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ABSTRACT
Background:Heart arrhythmia, as one of the most important cardiovascular diseases
(CVDs), has gained wide attention in the past two decades. The article proposes a
hybrid method for heartbeat classification via convolutional neural networks,
multilayer perceptrons and focal loss.
Methods: In the method, a convolution neural network is used to extract the
morphological features. The reason behind this is that the morphological
characteristics of patients have inter-patient variations, which makes it difficult
to accurately describe using traditional hand-craft ways. Then the extracted
morphological features are combined with the RR intervals features and input into
the multilayer perceptron for heartbeat classification. The RR intervals features
contain the dynamic information of the heartbeat. Furthermore, considering that
the heartbeat classes are imbalanced and would lead to the poor performance of
minority classes, a focal loss is introduced to resolve the problem in the article.
Results: Tested using the MIT-BIH arrhythmia database, our method achieves an
overall positive predictive value of 64.68%, sensitivity of 68.55%, f1-score of 66.09%,
and accuracy of 96.27%. Compared with existing works, our method significantly
improves the performance of heartbeat classification.
Conclusions: Our method is simple yet effective, which is potentially used for
personal automatic heartbeat classification in remote medical monitoring.
The source code is provided on https://github.com/JackAndCole/Deep-Neural-
Network-For-Heartbeat-Classification.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Emerging Technologies
Keywords Arrhythmia, Heartbeat classification, Focal loss, Convolutional neural network,
Class imbalance

INTRODUCTION
Heart arrhythmia, one of the most important cardiovascular disease (CVD), refers to the
irregular beating of the patient’s heart. Most arrhythmias are asymptomatic and not severe,
but some could cause heart disease symptoms such as passing out, lightheadedness,
chest pain, shortness of breath, and even stroke and cardiac arrest such as ventricular
fibrillation, ventricular escape and atrial fibrillation, which are extremely dangerous and
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need immediate treatment. According to statistics from the World Health Organization,
the number of CVD deaths in 2015 is close to 17.7 million, accounting for about 31% of the
total deaths (Shen et al., 2019).

Electrocardiogram (ECG), a device that records the electrical activity of the heart,
is widely used to diagnose cardiac arrhythmias in clinical (Mondéjar-Guerra et al.,
2019). An ECG signal consists of a series of periodically repeating heartbeats. Each
heartbeat usually contains a QRS complex, a T wave, and a P wave, in a few cases
there is a U wave (Vulaj et al., 2017). The most significant characteristic of an ECG signal
is the QRS complex. By analyzing this complex, arrhythmia can be detected. However,
the occurrence of arrhythmia is intermittent, especially in the early stages, which
makes it difficult to perform effective detection in a short time (Mondéjar-Guerra et al.,
2019).

To solve this problem, a Holter monitor is often used to collect long-term heart
electrical activity recordings (Sannino & De Pietro, 2018). In general, an ECG recording
lasts several minutes or even hours. Investigating a variety of abnormal arrhythmias
beat-by-beat from long-term ECG recordings is very exhausting, even for trained
cardiologists. Therefore, there is an urgent need for a computer-aided method to
automatically detect abnormal heartbeats from long-term ECG data.

Over the past two decades, a lot of research works (De Albuquerque et al., 2018;
De Chazal, O’Dwyer & Reilly, 2004; Mondéjar-Guerra et al., 2019) have been spent on
classifying heartbeats automatically. Most of these methods are based on morphological
characteristics of heartbeats and traditional signal processing techniques. However,
the ECG waveform and its morphological characteristics (e.g., the shape of the QRS waves
and P wave) of different patients are significantly different, and for the same patient,
there are also differences in different circumstances (Mondéjar-Guerra et al., 2019),
so the fixed features used in these methods are not sufficient to accurately distinguish
arrhythmias for all patients. In recent years, some deep neural networks have been
proposed, such as convolutional neural networks (CNN), which can automatically extract
morphological features and adapt to variations between patients.

Nevertheless, there is another challenge when processing medical data. Due to the
limited number of rare classes, the number of one class may greatly exceed that of
other classes, that is, the distribution of classes is imbalanced. However, most algorithms
try to minimize the overall classification loss during the training process, which implies
that these classes are equally important and the same misclassification cost is allocated
to all types of errors. As a result, the classifier will tend to correctly classify and favor more
frequent classes.

The article presents a hybrid method for heartbeat classification via CNN, multilayer
perceptrons (MLP) and focal loss. An overall structure of the method is displayed in
Fig. 1. The morphological features are extracted by one-dimensional (1D) CNN and
combined with the RR intervals features as the input of MLP. The RR intervals features
contain the dynamic information of the heartbeat, which could help better capture the
pattern of the ECG waveform. Furthermore, considering that the heartbeat classes are
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imbalanced and would lead to the poor performance of minority classes, a focal loss is
introduced to solve the problem. It shows superior performance in various application
environments (Howland et al., 2002; Lin et al., 2017; Zhou, Waterman-Storer & Cohan,
2002). By testing in the well-known MIT-BIH arrhythmia database (Moody & Mark,
2001), our method achieves superior classification performance than existing heartbeat
classification methods. Note that the accuracy of the ECG classification method has
been standardized according to the Association for the Advancement of Medical
Instrumentation’s (AAMI) recommendations. The proposed method obtains an overall
PPV of 64.68%, SE of 68.55%, F1 of 66.09%, and accuracy of 96.27%.

The article is organized as follows: “Related Works” presents the related works of
heartbeat classification. The proposed method and loss function are introduced in
“Methods” and “Loss Function”. The dataset and the performance of our method against
existing works are described in “Results”. “Discussion” discusses the conclusions.

Figure 1 A scheme of our proposed method. (A) Overview of our method. (B) CNN block of our CNN architecture. (C) An example of mor-
phological features extracted by CNN, where the upper part heartbeat signal is the input of CNN, and the lower part is the features extracted by CNN,
that is, the morphological features. These features will be flattened and combined with the RR interval features when used as the input of the MLP
classifier. Full-size DOI: 10.7717/peerj-cs.324/fig-1
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RELATED WORKS
The existing automatic heartbeat classification works can be divided into two paradigms:
intra-patient paradigm and inter-patient paradigm (De Chazal, O’Dwyer & Reilly, 2004;
Sannino & De Pietro, 2018). In the intra-patient paradigm, the dataset is based on the
heartbeat label split into training and test subsets, so an ECG recording will appear in
two subsets (Sannino & De Pietro, 2018). According to De Chazal, O’Dwyer & Reilly
(2004), the results of this paradigm are biased, resulting in an accuracy of about 100%
in the test phase, because the patient’s characteristics are learned during the training phase
(Sellami & Hwang, 2019). However, in actual scenarios, the trained model must be able
to handle inter-patient variations during the training phase.

In the inter-patient paradigm, the training set and test set are from different patients
(Sannino & De Pietro, 2018), so the differences between patients will be considered
during the training process. The classifier will show a better generalization capability.
For instance, De Chazal, O’Dwyer & Reilly (2004) propose a linear discriminant
heartbeat classification method based on heartbeat morphological and dynamic features.
Their method achieves a PPV of 38.5%, SE of 75.9% in the SVEB class, and a PPV of 81.6%,
SE of 80.3% in the VEB class. Ye, Kumar & Coimbra (2012) apply wavelet transform
and independent component analysis (ICA) to extract morphological features from
heartbeats, and combined with dynamic RR interval features develop an support vector
machine (SVM) method to classify heartbeat. A PPV of 52.3%, SE of 60.8% in the SVEB
class, and a PPV of 63.1%, SE of 81.5% in the VEB class are obtained by their method.
However, the classification accuracies of these methods are significantly lower than the
intra-patient paradigm-based methods. This is due to variations of ECG characteristics
between patients.

Recently, with the rapid development in deep learning, deep neural networks-based,
especially CNN-based, heartbeat classification methods have received a lot of attention.
For example, Yıldırım et al. (2018) develop a 1D-CNN for arrhythmia detection based on
long-term ECG signal. Their method achieves 91.33% overall accuracy in 17 cardiac
arrhythmias. Similarly, Sellami &Hwang (2019) develop a CNNwith a batch-weighted loss
function for heartbeat classification. Hannun et al. (2019) present a deep neural network
with residual block to classify 12 rhythm classes. Romdhane et al. (2020) based on
CNN and focal loss propose an ECG heartbeat classification method. Although the
performance of heartbeat classification is improved, these works mainly focus on using
CNN to extract the heartbeat morphological features, while ignoring the influence of RR
intervals on heartbeat classification. Research shows that by integrating RR interval
features, the performance of heartbeat classification can be significantly improved
(De Chazal, O’Dwyer & Reilly, 2004; Mondéjar-Guerra et al., 2019; Sannino & De Pietro,
2018). Romdhane et al. (2020) try to use an improved heartbeat segmentation method
to make CNN capture RR interval information, but in their work, CNN can only extract
the previous RR interval information at most. This is due to the incomplete division
of the right interval. Different from existing works, we pre-extract the RR interval
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information in advance, and then combine it with CNN-based morphological features as
the input of the classifier.

In addition to the above two classification paradigms, a hybrid paradigm has also been
studied by some scholars, namely patient-specific paradigm. In the patient-specific
paradigm, a global model is first built and then use part of patient data to tune the model to
form a local model. De Chazal, O’Dwyer & Reilly (2004) shows that this paradigm is
superior to a pure inter-patient model. However, this paradigm requires a professional
doctor to label part of the ECG data, and an engineer to fine-tuning the model in clinical.
Meanwhile, the patient’s ECG signal may change significantly over time, that is, the
current ECG signal may undergo large variations at some time in the future, and the use of
a previously fine-tuned local classifier may lead to larger misclassification. We focus on the
performance of our method in the inter-patient paradigm in the article.

METHODS
Figure 1 shows the overall structure of the proposed method. The proposed method
includes three steps: ECG denoising, feature extraction, and classification. The feature
extraction step contains RR intervals features extraction and morphological features
extraction via CNN architecture.

ECG denoising
The ECG signal is usually disturbed by various noises such as electromyography
noise, power line interference and baseline wandering (Chen et al., 2017), which makes
useful features to be difficultly extracted. In this step, most previous works typically
perform a baseline wandering removal and then high-frequency noise filtering (Mondéjar-
Guerra et al., 2019). However, excessive filtering will lead to the loss of some helpful
information in the ECG signal. Since CNN has better noise immunity (Huang et al., 2018),
we only perform baseline wandering removal and preserve as much information as
possible from the raw ECG signal.

Two median filters are combined to remove the baseline wandering of the ECG signal in
the article. First, the QRS complexes and P-waves are removed using a 200-ms width
median filter, and then a 600-ms width median filter is further adopted to remove T-waves.
The output is the baseline wandering of the ECG signal, and the baseline-corrected ECG
signal can be achieved by subtracting it from the original signal. An effect of baseline
wandering removal is shown in Fig. 2.

After obtaining the baseline-corrected ECG signal, the ECG is further segmented into a
series of heartbeats based on the labeled R-peaks. In specific, for each heartbeat, we obtain
200 sampling points of the ECG signal segment, 90 sampling points before and 110
sampling points after the labeled R peak. The R-peak detection is not the focus of the
article and we directly use labeled R-peaks in the dataset, as there are many high-precision
(>99%) R-peak detection methods in the literature (Gacek & Pedrycz, 2012; Pan &
Tompkins, 1985).
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RR interval features extraction
The time interval between two consecutive R-peaks is normally called the RR interval
(Ruangsuwana, Velikic & Bocko, 2010), which contains the dynamic information of the
heartbeat. To capture this information for heartbeat classification, four features are
extracted from the RR interval, namely previous RR interval, post RR interval, ratio RR
and local RR interval. The previous RR interval refers to the distance between the current
R-peak position and the previous R-peak, the post RR interval is the distance between
the current R-peak position and the following one. The ratio RR represents the ratio
of the previous RR interval and the post RR interval. These three features reflect the
instantaneous rhythm of a heartbeat. The average value of the 10 RR intervals before the
current heartbeat is taken as the local RR interval, which represents the overall rhythm
in the past. Due to the inter-patient variations in the ECG signal, the RR interval of
different patients cannot be directly compared, in this article we use the entire patient’s
ECG signal to calculate the average RR interval, and subtract it from all RR characteristics
(expect the ratio RR) to eliminate this effect.

Morphological features extraction via CNN architecture
Convolutional neural networks is a powerful deep neural network inspired by visual
neuroscience (Chu, Shen & Huang, 2019b). It has been successfully used in speech
recognition, natural language processing, image classification, and biomedical signal
(Palaz & Collobert, 2015; Pourbabaee, Roshtkhari & Khorasani, 2018; Yin et al., 2017).
Given an image, CNN can effectively learn high-level abstractions, which can then be
input into the classifier (e.g., fully connected neural network and SVM) for classification
(Zhang, Zhou & Zeng, 2017). A CNN usually consists of convolutional layers, activation
functions, and pooling layers, and sometimes including batch normalization layers.

Figure 2 Example of baseline wandering removal. (A) Raw ECG signal. (B) Raw heartbeat. (C) Base-
line-corrected ECG signal. (D) Baseline-corrected heartbeat. It is easy to notice that after removing the
baseline wandering, the heartbeat is shifted to zero. Full-size DOI: 10.7717/peerj-cs.324/fig-2
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Convolutional Layer: It is the most important component in CNN and performs
convolution operation on the input data (Liu & Chen, 2017). Let fk and s be the filter and
the 1D ECG signal, respectively. The output of the convolution is calculated as follows:

C i½ � ¼ s ið Þ � fk ið Þ ¼
X
m

s mð Þfk i�mð Þ

wherem is the size of the filter and the filter fk is realized by sharing the weights of adjacent
neurons.

Activation Function: The activation function is used to determine whether the neuron
should be activated. The purpose is to enable neurons to achieve nonlinear classification.
Rectifier Linear Unit (ReLU) is one of the most widely used activation function, which
can be expressed as

f xð Þ ¼ max 0; xð Þ
where x is the output value of the neuron.

Pooling layer: The pooling layer, also known as the down-sampling layer, is an
operation that decreases the computational intensity by reducing the output neuron
dimension of the convolutional layer, and can handle some variations due to signal shift
and distortion (Zhang, Zhou & Zeng, 2017). The most widely used pooling method is
the max-pooling, which is to apply the maximum function over input s. Let m be the filter
size, and the output is:

M xð Þ ¼ max s x þ kð Þ kj jj � m� 1
2

� �

Batch Normalization Layer: The batch normalization layer is a technology for
standardizing network input, applied to either the activations of a prior layer or inputs
directly, which can accelerate the training process, and provides some regularization,
reducing generalization error. Let B ¼ xi; i ¼ 1; � � � ;mf g be a mini-batch of the entire
training set, the output of batch normalization is as follows:

bxi ¼ xi � mBffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
B þ e

p
where sB and μB are the variance and the mean of training set B, respectively. e is an
arbitrarily small constant to ensure the denominator is not zero.

A CNN is developed and utilized for heartbeat morphological feature extraction in this
article. The CNN architecture is displayed in Fig. 1. It contains three convolutional
blocks and three pooling layers. Each convolutional block includes a convolution layer, a
ReLU activation function and a batch normalization layer. The kernel of the convolution is
reduced as the network structure becomes deeper. For instance, the first convolution
kernel is 11, while the second is reduced to 5. A batch normalization and ReLU activation
are applied after each convolution operation, and a max-pooling is used to reduce the
spatial dimension. Note that the parameters of the convolutional network are usually
set based on the author’s experience. The detailed parameters of CNN architecture are
listed in Table 1. The output of the last pooling layer is the morphological features
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extracted by CNN from the heartbeat. An illustration of the morphological features
extracted from the heartbeat is shown in Fig. 1C.

MLP classifier
The CNN-based morphological features and RR interval features are combined as the
input of the classifier in the article. In general, any classifier (i.e., SVM and random forest
(RF)) can be used for heartbeat classification. Here, we adopt a multilayer perceptron
(MLP, also known as fully connected neural networks in deep learning) as the classifier.
The reason behind this is that CNN and MLP can be combined for parameter training
(we call it one-step training). Compared with other methods, this usually achieves better
performance. Specifically, our MLP classifier contains an input layer, a hidden layer
and an output layer. The input layer consists of two parts of information: CNN-based
morphological features and RR interval features. The hidden layer has 64 neurons, and
each neuron is connected to the input features. The output layer neurons are 4 in the
article, each representing a kind of arrhythmia or normal heartbeat. The details of our
method are shown in Fig. 1 and Table 1.

Loss function
Before training a deep neural network, a loss function is first needed. The cross-entropy loss
is the most widely used in deep neural network classification (Chu, Wang & Lu, 2019a).

Table 1 The detailed parameters of our proposed deep neural network.

Layers Layer name Kernel size No. of
filters

Stride Output shape No. of trainable
parameters

No. of non-trainable
parameters

0 Input1a – – – 200 × 1 – –

1 1D Convolution 11 16 3 64 × 16 192 –

2 Batch Normalization – – – 64 × 16 32 32

3 ReLU – – – 64 × 16 – –

4 Max-Pooling 3 – 2 31 × 16 – –

5 1D Convolution 5 32 1 27 × 32 2,592 –

6 Batch Normalization – – – 27 × 32 64 64

7 ReLU – – – 27 × 32 – –

8 Max-Pooling 3 – 2 13 × 32 – –

9 1D Convolution 3 64 1 11 × 64 6,208 –

10 Batch Normalization – – – 11 × 64 128 128

11 ReLU – – – 11 × 64 – –

12 Max-Pooling 3 – 2 5 × 64 – –

13 Flatten – – – 320 – –

14 Input2b – – – 4 – –

15 Concatenate – – – 324 – –

16 Dense – – – 64 20,800 –

17 Dense – – – 4 260 –

Notes:
a Refers to the raw signal of the heartbeat. The morphological features of the heartbeat will be obtained through the CNN architecture.
b Is the RR interval features of the heartbeat. It will be combined with the CNN-based morphological features to build the final classification model.
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However, this loss function does not address the class imbalance problem. A focal loss
function is introduced in the article to deal with this problem.

Cross-entropy loss
The cross-entropy is a measure in information theory (Robinson, Cattaneo & El-Said,
2001). It is based on entropy and calculates the difference between two probability
distributions. Closely related to KL divergence that computers the relative entropy between
two probability distributions, but the cross-entropy calculates the total entropy between
the distributions. The cross-entropy is usually taken as the loss function in deep neural
network classification (Chu, Wang & Lu, 2019a).

Let ti and pi be the ground truth and the estimated probability of each category, the
cross-entropy loss is computed by:

CE ¼ �
XC
i

ti � log pið Þ

where C refers to the category set of the heartbeat. In the cross-entropy loss, each category
is treated equally, which causes the majority category to overwhelm the loss and the model
tends to classify to the majority category in an imbalanced environment.

Focal loss
A characteristic of cross-entropy loss is that even easy-to-classify examples can cause
significant losses, which will cause the loss of easy examples that constitute most of the
dataset during the training process to negatively affect rare classes (Lin et al., 2017).
The focal loss is designed to deal with this imbalanced problem by reshaping the cross-
entropy loss function by reducing the attention to easy examples and focusing on difficult
ones. A general formula for focal loss is expressed as:

FL ¼ �
XC
i

ti � 1� pið Þglog pið Þ

where g acts as the modulating factor. As shown in Fig. 3, the higher the c value, the lesser
the cost incurred by well-classified examples. In practice, the α-balanced variant of the
focal loss is usually used when one or more categories are highly imbalanced, which is
defined as:

FL
0 ¼ �

XC
i

ti � ai 1� pið Þglog pið Þ

where ai is the weighting factor of each category.

RESULTS
Data set
The ECG dataset from the MIT-BIH arrhythmia database (Moody & Mark, 2001) is
used to test our proposed method. This dataset contains 48 30-min ambulatory two leads
ECG signal records collected from 47 subjects. Each ECG signal is sampled at 360 Hz with
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an 11-bit resolution. The first lead is the modified-lead II (ML II), and the second lead
depends on the record, one of V1, V2, V4 or V5. The heartbeat of these ECG signals is
independently labeled by two or more doctors, and there are about 110,000 heartbeats.

According to the recommendation of AAMI, these heartbeats are further divided
into five heartbeat classes. Table 2 shows the mapping of AAMI classes and MIT-BIH
arrhythmia heartbeat types. Since Q is practically non-existent, we ignore it like others
(Mar et al., 2011; Zhang et al., 2014). Meanwhile, four recordings with paced beats are

Figure 3 The relationship between the modulating factor γ and the cost of the well-classified
examples (Lin et al., 2017). Full-size DOI: 10.7717/peerj-cs.324/fig-3

Table 2 Mapping of AAMI classes and MIT-BIH arrhythmia heartbeat types.

AAMI classes MIT-BIH types MIT-BIH
annotate

Normal (N) Normal beat (NOR) N

Nodal (junctional) escape beat (NE) j

Atrial escape beat (AE) e

Right bundle branch block beat (RBBB) R

Left bundle branch block beat (LBBB) L

Supraventricular ectopic beat (SVEB) Aberrated arial premature beat (aAP) a

Premature or ectopic supraventricular beat (SP) S

Nodal (junctional) premature beat (NP) J

Atrial premature beat (AP) A

Ventricular ectopic beat (VEB) Ventricular escape beat (VE) E

Premature ventricular contraction (PVC) V

Fusion beat (F) Fusion of ventricular and normal beat (fVN) F

Unknown beat (Q) Unclassifiable beat (U) Q

Fusion of paced and normal beat (fPN) f

Paced beat (P) /
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removed in consistent with the AAMI recommended practice, namely 102, 104, 107
and 217. Since all records have ML II ECG signals and they are widely used in wireless
body sensor network (WBSN) based ECG applications, this lead ECG signal is used for
heartbeat classification in the article.

As we mentioned in related works, the article focuses on the heartbeat classification
under the inter-patient paradigm. To facilitate comparison with existing works, we follow
De Chazal, O’Dwyer & Reilly (2004) to split the dataset into two subsets. Each contains
regular and complex arrhythmia records and has roughly the same number of heartbeat
types. Table 3 shows the details of two subsets. The first (DS1) is used for training
whereas the second (DS2) is used to test the heartbeat classification performance
(De Chazal, O’Dwyer & Reilly, 2004). No patient appears in both subsets at the same time.

Model training and performance metrics
In the study, the general focal loss (non-α-balanced focal loss) is used as the loss function,
and the modulating factor g is set to the default value (g = 2). Since Adam can accelerate
the model training, we use it as the optimizer. The batch size of the model is set to
512 and the maximum epoch is 50. The initial learning rate is 0.001, and reduced by
0.1 times every 10 epochs. In addition, in order to avoid overfitting, the l2 penalty is set to
1e−3 based on trial and error. The model is implemented using Keras and trained on
the NVIDIA GeForce RTX 2080Ti graphical processing unit.

To evaluate the performance of our proposed method, three widely used metrics are
adopted, namely positive predictive value (PPV), sensitivity (SE), and accuracy (ACC),
which are defined as:

PPVi ¼ TPi

TPi þ FPi

SEi ¼ TPi

TPi þ FNi

ACCi ¼ TPi þ TNi

TPi þ TNi þ FPi þ FNi

where TPi (true positive) refers to the number of the ith class is correctly classified, FPi
(false positive) is equal to the number of heartbeats misclassified as the ith class, TNi

(true negative) is the number of heartbeats that are not in the ith class and not classified
into the ith class, and FNi (false negative) is equal to the number of heartbeats of the
ith class classified as other classes. PPVi indicates the proportion of positive correct

Table 3 Detailed breakdown of the dataset.

Dataset No. of samples per AAMI class Total

N SVEB VEB F

DS1 45,824 943 3,788 414 50,969

DS2 44,218 1,836 3,219 388 49,661

Total (DS1 + DS2) 90,042 2,779 7,007 802 100,630
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classification, and SEi reflects the sensitivity of the classifier in the ith class. ACCi is the
ratio of all correct classifications.

Since the heartbeat classes are imbalanced, f1-score (F1) is also selected as the
performance measure, defined as:

F1i ¼ 2� PPVi � SEi

PPVi þ SEi

f1-score takes both the positive predictive value PPVi and sensitivity SEi into account, and
is generally useful than ACCi in the imbalance class distribution (Chen, 2009).

Comparison with existing works
Based on De Chazal, O’Dwyer & Reilly (2004), the dataset is divided into DS1 and DS2
datasets. DS1 is used for training and DS2 is used to test our proposed method. For fair
evaluation, we compare works (Chen et al., 2017; De Chazal, O’Dwyer & Reilly, 2004;
Garcia et al., 2017; Liu et al., 2019;Mar et al., 2011; Zhang et al., 2014) that adopt the same
strategy. As SVEB and VEB are more important than other classes, we list the detailed
information of these two classes in Table 4. The experimental results show that the
proposed method has better recognition in the inter-patient paradigm, with F1s of
SVEB and VEB of 74.29% and 92.40%, respectively. In particular, the PPV of SVEB is
68.34%, indicating that the proposed method has better SVEB recognition ability.
The 93.72% SE of VEB is superior to most reported works. The evaluation results of
all four-classes are listed in Table 5. The results related to PPV and SE are close to or
surpass those obtained with existing works except for F. For category F, it is mainly
composed of the fusion of ventricular beat and normal beat, which is very close to the
normal heartbeat. Meanwhile, compared with other categories, F has the least number
and the most serious imbalance. As a result, the performance of existing works is unstable
in this category, usually a large number of N is predicted as F or F is predicted as N.
In the article, although the focus loss is introduced, due to the high imbalance of F, the
proposed method cannot extract the discriminate features. Mar et al. (2011) although,
obtains the best PPV in F, a large number ofN is incorrectly classified as F. We suggest that
category F can be included in other categories in future research.

Table 4 Performance comparison of our proposed method with existing works in SVEB and VEB classes.

Methods SVEB VEB

PPV (%) SE (%) F1 (%) Accuracy (%) PPV (%) SE (%) F1 (%) Accuracy (%)

De Chazal, O’Dwyer & Reilly (2004) 38.53 75.98 51.13 94.61 81.67 80.31 80.98 97.62

Chen et al. (2017) 38.40 29.50 33.36 95.34 85.25 70.85 77.38 97.32

Zhang et al. (2014) 35.98 79.06 49.46 93.33 92.75 85.48 88.96 98.63

Mar et al. (2011) 33.53 83.22 47.80 93.28 75.89 86.75 80.96 97.35

Liu et al. (2019) 39.87 33.12 36.18 95.49 76.51 90.20 82.79 97.45

Garcia et al. (2017) 53.00 62.00 57.15 – 59.40 87.30 70.70 –

Our proposed method 68.34 81.37 74.29 97.92 91.12 93.72 92.40 99.00
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DISCUSSION
Focal loss vs. Cross-entropy loss
Since the heartbeat has an imbalanced class distribution, the cross-entropy loss is replaced
by the focal loss as the loss function of the model in the article. The performance
comparison of the two losses is listed in Table 6. Both losses have similar overall accuracy,
but compared to cross-entropy loss, the overall PPV, SE and F1 of the focal loss are
significantly improved. An overall PPV of 64.68%, SE of 68.55%, and F1 of 66.09% are
achieved by the focal loss, while the cross-entropy loss obtains an overall PPV of 59.82%,
SE of 66.77%, and F1 of 62.67%. The corresponding metrics increased by 4.86%, 1.78%,
and 3.42%, respectively. In addition, for each specific class, the PPV, SE, and F1 of the
focal loss also have achieved comparable or better performance than the cross-entropy
loss, especially in the F1.

The confusion matrix of the two losses is listed in Table 7. The focal loss achieves a
total of 45,952 correct predictions, while the cross-entropy obtains 45,358 correct

Table 5 Performance comparison of our proposed method with existing works in all four classes.

Methods Accuracya Macro-F1b N SVEB VEB F

PPV (%) SE (%) PPV (%) SE (%) PPV (%) SE (%) PPV (%) SE (%)

De Chazal, O’Dwyer & Reilly (2004) 86.24 60.12 99.17 87.06 38.53 75.98 81.67 80.31 8.57 89.43

Chen et al. (2017) 93.14 51.91 95.42 98.42 38.40 29.50 85.25 70.85 0.00 0.00

Zhang et al. (2014) 88.34 64.02 98.98 88.94 35.98 79.06 92.75 85.48 13.73 93.81

Mar et al. (2011) 88.99 62.24 99.12 89.64 33.53 83.22 75.89 86.75 16.57 61.08

Liu et al. (2019) – 58.50 96.66 94.06 39.87 33.12 76.51 90.20 12.99 40.72

Garcia et al. (2017) 92.40 55.95 98.00 94.00 53.00 62.00 59.40 87.30 – –

Our proposed method 92.53 66.09 98.20 93.67 68.34 81.37 91.12 93.72 1.06 5.41

Notes:
a Accuracy = (TPN + TPSVEB + TPVEB + TPF)/number of testing heartbeats.
b Average f1-score of four AAMI classes.

Table 6 Performance comparison of focal loss and cross-entropy loss.

Methods AAMI class Performance metrics

PPV (%) SE (%) F1 (%) Accuracy (%)

Focal Loss N 98.20 93.67 95.88 92.84

SVEB 68.34 81.37 74.29 97.92

VEB 91.12 93.72 92.40 99.00

F 1.06 5.41 1.77 95.31

Averagea 64.68 68.55 66.09 96.27

Cross-Entropy Loss N 98.11 92.42 95.18 91.67

SVEB 57.11 80.72 66.89 97.05

VEB 83.95 93.45 88.44 98.42

F 0.11 0.52 0.18 95.54

Averagea 59.82 66.77 62.67 95.67

Note:
a Refers to the average value of the corresponding metrics of four AAMI classes.
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predictions. With the focal loss, the total correct prediction has slightly increased, perhaps
due to the suppression of easy-to-classify samples by focal loss.

CONCLUSIONS
A hybrid method for heartbeat classification via CNN, MLP and focal loss is developed
in the article. Among them, CNN is used to extract the morphological features of the
heartbeat. Then the morphological features are combined with the RR intervals features
and input into the MLP to perform heartbeat classification. Furthermore, in order to
avoid the impact of heartbeat imbalance, a focal loss function is introduced. Tested by
using the MIT-BIH arrhythmia database, the experimental results confirm that the
method has good overall performance, with F1 of 66.09% and accuracy of 96.27%.
The superiority of the proposed method is due to multifactorial: (I) Compared with
traditional hand-craft features, CNN as an automatic extraction method can adapt to small
mutations in ECG signals to obtain powerful features; (II) Besides the CNN-based
morphological features, the pre-extracted RR interval features are also combined to
build the model, avoiding the loss of dynamic information due to heartbeat segmentation;
(III) A focal loss function is introduced to solve the class imbalance, preventing the model
from biasing towards the majority class; (IV) One-step training can improve the model
to obtain better feature abstraction capabilities. Due to the simple yet effective of the
proposed inter-patient method, it has the potential to be used for personal automatic
heartbeat classification for surveillance in telemedicine.

The encouraging results have inspired continuous exploration. The future work will
include (I) testing the performance of the developed model with more ECG signals;
(II) designing or modifying CNN architecture to further improve the performance of our
method; (III) trying to use additional techniques such as wavelet transform to convert
time-domain information to frequency-domain information to reduce the difficulty of
CNN feature extraction.
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