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ABSTRACT

Background: The overwhelming number of cancer cases around the world has
expressed a critical need for an automated diagnostic tool to assist pathologists in
efficiently handling these cases. Colorectal cancer is one of the most common
diseases in the world, increasing yearly. The integration of deep learning
architectures in digital pathology has shown promising potential as a supportive tool
for assisting pathologists in the diagnosis of cancerous tissues. However, the lack of
histopathological image datasets of colon cancer impedes the precise evaluation of
deep learning diagnosis techniques.

Methods: This study proposes an ensemble model, combining EfficientNetv2 and
DenseNet architectures, for the binary classification of colorectal cancer from whole
slide images. The framework utilizes a new custom dataset containing
histopathological images of colorectal cancer cases divided into benign and
malignant classes, collected from Bahrain Defence Force-Royal Medical
Services-King Hamad University Hospital in the Kingdom of Bahrain. The dataset
comprises a total of 4,694 images, extracted from 227 whole slide images of colorectal
cancer patients. However, due to limited computational resources, only 2,000 images
were utilized in this study.

Results: The proposed model achieved a commendable accuracy of 98%, a perfect
precision of 100% and a recall of 96.30%, displaying a high generalization ability and
robustness. Furthermore, a comparative analysis was performed, which showed that
the proposed model outperformed several state-of-the-art architectures.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision,
Data Mining and Machine Learning, Neural Networks

Keywords Artificial intelligence, Colorectal cancer, Deep learning, Digital pathology,
Histopathological images

INTRODUCTION

Colorectal cancer (CRC) is one of the most common and widespread types of cancer which
ranks second in cancer related deaths worldwide (Siegel et al., 2023). It initially begins with
the formation of small clumps in the colon called polyps that may turn cancerous over
time. CRC is generally divided into two main classes, benign and malignant tumors.
Benign tumors are non-cancerous and minimal growth which can be treated easily by
surgically removing the tumor. However, malignant tumors are cancerous which tends to
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grow rapidly, affecting the neighboring organs (Hossain et al., 2022; Patel, 2020). In 2022,
more than 1.9 million cases of CRC along with 904,000 deaths were estimated globally and
are increasing yearly. In the Kingdom of Bahrain, colorectal cancer accounts for 11.8% of
all cancer cases, making it the second most common type of cancer in males and females.
Furthermore, while analyzing the statistics and patterns, it has been noticed that late-stage
diagnosis is frequent which addresses the need for early detection and the introduction of
screening (Bray et al., 2024; Kalaji et al., 2024). Currently, histopathological analysis is the
main investigative procedure for cancer diagnosis, where the tumors undergo several
phases before placing it in microscopic slides. These phases include slicing the tumor into
thin sections, staining the tissue, placing the slices into small cassettes, and processing
them through fixation and dehydration steps to prepare them for microscopic
examination. These microscopic slides are then provided to expert pathologists in which
each slide is examined and analyzed manually for final diagnosis. However, the growing
number of cases has proved to be challenging and overwhelming to manage with only a
finite number of expert pathologists. Each case has an abundant number of microscopic
slides and examining each one manually is time-consuming and inefficient. On the other
hand, a microscopic camera can be utilized to capture images of the slides, forming
histopathological images for further analysis.

The digital pathology field has seen notable developments with the advancements in
artificial intelligence (AI) and deep learning (DL) algorithms, where histopathological
images are increasingly being explored for their potential to support diagnostic processes
(Hijazi et al., 2024). The integration of Al and DL in the digital pathology field has
presented promising results in assisting pathologists in managing the growing number of
cases. Recent innovations in DL architecture have contributed to advancements in CRC
diagnosis research, indicating potential as supportive tools for pathologists in improving
diagnostic workflows (Bousis et al., 2023). Histopathological images acquire multiple
complex patterns and features that are critical for classification. Furthermore, DL
architecture has demonstrated strong capabilities in extracting complex and high-level
features from images, suggesting their suitability for aiding in the diagnosis of cancerous
tissues, though further validation is needed for clinical adoption (Al-Thelaya et al., 2023).
The complex features and patterns extracted are learned by the algorithm, making it robust
and able to classify un-seen images accurately.

The aim of this research is to accurately classify tumors into malignant and benign
classes to distinguish cancerous tissues using deep learning architectures. Furthermore,
this study intends to investigate the generalization ability and capabilities of deep learning
algorithms when subjected to new and un-seen images. New images can lead to
discovering new features or patterns that are not included in the existing ones. For real life
deployment, health care applications need to be tested in different scenarios and on
multiple, diverse datasets to ensure that the deep learning model is generalizing well and
classifying accurately. Therefore, testing deep learning algorithms on multiple types of
images is essential in proving their reliability in the medical field.

The rest of this article is structured as follows: ‘Related Work’ provides related works
summarizing classification of colorectal cancer. In ‘Dataset Acquisition’, the formulation
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of the dataset is discussed. ‘Methodology” discusses the methodology employed in this
study. The data analysis is carried out in ‘Data Analysis’. The results and their discussion
are covered in ‘Results and Discussion’. In ‘Conclusion and Future Work’, we conclude our
work and provide future work.

RELATED WORK

Recently, deep learning algorithms have gained a growing interest in the medical field and
underwent numerous experiments on cancer classification. There have been ample prior
studies on applying deep learning algorithms to classify colorectal cancer. Yengec-
Tasdemir et al. (2024) introduced in their study an advanced Supervised Contrastive
Learning in combination with Big Transfer model for the early detection of colon
adenomatous polyps. They achieved an accuracy of 87.1% on their custom dataset. One
limitation stated by the authors is that the complexity of the models employed in this study
may deter other researchers from implementing them or building upon their work
(Yengec-Tasdemir et al., 2024). Prior to this study, Yengec-Tasdemir et al. (2023)
introduced an advanced method for the early detection of colon adenomatous polyps.
Their framework includes an ensemble learning architecture which includes the
pre-trained ConvNeXt-tiny and ConvNeXt-base, variants of the convolutional neural
network (CNN) family, with stain normalization. Their framework achieved an accuracy
of 95% on their custom dataset (Yengec-Tasdemir et al., 2023). Following this work, Sasmal
et al. (2024) proposed a generative adversarial network (GAN) on a semi-supervised
framework in their study for colorectal polyp classification using histopathological images.
Their approach was performed under two different majority voting schemes, 25% and
50%. Their technique yielded an accuracy of 87.5% and 76.25%, respectively. The study
highlights several limitations, including the difficulty of obtaining high-quality and
annotated data, where the challenge of capturing complex patterns in histopathological
images and the potential loss of global contextual information when using patches of
whole-slide images as individual samples, which may reduce the model’s classification
accuracy (Sasmal et al., 2024). Fu et al. (2024) proposed a framework that utilizes
self-learning sampling for the classification of colon and lung cancer using whole-slide
images. They employed ResNet-18 for feature extraction and a self-learning sampling
module to select only the relevant features. Their proposed model achieved an accuracy of
89.60% on The Cancer Genome Atlas Lung Squamous Cell Carcinoma (TCGA-LUSC)
dataset and 92.50% on the colon cancer dataset. This study’s self-learning sampling
method has provided new insights and concepts on whole slide images sampling for future
studies to build up upon (Fu et al., 2024).

Simple CNN models and other more advanced DL models that utilize CNN as a
backbone have been the main approach in recent years for cancer classification tasks for
their proficient feature extraction capabilities and efficiency. Kim et al. (2023) proposed a
study to evaluate the efficiency of CNN model in the multi-class classification of colorectal
lesions. However, one gap mentioned noted by the authors is the limited number of
training images in the dataset which restricts the variety of cases seen by the model.
Nevertheless, the model achieved an accuracy of 95.5% on their custom dataset (Kim et al.,
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2023). Furthermore, Hu et al. (2023) introduced a new public dataset named Enteroscope
Biopsy Histopathological H&E Image Dataset (EBHI) of colorectal cancer images. Their
dataset was tested on various CNN-based models including VGG16, Inception-V3,
ResNet50. The VGG16 model obtained the best results by achieving an accuracy of
95.37%. This study makes a significant contribution to the field by introducing a new
dataset and making it publicly available. The availability of such data is vital, as it supports
future research efforts and progresses innovations in digital pathology and artificial
intelligence fields (Hu et al., 2023). Xu et al. (2023) proposed a study that utilizes whole
slide images along with attention-based multi-instance learning network and three CNN
architectures for the multi-class classification of colon cancer subtypes. Their three-layer
CNN model achieved the best performance with accuracy of 83.86%. However, the
computational complexity of their work was identified as a challenge in which the authors
acknowledged and intended to address in future research efforts (Xu et al., 2023). Riasatian
et al. (2021) proposed an advanced framework where they introduced KimiaNet, a network
based on the DenseNet architecture in four configurations. The study also faced some
limitations including bias datasets and limited cancer types which may affect the model’s
generalization ability. The study also faced some limitations including bias datasets and
limited cancer types which may affect the model’s generalization ability. Nevertheless, the
fourth configuration of their model, KimiaNet-IV, achieved an accuracy of 96.80% on the
colorectal cancer dataset (Riasatian et al., 2021).

Furthermore, several studies addressed the classification of other cancer types from
histopathological images using deep learning architectures. Talib et al. (2024) proposed
two deep learning models, one for segmentation and the other for classification of lung
cancer using histopathological images. The pre-processing techniques utilized in this
study, which were limited to resizing and horizontal or vertical flipping, were noted to be
insufficient to improve the image quality. The model used for binary classification was
MinClassNet which is a CNN based model that achieved an accuracy of 98.39% (Talib
et al., 2024). However, the authors acknowledged that the depth of exploration in their
results, especially in identifying the boundaries of cancerous regions, has proven to be
downside in their work (Fu ef al., 2023). Subsequently, Fu et al. (2023) proposed a
framework that utilizes a deep learning approach for the classification between adenoid
cystic carcinoma and basal cell adenoma. Their framework utilizes adaptive feature fusion
MobileNet architecture that achieved an accuracy of 97.37%. Other various studies
addressed the classification of breast cancer which included deep learning architectures
such as ResNet-50, 3-layer CNN, and several others that displayed promising results,
reaching 97% (Ashraf, Alam & Sakib, 2024; Rafiq et al., 2023; Sajiv et al., 2024; Eshun,
Bikdash & Islam, 2024).

This research intends to address several limitations identified in previous studies within
the fields of digital pathology and artificial intelligence. These include the dependence on
highly complex models to achieve acceptable performance, which often poses challenges
for reproducibility and wider adoption. Additionally, earlier work frequently sufters from
the use of limited training data, insufficient pre-processing techniques, and a lack of
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high-quality datasets. Furthermore, this study targets to bridge these gaps and build upon
previous research to advance the existing work in the field.

DATASET ACQUISITION

While collecting a histopathological dataset, there are several challenges that should be
taken into consideration prior to the data collection process. Some challenges may include
image size and resolution, classification complexity, variability in staining methods,
computational demands, and ensuring consistency across the images within the dataset (Li
et al., 2021). Histopathological images comprise many qualities and features that can make
the images large and of high resolution with a huge number of pixels. This could be a
limiting factor that many research groups face as they require significant computational
power and resources. Therefore, selecting a suitable number of images to use within the
framework is critical to ensure the balance between the computational power and the
variability in the dataset used. Furthermore, the accuracy and reliability of the collected
images pose a vital challenge as cells in histopathological images tend to overlap and may
be structured similarly to the naked eye. Therefore, capturing images from the whole slides
that are distinct is essential to maintain diversity in the data. Thus, continuous
authentication and verification from an expert pathologist is required to validate the
images collected, ensuring reliability within the dataset.

Our dataset was manually assembled by collecting colorectal cancer cases, specifically
colonic resections, from 227 whole slide images of colorectal cancer patients that were
diagnosed at Bahrain Defence Force-Royal Medical Services-King Hamad University
Hospital in the Kingdom of Bahrain between 2015 to 2024 The dataset is available on our
git repository which can be accessed by the URL (https://github.com/Salman-Mohamed-
ai/DL-CRC.git). Collecting microscopic whole slides from colon resections was the most
suitable option for various reasons. Colonic resections comprise multiple subsections
including hemi-colectomy, transverse colon-resection, left colon-resection,
sigmoidectomy, and rectum-resection, which implies that there are an ample number of
specimens to be collected leading to a larger and more diverse dataset. In addition, the
primary reason in selecting colonic resections is that the sampling of the specimen includes
both normal (benign) tissue and abnormal (malignant) tissue, making it appropriate for
the binary classification of colon cancer tissues. Each colonic resection case was processed
and placed in microscopic slides for examination. These microscopic slides were collected
and then the knowledge of an expert pathologist was used to classify them into benign and
malignant classes using a standard light microscope. The expert pathologist did not rely on
the original clinical diagnoses of the cases but instead, each slide was evaluated
independently as a new case to ensure unbiased and standardized classification based
exclusively on histopathological features. After labelling the slides, the Pannoramic MIDI
IT automatic digital slide scanner by 3D Histech (Budapest, Hungary) was utilized to scan
the slide and provide a whole slide image. Then, these scans were used to capture the tissue
at 20x magnification level to provide a clear appearance of the benign or malignant
components, as shown in Fig. 1.
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Figure 2 Steps taken to ensure precise data collection. Full-size Kl DOI: 10.7717/peerj-cs.3241/fig-2

Our thorough and systematic approach to building this custom dataset ensures a precise
collection and labelling of the images, which is critical to maximize the diagnostic accuracy
of our proposed framework. Furthermore, Fig. 2 illustrates the entire data collection
process that provides an overview of the steps taken to ensure accurate data collection.

Upon completing the process, the finalized custom dataset contains a total of 4,694
image patches of the microscopic slides, divided equally into their respective classes.
However, this research utilizes only 2,000 images from the dataset due to the lack of
suitable computational resources. The number of images used in each class for the training
and testing sets is provided in Table 1.

METHODOLOGY

This section outlines the systemic approach taken to develop a deep learning pipeline for
the binary classification of colorectal cancer for the dataset assembled by collecting
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Table 1 Number of images used in each class.

Class Training Testing
Benign 700 300
Malignant 700 300
Total 1,400 600

colorectal cancer cases, specifically colonic resections, from patients that were diagnosed at
Bahrain Defence Force-Royal Medical Services-King Hamad University Hospital in the
Kingdom of Bahrain. All the experimentations and trials are implemented using an ASUS
laptop with an Intel(R) Core (TM) i5-8265U CPU chip, 8 GB RAM, 512 GB SSD, and a 64-
bit operating system along with x64-based processor. The environment utilized for this
implementation is Google Colaboratory (version: 1.13.5). This work was carried out by
following all the ethical guidelines of the Bahrain Defence Force-Royal Medical
Services-King Hamad University Hospital in the Kingdom of Bahrain and was approved
by the Institutional Review Board (IRB) under the approval number RMS-KHUH/IRB/
2024-810. It includes various pre-processing steps prior to training the model and the
deployment of pre-trained models provided in TensorFlow library.

Data pre-processing

Several pre-processing steps are applied to the dataset to enhance the overall quality,
consistency, and variety of the images which in return improves the performance of the
model. Initially, all the images were rescaled to normalize the pixel values to a common
scale, leading to a faster convergence during training. In addition, all the images were
resized to (224,224), to match the expected input dimensions of the model and add
consistency in training. Furthermore, to reduce the issue of overfitting, augmentation
techniques were applied on the images to add variety to the dataset and improve the
model’s robustness. The images were subjected to random rotation, shifting, shearing,
zooming, and horizontal flipping up to a certain threshold which results in a diverse
dataset while maintaining the important features of the images.

Initially, the training set underwent image rescaling and resizing to normalize pixel
values to a uniform range and convert the image to a standard size. In addition, data
augmentation is implemented to diversify our dataset by applying random
transformations such as rotation, shifting, zooming, shearing, horizontal flipping, and
brightness adjustment to enhance the model’s ability to generalize to raw un-seen images.
The rotation augmentation technique was implemented to rotate images randomly up to
30° to introduce angular variations in the images, allowing the model to recognize objects
or patterns in various orientations. Similarly, shifting is applied to randomly shift the
images horizontally or vertically up to 30% to simulate slight movements in the camera
position, strengthening the model’s accuracy when subjected to image features at different
positions. Furthermore, shearing is employed randomly with a maximum of 30% to skew
the image, adding variety in the form of distortion that can help the model learn to
recognize shapes even when distorted.
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Figure 3 Architecture of our proposed model. Full-size Kal DOI: 10.7717/peerj-cs.3241/fig-3

Proposed model architecture

The proposed framework mainly utilizes pre-trained CNN-based models, namely
EfficientNetv2B0 and DenseNet121. The EfficientNetV2 model was selected for this
framework due to its ability to balance performance with computational efficiency, which
is critical given the limited computational resources available for this project. Its
architecture incorporates advanced components like MBConv and Fused-MBConv that
optimizes both training speed and feature extraction. This makes the model particularly
well-suited for binary classification of medical images, which often have high resolution
and complex features. Furthermore, DenseNet offers several advantages for cancer
classification, particularly its dense connectivity and feed-forward structure, which
enhances feature extraction and parameter efficiency. This design helps prevent overfitting
while improving generalization, leading to better performance. Despite its deep
architecture, DenseNet is computationally efficient, making it well-suited for
high-resolution medical images where computational resources are limited. Its ability to
handle complex features makes it ideal for binary cancer classification, ensuring a reliable
and well-converged model. These models are trained separately and then combined to
create an ensemble model where their predictions are averaged for final classification. By
creating an ensemble model, we improved the accuracy of the framework by combining
the strengths of both models, reducing overfitting by averaging the predictions, and
enhancing the overall generalization ability by utilizing the feature extraction techniques
employed by the advance models. Figure 3 illustrates the architecture of the model when it
is subjected to an un-seen malignant image from our dataset for classification.

Feature extraction

Histopathological images acquire plenty of features and patterns that are significant for
classification. The extraction of these high-level features is critical to accurately classify
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these images. The architectures employed in this proposed framework comprises of
advanced feature extraction components, making them suitable for this application.

EfficientNetv2

The EfficientNetv2 contains three main components for high-level feature extraction. First,
the image is processed in an initial convolutional layer to extract basic features from the
image such as edges and textures. Following this, the fused-mobile inverted bottleneck
convolutional layers are used to extract low to mid-level features from the input image,
which then combines these features to prepare them for a more complex feature extraction
in the later stage. Finally, mobile inverted bottleneck convolutional layers are used in the
deeper stages of the model as it is suitable in handling small feature maps and extracting
mid to complex or high-level features from the images. This advance feature extraction
process enables the model effectively to learn the relevant features and accurately classify
them (Tan & Le, 2021).

DenseNet121

DenseNet structure includes an initial convolution and pooling layer followed by four
dense blocks with bottleneck layers, and transition layers between the dense blocks for
complex feature extraction. Similarly, the initial convolution layer is used to extract
low-level features and reduce the spatial dimensions of the image. Then, the four dense
blocks perform a more complex operation where their structure is designed in a
feed-forward manner to extract high-level features and pass its output to the next layer for
further use. The structure of a single dense block includes various identical-interconnected
layers, where each layer is designed to focus primarily on feature extraction. This densely
structured architecture is beneficial for feature extraction as it allows feature reuse while
extracting complex patterns.

Model training

In order to ensure suitable training procedure of the models, part of the training images
was reserved for validation. The validation strategy used in this research was hold-out
validation, where 20% of the training data was reserved for validation, within the
ImageDataGenerator. To prevent overfitting, two key regularization techniques were
applied, L2 regularization on the final dense layer and dropout with a rate of 0.5 before the
output layer. During our experimentation, the model underwent several hyperparameter
tuning and optimization phases to obtain the best performance possible. These
hyperparameters are critical to the training process and the development of the model.
Choosing the optimal set of hyperparameters improves accuracy and generalization along
with enhancing the robustness of the model. The batch size refers to the number of
training samples that pass through the network at one iteration. A small batch size can lead
to better convergence while a larger one leads to a faster training process so selecting the
ideal batch size is essential to balance between the two. For the proposed model we opted
for a batch size of 32 after several trials. Furthermore, the learning rate controls the step
size at each iteration and a high value can cause the model to converge quickly while a low
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value can lead to getting stuck at a local minimum. After experimentation we set the
learning rate to be 0.00003 initially and employed a learning rate scheduler to adjust the
value if there is no improvement within five epochs. The epochs describe the number of
complete passes through the training set. The balance between high and low number of
passes is essential to avoid overfitting or underfitting of the model. The proposed model
was trained with 20 epochs which proved to be sufficient for the model to train without
overfitting. In addition, early stopping was employed to stop the training process if there
are no improvements within five epochs to further avoid overfitting. Finally, Adam
optimizer was chosen as its properties proved to be suitable for the model and its
application.

DATA ANALYSIS

In this section, a comprehensive analysis will be performed to compare the original image
with the augmented one, signifying the impact of the pre-processing techniques applied in
the framework. Data analysis serves a crucial role in understanding and analyzing the
characteristics and features of the dataset used for training the proposed colon cancer
classification model. The analysis covers a series of comparison techniques including a
visual comparison, histogram evaluation, statistical metrics, and feature extraction
techniques to demonstrate the impact and benefit of the pre-processing and augmentation
techniques implemented in the network.

Visual comparison

A sample image was used for the visual comparison, from the benign category to
demonstrate the impact of the techniques implemented. In addition, the sample
underwent the pre-processing and augmentation steps five separate times, where it was
altered randomly to demonstrate the variability that these techniques offer. The visual
comparisons shown in Fig. 4 illustrate the variations introduced by the augmentation
techniques, making the dataset more diverse while still retaining the essential histological
features and patterns. Adding diversity to the dataset offers key benefits such as preventing
overfitting and improved generalization. These techniques proved to alter the dataset in a
way where it balances the variability and the preservation of essential features in the
images, leading to a model with increased robustness and superior performance.

Histogram pixel analysis

In histopathological images, the color intensity of the image and its contrast is essential in
accurately diagnosing the tissue. Preserving these color intensities in the image is essential
to ensure that the model is trained on realistic and well-defined images. Histogram analysis
will be utilized to plot the pixel intensities of each color channel of the image before and
after augmentation to show the alterations in contrast and brightness and to ensure that
while the augmentation adds variety, there are no major alterations in the colors of the
image. A malignant sample was used to compare the color distribution before and after
pre-processing. The plots shown in Fig. 5 display that the pixel intensity distribution
between the original and the augmented images are relatively similar, indicating that the
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Benign Sample

Figure 4 A benign sample which is augmented five separate times.
Full-size k&l DOT: 10.7717/peerj-cs.3241/fig-4

60000

50000 A

40000 +

30000 A

Frequency

20000 A

10000 A

58 Original r
[ Original g
B Original b

0.0

0.2

Histogram of Original Image Histogram of Augmented Image
88 Augmented r
70000 | mwm Augmented g
m Augmented b
60000 -
50000 -
g
< 40000
@
=
5
i
30000 1
20000 A
10000 -
0 A
0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Pixel Intensity Pixel Intensity
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overall visual appearance and color distribution remains consistent and is unaffected
despite the alterations performed during pre-processing. This consistency in pixel
intensities is vital to ensure that textures and patterns in histopathological images remain
undisturbed and thus enhance the model’s classification accuracy.
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Statistical analysis

Statistical metrics are utilized to analyze the consistency and feature preservation after the
pre-processing stage. Metrics such as mean, standard deviation, structural similarity index
(SSIM) are employed on the image to perform this statistical analysis.

Mean

The mean provides an average of the pixel intensities in the image to measure the overall
brightness in the original and augmented image. The mathematical formula to obtain the
mean value is presented in Eq. (1).

1 N

N 21: x;z (intensity value of the specific pixel). (1)
=

The original image resulted in a mean value of 0.74845 and the augmented image

resulted in a mean of 0.74234. The mean values of the original and augmented image are

comparatively similar, indicating that the brightness of the image is preserved despite the

alterations implemented on the image.

Standard deviation

The standard deviation metric provides a measure of the spread or distribution of pixel
intensities around the mean of an image, representing the contrast of the image. The
mathematical formula to calculate the standard deviation is presented in Eq. (2).

std = \/;] Zfil (X,’ - Mean)z, (2)

The original image resulted in a standard deviation value of 0.13302 and the augmented

image obtained a value of 0.13233. The standard deviation values from the original and
augmented image are almost similar, indicating that the augmentation techniques
implemented on the image preserved its contrast.

Structural similarity index

SSIM is a perceptual metric used for the comparison of the structural differences between
the original and augmented image. Its values range from —1 to 1, with 1 indicating a perfect
similarity in structure while 0 suggests no similarity and -1 signifies that the images are
completely different with no correlation, calculated as presented in Eq. (3). SSIM shows the
impact made by the augmentation techniques on the images. If the resulted value is less
than 0, it signifies that adjustments and tuning are required on the augmentation stage
before training.

(2:ux:uy+cl) (Zny + CZ)
(,U,ZC + /1}2, + C1) (0'9260'5 + Cz)

The SSIM value obtained while comparing both the original and the augmented image

SSIM(x,y) = (3)

was 0.3262, which indicates a moderate similarity in the structure of the images. The
augmentation techniques implemented on the image such as rotation, shifting, zooming
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Figure 6 Keypoint detection applied on the original image.
Full-size K&l DOT: 10.7717/peerj-cs.3241/fig-6

and horizontal flipping, added variability to the dataset but altered the structure of the
image significantly. Therefore, SSIM values decreased slightly but nevertheless, still showed
moderate similarity between the structures of the images. In addition, other metrics are
applied to ensure that the essential features of the images are well preserved and not
majorly effected by the augmentation techniques applied.

Keypoint detection

Keypoint detection is essential in this comparative analysis as it will determine if the
essential and key features of the images are preserved or distorted after the augmentation
techniques are applied. In histopathological images, each category encompasses many key
features, distinguishing them from other classes. Therefore, preserving these essential
features is crucial to ensure accurate classification of colon cancer tissues. Oriented FAST
and Rotated BRIEF (ORB) is a feature detector and descriptor extractor model which is
utilized to inspect the original and augmented images, detecting features to ensure that the
key features are preserved and not effected by the augmentation. The key point detection
was applied on an original image of a malignant sample and then on an augmented version
of the same sample where it was rotated, shifted, flipped, and zoomed to demonstrate if the
keypoint detection can extract similar key features from the image.

The ORB keypoint detection, shown in Figs. 6 and 7, established that the key features in
these histopathological images remain consistent after augmentation as it was able to
retain majority of these features of the image even after it was subjected to the
augmentation techniques. This implementation verified that the essential features are
preserved as they are critical for maintaining the diagnostic accuracy and value of the
histopathological images.

This comparative analysis demonstrated that the pre-processing steps and
augmentation techniques applied on the dataset enriched the diversity of the images while
preserving the essential and important features that are vital for accurate classification and
diagnosis. This multi-faced analysis authenticates the pre-processing methodology
implemented and highlights its importance for efficient training of the models, preceding
to a reliable and superior classification performance.
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Figure 7 Keypoint detection applied on the augmented image.
Full-size k&l DOT: 10.7717/peerj-cs.3241/fig-7

Assessment metrics
The performance metrics utilized to evaluate the framework are the following:

Confusion matrix

A confusion matrix is a table mainly used to evaluate a classification model by providing an
overall count of the true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) predictions.

Accuracy
The accuracy metric gives an insight into the percentage of the correctly predicted cases
among the total number of cases, as presented in Eq. (4).

TP+ TN
TP+ TN + FP+ FEN’

Accuracy = (4)
Precision
Precision provides an insight into the model’s accuracy and reliability in predicting
positive cases. Equation (5) shows us how precision value is obtained.

True Positive

Precision = — — (5)
True Positive + False Positive

Recall

Recall provides an insight into the model’s ability to find all positive cases, which is
essential for medical applications. Equation (6) shows us how the recall value is obtained.

True Positive
Recall = — — . (6)
True Positive + False Negative

RESULTS AND DISCUSSION

In this section, we will display the results obtained from the proposed ensemble framework
and discuss them along with comparing our framework with the state-of-the-art.
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Table 2 Individual performance of the models on the training set.
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Figure 8 EfficientNetv2 training history.
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In this work, out of 1,400 images, we utilized 1,120 images for training and kept 280
images for validation to monitor the individual model’s performance during the training
phase. Table 2 compares the results achieved by the models in training and validation.

The results shown in Table 2 show that the models perform similarly on the dataset with
EfficientNetv2B0 having a slightly better performance than the DenseNet121 architecture
in the validation set. Although EfficientNetv2B0 had better results in the validation set, the
training history, visualized in Figs. 8 and 9, showed that DenseNet121 was more well-fitted
to the data as it did not exhibit any indication of overfitting or noise during training.

The proposed ensemble model was evaluated on the test set, which consisted of 600
images, to evaluate its performance and generalization ability to un-seen images. The test set
was equally divided between the classes to perform a fair evaluation of the model. Table 3
displays the performance of the ensemble model on the test set along with the performance
of several other state-of-the-art methodologies. The results achieved by the ensemble model
proved that by combining the EfficientNetv2B0 and DenseNet121 architectures to create an
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Table 3 Performance of proposed model with the state-of-the-art.

Metric Proposed Yengec-Tasdemir et al. Sasmal et al.  Fu et al. Ashraf, Alam & Sakib Yengec-Tasdemir et al. Fu et al.
model (2024) (2024) (2024) (2024) (2023) (2023)
Testing 98% 87.1% 87.5% 92.5% 98% 95% 97.8%
accuracy
Precision 100% 86.3% - - - 92.8% -
Recall 96.30% 86.2% - - - 95.1% 97.3%

ensemble model, it presented an excellent performance. The proposed model achieved
admirable accuracy, perfect precision, and a high recall along with the perfect classification
of the benign samples, showcasing the model’s reliability, robustness, and effectiveness in
accurately classifying histopathological images. The 98% accuracy achieved by the model on
the test set proved that the proposed model could generalize well when subjected to un-seen
images. Correspondingly, the model yielded a perfect precision of 100% which insinuates
that every sample classified and predicted as a malignant sample is indeed malignant and
the model is extremely reliable when it classifies a sample as malignant. Additionally, the
model achieved a high recall of 96.30%, which implies that the model accurately classified
most of the malignant samples and has a very low false negative rate. Furthermore, the
confusion matrix, shown in Fig. 10, demonstrated that the model perfectly classified all the
benign samples and only misclassified 3% of the malignant samples. These
misclassifications are likely due to subtle patterns that are difficult even for human
pathologists to discern. The values obtained from the actual and predicted sets in the
confusion matrix indicates that the model can classify the images nearly perfectly into the
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Figure 10 Confusion matrix of our proposed model. Full-size K&l DOI: 10.7717/peerj-cs.3241/fig-10

appropriate category, highlighting the model’s distinguishing power and the ability to
accurately classify between the classes. The inclusive inference is that the proposed model
exhibited excellent performance and a strong generalization ability.

The performance achieved the expected outcome, leaving slight room for future
improvement and adjustments to further enhance the model’s overall performance.
Furthermore, the proposed model outperformed or is aligned with various recent state-of-
the-art methodologies. The comparison showed that the proposed model significantly
outperformed them in terms of accuracy. It is important to note that the comparison
presented in Table 3 may not be entirely equitable, as the proposed model was trained and
tested on un-seen data from the same dataset it is trained with, while the other referenced
models were evaluated on datasets from different locations or distributions. In addition,
some of the referenced models did not report precision and recall metrics, and therefore
these values were not included in Table 3. However, this comparison still provides a useful
benchmark, offering insights into how the proposed approach performs relative to existing
methods under similar evaluation settings, and highlights its potential when applied to data
from the same clinical context. Nevertheless, by combining the predictive power of these
advanced architectures along with the pre-processing steps and augmentation techniques
has proven to be an effective and efficient approach for colon cancer classification,
positioning it as a competitive framework within the recent state-of-the-art research.

CONCLUSION AND FUTURE WORK

In this article, we introduced a new custom dataset encompassing histopathological images
of colorectal cancer divided into benign and malignant categories and an ensemble model
that leverages transfer learning by combining two pre-trained models, EfficientNetV2 and
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DenseNet, for the binary classification of colon cancer using the custom dataset. The
ensemble model exhibited a remarkable performance and robustness in extracting
high-level features from the dataset and accurately classifying them. Furthermore, a
comprehensive comparative analysis was conducted, demonstrating that the proposed
model consistently outperformed several state-of-the-art architectures in terms of
accuracy, robustness, and overall performance across multiple evaluation metrics. This
work is an initial attempt to acquire and utilize histopathological data of colorectal cancer
patients that were diagnosed at Bahrain Defence Force-Royal Medical Services-King
Hamad University Hospital in the Kingdom of Bahrain. The primary goal is to develop a
solution tailored to the needs of Bahrain Defence Force-Royal Medical Services-King
Hamad University Hospital, ensuring that the institution benefits directly from the
outcomes of this research through improved diagnostic support and clinical decision-
making.

Nonetheless, there are several downsides and limitations acknowledged in this study,
which can be improved in the future. The custom dataset can be expanded to enhance the
model’s training and subject it to more diverse images and improve the robustness and
accuracy of the proposed model. In addition, the model is trained and dependent on only
one dataset which may limit the model’s generalization ability and make it biased to only
these types of images even after augmentation. In light of this, further validation on other
datasets may be required to confirm the model’s performance. Furthermore, the proposed
framework focuses mainly on histopathological images related to colorectal cancer and no
other cancer types. This class specificity limits the model to only one cancer class and
potentially makes it unreliable when tested on other classes. The work done has built a
solid foundation and proposes various opportunities for future work and enhancements to
further enhance the model and address the limitations experienced during the study.
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