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ABSTRACT

Background: The prevalence of single-channel electroencephalogram (EEG) is
increasing. However, eye blink artifacts can contaminate EEG signals, potentially
impacting their clinical utility.

Method: This study presents a sliding window higher-order cumulant (HOC)

method for accurate blink artifact detection. The method operates in two steps. First,
preliminary detection of blink artifacts is achieved by computing HOCs within the
sliding windows of contaminated EEG. Second, the method identifies blink peaks
within the detected intervals and further adjusts the detection results using the peaks.
Results: The study compares the effectiveness of the sliding window HOC method
with the existing variational mode extraction (VME) and multi-window summation
of derivatives within a window (MSDW) methods using semi-simulated and real
data. The comparison results show that, for semi-simulated data, the sliding window
HOC method exhibits the highest Youden index values in terms of the direct
accuracy metrics. When it comes to the indirect metrics of artifact reduction
effectiveness based on the three detection methods, the sliding window HOC method
has the highest correlation coefficient (CC) (0.935 vs. 0.914, 0.909), the lowest relative
root mean square error (RRMSE) (0.128 vs. 0.186, 0.225), and the lowest mean
absolute error (MAE) (1.634 vs. 1.770, 1.748). For real data, it yields the highest MAE
ratio of the lower-to-higher frequency bands among three datasets. The algorithm
also demonstrates computational efficiency with millisecond-level resolution.
Discussion: The sliding window HOC method provides superior detection
performance and greater robustness. The presented method provides a solid
foundation for effectively removing blink artifacts in single-channel EEG.

Subjects Adaptive and Self-Organizing Systems, Algorithms and Analysis of Algorithms,
Brain-Computer Interface, Scientific Computing and Simulation

Keywords Artifact detection, Electroencephalogram (EEG), Eye blink artifacts, Sliding window

higher-order cumulants (HOC:s), Short segments

INTRODUCTION

The prefrontal single-channel electroencephalography (EEG) system, offering portable
and mobile monitoring capabilities, holds significant application value in neuroscience
research and clinical diagnosis (Ali et al., 2022). As the core regulatory hub of the brain, the
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prefrontal cortex governs higher-order neural functions including executive control,
decision-making, and motor coordination, while simultaneously participating in complex
cognitive processes such as emotion regulation, attention modulation, and mental state
integration. Through real-time monitoring of neural electrical signals in this region,
researchers can accurately identify neural activity patterns associated with transitions from
relaxed to focused states, facilitating an objective and quantifiable cognitive function
assessment framework (Ahn, Ku ¢ Kim, 2019). In clinical diagnostics, prefrontal EEG
signal analysis is widely applied for biomarker detection in neurological disorders. It
demonstrates significant value in early screening and disease monitoring of movement
disorders, executive dysfunction syndrome, Foster-Kennedy syndrome, and other
neurological conditions, providing reliable neuroelectrophysiological evidence for
precision medicine (Dora ¢ Biswal, 2020). However, similar to multichannel EEG,
single-channel EEG remains susceptible to artifacts, particularly eye blinks, which can
significantly affect prefrontal EEG and are difficult to manage or overcome experimentally
(Shahbakhti et al., 2019).

For attenuating blink artifacts in single-channel EEG, various decomposition methods
are commonly employed, including singular spectrum decomposition (Maddirala ¢
Veluvolu, 2022a; Mary Judith, Baghavathi Priya & Mahendran, 2022; Yedukondalu &
Sharma, 2023), wavelet decomposition (Maddirala & Veluvolu, 2022a; Sahoo ¢
Mohapatra, 2022), empirical mode decomposition (Yan ¢» Wu, 2022), and independent
component analysis (Mary Judith, Baghavathi Priya ¢ Mahendran, 20225 Sahoo ¢
Mohapatra, 2022). However, such decomposition-based methods typically apply global
filtering across the entire contaminated EEG signal instead of specifically targeting
artifact-contaminated intervals. This approach may inadvertently remove both
artifact-corrupted and intact neural components. Notably, emerging evidence suggests that
precise temporal localization of blink events significantly improves artifact suppression
efficacy while enhancing preservation of genuine neural activity (Maddirala ¢» Veluvolu,
2022a, 2022b; Gao et al., 2023). This paradigm shift from global to targeted artifact removal
thus represents a promising direction for improving EEG signal quality.

Currently, the primary methods to detect blink artifacts involve amplitude thresholding
(Nolan, Whelan & Reilly, 2010), template matching (Valderrama, de la Torre & Van Dun,
2018), peak detection (Shahbakhti et al., 2021a), and derivative summation detection
(Chang et al., 2016). However, most of these methods require empirically preset
conditions, and few have explored whether the boundaries of blink artifact intervals are
accurately recognized. Amplitude thresholding, which is based on a priori estimation of
blink artifact amplitude, achieves the detection of blink peaks and thus blink position
localization, but it does not accurately identify blink intervals. The peak detection method
identifies the peaks using the variational mode extraction (VME) method (Shahbakhti
et al., 2021a), and the boundaries of the artifact intervals are determined based on an
empirical estimate of the blink interval width (400 ms) using the identified peaks. The
template matching algorithm (Valderrama, de la Torre & Van Dun, 2018) was proposed to
detect and eliminate eye blinks using an automatic threshold and template estimation.
However, like the VME method, its blink template is fixed at 1,400 ms and does not
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precisely identify the boundaries of the exact blink interval. The method for multi-window
detection of derivative summation (MSDW) can identify the start and end points of blink
intervals (Chang et al., 2016). However, it requires the assumption that blink artifacts
exhibit a triangular shape.

Therefore, it is necessary to establish an assumption-free detection approach capable of
adaptively and more precisely identifying blink artifacts of varying durations by exploiting
the inherent characteristic distinctions between EEG signals and blink artifacts. Hence,
considering the differences in the non-Gaussian properties of EEG signals and blink
artifacts, higher-order cumulants (HOC:s) are introduced for distinguishing blink artifacts
from EEG signals without a priori assumptions. Currently, the application of HOCs in
ocular artifact processing still primarily involves combining them with various signal
decomposition methods as previously mentioned, including blind source separation
(Jamil, Jamil & Majid, 2021; Cinar, 2021; Gao et al., 2023), variational mode
decomposition (Bisht et al., 2024), empirical mode decomposition (Teng et al., 2021),
canonical correlation analysis (Yang et al., 2017), and wavelet transform (Shahbakhti et al.,
2021b; Islam, Ghorbanzadeh ¢ Rastegarnia, 2021). These methods identify and remove
artifact components by calculating HOC values of the decomposed signals. However,
HOGC:s still evaluate the decomposed signal components in their entirety. As previously
mentioned, this global processing approach may compromise neural activity information
within artifact-free segments. Nevertheless, these studies have laid a theoretical foundation
for the effectiveness of HOCs in extracting non-Gaussian signal features, and it is precisely
based on these validated findings that they provide the research impetus for our
exploration into using HOCs directly for the accurate detection of blink artifacts.

This article presents a sliding window HOC method for detecting blink artifacts, which
offers two advantages: First, by incorporating HOCs, it can automatically distinguish
between EEG signals and blink artifacts based on their non-Gaussian characteristics,
effectively overcoming the limitations imposed by empirically preset conditions. Second,
the sliding-window computation strategy generates time-varying HOC series that allow
precise localization of the onset and offset boundaries of blink artifacts. Specifically, a
sliding window is applied to the contaminated EEG signals, and HOCs are computed
window by window. These HOC values are then used to preliminarily estimate the
intervals of the blink artifacts based on the local maxima. Subsequently, the pre-detected
intervals are further adjusted by incorporating the peaks of the blink artifacts within
those intervals to improve the precision of the final detection. This study also evaluates the
efficacy of the sliding window HOC method using semi-simulated and real data. The
method is compared with the existing eye blink artifact detection methods, including VME
and MSDW.

MATERIALS AND METHODS
HOCs

Higher-order cumulants (HOCs) are statistical measures that extend the concept of
variance (a second-order cumulant) to quantify higher-order dependencies and
non-Gaussian characteristics in signals (Bakouch, 2010; Antari et al., 2011). The k®-order
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cumulant Cy of a random variable x is derived from its characteristic function ®(w),
defined as:

B(w) = / : F(x)e™*dx (1)

where f(x) is the probability density function of x. The second characteristic function
V(w) is the natural logarithm of ®(w):

U(w) =1nd(w). (2)
The k™-order cumulant is then obtained as the k™ derivative of ¥(w) evaluated at w = 0:
1 d0(w)
CG=-——~-"7 3
k=K ok . 3)
For a random process X = [x1, Xy, . . ., X,], its characteristic functions are calculated as
follows:
D(wy, wy,...,0,) = E{ej("’lxl+"'+‘””x")}
= [T [T e, @)
—00 —00
U(wy,0,...,0,) =In®(w,0,,...,0,). (5)
The r-order cumulants of X are obtained by
ar\I](mla W2, ..., (’)n)
Ckla“'ﬁkn = (_j)r
aw]kl . e awnkn P — (6)

y ,),Grlnq)(wl,mz,...,wn)
-\ 0wk ... 0w,

O1=...=w,=0

where r = ki +k, + ...+ k,

From the above definition and further calculations, it can be seen that the first-order
cumulants of Gaussian-distributed random processes are equal to the mean, the
second-order cumulants are equal to the variance, and the higher-order cumulants
(for order greater than 2) are zero. Therefore, HOCs are insensitive to
Gaussian-distributed signals. Due to the Gaussian characteristics of EEG signals, their
amplitude distribution shares similarities with the statistical characteristics of the Gaussian
distribution (Chen, 2014). As a result, their HOCs closely approach 0. Conversely, eye
blink signals do not adhere to the Gaussian distribution’s characteristics, resulting in
significantly larger values for their HOCs. In signal processing, the third-order and
fourth-order cumulants are most commonly employed. Considering the lower
computational complexity of the third-order cumulants when compared to the
fourth-order (Khoshnevis ¢ Sankar, 2020), this study adopts third-order cumulants for
analysis.

The sliding window HOC method

Based on the difference in Gaussian characteristics between EEG signals and eye blink
artifacts, this article proposes a sliding window higher-order cumulant analysis method for

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3249 4/24


http://dx.doi.org/10.7717/peerj-cs.3249
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 1 Blink artifacts detection using the sliding window HOC method.
Input: Contaminated EEG X(n) (n = 1,2,...,N), Fs, winlen, thry, thr,
Output: Final detected eye blink intervals [startpoint endpoint]
Initialization: winlen = 0.5 * Fs
{Step 1: Preliminary detection of blink intervals}
1. forn=1,2,...,N— winlen+1
Czzz (n) = cum (X(n))
end

median(|Czzz|)
0= YT v2IogN
Czzz(Czzz < 0) = 0;
[pks, locs] = findpeaks(Czzz);
segments {Points within 0.5 * Fs of locs are considered to be one artifact segment}
startpointQ) = segments(:, 1)
9:  endpoint0 = segments(:,2)
10: Step 2: Further adjustments to detected blink intervals (exemplified by D;D, in Fig. 2)}
11: [P, O] = findpeaks(X(D; : D))
12: Dy, = (D,0)/2
13: Dzm = (DZO)/Z

A,0
14: 1) = 2
PO

s A,0
1= ——
27 PO

16: while r; < thr;
17: D1 = D1 + 1

18: end

19: while r; > thr;
20: D1 = Dl —1
21: end

22: while r; < thr,

23: DZ == D2 —1

24: end

25: while r, > thr,

26: Dz = D2 + 1

27: end

28: startpoint = D,

29: endpoint = D,

30: return startpoint, endpoint

detecting eye blink artifacts in EEG signals. In this approach, the target signal to be
detected is the blink artifact, whereas the EEG background activity serves as the noise
source. HOCs are employed to suppress the EEG noise, enabling the detection of the blink
artifacts.

The main steps of our proposed sliding window HOC with further adjustments are
summarized in Algorithm 1. Assuming that the contaminated EEG time series is
X(n),n=1,2,...,N. The sliding window HOC are defined as

Czzz(k) = cum(x(k),x(k +1),x(k +2),...,x(k + winlen — 1)),

: (7)
k=1,2,...,N — winlen + 1

where cum denotes the HOC function and winlen is the sliding window length. Czzz(k)
represents the HOC value of the kth sliding window of the contaminated EEG signals. Due
to the difference in their Gaussian distributions, the HOC values increase when an eye
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Contaminated EEG

I

Set the size of sliding window as 500ms

g

Calculate the third-order cumulant of the
contaminated EEG within the window,
obtaining the third-order cumulant series.

Preliminary detection of ﬂ

blink intervals Ascertain the maximum value of the third-

order cumulant series that exceeds a
generalized threshold, denoted by 6.

Obtain the preliminary detection of blink
artifact intervals.

Ascertain the peaks of the blink artifact within
the preliminary detected blink artifact intervals.

ﬂ

Further adjustments by the peaks, thrl and
thr2

J

Final deteced eye blink artifacts

Further adjustments to
detected blink intervals

Figure 1 The block diagram of sliding window higher-order cumulant (HOC) method.
Full-size &l DOT: 10.7717/peerj-cs.3249/fig-1

blink signal is present within the sliding window. This enables the localization of the eye
blink artifacts and facilitates the detection of these artifacts.

Figure 1 shows the block diagram of the sliding window HOC method, which is
executed in two main steps: first, preliminary detection of eye blink intervals, and second,
further adjustment of the detected intervals.

Preliminary detection of blink intervals
The preliminary detection of blink intervals refers to the preliminary localization of blink
artifact intervals based on the sliding window HOC method, involving the determination
of parameters that affect the accuracy of detection outcomes. The key parameter to be
determined in this step is the size of the sliding window (winlen). Given that the typical
duration of blink artifacts ranges from 100 to 500 milliseconds (Chang et al., 2016), the
preliminary detection phase must address two key requirements: first, ensuring the rough
identification of time intervals containing blink artifacts; and second, guaranteeing that
these initially detected intervals cover the peak positions of blink artifacts. This coverage is
a critical parameter for subsequent further adjustment procedures. Based on these
considerations, winlen is empirically set to 500 milliseconds.

After the sliding window HOCs have been calculated based on the specified order and
window size, the intervals containing blink artifacts are determined by identifying local
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Figure 2 Schematic diagram of the further adjustment to the detected eye blink interval.
Full-size K&l DOT: 10.7717/peerj-cs.3249/fig-2

maxima in the sliding-window HOCs that exceed a universal threshold 0 (Chavez et al,
2018; Shahbakhti et al., 2021a). The universal threshold 6 is calculated as follows:

0 — median(|Czzz|) /2logN ®)

0.6745

where Czzz represents the sliding-window HOCs, and N denotes the length of

Czzz series. After zeroing out Czzz values below threshold 6, we employ the

[pks, locs] = findpeaks(Czzz) function to identify local maxima, where pks contains the
peak amplitudes and locs indicates their corresponding time indices. When the interval
between two adjacent maxima is less than 0.5 * Fs sampling points (equivalent to 500 ms),
these peaks are considered to belong to the same blink artifact segment. This approach
enables preliminary determination of the blink artifact’s startpoint and endpoint, as
detailed in Algorithm 1.

Further adjustments to detected blink intervals

To address the detection deviation caused by the fixed sliding-window size (500 ms) in the
preliminary detection stage-which fails to adapt to the dynamic variations in blink artifact
durations-further adjustments are implemented. These adjustments dynamically refine
detection intervals based on blink peak positions (see Fig. 2). The purpose of the two
parameters, denoted as thr; and thr,, is to optimize the detected blink intervals and
estimate the precise temporal boundaries of eye blink artifacts. These parameters are
intrinsically associated with the asymmetric characteristics of blink waveforms: thr,
governs detection sensitivity for the leading edge, while thr, controls trailing edge
adjustment. Their values dynamically adapt to slope variations determined by blink width
and peak amplitude. Through an iterative optimization approach using a stepwise
approximation algorithm for artifact boundary refinement, precise localization of blink
artifact intervals is ultimately achieved.

As illustrated in Fig. 2, point P represents the peak of the actual blink artifact within the
detected blink interval, and point O denotes its location. While TT” refers to the actual
blink artifact interval, D;D, represents one example of preliminarily detected blink
intervals. The primary purpose of further adjustment is to draw D;D, closer to TT".
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Exemplified by D;D,, the procedure is as follows: for D; of the D;D,, locate the centroid
D, of the D;0O and calculate the magnitude of its corresponding actual blink signal. If the
ratio (r1) of this magnitude (A;O) to the peak value (PO) is less than the predetermined
threshold (thr,), point D; moves one sample point to the right until r exceeds thr;, and
then it stops moving. For D, of the D;D,, locate the centroid D,,, of the D,O and
determine the corresponding magnitude. If the ratio (r,) of the magnitude (OA,) to the
peak value (OP) is less than the set threshold (thr,), point D, shifts one sample point to the
left until r exceeds thr,, after which it comes to a stop. This process yields the final refined
start and end points of the blink artifacts after further adjustment, which represent the
algorithm’s ultimate determination of blink artifact boundaries.

Data

The proposed sliding window HOC method for the blink artifact detection was validated
using semi-simulated and real data.

Semi-simulated data
Semi-simulated data are generated using the following mixing model:

X(n) = Xgrc(n) + pXgog(n) 9)

where Xggg(n) is the artifact-free EEG signal, Xgog(n) is the eye blink electrooculogram
(EOG) artifact signal, and X(n) represents the contaminated EEG signals. Parameter p
controls the signal-to-noise ratios (SNR) in semi-simulated datasets. The objective of the
sliding window HOC method is to determine the temporal location and boundaries of
Xgog(n) within X(n).

In this article, pure blink signals were recorded using the vertical electrooculographic
channels of the Neuroscan recording system (Compumedics Limited, Melbourne,
Australia). To enhance signal quality, blink recordings were low-pass filtered at 10 Hz.
Artifact-free EEG segments (485 epochs of 3-s duration) were selected from Klados ¢
Bamidis (2016), originally recorded according to the 10-20 international system at 200 Hz
sampling frequency. Given blink durations predominantly ranging from 100-500 ms,
collected blink artifacts were categorized into five duration groups: 100, 200, 300, 400, and
500 ms. Semi-simulated datasets with varying SNR levels were generated by contaminating
artifact-free EEG signals with blink artifacts.

Real data

The proposed algorithm was also evaluated using the real data. We collected 1676 3-s EEG
segments from frontal channels, sourced from three public databases (Chavarriaga ¢ del
Millan, 20105 Ofner et al., 2017; Cavanagh et al., 2019). Utilizing multiple databases
allowed investigation of the algorithm’s adaptability across different recording conditions.
Database characteristics are summarized in Table 1.

Methods under comparison
The proposed algorithm is compared with VME and MSDW to ascertain its effectiveness
for detecting eye blink artifacts in single-channel EEG signals.
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Table 1 The brief information of the real data.

Database Datal (Ofner et al., 2017) Data2 (Chavarriaga ¢ del Millan, 2010) Data3 (Cavanagh et al., 2019)
Sampling rate 512 Hz 512 Hz 500 Hz
Selected contaminated EEG channel FP1 FP1 FP1
Recording system g.tec medical engineering GmbH Biosemi active two system Synamps2 system
Number of subjects 15 6 14
Number of segments 708 324 644
VME

The VME algorithm detects blink artifacts by first estimating the contaminated EEG signal
to identify the peak of the blink artifact. Subsequently, the interval of the blink artifact is
determined with a 125 ms pre-peak and a 375 ms post-peak window.

MsDw

The MSDW technique computes the summation of the first-order derivatives of the raw
signal within the sliding window for the filtering of EEG ripples, thereby identifying blink
artifacts. The method necessitates manual threshold setting, and we assessed its efficacy at
the threshold value of 130 suggested by the authors.

Performance metrics
In order to assess the accuracy of blink artifact detection, both direct accuracy metrics and
indirect artifact reduction effectiveness metrics are employed.

Accuracy metrics

Accuracy metrics offer a straightforward means of evaluating detection algorithms. To
assess the accuracy of the blink detection methods in more detail, both rough and fine
assessment metrics have been used.

Rough assessment metrics are employed to evaluate the algorithm’s ability to locate
blink artifacts. A detection is classified as a rough true positive (TP,) if it overlaps with any
actual blink artifact, and as a rough false positive (FP,) when no overlap occurs with
genuine blink regions. These metrics include the rough true positive rate (TPR,) and rough
false positives per sample (FPPS;), calculated as follows:

TP,
TPR, = 10
" number of EOGs (10)
FPPS, = EPy (11)

~ duration of pure EEG

where TP, stands for the number of correctly detected eye blinks, while number of EOGs
denotes the total number of actual eye blinks. FP, indicates the number of false positive
detections, and duration of pure EEG represents the total duration (in samples) of
artifact-free EEG. Since true negatives (TN) are undefined for continuous signals
(Valderrama, de la Torre & Van Dun, 2018), FPPS; is evaluated over temporal intervals,
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making it equivalent to the false positive rate (FPR). However, these rough metrics are
inadequate for assessing endpoint recognition precision of blink artifacts.

The fine assessment metrics are designed to assess whether the method can accurately
estimate the boundaries of the eye blink artifacts. Therefore, we define the fine assessment
metrics by introducing the concept of “error tolerance” (Chang et al., 2016), based on the
fact that blink artifacts blend with genuine EEG signals, creating boundary ambiguity that
necessitates a permissible error range to avoid overly stringent determinations. Figure 3
illustrates the basic concept of error tolerance. “Ground truth” refers to the exact range of
an eye blink artifact. If an error tolerance is specified for the two boundaries of the artifact,
actual errors (false positives or false negatives) found within these “error tolerance” ranges
are considered part of correctly detected artifact ranges. The error tolerance includes false
negative tolerance (FN tolerance) and false positive tolerance (FP tolerance). FN tolerance
is defined as the ratio of the tolerated FN region to the length of the ground truth segment
for each artifact, since the width of each artifact varies. In contrast, the FP tolerance is
defined as a fixed time interval (in seconds) extending from the boundaries of the ground
truth segment for each artifact. In our implementation, FP tolerance ranges from 0 to 0.1 s
and FN tolerance ranges from 0 to 40 percent of the ground truth segment (Chang et al.,
2016). Specifically, the FN tolerance range of 0-40% is chosen based on the physiological
characteristics of blink artifacts and signal ambiguity. Since blink artifact waveforms
exhibit gradual rising and falling slopes, strictly defining their boundaries could lead to
missed detections. A 40% FN tolerance means allowing a 40% margin of error relative to
the artifact’s duration near its boundaries (e.g., allowing an 80 ms tolerance for a 200 ms
artifact). This range covers the transition zone between artifacts and EEG signals in most
practical cases, ensuring detection sensitivity while preventing excessive leniency that
could introduce significant noise interference. The FP tolerance range of 0.0-0.1 s is
chosen to effectively distinguish blink artifacts from other transient interference. A 0.1-s
FP Tolerance accommodates the duration of brief disturbances while avoiding
misclassification of longer noise (such as motion artifacts) as blinks. In addition, the figure
also shows four different possible detected eye blinks.

Based on the concept of “error tolerance”, we define the fine assessment metrics which
include the fine true positive rate (TPR¢) and the fine false positives per sample (FPPSg).

TP
TP, + N,

FP;
duration of pure EEG

TPR; = (12)

FPPS; = (13)

where TPy, FNy and FPs stand for the correct, missed and false duration in samples of
detected eye blinks, respectively. The duration of pure EEG is still the total duration in
samples of the pure EEG.

Artifact reduction effectiveness metrics
Artifact reduction effectiveness metrics can serve as an indirectly assessment of blink
detection accuracy. Better removal of blink artifacts alongside better retention of valid EEG
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Figure 3 A schematic diagram illustrates the concepts of error tolerance and the positive detected
blink intervals. Full-size K&l DOT: 10.7717/peerj-cs.3249/fig-3

indicates more accurate recognition of blink artifacts. The study conducts indirect
verification of artifact detection accuracy by applying the same wavelet denoising method
after the three blink artifact detection algorithms. Specifically, the discrete wavelet
transform (DWT) is used to filter the contaminated intervals using the db4 mother wavelet
at a decomposition level of 3. To quantify the artifact reduction performance, we use the
correlation coefficient (CC) and the relative root mean square error (RRMSE) in the time
domain. Additionally, the mean absolute error (MAE) is employed in the frequency
domain.

CC can reflect the ability to perserve the original EEG signal during the denoising
process. CC is calculated as

cov (x(n),x?r?))

Ox(n) 6;(\”')

where x(n) and x(n) are the pure EEG and filtered EEG signals, cov and o are the

CC= (14)

covariance and standard deviation, respectively. The closer CC is to 1, the better the noise
reduction.
RRMSE is defined as

RMS (x(n), );(\}’l/))
RMS(x(n))

RRMSE = (15)

where RMS(x(n)) and RMS (x/(;)> represent the root mean square of the true and
denoised EEG signals, respectively, and for an effective artifact reduction approach, the

RRMSE value will be low.
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MAE is employed to evaluate the performance in the frequency domain. p(f) and
pm(f) are the power spectrum of the contaminated and rectified EEG respectively. The
MAE is defined as follows:

Y—alp(f) = pm(F)]
b—a

where b — a refer to the frequency range of a particular band.

MAE =

(16)

For semi-simulated data, where the ground truth is known, MAE is used to evaluated
EEG retention across the full frequency range (1-40 Hz) after artifact reduction. Results
indicate effective artifact reduction, reflected in small MAE values. For real data, however,
the lack of ground truth makes it impossible to calculate CC and RRMSE. MAE across the
full frequency range (1-40 Hz) is also incalculable. Instead, MAE was always computed
within the o band due to blink artifact frequencies extending beyond the « band
(Noorbasha & Sudha, 2021; Yedukondalu ¢ Sharma, 2023). It should be noted that
insufficient artifact removal can still result in low MAE values in the o band. For instance,
an MAE value of 0 in the « band without artifact reduction signals adequate EEG
preservation, not complete artifact elimination. Thus, we employed the MAE ratio
(MAE,,) of the low frequency band (1-10 Hz) to the high frequency band (10-40 Hz).
This metric evaluates the algorithm’s efficacy in eliminating artifacts while preserving EEG
signals.

Determination of parameters

The proposed sliding-window HOC method requires the optimization of two key
parameters, thr; and thr,, designed to refine the detected blink intervals and estimate the
optimal temporal range of eye blink artifacts. To systematically determine the optimal thr,
and thr, values, we conducted an extensive parameter selection study using
semi-simulated data. We generated a total of 108 semi-simulated contaminated EEG signal
segments by systematically adjusting signal parameters: setting the SNR across 11 levels
(-8 to 2 dB) and varying blink durations across five durations (100, 200, 300, 400, and
500 ms). This process constructed a comprehensive dataset comprising 108 x 11 x 5
samples for the determination of the optimal combination for parameters thr, and thr,.
For each threshold combination, we computed TPRy and FPRy to evaluate detection
performance across different noise conditions. The optimal threshold combination was
identified by maximizing the Youden index, derived from receiver operating characteristic
(ROC) curve analysis, ensuring a balanced trade-off between sensitivity and specificity.
This rigorous parameter optimization framework enhances our method’s adaptability to
diverse blink dynamics while maintaining robustness against noise interference.

RESULTS

Results of parameters determination

The parameters of the sliding window HOC method include thrjand thr,. For the chosen
semi-simulated data (containing varying blink artifact intervals and different SNRs), we
calculated the mean values of TPRy and false positives per second FPPS; across different
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combinations of thr, and thr,, then plotted corresponding ROC curves. As shown in Fig. 4,
the ten colored lines indicate thr; values ranging from 0.0 to 0.9, while the ten circles along
each line (arranged top to down) correspond to thr, values from 0.0 to 0.9. These
collectively form the ROC curves for all parameter combinations. The maximum
Youden index value of the ROC curve is 0.9422, corresponding to TPRs = 0.9679 and
FPPS; = 0.0257. This optimal point (indicated by the third circle from the top on the bold
purple line) represents the combination thr, = 0.4 and thr, = 0.2. Thus, thr; = 0.4 and
thr, = 0.2 were identified as the optimal parameters for subsequent analysis.

Results of semi-simulated data

Results from the semi-simulated data involved comparing the precision of three distinct
blink detection methods and the denoising effectiveness generated based on these
detection methods.

Table 2 illustrates the rough accuracy metrics for the proposed sliding window HOC,
VME, and MSDW methods across various SNRs. The results show that the proposed
method achieved consistently higher Youden index values across all SNRs, indicating
superior rough detection accuracy. Figure 5 presents the ROC curves of the fine assessment
metrics of each method under varying FP and FN tolerances. These results indicate that the
proposed method exhibited the highest TPR¢ at any given FPPS;.

Figure 6 and Table 3 display indirect artifact reduction effectiveness metrics for the
semi-simulated data, including CC, RRMSE and MAE in subplots (A), (B) and (C),
respectively. The data indicates that the sliding window HOC-based blink artifact
detection method attained the highest CC value, the lowest RRMSE value, and the lowest
MAE value, demonstrating its exceptional artifact reduction capability.

Results of real data

Fig. 7 compares blink artifact detection results in real data using the sliding window HOC,
VME, and MSDW methods, alongside power spectra of wavelet-denoised signals following
blink detection. Specifically, Fig. 7A demonstrates that the sliding window HOC method
more accurately localized artifact occurrence intervals than the other two methods.
Figure 7B reveals that the sliding window HOC-based filter achieved improved detection
of blink artifacts in the low-frequency range while providing superior signal preservation
in the high-frequency range- particularly within the EEG p-band, as shown in the
magnified region (Maddirala ¢» Veluvolu, 2021).

Figure 8 and Table 4 present box plots of the calculated MAE,;, values across three real
datasets. These results confirm that the sliding window HOC-based filter outperformed
both the VME and the MSDW methods in attenuating blink artifacts while preserving
EEG signals.

Computational time

In single-channel EEG artifact processing, computational efficiency and real-time
capability are key evaluation metrics. This study compared the computational efficiency of
three blink artifact detection algorithms using semi-simulated and real data. Experiments
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Figure 4 ROC curves under different combinations of thr; and thr,, where both thresholds range
from 0.0 to 0.9 (step size: 0.1). Each colored line represents a distinct thr; value, while the 10 circles
along each line (from top to bottom) correspond to thr, values. TPRg, fine true positive rate. FPPS, fine
false positives per sample. Full-size K&] DOT: 10.7717/peerj-cs.3249/fig-4

Table 2 The results of rough assessment metrics.

SNR SNR < 4 -4<SNR<0 0 dB
TPRr Sliding window HOCs 1.000 0.993 0.945
VME 0.990 0.976 0.853
MSDW 0.266 0.215 0.192
FPPSr Sliding window HOCs 2.08E-04 2.39E-04 2.81E-04
VME 3.49E-03 4.51E-03 5.30E-03
MSDW 1.29E-04 1.28E-04 1.26E-04
Youden index Sliding window HOCs 1.000 0.993 0.945
VME 0.987 0.971 0.847
MSDW 0.266 0.215 0.192

Note:
Rough true positive rate (TPRr), rough false positives per sample (FPPSr) and the Youden index obtained at different
SNRs with the sliding window HOC method, the VME method, and the MSDW method.
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Figure 5 ROC curves with respect to different pairs of false positive tolerances and false negative tolerances in the estimation of the artifact
ranges. The false positive tolerance ranges from 0.00 to 0.10 (step size: 0.05), while the false negative tolerance ran. The abscissa of each curve
represents the fine false positives per sample (FPPSf), and the ordinate represents the fine true positive rate (TPRf).
Full-size K&l DOT: 10.7717/peerj-cs.3249/fig-5

were conducted in a standardized testing environment: MATLAB 2021b on a
hardware with an Intel i7-9700 processor (3.00 GHz base frequency), a 64-bit Windows 10,
and 32 GB of RAM. As shown in Table 5, the proposed algorithm demonstrated

significantly faster computation than the traditional VME method (Bonferroni-corrected,
p < 0.05), though it remained slower than the MSDW algorithm. Our analysis confirmed

the sliding window HOC method’s suitability for online, real-time EEG processing

applications.
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Figure 6 Artifact reduction effectiveness metrics in the semi-simulated data. Results of metrics measuring the efficacy of artifact reduction
(A) CC, (B) RRMSE and (C) MAE based on the sliding window higher-order cumulants (HOCs), variational mode extraction (VME), and
multi-window summation of derivatives within a window (MSDW) method. The error bars represent the mean and standard deviation.

Full-size K&l DOT: 10.7717/peerj-cs.3249/fig-6

Table 3 Results of artifact reduction effectiveness metrics.

Detection methods Sliding window HOCs VME MSDW

cC 0.935 (0.046)° 0.914 (0.078)° 0.909 (0.094)°

RRMSE 0.128 (0.077) 0.186 (0.234)° 0.225 (0.414)°

MAE 1.634 (0.424)% 1.770 (0.670)° 1.748 (0.574)°
Note:

Values are presented as mean (std). Groups sharing the same superscript letter are not significantly different (p > 0.05,
Bonferroni-corrected), while different letters indicate statistically significant differences.

DISCUSSION

This study proposes a sliding window HOC method for detecting artifacts in
single-channel EEG. The method’s performance was evaluated using semi-simulated data
and real data through direct accuracy metrics and indirect artifact reduction effectiveness
metrics. Results demonstrate that: (1) the method can accurately detect blink artifact
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Figure 7 One example of blink artifact detection on a real data segment and the power spectrum of
the altered EEG signals based on the detection results. Full-size K&l DOT: 10.7717/peerj-cs.3249/fig-7

boundaries in single-channel EEG signals; (2) the method is fully automated as no human
involvement is required; and (3) detection leverages the distinct Gaussian characteristics
differentiating EEG signals from blink artifacts. In comparison to the VME method, which
is limited to positive blink peaks and preset blink intervals, and the MSDW method, which
has specific requirements for blink morphology, this method is considered to be more
robust.

The sliding window HOC method focuses on accurately identifying blink artifacts. This
process not only locates artifacts initially through HOCs, but also precisely determines
their start and end positions via further adjustment. While most single-channel EEG blink
artifact studies focused on localization (Valderrama, de la Torre ¢» Van Dun, 2018;
Shahbakhti et al., 2021a; Maddirala ¢» Veluvolu, 2022a, 2022b), few addressed
boundary-specific recognition (Chang et al., 2016). Although the proposed algorithm does
not remove blink artifacts, it accurately detects contaminated intervals in single-channel
EEG. This capability is essential for future effective artifact removal while preserving the
EEG signal.

To improve blink artifact detection accuracy, this study introduces a crucial refinement
step- further adjustments to detected blink intervals-following preliminary detection.
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Figure 8 The box chart of the MAE,,;, of the three datasets. ns, p > 0.05; ***p < 0.001.
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Table 4 MAE,,, result for real data.

Datasets Sliding window HOCs VME MSDW

Datal 9.785 (10.478)* 5.523 (5.796)° 0.000 (3.712)¢

Data2 13.450 (10.223) 10.925 (5.431)° 10.861 (9.427)°

Data3 15.961 (11.055) 10.275 (6.373)° 8.489 (9.743)°
Note:

Values are presented as median (interquartile range). Groups sharing the same superscript letter are not significantly
different (p > 0.05, Bonferroni-corrected), while different letters indicate statistically significant differences.

Table 5 The computational time of the three methods.

Data Sliding window HOC:s (s) VME (s) MSDW (s)

Semi-simulated data 0.0052 (0.0013)* 0.0081 (0.0036)" 0.0003 (0.0001)°

Real data (Datal) 0.0051 (0.0004)* 0.0057 (0.0008)" 0.0003 (0.0001)°

Real data (Data2) 0.0054 (0.0009)* 0.0066 (0.0014)b 0.0004 (0.0001)°

Real data (Data3) 0.0056 (0.0009)* 0.0064 (0.0010)b 0.0004 (0.0001)¢
Note:

Groups sharing the same superscript letter are not significantly different (p > 0.05, Bonferroni-corrected), while different
letters indicate statistically significant differences.
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This step dynamically identifies the precise boundaries of blink artifacts using a
dual-threshold system (thr; and thr,), overcoming the limitation of fixed-window
methods in adapting to variable-duration blinks. To determine the optimal thresholds, a
systematic experimental design was employed: 5,940 (108 x 11 x 5) contaminated EEG
segments were constructed by varying blink durations (100-500 ms) and SNR levels (-8 to
2 dB). Results demonstrate peak performance at thr; = 0.4 and thr, = 0.2 (Youden index =
0.9422; Fig. 4), significantly improving recognition accuracy across blink characteristics.
The further adjustments step enhances the sliding window HOC method, enabling more
precise dynamic detection.

The performance of the sliding window HOC method is compared with the VME and
MSDW methods. For both semi-simulated data and real data, the results indicate that the
sliding window HOC method outperforms both VME and MSDW. This was demonstrated
using semi-simulated data generated by mixing blink artifact of varying durations with 377
segments of EEG signals at different SNRs. The sliding window HOC method
demonstrates superior performance in direct detection accuracy when compared to other
methods. Regarding rough assessment metrics, the sliding window HOC method exhibits
the highest Youden index value. While the FPPS of the MSDW algorithm is marginally
lower than that of the proposed sliding window HOC method, its TPR, is considerably
lower than that of the HOC method. Overall, the proposed method is superior to other
methods in terms of its capability to localize blink artifacts (see Table 2). In terms of fine
assessment metrics, the ROC curves plotted for different combinations of FP and FN
tolerances demonstrate that the HOC method has the highest recognition accuracy. This
suggests that the HOC method is capable of identifying the boundaries of blink artifacts
with the greatest precision (see Fig. 5). Regarding the artifact reduction effect achieved
based on the detection methods, the sliding window HOC-based filter shows a higher CC
value, lower RRMSE value, and higher MAE (see Fig. 6 and Table 3), indicating better
performance in artifact reduction. Despite demonstrating superior performance compared
to the other two methods, the detection efficacy of the proposed sliding window HOC
method shows a gradual decline as the SNR increases. This phenomenon is characterized
by a decline in the CC and an increase in the RRMSE, signifying that variations in SNR
have a discernible impact on detection accuracy. This phenomenon is primarily
attributable to two factors: Firstly, following the preliminary detection of blink artifact
boundaries, the method must accurately localize blink peaks within these boundaries.
However, higher SNR levels amplify the influence of blink artifact amplitudes on EEG
signals, potentially leading to localization errors during the preliminary detection phase.
Secondly, in the subsequent adjustment phase, the method employs these identified blink
peaks in conjunction with predefined thresholds, which may reduce the effectiveness of the
adjustment. The combined effect of these two factors results in a decline in overall
performance in high-SNR environments.

For real data, results from three different databases show that the sliding window
HOC-based filter achieves a higher MAE, ., (see Fig. 8 and Table 4), suggesting it is better
at attenuating blink artifacts while retaining valid EEG signals. The causes of these results
may include: (1) the sliding window HOC method is more accurate in locating the interval
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boundaries of blink artifacts, resulting in better recognition and filtering effects. (2) the
VME and MSDW methods may require further parameter adjustments to improve blink
artifact detection. This is particularly true for the VME methods, which fails to recognize
blink intervals in many real data fragments; consequently, its MAE,;, is set to 0. This
suggests that these algorithms have slightly poorer robustness compared to the sliding
window HOC method. Another advantage of the sliding window HOC method is its low
CPU time requirement, making it suitable for online and semi-real time applications.

While the proposed sliding window HOC method has been verified to be effective for
detecting blink artifacts, several shortcomings require further investigation: (1) The
current validation was conducted using specific electrode configurations and recording
devices. The method’s performance may vary across different EEG hardware (e.g., dry vs.
wet electrodes), montages, or sampling rates. Future studies should evaluate the approach’s
robustness across diverse acquisition systems and experimental paradigms. (2) While our
validation has demonstrated the method’s efficacy for isolated blink artifact detection, its
performance in real-world EEG recordings - which often contain complex mixtures of
muscle artifacts, line noise, and various ocular movements - requires further investigation
and methodological enhancements. To address these more challenging scenarios, several
key developments would be necessary: establishing comprehensive artifact-specific HOC
profiles that capture the distinct higher-order statistical signatures of each major
contamination type; implementing a hierarchical decision-making framework that
intelligently combines multiple discriminative features beyond HOC; and developing
robust integration strategies with established artifact handling techniques, such as
employing independent component analysis (ICA) for muscle artifact removal and
adaptive notch filtering for power line interference suppression. This multi-pronged
approach would significantly improve the method’s practical utility in noisy, real-world
EEG applications. (3) The two thresholds are determined from semi-simulated data
generated by mixing one blink segment (and its duration variations) with 108 pure EEG
segments at different SNRs. To enhance universal adaptability, future work should select
blink waveforms from a wider range of subjects and recording devices to produce richer
semi-simulated data for threshold calibration. (4) The current method can only identify
single intervals within short segments; overlapping intervals may be misidentified as a
single blink. Parameters for evaluating different blink intervals should be added to enable
detection of multiple, separate blink artifacts. (5) This study only detects blink artifacts and
does not include the detection of horizontal electrooculograms. Considering the fact that
horizontal electrooculograms also have different Gaussian characteristics with EEGs, the
sliding window HOC methods can be used to detect horizontal electrooculograms in
further work.

Furthermore, our future research will pursue three key directions: First, we will optimize
the computational complexity of HOCs to significantly improve processing efficiency
while preserving algorithmic advantages, thereby better meeting real-time application
requirements. Second, we will develop novel blink artifact removal algorithms. Building
upon the high-precision artifact identification method proposed in this study, these
algorithms aim to provide a more comprehensive solution to single-channel blink artifact
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filtering, achieving accurate artifact elimination, preservation of original EEG rhythm
power characteristics, and with minimal impact on filtered EEG rhythm power. Third,
while this study primarily focuses on single-channel EEG applications, future work will be
extended to multi-channel EEG scenarios. By incorporating multi-channel EEG features,
we intend to develop targeted solutions for the recognition and filtering of blink artifacts in
multi-channel EEG systems. Finally, it should be noted that although this study has
demonstrated the superior performance of the sliding-window higher-order cumulant
method within the traditional signal processing framework, the rapid advancement and
widespread application of deep learning technologies suggest that future research should
focus on exploring integration strategies combining higher-order statistical features with
deep learning models.

CONCLUSIONS

This article proposes the sliding window HOC method for accurately detecting blink
artifacts in single-channel EEG. The detection accuracy and general applicability of the
method are validated using both semi-simulated and real data. By utilizing the difference
in Gaussian characteristics between EEG signals and blink artifact signals, the results from
both semi-simulated and real data demonstrate that the proposed sliding window HOC
method outperforms VME and MSDW in terms of accuracy metrics and artifact reduction
effectiveness metrics. Therefore, this method proves suitable for detecting blink artifacts in
single-channel EEG applications.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the National Key Research and Development Program of
China (No. 2022YFC2402202). There was no additional external funding received for this
study. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Key Research and Development Program of China: 2022YFC2402202.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

» Guojing Wang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Hongyun Liu analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3249 21/24


http://dx.doi.org/10.7717/peerj-cs.3249
https://peerj.com/computer-science/

PeerJ Computer Science

» Shijing Wu analyzed the data, prepared figures and/or tables, and approved the final
draft.

* Xiaohua Yu performed the experiments, prepared figures and/or tables, and approved
the final draft.

» Buging Wang performed the experiments, prepared figures and/or tables, and approved
the final draft.

» Weidong Wang conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The BNC Horizon 2020 data (Monitoring error-related potentials, 013-2015 and Upper
limb movement decoding from EEG, 001-2017) is available at http://bnci-horizon-2020.
eu/database/data-sets.

The PRED+CT data is available at Figshare: Cavanagh, James F (2025). Depression PS
Task. figshare. Dataset. https://doi.org/10.6084/m9.figshare.30103939.v1.

The code is available in Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.3249#supplemental-information.

REFERENCES

Ahn JW, Ku Y, Kim HC. 2019. A novel wearable EEG and ECG recording system for stress
assessment. Sensors 19(9):1991 DOI 10.3390/s19091991.

Ali A, Afridi R, Soomro TA, Khan SA, Khan MYA, Chowdhry BS. 2022. A single-channel
wireless EEG headset enabled neural activities analysis for mental healthcare applications.
Wireless Personal Communications 125(4):3699-3713 DOI 10.1007/s11277-022-09731-w.

Antari J, Chabaa S, Iqdour R, Zeroual A, Safi S. 2011. Identification of quadratic systems using
higher order cumulants and neural networks: application to model the delay of video-packets
transmission. Applied Soft Computing 11(1):1-10 DOI 10.1016/j.as0¢.2010.03.007.

Bakouch HS. 2010. Higher-order moments, cumulants and spectral densities of the NGINAR(1)
process. Statistical Methodology 7(1):1-21 DOI 10.1016/j.stamet.2009.08.004.

Bisht A, Singh P, Kaur P, Dalal G. 2024. Identification of ocular artifact in EEG signals using
VMD and Hurst exponent. Journal of Basic and Clinical Physiology and Pharmacology
35(6):353-359 DOI 10.1515/jbcpp-2024-0027.

Cavanagh JF, Bismark AW, Frank M]J, Allen JJB. 2019. Multiple dissociations between comorbid
depression and anxiety on reward and punishment processing: evidence from computationally
informed EEG. Computational Psychiatry 3(0):1-17 DOI 10.1162/cpsy_a_00024.

Chang W, Cha H, Kim K, Im C. 2016. Detection of eye blink artifacts from single prefrontal
channel electroencephalogram. Computer Methods and Programs in Biomedicine 124:19-30
DOI 10.1016/j.cmpb.2015.10.011.

Chavarriaga R, del Millan JR. 2010. Learning from EEG error-related potentials in noninvasive

brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering
18(4):381-388 DOI 10.1109/TNSRE.2010.2053387.

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3249 22/24


http://bnci-horizon-2020.eu/database/data-sets
http://bnci-horizon-2020.eu/database/data-sets
https://doi.org/10.6084/m9.figshare.30103939.v1
http://dx.doi.org/10.7717/peerj-cs.3249#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3249#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3249#supplemental-information
http://dx.doi.org/10.3390/s19091991
http://dx.doi.org/10.1007/s11277-022-09731-w
http://dx.doi.org/10.1016/j.asoc.2010.03.007
http://dx.doi.org/10.1016/j.stamet.2009.08.004
http://dx.doi.org/10.1515/jbcpp-2024-0027
http://dx.doi.org/10.1162/cpsy_a_00024
http://dx.doi.org/10.1016/j.cmpb.2015.10.011
http://dx.doi.org/10.1109/TNSRE.2010.2053387
http://dx.doi.org/10.7717/peerj-cs.3249
https://peerj.com/computer-science/

PeerJ Computer Science

Chavez M, Grosselin F, Bussalb A, De Vico Fallani F, Navarro-Sune X. 2018. Surrogate-based
artifact removal from single-channel EEG. IEEE Transactions on Neural Systems and
Rehabilitation Engineering 26(3):540-550 DOI 10.1109/TNSRE.2018.2794184.

Chen G. 2014. Are electroencephalogram (EEG) signals pseudo-random number generators?
Journal of Computational and Applied Mathematics 268(2):1-4 DOI 10.1016/j.cam.2014.02.028.

Cmar S. 2021. Design of an automatic hybrid system for removal of eye-blink artifacts from EEG
recordings. Biomedical Signal Processing and Control 67(6):102543
DOI 10.1016/j.bspc.2021.102543.

Dora C, Biswal PK. 2020. An improved algorithm for efficient ocular artifact suppression from
frontal EEG electrodes using VMD. Biocybernetics and Biomedical Engineering 40(1):148-161
DOI 10.1016/j.bbe.2019.03.002.

Gao X, Zhang S, Liu K, Tan Z, Zhao G, Han Y, Cheng Y, Li C, Li P, Tian Y, Li F. 2023. An
adaptive joint CCA-ICA method for ocular artifact removal and its application to emotion
classification. Journal of Neuroscience Methods 390(3):109841
DOI 10.1016/j.jneumeth.2023.109841.

Islam MK, Ghorbanzadeh P, Rastegarnia A. 2021. Probability mapping based artifact detection
and removal from single-channel EEG signals for brain-computer interface applications. Journal
of Neuroscience Methods 360(12):109249 DOI 10.1016/j.jneumeth.2021.109249.

Jamil Z, Jamil A, Majid M. 2021. Artifact removal from EEG signals recorded in non-restricted

environment. Biocybernetics and Biomedical Engineering 41(2):503-515
DOI 10.1016/j.bbe.2021.03.009.

Khoshnevis SA, Sankar R. 2020. Applications of higher order statistics in electroencephalography
signal processing: a comprehensive survey. IEEE Reviews in Biomedical Engineering 13:169-183
DOI 10.1109/RBME.2019.2951328.

Klados MA, Bamidis PD. 2016. A semi-simulated EEG/EOG dataset for the comparison of EOG
artifact rejection techniques. Data in Brief 8:1004-1006 DOI 10.1016/j.dib.2016.06.032.

Maddirala AK, Veluvolu KC. 2021. Eye-blink artifact removal from single channel EEG with
k-means and SSA. Scientific Reports 11(1):11043 DOI 10.1038/s41598-021-90437-7.

Maddirala AK, Veluvolu KC. 2022a. SSA with CWT and k-means for eye-blink artifact removal
from single-channel EEG signals. Sensors 22(3):931 DOI 10.3390/s22030931.

Maddirala AK, Veluvolu KC. 2022b. ICA with CWT and k-means for eye-blink artifact removal
from fewer channel EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering:
a Publication of the IEEE Engineering in Medicine and Biology Society 30:1361-1373
DOI 10.1109/TNSRE.2022.3176575.

Mary Judith A, Baghavathi Priya S, Mahendran RK. 2022. Artifact removal from EEG signals
using regenerative multi-dimensional singular value decomposition and independent
component analysis. Biomedical Signal Processing and Control 74(5):103452
DOI 10.1016/j.bspc.2021.103452.

Nolan H, Whelan R, Reilly RB. 2010. FASTER: fully automated statistical thresholding for EEG
artifact rejection. Journal of Neuroscience Methods 192(1):152-162
DOI 10.1016/j.jneumeth.2010.07.015.

Noorbasha SK, Sudha GF. 2021. Removal of EOG artifacts and separation of different cerebral
activity components from single channel EEG—an efficient approach combining SSA-ICA with

wavelet thresholding for BCI applications. Biomedical Signal Processing and Control
63(2):102168 DOI 10.1016/j.bspc.2020.102168.

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3249 23/24


http://dx.doi.org/10.1109/TNSRE.2018.2794184
http://dx.doi.org/10.1016/j.cam.2014.02.028
http://dx.doi.org/10.1016/j.bspc.2021.102543
http://dx.doi.org/10.1016/j.bbe.2019.03.002
http://dx.doi.org/10.1016/j.jneumeth.2023.109841
http://dx.doi.org/10.1016/j.jneumeth.2021.109249
http://dx.doi.org/10.1016/j.bbe.2021.03.009
http://dx.doi.org/10.1109/RBME.2019.2951328
http://dx.doi.org/10.1016/j.dib.2016.06.032
http://dx.doi.org/10.1038/s41598-021-90437-7
http://dx.doi.org/10.3390/s22030931
http://dx.doi.org/10.1109/TNSRE.2022.3176575
http://dx.doi.org/10.1016/j.bspc.2021.103452
http://dx.doi.org/10.1016/j.jneumeth.2010.07.015
http://dx.doi.org/10.1016/j.bspc.2020.102168
http://dx.doi.org/10.7717/peerj-cs.3249
https://peerj.com/computer-science/

PeerJ Computer Science

Ofner P, Schwarz A, Pereira J, Miiller-Putz G. 2017. Upper limb movements can be decoded from
the time-domain of low-frequency EEG. PLOS ONE 12(8):¢0182578
DOI 10.1371/journal.pone.0182578.

Sahoo SK, Mohapatra SK. 2022. Recognition of ocular artifacts in EEG signal through a hybrid
optimized scheme. BioMed Research International 2022(1):4875399
DOI 10.1155/2022/4875399.

Shahbakhti M, Beiramvand M, Nazari M, Broniec-Wojcik A, Augustyniak P, Rodrigues AS,
Wierzchon M, Marozas V. 2021a. VME-DWT: an efficient algorithm for detection and
elimination of eye blink from short segments of single EEG channel. IEEE Transactions on
Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in
Medicine and Biology Society 29:408-417 DOI 10.1109/TNSRE.2021.3054733.

Shahbakhti M, Maugeon M, Beiramvand M, Marozas V. 2019. Low complexity automatic
stationary wavelet transform for elimination of eye blinks from EEG. Brain Sciences 9(12):352
DOI 10.3390/brainsci9120352.

Shahbakhti M, Rodrigues AS, Augustyniak P, Broniec-Wdjcik A, Solosenko A, Beiramvand M,
Marozas V. 2021b. SWT-kurtosis based algorithm for elimination of electrical shift and linear
trend from EEG signals. Biomedical Signal Processing and Control 65:102373
DOI 10.1016/j.bspc.2020.102373.

Teng C, Zhang Y, Wang W, Luo Y, Wang G, Xu J. 2021. A novel method based on combination
of independent component analysis and ensemble empirical mode decomposition for removing
electrooculogram artifacts from multichannel electroencephalogram signals. Frontiers in
Neuroscience 15:729403 DOI 10.3389/fnins.2021.729403.

Valderrama JT, de la Torre A, Van Dun B. 2018. An automatic algorithm for blink-artifact
suppression based on iterative template matching: application to single channel recording of
cortical auditory evoked potentials. Journal of Neural Engineering 15(1):016008
DOI 10.1088/1741-2552/aa8d95.

Yan W, Wu Y. 2022. A time-frequency denoising method for single-channel event-related EEG.
Frontiers in Neuroscience 16:991136 DOI 10.3389/fnins.2022.991136.

Yang B, Zhang T, Zhang Y, Liu W, Wang J, Duan K. 2017. Removal of electrooculogram artifacts
from electroencephalogram using canonical correlation analysis with ensemble empirical mode
decomposition. Cognitive Computation 9(5):626-633 DOI 10.1007/s12559-017-9478-0.

Yedukondalu J, Sharma LD. 2023. Circulant singular spectrum analysis and discrete wavelet

transform for automated removal of EOG artifacts from EEG signals. Sensors 23(3):1235
DOI 10.3390/s23031235.

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3249 24/24


http://dx.doi.org/10.1371/journal.pone.0182578
http://dx.doi.org/10.1155/2022/4875399
http://dx.doi.org/10.1109/TNSRE.2021.3054733
http://dx.doi.org/10.3390/brainsci9120352
http://dx.doi.org/10.1016/j.bspc.2020.102373
http://dx.doi.org/10.3389/fnins.2021.729403
http://dx.doi.org/10.1088/1741-2552/aa8d95
http://dx.doi.org/10.3389/fnins.2022.991136
http://dx.doi.org/10.1007/s12559-017-9478-0
http://dx.doi.org/10.3390/s23031235
http://dx.doi.org/10.7717/peerj-cs.3249
https://peerj.com/computer-science/

	Sliding window higher-order cumulants for detection of eye blink artifact from short segments of single-channel EEG
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


