx.doi.org/10.7717/peerj-cs.3251
https://peerj.com/computer-science/


Huang L, Wang P, Chen C-Y, Tseng H-W. 2021. Rapid local image style transfer method based on
residual convolutional neural network. Sensors & Materials 33.

Huang R, Zhu S, Huang B. 2024. Combining active learning and self-paced learning for
cost-effective process design intents extraction of process data. Journal of Computational Design
and Engineering 11(2):161–175 DOI 10.1093/jcde/qwae027.

Ige AB, Adepoju PA, Akinade AO. 2025.Machine learning in industrial applications: an in-depth
review and future directions. International Journal of Multidisciplinary Research and Growth
Evaluation 6(1):36–44 DOI 10.54660/.IJMRGE.2025.6.1.36-44.

Ji Z, Zhou C, Zhang Q, Zhang Y-W, Wang W. 2020. A deep residual network for geometric
decontouring. Computer Graphics Forum 39(7):27–41 DOI 10.1111/cgf.14124.

Jing L, Tian C, He S, Feng D, Jiang S, Lu C. 2022. Data-driven implicit design preference
prediction model for product concept evaluation via BP neural network and EEG. Advanced
Engineering Informatics 58(9–10):102213 DOI 10.1016/j.aei.2023.102213.

Khanolkar PM, Vrolijk A, Olechowski A. 2023. Map artificial intelligence-based methods to
engineering design stages: a focused literature review. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing 37:e25 DOI 10.1017/s0890060423000203.

Khosravi H, Olajire T, Raihan AS, Ahmed I. 2024. A data driven sequential learning framework
to accelerate and optimize multi-objective manufacturing decisions. Journal of Intelligent
Manufacturing 1–26(8):4087–4112 DOI 10.1007/s10845-024-02337-y.

Kim M. 2023. Iterative durability design of products via degradation-informed Bayesian
optimization. TechRxiv DOI 10.36227/techrxiv.23819139.v1.

Kretzschmar M, Dammann MP, Schwoch S, Braun F, Saske B, Paetzold-Byhain K. 2024.
Evaluating the role of generative AI in product development and design-A systematic review. In:
DS 130: Proceedings of NordDesign 2024, Reykjavik, Iceland, 12th–14th August 2024, 21–30
DOI 10.35199/NORDDESIGN2024.3.

Lai X, Zhang S, Mao N, Liu J, Chen Q. 2022. Kansei engineering for new energy vehicle exterior
design: an internet big data mining approach. Computers & Industrial Engineering 165:107913
DOI 10.1016/j.cie.2021.107913.

Leong LY, Hew TS, Ooi KB, Koohang A, Tan GWH. 2025. Generative AI: current status and
future directions. Journal of Computer Information Systems 1–34
DOI 10.1080/08874417.2025.2482571.

Li Y, Roy U, Saltz JS. 2017. Modular design of data-driven analytics models in smart-product
development. In: ASME International Mechanical Engineering Congress and Exposition.
American Society of Mechanical Engineers, Vol. 58462, V011T15A022.

Li X, Su J, Zhang Z, Bai R. 2021. Product innovation concept generation based on deep learning
and Kansei engineering. Journal of Engineering Design 32(10):559–589
DOI 10.1080/09544828.2021.1928023.

Li X, Wang Y, Sha Z. 2023. Deep learning methods of cross-modal tasks for conceptual design of
product shapes: a review. Journal of Mechanical Design 145(4):41401 DOI 10.1115/1.4056436.

Lin S, Ritchie D, Fisher M, Hanrahan P. 2013. Probabilistic color-by-numbers: suggesting pattern
colorizations using factor graphs. ACM Transactions on Graphics (TOG) 32(4):1–12
DOI 10.1145/2461912.2461988.

Liu F, Deng Q, Jing Y, Gao J. 2025. Product innovation design methods based on multi-biological
knowledge inspiration. Journal of Engineering Design 2025(14):1–44
DOI 10.1080/09544828.2025.2506041.

Yang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3251 33/36

http://dx.doi.org/10.1093/jcde/qwae027
http://dx.doi.org/10.54660/.IJMRGE.2025.6.1.36-44
http://dx.doi.org/10.1111/cgf.14124
http://dx.doi.org/10.1016/j.aei.2023.102213
http://dx.doi.org/10.1017/s0890060423000203
http://dx.doi.org/10.1007/s10845-024-02337-y
http://dx.doi.org/10.36227/techrxiv.23819139.v1
http://dx.doi.org/10.35199/NORDDESIGN2024.3
http://dx.doi.org/10.1016/j.cie.2021.107913
http://dx.doi.org/10.1080/08874417.2025.2482571
http://dx.doi.org/10.1080/09544828.2021.1928023
http://dx.doi.org/10.1115/1.4056436
http://dx.doi.org/10.1145/2461912.2461988
http://dx.doi.org/10.1080/09544828.2025.2506041
http://dx.doi.org/10.7717/peerj-cs.3251
https://peerj.com/computer-science/


Liu Q, Wang K, Li Y, Chen C, Li W. 2022. A novel function-structure concept network
construction and analysis method for a smart product design system. Advanced Engineering
Informatics 51(2):101502 DOI 10.1016/j.aei.2021.101502.

Liu X, Yang S. 2022. Study on product form design via Kansei engineering and virtual reality.
Journal of Engineering Design 33(6):412–440 DOI 10.1080/09544828.2022.2078660.

Ma J, Kim HM. 2014. Predictive, data-driven product family design. In: International Design
Engineering Technical Conferences and Computers and Information in Engineering Conference.
American Society of Mechanical Engineers, Vol. 46315, V02AT03A011.

Ma L, Mungekar M, Roychowdhury V, Jawed MK. 2024. Rapid design of fully soft deployable
structures via kirigami cuts and active learning. Advanced Materials Technologies 9(5):2301305
DOI 10.1002/admt.202301305.

McKay A, de Pennington A. 2022. Shape embedding: a means of superimposing alternative design
descriptions on shape models. Computer-Aided Design 152(1):103366
DOI 10.1016/j.cad.2022.103366.

Mettas A. 2010. Design for reliability: overview of the process and applicable techniques.
International Journal of Performability Engineering 6(6):577 DOI 10.23940/ijpe.10.6.p577.mag.

Miao Y, Gao X, Miao T, Xu W. 2024. A study on the visual and tactile perception of oriented
strand board combined with consumer-preference analysis. Coatings 14(8):1000
DOI 10.3390/coatings14081000.

Mirjalili S, Lewis A. 2016. The whale optimization algorithm. Advances in Engineering Software
95(12):51–67 DOI 10.1016/j.advengsoft.2016.01.008.

Mirjalili S, Varzaneh ZA, Zamani H, Nadimi-Shahraki MH. 2023. A systematic review of the
whale optimization algorithm: theoretical foundation, improvements, and hybridizations.
Archives of Computational Methods in Engineering 30(7):4113–4159
DOI 10.1007/s11831-023-09928-7.

Moosavi SM, Jablonka KM, Smit B. 2020. The role of machine learning in the understanding and
design of materials. Journal of the American Chemical Society 142(48):20273–20287
DOI 10.1021/jacs.0c09105.

Paetzold-Byhain K, Saske B, Braun F, Schwoch S, Dammann MP, Kretzschmar M. 2024.
Evaluating the role of generative AI in product development and design—a systematic review.
In: DS 130: Proceedings of Nord Design, Reykjavik, Iceland, 12th-14th August 2024, 21–30.

Ranscombe C, Kinsella P, Blijlevens J. 2017. Data-driven styling: augmenting intuition in the
product design process using holistic styling analysis. Journal of Mechanical Design
139(11):111417 DOI 10.1115/1.4037249.

Ren X, Wang N, Pan J, Bu L. 2024. Combining style generative adversarial networks with particle
swarm optimisation-support vector regression to design affective social robot for public health
intervention. Journal of Engineering Design 36(1):1–31 DOI 10.1080/09544828.2024.2415830.

Ren J, Xiong X. 2022. Digital design process and part family division of solid wood custom cabinet
door based on multi-attribute overlapping clustering technology. BioResources 17(3):5393–5419
DOI 10.15376/biores.17.3.5393-5419.

Rios T, Stein NV, Bäck T, Sendhoff B, Menzel S. 2021.Multitask shape optimization using a 3-D
point cloud autoencoder as unified representation. IEEE Transactions on Evolutionary
Computation 26:206–217.

Shao Y, Zhu H, Wang R, Liu Y, Liu Y. 2020. A simulation data-driven design approach for rapid
product optimization. Journal of Computing and Information Science in Engineering 20(2):21008
DOI 10.1115/1.4045527.

Yang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3251 34/36

http://dx.doi.org/10.1016/j.aei.2021.101502
http://dx.doi.org/10.1080/09544828.2022.2078660
http://dx.doi.org/10.1002/admt.202301305
http://dx.doi.org/10.1016/j.cad.2022.103366
http://dx.doi.org/10.23940/ijpe.10.6.p577.mag
http://dx.doi.org/10.3390/coatings14081000
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1007/s11831-023-09928-7
http://dx.doi.org/10.1021/jacs.0c09105
http://dx.doi.org/10.1115/1.4037249
http://dx.doi.org/10.1080/09544828.2024.2415830
http://dx.doi.org/10.15376/biores.17.3.5393-5419
http://dx.doi.org/10.1115/1.4045527
http://dx.doi.org/10.7717/peerj-cs.3251
https://peerj.com/computer-science/


Sharma A. 2023. Product design and development using artificial intelligence (AI) techniques: a
review. EngRxiv DOI 10.31224/2958.

Sharma A, Mishra PK. 2020. State-of-the-art in performance metrics and future directions for data
science algorithms. Journal of Scientific Research 64(2):221–238 DOI 10.37398/jsr.2020.640232.

Sheikh HM, Callan TA, Hennessy KJ, Marcus PS. 2022. Optimization of the shape of a
hydrokinetic turbine’s draft tube and hub assembly using design-by-morphing with Bayesian
optimization. ArXiv DOI 10.48550/arXiv.2207.05943.

Shin S, Shin D, Kang N. 2023. Topology optimization via machine learning and deep learning: a
review. Journal of Computational Design and Engineering 10(4):1736–1766
DOI 10.1093/jcde/qwad072.

Song D, Liu L, Zhu T, Zhang S, Huang Y. 2024. B-FMEA-TRIZ model for scheme decision in
conceptual product design: a study on upper-limb hemiplegia rehabilitation exoskeleton.
Heliyon 10:e30684.

Stoler D, Lorusso G, Capodieci L. 2006. Advanced DFM applications using Design-Based
Metrology on CD SEM. In: SPIE.

Tay FEH, Gu J. 2003.Amethodology for evolutionary product design. Engineering with Computers
19(2):160–173 DOI 10.1007/s00366-003-0261-3.

Tan X, Wang D, Chen J, Xu M. 2023. Transformer-based network with optimization for cross-
subject motor imagery identification. Bioengineering 10(5):609
DOI 10.3390/bioengineering10050609.

Tucker CS, Kim HM. 2011. Trend mining for predictive product design. Journal of Mechanical
Design 133(11):111008 DOI 10.1115/1.4004987.

Velayutham CS, Kumar S. 2005. Asymmetric subsethood-product fuzzy neural inference system
(ASuPFuNIS). IEEE Transactions on Neural Networks 16(1):160–174
DOI 10.1109/tnn.2004.836202.

Wang Z, Ge W, Qiu L, Zhang S, Zhou J, Hu K, Fang N. 2023. Customized product configuration
rule intelligent extraction and dynamic updating method based on the least recently used
dynamic decision tree. Journal of Mechanical Design 145(5):51701 DOI 10.1115/1.4056498.

Wang Z, Liu W, Yang M. 2022. Data-driven affective product design using complete
three-dimensional surface data. Journal of Intelligent & Fuzzy Systems 42(6):5437–5455
DOI 10.3233/JIFS-211947.

Wang N, Shi D, Li Z, Chen P, Ren X. 2024a. Investigating emotional design of the intelligent
cockpit based on visual sequence data and improved LSTM. Advanced Engineering Informatics
61(3):102557 DOI 10.1016/j.aei.2024.102557.

Wang G, Xiong X, Ma Y, Xu X. 2024b. Application of a digital twin model in the packaging
process of the panel furniture industry. Forest Products Journal 74:98–106
DOI 10.13073/fpj-d-24-00001.

Wang D, Xu X. 2024. 3D vase design based on interactive genetic algorithm and enhanced
XGBoost model. Mathematics 12(13):1932 DOI 10.3390/math12131932.

Wang YY, Xue Q. 2024. Fault identification of product design using fuzzy clustering generative
adversarial network (FCGAN) model. Soft Computing 28(7):3725–3742
DOI 10.1007/s00500-024-09636-9.

Wang Y, Zhao Q, Chen J, Wang W, Yu S, Li C, Jia D. 2022. Perceptual quantitative decision
making and evaluation of product stylable topology design. Processes 10(9):1819
DOI 10.3390/pr10091819.

Yang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3251 35/36

http://dx.doi.org/10.31224/2958
http://dx.doi.org/10.37398/jsr.2020.640232
http://dx.doi.org/10.48550/arXiv.2207.05943
http://dx.doi.org/10.1093/jcde/qwad072
http://dx.doi.org/10.1007/s00366-003-0261-3
http://dx.doi.org/10.3390/bioengineering10050609
http://dx.doi.org/10.1115/1.4004987
http://dx.doi.org/10.1109/tnn.2004.836202
http://dx.doi.org/10.1115/1.4056498
http://dx.doi.org/10.3233/JIFS-211947
http://dx.doi.org/10.1016/j.aei.2024.102557
http://dx.doi.org/10.13073/fpj-d-24-00001
http://dx.doi.org/10.3390/math12131932
http://dx.doi.org/10.1007/s00500-024-09636-9
http://dx.doi.org/10.3390/pr10091819
http://dx.doi.org/10.7717/peerj-cs.3251
https://peerj.com/computer-science/


Wu J. 2021. A product styling design evaluation method based on multilayer perceptron genetic
algorithm neural network algorithm. Computational Intelligence and Neuroscience
2021(1):2861292 DOI 10.1155/2021/2861292.

Xiong X, Yue X, Wu Z. 2023. Current status and development trends of Chinese intelligent
furniture industry. Journal of Renewable Materials 11(3):1353–1366
DOI 10.32604/jrm.2022.023447.

Xu X, Xiong X, Yue X, Zhang M. 2023. A parametric optimized method for three-dimensional
corner joints in wooden furniture. Forests 14(5):1063 DOI 10.3390/f14051063.

Xue H, Wu D. 2022. Big data-driven product innovation design modeling and system construction
method. Mathematical Problems in Engineering 2022(1):4358330 DOI 10.1155/2022/4358330.

Yadav AB. 2023. Gen AI-driven electronics: innovations, challenges and future prospects. In:
International Congress on Models and Methods in Modern Investigations, 113–121.

Yang B, Liu Y, Chen W. 2023. A twin data-driven approach for user-experience based design
innovation. International Journal of Information Management 68(4):102595
DOI 10.1016/j.ijinfomgt.2022.102595.

Yang S, Ren W, Zeng X, Zhu Q, Fu H, Fan K, Yang L, Yu J, Kou Q, Jin X. 2024. Generated
realistic noise and rotation-equivariant models for data-driven mesh denoising. Computer Aided
Geometric Design 111(3):102306 DOI 10.1016/j.cagd.2024.102306.

Yang ZX, Xiao DF. 2011. Feature based similarity measures of 3D models. Advanced Materials
Research 271:639–644 DOI 10.4028/www.scientific.net/AMR.271-273.639.

Yang M, Xu D, Cui Q, Wen Z, Xu P. 2023. An efficient Fisher matrix approximation method for
large-scale neural network optimization. IEEE Transactions on Pattern Analysis and Machine
Intelligence 45(5):5391–5403 DOI 10.1109/TPAMI.2022.3213654.

Yuan C, Marion T, Moghaddam M. 2022. Leveraging end-user data for enhanced design concept
evaluation: a multimodal deep regression model. Journal of Mechanical Design 144(2):21403
DOI 10.1115/1.4052366.

Yüksel N, Börklü HR, Sezer HK, Canyurt OE. 2023. Review of artificial intelligence applications
in engineering design perspective. Engineering Applications of Artificial Intelligence
118(4):105697 DOI 10.1016/j.engappai.2022.105697.

Yu J, Weng J, Lin P, Sun Y, Chai J. 2025. Unraveling influence of psychological heterogeneity on
intercity travelers’ last-mile mode choice based on mixture regression modeling. Journal of
Urban Planning and Development 151(2):05025013.

Zhang J, Chen Y. 2024. Research on color and texture characteristics and visual perception of
custom wardrobe finishes. BioResources 19(3):5109–5128 DOI 10.15376/biores.19.3.5109-5128.

Zhang L, Li Z, Zheng Y. 2024. An interactive generative design technology for appearance
diversity-taking mouse design as an example. Advanced Engineering Informatics 59(7):102263
DOI 10.1016/j.aei.2023.102263.

Zhao H, Liu Z, Yao X, Cai X, Wu D. 2023. Research on a complex network and online review
data-driven product innovation design. Production Planning & Control
DOI 10.1080/09537287.2023.2187323.

Zhao X, Sharudin SA, Lv H-L. 2024. A novel product shape design method integrating Kansei
engineering and whale optimization algorithm. Advanced Engineering Informatics 62(C):102847
DOI 10.1016/j.aei.2024.102847.

Zhao Z, Tang W, Gong Y. 2024. Curvature-driven multi-stream network for feature-preserving
mesh denoising. Computer Graphics Forum 43(1):e14993 DOI 10.1111/cgf.14993.

Yang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3251 36/36

http://dx.doi.org/10.1155/2021/2861292
http://dx.doi.org/10.32604/jrm.2022.023447
http://dx.doi.org/10.3390/f14051063
http://dx.doi.org/10.1155/2022/4358330
http://dx.doi.org/10.1016/j.ijinfomgt.2022.102595
http://dx.doi.org/10.1016/j.cagd.2024.102306
http://dx.doi.org/10.4028/www.scientific.net/AMR.271-273.639
http://dx.doi.org/10.1109/TPAMI.2022.3213654
http://dx.doi.org/10.1115/1.4052366
http://dx.doi.org/10.1016/j.engappai.2022.105697
http://dx.doi.org/10.15376/biores.19.3.5109-5128
http://dx.doi.org/10.1016/j.aei.2023.102263
http://dx.doi.org/10.1080/09537287.2023.2187323
http://dx.doi.org/10.1016/j.aei.2024.102847
http://dx.doi.org/10.1111/cgf.14993
http://dx.doi.org/10.7717/peerj-cs.3251
https://peerj.com/computer-science/

	A review of AI-based product shape generation technologies: trends, challenges, and future directions
	Introduction
	Literature review
	Methods
	Results
	Discussion
	Conclusions
	Appendix: abbreviations
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


