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ABSTRACT

This work proposes a comprehensive software framework for cloud-enabled
autonomous drone navigation, featuring precise target tracking via image-based
visual servoing (IBVS) coupled with a control scheme. In this study, a low-cost
quadcopter running the ArduPilot firmware is evaluated within a simulation-in-the-
loop (SITL) environment using a Gazebo-based simulation of a real-world mission.
The tested software architecture can be seamlessly integrated with an onboard
companion computer for real-time execution. The mission involves waypoint
tracking, precise identification and descent onto visual markers using IBVS, along
with real-time data visualization on a remote client connected via a cloud interface.
Because the software architecture is versatile, it can accommodate any conventional
or knowledge-based controller. To demonstrate the efficacy and robustness of the
proposed architecture, the quadcopter was tested under challenging weather
conditions, where it successfully completed the mission despite disturbances and
sensor noise. Finally, the complete software architecture has been tested and
implemented in the robot operating system (ROS).

Subjects Artificial Intelligence, Autonomous Systems, Computer Vision, Data Mining and
Machine Learning, Robotics
Keywords Quaqdcopter, Software architecture, Visual servoying, Mission planning

INTRODUCTION

Uncrewed aerial vehicles (UAVs) are autonomous or remotely piloted aircraft that operate
without an onboard human pilot. These versatile flying machines have revolutionized
various industries and gained widespread adoption due to their unique capabilities. In
today’s world, UAVs have a broad range of applications across sectors such as aerial
surveillance (Papachristos et al., 2019), agriculture (Radoglou-Grammatikis et al., 2020),
infrastructure inspection (Ly ¢ Phung, 2020; Molina, Huang ¢ Jiang, 2023), search and
rescue operations (Akhloufi, Couturier & Castro, 2021; Khan et al., 2023), delivery services
(Patrik et al., 2019), environmental monitoring, and more (Molina, Huang ¢ Jiang, 2023).

With a significant shift in research focus toward achieving drone autonomy (Tanveer ¢
Kadri, 2024), there is a growing desire to reduce reliance on human operators (Wang et al.,
2024). The goal is to enable UAVs to perform complete operations without constant
human intervention or supervision (Khalil et al., 2022), thereby increasing productivity,
reducing costs, and improving safety (Youn et al, 2021). Over time, numerous
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techniques have been developed to achieve drone autonomy, including sensor fusion
(Abdelkader et al., 2025; Yousuf ¢ Kadri, 2025), state estimation, computer vision
(Jitoko et al., 2021), and navigation (Bijjahalli, Sabatini ¢» Gardi, 2020; Patrik et al., 2019).
Nevertheless, the realization of a fully integrated, cloud-enabled software architecture that
supports real-time autonomous navigation, robust target identification, and
high-precision positioning—while imposing minimal onboard computational overhead
(pjrambo, 2025)—remains a significant technical challenge (Gustave, Chahal ¢» Belbachir,
20205 Gao et al., 2024). Few simulation architectures have been proposed (Louali et al.,
2023) but they are limited to navigation and do not cover target identification and cloud
integration.

Traditional methods, such as GPS-based navigation, may not provide the required level
of accuracy for UAVs operating over small target areas because the typical GPS positioning
tolerance is between 1-6 m (Pu, Shi ¢ Gu, 2021). To address this challenge, image-based
visual servoing (IBVS) guidance systems offer a promising solution for achieving precise
positioning of autonomous UAVs (Van Kirk et al., 2022).

Vision-based guidance systems leverage computer vision techniques to extract critical
information from a target location (Jitoko et al., 2021; Pluckter & Scherer, 2020). By
analyzing visual features captured by onboard cameras or sensors, these systems can adjust
a UAV’s position and orientation relative to its surroundings with high precision (Qin, Li
¢ Shen, 2018). This approach enables fine-grained control of the UAV’s flight path in real-
time, allowing it to navigate complex, dynamic environments with high accuracy,
regardless of GPS signal quality (Singh ¢ Sujit, 2016). The IBVS (Fu et al., 2023) system
can also be integrated with a controller to achieve precise positioning and tighter control.

The robot operating system (ROS) provides a flexible and modular framework for
building robotic systems, including autonomous UAVs (Papachristos et al., 2019; Honig ¢
Ayanian, 2017; Raheel et al., 2024; Mehmood et al., 2024). ROS offers a comprehensive
suite of tools, libraries, and communication protocols that facilitate the development of
complex autonomous systems. By integrating an IBVS system with MAVROS, developers
can leverage the robustness, scalability, and interoperability of ROS to create efficient,
reliable autonomous UAV platforms (Gustave, Chahal & Belbachir, 2020; Honig ¢
Ayanian, 2017; Meyer et al., 2012).

In this article, we present a fully integrated software architecture that uses IBVS to
enable precise positioning of autonomous UAVs over target areas (Aoki ¢ Ishigami, 2023).
The IBVS module can be combined with either a conventional or a knowledge-based
controller, and the system readily supports cloud integration for remote data logging. By
leveraging the ArduPilot firmware (ArduPilot Development Team, 2025), the architecture
remains broadly compatible and can be easily implemented within the ROS/Gazebo
simulation environment. To develop a robust software framework, we utilize a specific
mission scenario namely, the flight mission outlined in the Teknofest 2024 International
UAV Competition Rule book which serves as a convenient, practical problem scenario for
our investigation. Furthermore, we discuss the seamless integration of our software
algorithms with ROS, capitalizing on its modular approach to development. By employing
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this combined approach, we aim to demonstrate the effectiveness of the proposed software
architecture for autonomous UAVs in real-world scenarios.

Contribution of the proposed work

The novelty of this work lies in the seamless integration of various components into a
unified, modular, and extensible software architecture a feature largely missing in existing
literature. The design and demonstration of a comprehensive end-to-end system, where
real-time control (via PID and IBVS), sensor feedback, cloud communication, and remote
visualization operate in complete synchrony. This level of interoperability and system
coherence, especially under challenging conditions such as wind disturbances and sensor
noise, has been achieved through careful architectural planning and validation in a
high-fidelity simulation environment. The system supports ROS 2, ensuring
compatibility with modern tools and enabling plug-and-play integration of emerging
technologies. The updated architecture supports adaptive or Al-based control methods, as
well as advanced cloud platforms such as AWS RoboMaker, Azure Internet of Things
(IoT) Hub, and Google Cloud Platform. This makes the system future-proof, highly
adaptable, and directly usable for a broad range of UAV applications. To the best of our
knowledge, very few works offer this level of architectural completeness, cross-domain
integration, and extensibility, which makes the contribution both novel and impactful
within the field of autonomous UAV systems.

In summary, this work presents a unified, modular, and cohesive (integrated) control
framework that can be feasibly deployed on low-cost (affordable) UAV platforms for
enhancing UAV autonomy in various applications such as environmental monitoring,
infrastructure inspection or emergency response. The key novelties of this work include:

e A hybrid UAV control pipeline that combines autonomous waypoint navigation with
IBVS for high-precision positioning over dynamic, unknown or GPS-denied targets.

e A cloud-integrated architecture that supports real-time monitoring and remote control,
enabling seamless operation of UAVs over the internet.

A mission-ready software framework that significantly reduces human intervention by
enabling end-to-end autonomy from mission assignment to task execution validated in
high-fidelity software-in-the-loop (SITL) simulation.

PROBLEM FORMULATION

The objective of this work is to propose a comprehensive software architecture for drone
navigation, control, and target tracking, along with seamless cloud integration. We begin
by discussing the basic quadcopter model derived from first principles, followed by a
presentation of a generic drone control architecture. Since this work employs the
ArduPilot framework, the control scheme integrated with ArduPilot and subsequently
with IBVS is presented next. Finally, the section concludes with a discussion of cloud
integration.
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First principle quadcopter model
A simplified model of the quadcopter can be given as follows. The thrust u produced by the
four motors acting on the quadcopter is:

u=>_f. (1)

Fori=1,...,4,f; is the force produced by motor M;. We can assume f; = kw?, where
k; is a constant and w; is the angular speed of the ith motor. The generalized torques for the
roll, pitch and yaw can be defined as

Ty N Z?:l ™
= |t |=|(h—fu)l (2)
T (s = fi)l
where £ is the distance between the motors and the center of gravity, and 7y, is the moment
produced by motor M;, around the center of gravity of the aircraft.

Generic two-layered control architecture

To effectively control the quadcopter, a two-layer control strategy is required. The inner
control loop manages altitude, while the outer control loop is responsible for trajectory
tracking. The general control scheme is illustrated in Fig. 1. Quadcopters are
underactuated systems, with four actuators controlling six degrees of freedom in 3D space.
Motion in any direction is achieved through a complex combination of roll, pitch, and yaw
maneuvers. Given that the quadcopter is a highly nonlinear and inherently unstable
system, various controllers from simple PID loops to complex nonlinear model predictive
controllers (MPC) have been proposed in the literature.

Mathematical formulation for vision-based drone target tracking with
PID control

A UAV equipped with a downward-facing camera detects a target at pixel coordinates
(Xtarget> Vearget)- The UAV switches from waypoint navigation to target tracking upon
detection of a specific visual marker (BLUE or RED). It uses three PID controllers: PID,,
PID,, and PID;, which control motion in the x, y, and z directions, respectively.

Coordinate definitions
Let:

e (x4(t),ya(t),za(t)): Drone position at time ¢

e (x¢, y:): Target’s position in world frame

The Euclidean distance in the XY-plane is given by:

d(t) = /(e — xa(0)) + (0 — ya()))™ 3)

Let £>0 be the proximity threshold.
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Figure 1 Generic control architecture for a quadcopter. The trajectory tracking block outputs the
desired positions (xg4,y4,z4) and attitudes (04, ¢4, ;) which converted into control outputs
(41, Uz, u3, ug). These outputs then undergo a series of hardware-specific transformations in order to
generate the signals required to control the four motors of the quadcopter.

Full-size K&] DOT: 10.7717/peerj-cs.3238/fig-1

Mode switching
Define the mode ./ (t) as:

(8) = Waypoint Following if no target detected (@)
| Target Tracking if BLUE or RED target detected "
PID control laws
Lateral PID controllers (x and y)
For d(t) > &, the drone moves laterally toward the target:
ex(t) = xy — x4(t) (5)
&(t) =y — ya(t) (6)
t de,(t
1) = Kyl t) + Ki [ () + Ky, 250 @)
0
! de,(t
uy(t) = K, e,(t) + Ki’y/ ey(t)dt + Ky, 25 ) : (8)
0
Descent controller (z-axis)
When d(t) < &, lateral motion stops and descent begins:
u(t) =u,(t) =0 )
ez(t) = Ztarget - Zd(t) (10)
t de, (t
u(t) = Ky ze(t) + K,-7Z/ e;(t)dt + Ky, edg ) . (11)
0
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Figure 2 Control architecture for the proposed software system. Includes Gazebo IRIS drone model (from ArduPilot Gazebo plugin, licensed

under LGPL-3.0).
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Complete control logic

ue(t),uy(t) #0, u(t) =0  if .#(t) = Target Tracking and d(t) > ¢
u(t) = uy,(t) =0, u,(t) #0 if #(t) = Target Tracking and d(t) < e. (12)
Waypoint navigation control if .#(t) = Waypoint Following

Control scheme integrated with ArduPilot firmware

In this study, we use the ArduPilot firmware in a software-in-the-loop (SITL) setting with a
Gazebo plugin for the quadcopter. All communication with the quadcopter is handled via
MAVROS messages. Using the MAVROS interface, the quadcopters (x, y, z) position is
controlled by publishing messages on the MAVROS topic geometry_msgs/Vector3
under the linear field. To effectively maneuver the drone in 3D space without directly
controlling angular velocities, we designed three independent PID-controllers one for each
of the x, y and z axes. The control scheme employing these three independent PID-control
loops is shown in Fig. 2.
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The use of ArduPilot in a software-in-the-loop (SITL) configuration serves as a robust
proof of concept, allowing for accurate validation of the control architecture and seamless
transition of the developed code to a companion computer onboard a physical UAV. The
SITL environment provides high-fidelity emulation of flight controller behavior, sensor
feedback, and MAVLink communication, making it a reliable precursor to HIL and field
validation.

Discussion on different control strategies suitable for the mission

In this study, we adopted a PID-based control architecture due to its computational
simplicity and proven reliability in real-time UAV applications. Implementing more
complex control strategies such as model predictive control (MPC) or adaptive controllers,
while academically appealing, introduces significant computational overhead. This is
particularly critical for onboard embedded systems where processing resources are limited,
and any increase in computational demand can adversely impact flight time and overall
system responsiveness. Moreover, adaptive control methods often rely on online learning
or parameter adaptation, which can be risky in mission-critical scenarios. In such cases,
transient inaccuracies or model misidentification may result in control instability or false
positives during target tracking. In contrast, the use of IBVS in conjunction with
well-tuned PID controllers provides a robust and computationally efficient solution that
has demonstrated consistent performance in our simulated experiments. MPC-based
strategies also require accurate nonlinear system models and finely tuned optimization
parameters. These models must be identified and validated prior to deployment, which can
be time-consuming and sensitive to environmental variations. On the other hand, the PID
controllers used in our work leverage ArduPilot’s auto-tuning mechanisms, allowing them
to adaptively stabilize the UAV and maintain robust tracking performance across varying
environmental conditions, as evidenced in the results presented in the manuscript.
Therefore, while we recognize the merits of alternative control strategies, the selected
approach strikes a practical balance between performance, robustness, and real-time
feasibility for the mission scenarios considered in this work.

Image based visual servoing

The drone is equipped with a downward-facing camera. Once the target is identified, the
controllers in the xy-plane are activated to direct the drone toward the target. The drone
transitions from waypoint tracking to target tracking mode, aligning itself at the center of
the target area before descending through activation of the z-controller. The image
processing and controller modules work in close coordination to achieve precise
positioning, despite sensor inaccuracies or environmental disturbances such as wind gusts.
An example of the drone over the target is shown in Fig. 3.

The Water_Reservoir_Discharge_Location_Identification_CallBack
function is responsible for real-time image processing of the video feed captured by a
downward-facing camera mounted on a drone. As the drone flies over the field, the
function processes incoming ROS image messages using OpenCV to identify two specific
colored targets: a blue circle indicating the water reservoir and a red circle indicating the
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Figure 3 Camera coordinate system (Fu et al., 2023) includes Gazebo IRIS drone model (from
ArduPilot Gazebo plugin, licensed under LGPL-3.0).  Full-size k4] DOT: 10.7717/peerj-cs.3238/fig-3

water discharge location. The image is first blurred and converted to HSV format to apply
color masking for red and blue. After noise reduction via erosion and dilation, the function
extracts contours of the colored regions and calculates their geometric properties such as
centroid and radius using the minimum enclosing circle. The identified (x, y) positions and
radii are published as ROS messages, which are then consumed by PID controllers to
regulate the drone’s position. Specifically, PID controllers in the x and y directions use the
difference between the image center (current drone position) and the detected target
position to align the drone above the target. Once the target is centered within a predefined
threshold, the PID(z) controller is activated to lower the drone vertically. The code also
includes visualization for monitoring: green lines represent coordinate axes, black lines
connect the center of the image to the target, and text annotations show positional offsets.
This system ensures accurate visual identification and autonomous positioning of the
drone over the water reservoir and discharge points, enabling a closed-loop vision-based
servoing strategy for precise aerial operations.

Software architecture for cloud
Operational data from the drone’s companion computer can be transmitted to a cloud
instance using services provided by Amazon Web Services (AWS) (AWS, 2025), IBM
Cloud, or Microsoft Azure (Azure, 2025). In our implementation, we utilize an AWS EC2
instance to transmit and store drone data. Consequently, the complete flight path, current
drone location, target area coordinates, and other relevant data are securely stored in a
cloud-based database, making them available for offline processing. The cloud software
architecture is illustrated in Fig. 4. Data on ROS parameter server are transmitted to the
cloud which can be used for visualization on a remote web-client.

Cloud integration offers significant advantages in terms of scalability, remote access,
and centralized data management which are important for enhancing drone autonomy in
real-world operations. However, despite the numerous benefits, several technical and

Kadri (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3238 8/28


http://dx.doi.org/10.7717/peerj-cs.3238/fig-3
http://dx.doi.org/10.7717/peerj-cs.3238
https://peerj.com/computer-science/

PeerJ Computer Science

user control
commands

Cloud Server Layer

user control
commands

Django Server ‘ Database Storage

Networking &

Cloud Hosting ‘ Communication

User Client Layer

User Web Interface

Web Client Interface

\_

) 4 N
-

Drone Client Layer
drone state & drone state &

sensor data sensor data
. ROS / Non-ROS
Drone Client Node Software Nodes

Hardware-specific Drivers

/ \ Robot Hardware /

Figure 4 Three-tier cloud architecture for remote monitoring and control of drone. Full-size Kl DOTI: 10.7717/peerj-cs.3238/fig-4

operational challenges related to data latency, system reliability, and security need to be
considered.

Since real-time decision-making and control operations are sensitive to communication
delays, any latency introduced by network congestion or unreliable connections can
significantly impact mission performance. For this reason, our architecture ensures that all
high-frequency control loops are executed locally on the drone’s onboard companion
computer and only non-critical flight data is transmitted over the cloud for remote
monitoring. Similarly, the architecture is designed to allow autonomous operations to
continue locally in the absence of cloud access in order to improve the system’s reliability
and fault tolerance during operations in remote environments under adverse network
conditions.

Finally, security is one of the most critical concerns when integrating drones with cloud
services as transmitting drone data over public networks introduces risks such as
unauthorized access, data tampering, and potential system hijacking. The implementation
addresses these risks by incorporating robust security measures, including end-to-end
encryption and secure authentication protocols, to ensure data integrity and protect
against external threats.
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Migration from ROS-1 to ROS-2

The original implementation of our system was developed and validated using ROS 1
(Melodic and Noetic), which was widely adopted at the time. In response to the reviewer’s
concern regarding the currency of the referenced codebase, we have now updated the
associated repository to be fully compatible with ROS 2 Humble via the ROS 1—ROS 2
Bridge. This transition to ROS 2 significantly enhances the system’s modernity and
relevance. ROS 2 offers native support for real-time distributed processing, which is
highly beneficial for time-critical UAV operations. It also introduces quality of

service (QoS) policies, allowing fine-grained control over communication reliability,
latency, and durability—factors that are crucial for UAV control in SITL and cloud-based
deployments. Furthermore, ROS 2 supports DDS-Security features such as encryption,
authentication, and access control, thereby addressing the cybersecurity requirements of
cloud-based UAV operations where data may traverse public or hybrid networks. The ROS
2 update also facilitates seamless integration with modern cloud platforms such as AWS
RoboMaker, Azure IoT Hub, and Google Cloud Platform (GCP), making the system more
extensible and future-proof. These updates not only modernize the codebase but also
strengthen the credibility and practical applicability of the proposed architecture in real-
world, mission-critical scenarios.

MISSION DESCRIPTION

The chosen mission is inspired by the Teknofest 2024 International UAV Competition
(TEKNOFEST, 2024). The primary theme of the mission is autonomous water
transportation. The flight area measures 170 m by 120 m, with a 10 m wide buffer zone
surrounding it. Two target locations are placed along the flight path: a blue, circular water
intake reservoir with a diameter of 3 m and a height of 70 cm, and a red water release area
with a diameter of 2.5 m and a height of 100 cm. The positions of both targets are arbitrary.
The UAV is expected to complete two full laps around the flight area following the route
defined in Fig. S1. During the first lap, the UAV should identify and record the GPS
coordinates of the water intake reservoir and water release area. In the second lap, it should
collect and release water at the corresponding target locations. The key features of the
mission are summarized as follows:

1. Autonomous takeoff and landing

2. Autonomous waypoint navigation, ensuring that the UAV avoids entering the buffer
and forbidden zones

3. Environmental perception to detect target areas during the mission and record their
GPS coordinates

4. Identification and localization of the target areas using image processing and/or
computer vision

5. Precise positioning of the UAV over the center of the target areas

6. Online visualization of the drone’s flight parameters
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Flowchart of the complete mission

The navigation algorithm for the mission is summarized in the three flowcharts included
in this section, which illustrate the stages of autonomous takeoff, waypoint following,
target identification, IBVS and tracking control, and finally returning to the launch
location. These stages are shown in Figs. 52, S3 and 54 respectively.

SIMULATION SETUP
Pixhawk

The advent of powerful, compact, and affordable processors has facilitated the
development of small, lightweight flight controllers, such as the Pixhawk. These controllers
come equipped with built-in inertial measurement units (IMUs) and multiple peripheral
interfaces, making it easy to integrate various external sensors and devices. They are
compatible with open-source autopilot firmware, such as ArduPilot (ArduPilot
Development Team, 2025) or PX4 (PX4 Development Team, 2024), which provide robust,
extensively tested flight stacks to ensure reliable UAV control.

Software in the loop

SITL (ArduPilot Development Team, 2024) is a technique that enables simulation of UAV
behavior directly on a development computer, eliminating the need for physical drone
hardware. In SITL, the autopilot firmware or flight stack is installed and executed on a local
computer or server, thereby removing the requirement for a dedicated flight controller
such as the Pixhawk. The firmware communicates with a simulator, such as Gazebo
(Gazebo Development Team, 2024), by receiving simulated environmental and sensor data
from a 3D virtual world and sending corresponding motor and actuator commands to
control the drone’s position and attitude. SITL is extremely useful for testing various
control strategies and debugging code before deployment on real hardware. It allows
examination of the drone’s response in challenging scenarios that are difficult to replicate
in the real world, thereby facilitating the early identification and resolution of persistent
issues and reducing the risk of crashes.

One of the core advantages of SITL is that it uses the exact same autopilot firmware
intended for hardware deployment which eliminates the need for a physical flight
controller during simulation. Our use of ArduPilot and Pixhawk architectures ensures that
the firmware and flight logic executed in simulation can be feasibly and reliably deployed
on real hardware with minimal or no changes. This ensures that control, estimation, and
mission logic behave identically in both environments. Moreover, since SITL shares the
same state estimation and control logic as its hardware counterpart, it is widely used in
academic and industrial UAV development pipelines as a credible and widely accepted
validation stage for algorithms targeting real-world deployment.

ArduPilot

ArduPilot (ArduPilot Development Team, 2025) is an open-source autopilot system that
provides plugins and packages for conducting SITL simulations across various platforms
(ArduPilot Development Team, 2024). The SITL package includes the complete ArduPilot
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flight control stack, featuring sensor fusion, state estimation, attitude control, and position
controllers. The accompanying plugins serve as interfaces between the SITL packages and
the virtual world and drone models within the simulators. This integration allows
developers to conduct comprehensive testing of scenarios, such as takeoffs, landings, and
navigation which in turn improves the overall performance and reliability of autonomous
drones.

PID autotuning

In order to ensure optimal performance and reduce the manual effort involved in
controller tuning, the Autotune feature provided by the ArduPilot SITL environment was
utilized. This automated process systematically adjusts the PID gains to achieve stable and
responsive control, and the final tuned values were selected based on their consistent
performance across multiple test flights. The robustness of these gains is demonstrated in
our simulations, particularly under challenging conditions involving high wind
disturbances and sensor noise, where the controller maintained stable flight behavior.

Integrating various modules in the simulation environment

Gazebo leverages 3D physics engines to create virtual environments, or “worlds,” that
closely resemble the real world in both visualization and underlying physics. Once a world
is created in Gazebo, a UAV model is introduced into the simulation. For our purposes, we
utilized the 3DR Iris drone model (ArduCopter, 2024), which is widely used for simulating
MAVLink (MAVLink Development Team, 2024) drones. This model has been
meticulously designed to accurately represent the drone’s physical characteristics,
including its dynamics, propulsion system (motors), and sensors. It incorporates various
plugins to enhance functionality, such as the Lift Drag Plugin, which calculates the
aerodynamic effects of the rotating propellers, and an integrated IMU sensor model to
provide necessary sensor data. Additionally, the ArduPilot SITL Gazebo Plugin facilitates
communication with the ArduPilot SITL firmware. To simulate a real-world
downward-facing camera, an open-source ROS Gazebo Camera Plugin is added to the Iris
model; this camera is crucial for identifying and locating target areas.

To test the proposed software architecture (Qays, Jumaa ¢ Salman, 2020), the flight
area depicted in Fig. S1 was modeled in Gazebo. A basic world was created comprising a
ground plane along with the water intake and release target areas. The models for the water
intake reservoir and water release area were initially designed using SolidWorks (Dassault
Systémes, 2024) and then exported as STL files. These files were used to define the visual
and collision geometries of the models. The positions, scales, and orientations of these
models were specified in the world file, which can be spawned within the simulation
environment.

Finally, several techniques have also been incorporated to reduce the discrepancies
between simulation and real-world execution. To ensure high simulation fidelity, the
Gazebo simulation has been extended with realistic physical and environmental effects,
including wind gusts, lighting variations (shadows) and sensor noise. These enhancements
simulate key challenges faced during actual deployments and provide a robust testbed for
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Figure 5 Autonomous UAV simulation setup using Gazebo, ArduPilot, MAVProxy and MAVROS.
Full-size &l DOT: 10.7717/peerj-cs.3238/fig-5

validating control, perception, and decision-making algorithms ensuring confidence that
the performance metrics observed in simulation will generalize well to hardware execution.

Ground control station
Validating SITL functionality is crucial once the simulation environment is configured. A
lightweight Ground Control Station (GCS) software, MAVProxy, is used for this purpose.
MAVProxy enables the sending of basic MAVLink commands to the UAV model in
Gazebo, facilitating operations such as switching to Guided Mode (“mode GUIDED”),
arming the drone (“arm throttle”), initiating takeoff to a height of 1 m (“takeoff 1”), and
commanding the UAV to land (“mode LAND?”). If the behavior of the Iris drone in the
simulation aligns with that of a real-world drone, it indicates that the simulation
environment has been appropriately configured for code development and testing.
MAVProxy offers several advantages, including network routing capabilities. It can
forward MAVLink control commands from other devices or computers on the same
network. This feature is valuable when accessing UAV flight information or transmitting
control commands from a different GCS that may have a more sophisticated graphical
interface, such as Mission Planner or QGroundControl, or from a companion computer
utilizing ROS. Figure 5 illustrates how MAVProxy serves as a network gateway, integrating
various frameworks such as MAVROS, the DroneKit Python API, and other GCS software
like Mission Planner or QGroundControl.

Potential challenges associated with cloud-based UAV deployments
The peoposed architecture can communicate with ROS 2 topics. Compatibility with ROS
2, which significantly strengthens the system’s capability to address real-world concerns
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such as security, latency, and reliability in distributed environments. ROS 2 introduces
native support for real-time distributed processing and advanced quality of service (QoS)
policies, which allow fine-grained control over communication parameters such as
message delivery reliability, latency sensitivity, and durability. These features are critical in
mitigating data latency and ensuring robust communication for UAV-cloud integration.
Moreover, ROS 2’s support for DDS-Security extensions enables the implementation of
end-to-end encryption, authentication, and access control, directly addressing the
cybersecurity concerns associated with cloud-connected UAV operations particularly
when sensitive data is transmitted using public or hybrid networks. The updated ROS
2-based architecture also facilitates seamless integration with modern cloud platforms
including AWS RoboMaker, Azure IoT Hub, and Google Cloud Platform, each of which
provides scalable, secure, and resilient infrastructures for robotic applications. While these
capabilities significantly enhance the system’s extensibility and readiness for real-world
deployment, nevertheless the cloud-based UAV systems inherently face challenges in
real-time communications.

TESTING THE MISSION SCENARIO IN THE GAZEBO WORLD
USING ROS FRAMEWORK

The ROS framework is divided into three main modules, each spawned as a separate ROS
node to run in parallel. These nodes share information via ROS topics or through the ROS
Parameter Server. The three primary ROS nodes are as follows:

1. Autonomous waypoint navigation—Guides the UAV along a series of waypoints
during Lap 1 and Lap 2 within the flight area.

2. Target area detection & recognition—Continuously inspects the scene to detect and
recognize target areas. During Lap 1, the node searches for the target areas and records
their locations, while in Lap 2 it alternates between waypoint following and target
tracking.

3. Precise positioning—Directs the UAV to position itself directly over the target areas
using a vision-based PID controller.

Autonomous UAV waypoint navigation

Autonomous waypoint navigation enables drones to travel independently along
predetermined paths or a series of global coordinates (waypoints) without direct human
intervention. Waypoints are typically defined by latitude, longitude, and altitude. The
drone’s flight control system uses sensor data, such as GPS, altimeters, and gyroscopes to
determine its current position and orientation, and then adjusts its flight path, attitude,
and actuator outputs to follow the planned trajectory.

Several application programming interfaces (APIs) have been developed for waypoint
navigation. One such API, the Iq_gnc API (Intelligent Quads, 2024) developed by the
Intelligent Quads group, provides a variety of functions for controlling UAVs via
MAVROS. It has been extensively used for testing UAVs in Gazebo-ROS simulation
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environments. However, the Python version of the Iq_gnc API does not offer a convenient
method for implementing waypoint navigation using global geodetic coordinates.

Another popular API among UAV developers is the DroneKit Python API. This API
provides a powerful and intuitive platform for programming autonomous drones using an
object-oriented approach. It simplifies complex tasks, such as autonomous flight—by
offering high-level commands that abstract the underlying details of drone control. Its
extensive documentation and strong community support further enhance its appeal over
the Iq_gnc APIL.

The features of DroneKit can be accessed by creating a Vehicle instance using the
connect() method. This instance grants access to the drone’s state, parameters, and sensor
data. Methods such as simple_goto() can instruct the drone to fly to specified waypoints
(defined by geodetic coordinates) in GUIDED Mode. However, one major challenge with
this method is the lack of a feedback mechanism to confirm when the target location is
reached. Moreover, if the autopilot receives another command before reaching the target, it
will immediately execute that command, altering the planned route.

To ensure that no additional commands interfere until the target waypoint is reached, a
custom set_destination() function was developed. This function employs the simple_goto()
method from DroneKit Python along with a feedback mechanism to reliably guide the
quadcopter to the desired location.

According to the Teknofest mission guidelines (TEKNOFEST, 2024), the UAV must
complete two laps around the flight area. In the first lap, the UAV follows a sequence of
waypoints to locate and record the target areas’ coordinates. These coordinates are then
dynamically appended to the waypoint list for the second lap. During the second lap, the
UAYV follows the same route while ensuring that it visits the target areas; at these points,
control temporarily switches from Waypoint Navigation Mode to Vision-based Precision
Positioning Mode. A behavioral modeling approach is used to facilitate mode switching.
Once the UAV completes its tasks at the target areas, control reverts to Waypoint
Navigation Mode and the mission resumes. Finally, after both laps are completed, the
drone returns to the home position and lands safely.

Target detection and recognition using OpenCV

This node subscribes to the /webcam/image_raw topic to receive images from the ROS
Gazebo Camera mounted on the Iris drone model in the Gazebo simulation environment.
To utilize OpenCV functions, the images must be converted from ROS image format to an
array format compatible with OpenCV; this conversion is performed using the CV Bridge
package.

Once the images are in the correct format, they are preprocessed using Gaussian Blur
for filtering, followed by erosion and dilation to identify contours. Because the target areas
are distinguished primarily by color (black for the water intake reservoir and red for the
water release area), detection and recognition are performed by converting the image to
hue-saturation-value (HSV) format and using the hue value to identify red and blue
regions. The contours of these regions are then detected, and if the contour area exceeds a
specified threshold, the target area is confirmed.
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If the target areas are detected during the first lap, the algorithm publishes a message on
the /WDL_WRL_Parameters_topic to inform other nodes that the target areas have been
detected and that their locations are ready to be saved for Lap 2. All relevant flags are
transmitted to the ROS Parameter Server, and the locations of the water intake reservoir
and water release area are published on the /Water_Reservoir_Location_Topic and
/Water_Discharge_Location_Topic, respectively.

Vision-based precise positioning over target areas

This node subscribes to five key topics: /Water_Reservoir_Location_Topic, which publishes
the location of the water intake reservoir; /Water_Discharge_Location_Topic, which
publishes the location of the water release area; lap_counter_topic, which indicates the
current lap; /WDL_WRL_Parameters_topic, which transmits flags from the Target
Detection and Recognition node; and /mavros/global_position/global, which publishes the
drone’s current global position.

After reaching the target areas during the second lap, the drone switches to vision-based
precision positioning mode. It receives the current centroid coordinates (x¢, y) of the
detected target area from the Target Detection and Recognition node and calculates the
error (ex(t), e,(t)) relative to the center of the image window, as shown in Fig. S5. PID
controllers in the xy-plane direct the drone toward the target center. Once the errors (e,(t),
e, (t)) fall within acceptable bounds, the PID controller in the z-plane is activated to initiate
descent onto the target. These corrections are converted into appropriate twist velocity
commands, which are published on the /mavros/setpoint_velocity/cmd_vel topic. These
commands guide the drone to adjust its position precisely above the target (in the x and y
directions) and descend while maintaining a safe altitude. The drone hovers at this altitude
for a few seconds to perform tasks such as water collection or release. After completing
these operations, it ascends back to its previous altitude, and control reverts to waypoint
navigation mode, resuming the mission.

EXECUTING THE MISSION

A ROS launch file was created within the appropriate ROS package to start the complete
simulation environment including all models and configurations which streamlines the
setup process (Kadri, 2025).

The DroneKit Python library was configured with the ArduPilot framework (ArduPilot
Development Team, 2025). The simulation was successfully built on a computer running
Ubuntu 20.04 with ROS Noetic installed. The world file (Fig. 6A) and model files (Fig. 6B)
were created in .sdf format, and all required files and scripts were placed in a dedicated
ROS package. After setting up the simulation environment, a basic test was performed to
verify that the setup, as shown in Fig. 6C, was working correctly. Mission Planner and
MAVProxy were used to send a series of waypoints to the Iris drone model in Gazebo to
assess its response. The UAV began executing its mission as soon as its mode was changed
to AUTO, and the preliminary test was completed successfully. The motion and trajectory
of the UAV were also visualized in Rviz, a well-known ROS visualization tool, as shown in
Fig. 6D. The ROS nodes described in the previous section were developed using Python
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Figure 6 Simulation and testing stages: (A) virtual flight area replicated in Gazebo 3D simulator, (B) 3DR Iris open-source drone model in
flight area, (C) SITL testing using mission planner, MAVProxy, and MAVROS, and (D) UAYV trajectory visualization in Rviz.
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Table 1 Wind speeds and noise distributions.

Condition Wind speed (m/s) (x, y) X and Y PID noise ./ (p,06>) Z controller noise ./ (p, 6%)

Lowwind (L0, 1.0) N(0,2) N(0,0.005)
Medium wind (2.5, 2.5) N(0,5) N(0,0.025)
Highwind (5.0, 5.0) N(0,10) N(0,0.05)

3.12 and MAVROS. The simulation running in Gazebo 11 took approximately 317 s to
complete the mission. The various nodes spawned during the simulation and their
corresponding topics are displayed in the ROS graph in Fig. S6. Hovering of the
quadcopter over the blue and red tanks is shown in Fig. S7.

RESULTS AND DISCUSSION

To evaluate the efficacy of the proposed scheme, the quadcopter was tested under various
flight conditions, as detailed in Table 1. Sensor noise and wind disturbances were

introduced into the system. The robustness of the proposed software architecture under
adverse conditions is demonstrated in Figs. 7-10. The results are categorized by different
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Figure 7 IBVS PID controller errors recorded over the blue target under effects of different wind conditions and no sensor noise.
Full-size K&l DOT: 10.7717/peerj-cs.3238/fig-7

wind conditions and noise levels, providing a comprehensive understanding of the
system’s performance under various environmental factors.

Figures 7 and 8 illustrate the performance of the x and y PID controllers used by the
IBVS system for precise positioning of the drone over the target areas, as well as the
performance of the z controller for altitude control under various wind conditions
(without sensor noise). Both the x and y controllers work together to position the drone
accurately over the target areas. Once the x and y errors reach zero, the z controller
activates immediately to descend the drone and then commands an ascent after a short
delay to continue the mission. It is also observed that under higher wind speeds, the drone
approaches the target areas more quickly; note that the wind was in the same direction as
the drone’s flight.
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Figure 8 IBVS PID controller errors recorded over the red target under effects of different wind conditions and no sensor noise.

Full-size K&l DOT: 10.7717/peerj-cs.3238/fig-8

In the absence of noise, the system demonstrates stable performance with minimal error
fluctuations. However, as wind intensity increases from low to high, the error magnitude
also increases especially along the y-axis. The introduction of noise further degrades
performance. As seen in Figs. 9 and 10, the error along the y-axis is more
pronounced under low wind conditions with high noise compared to scenarios with low
noise. This suggests that noise significantly affects the system’s ability to maintain precise
positioning.

For altitude control along the z-axis, the results indicate relatively stable performance
under varying wind and noise conditions. The error in the z-axis remains within a narrow
range, demonstrating that the PID controller effectively maintains the desired altitude,
though slight variations are observed under high wind conditions. The flow of information
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Figure 9 IBVS PID controller errors recorded over the blue target in low wind condition and different levels of sensor noise.
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from the ROS Parameter server to the remote web application through the cloud interface
is presented in Fig. S8.

ROS1 to ROS2 bridge

Figure S9 illustrates the ROS 1 topics being published in ROS 2 via the ROS Bridge.
Consequently, the proposed comprehensive architecture is compatible with both legacy
systems and long-term support (LTS) systems such as ROS 2. The simulation is executed in
ROS Noetic, while the bridge publishes all topics to ROS Foxy using subscribers
implemented as ROS 2 nodes running on the same machine. These ROS 2 nodes can also
be deployed on a networked computer. With ROS 2, the data distribution service (DDS) is
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Figure 10 IBVS PID controller errors recorded over the red target in low wind condition and different levels of sensor noise.
Full-size K&] DOT: 10.7717/peerj-cs.3238/fig-10

used for communication, thereby enhancing system robustness, reducing error-proneness,
and improving compatibility with cloud-based platforms such as AWS and Google Cloud.

Statistical analysis

The box plots in Figs. 11 and 12 present a comparative statistical analysis of positional
tracking errors in the X, Y, and Z directions during two critical mission phases:
approaching the water reservoir (blue target) and descending toward the drop location
(red target). Across both phases, an increase in wind intensity from low to high results in
noticeable broadening of the interquartile ranges, particularly in the lateral directions (X
and Y), reflecting increased uncertainty and variability in position control. During the
reservoir approach phase, the X-direction errors show relatively consistent behavior, with
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Figure 11 Box plot for three cases when the quadcopter is approaching the water intake reservoir.
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Figure 12 Box plot for three cases when the quadcopter is approaching the water release area.
Full-size Kl DOTI: 10.7717/peerj-cs.3238/fig-12

moderate spread and low median error under low wind conditions. However, as wind
intensity increases, both the error spread and the median values shift upward, suggesting
increased positional drift in the longitudinal direction.

The Y-direction errors exhibit significant sensitivity to wind disturbances, as evidenced
by the high density of outliers and increased negative error bias, especially under medium
and high wind conditions. This indicates that lateral control is more vulnerable to
turbulence when approaching the water source. In contrast, the Z-direction errors remain
tightly distributed across all wind scenarios, demonstrating the effectiveness of the altitude
controller during descent. The vertical regulation remains consistent and stable, likely due
to the dominance of PID-based altitude feedback, which is inherently less affected by
horizontal wind components.
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Table 2 List of parameters saved on ROS Parameter server in YAML file required for the mission
(Reproduced with permission from Raheel, Mehmood ¢ Kadri (2023)).

No. Parameter name Parameter value Range
1 Lap_Count 0 [0-2]
2 Water_Reservoir_Location_Detected_Lap_02 0 [0-1]
3 Water_Discharge_Location_Detected_Lap_02 0 [0-1]
4 Water_Reservoir_Location_Detected_Lap_01 0 [0-1]
5 Water_Discharge_Location_Detected_Lap_01 0 [0-1]
6 Water_Sucked_by_Syringes 0 [0-1]
7 Water_Released_by_Syringes 0 [0-1]
8 Water_Reservoir_Location_Latitude (0.0, 0.0) (Lat, Lon)
9 Water_Reservoir_Location_Longitude (0.0, 0.0) (Lat, Lon)
10 Water_Reservoir_Location_Altitude 0.0 Height
11 Water_Discharge_Location_Latitude (0.0, 0.0) (Lat, Lon)
12 Water_Discharge_Location_Longitude (0.0, 0.0) (Lat, Lon)
13 Water_Discharge_Location_Altitude 0.0 Height
14 Water_Discharge_Location_Saved 0 [0-1]
15 Water_Reservoir_Location_Saved 0 [0-1]
16 EXECUTING_WAYPOINT_NAVIGATION 0 [0-1]
17 Current_Waypoint_Index_Lap_01 0 [0-2]
18 Waypoint_Index_After_which_ BLUE_was_detected 0 [0-1]
19 Waypoint_Index_After_which_ RED_was_detected 0 [0-1]

In the drop-phase (red target), the controller’s performance in X and Y further
degrades, with the X-direction errors showing a larger spread and a downward shift in the
median under higher wind conditions. The Y-direction again presents a pronounced
number of outliers and wider variability, indicating increased difficulty in maintaining
lateral stability during terminal descent. Although Z-direction accuracy remains
acceptable, it shows slightly more variation compared to the reservoir approach, possibly
due to complex airflow near the ground or cumulative disturbances. These findings
underscore the robustness of the vertical control channel, while highlighting the need for
more advanced or adaptive control strategies in the lateral plane.

Robustness of the approach

Overall, the results highlight the robustness of the IBVS system and the software
architecture in maintaining precise positioning and altitude control under challenging
environmental conditions. However, the increased error under high wind and noise
conditions suggests that additional measures such as adaptive control strategies or sensor
tusion techniques, could further enhance system performance. The stable performance
along the z-axis underscores the effectiveness of the PID controller for altitude control.
While the implemented controllers demonstrate satisfactory performance, further
optimization and the integration of advanced control techniques may improve the system’s
resilience, ensuring reliable operation under a broader range of conditions. All drone
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Table 3 Gains of the PID Controllers for x and y directions.

No. Parameter name Parameter value
1 Kp_x 0.01

2 Ki_x 0.01

3 Kd_x 2

4 limit_x 1

5 Kp_y 0.01

6 Ki_y 0.01

7 Kd_y 2

8 limit_y 1

operational data stored on the ROS Parameter Server (as shown in Tables 2 and 3) is
transmitted to the cloud via a JSON interface. The cloud data is accessible to any remote
client, as illustrated in Fig. S8. The PID controller parameters (gains) provided in Table 3
were initially derived using the System Identification Toolbox and later fine-tuned using
the Autotune feature of the Ardupilot.

FUTURE DIRECTIONS

It has been successfully demonstrated that cloud integration with IBVS-based control for
UAVs using Ardupilot’s SITL is achievable with the proposed architecture. Still, several
areas need more research to improve accuracy, safety, and efficiency.

(1) Stronger sensor fusion for better awareness: Future systems will use sensor fusion
with extended Kalman filters to improve tracking and navigation. Data from IMUs, GPS,
LiDAR, and cameras can be combined to reduce noise and deal with sensor failure. These
methods can help in rough or low-visibility settings where one sensor is not enough.
Adding learning-based filters may also improve tracking when conditions change fast.

(2) Smarter and flexible control: Current control uses PID and image-based visual
servoing. These work well in simple tasks but may fail in unknown or changing situations.
Future work will test adaptive and reinforcement learning-based control. These methods
adjust on the fly and improve over time. They can help the UAV deal with wind, changing
weight, or small faults. The main problem is that they need more computing power, which
drains the battery faster.

(3) Safer cloud communication: Since data moves between the UAV and the cloud, it
must be safe. Future systems will use tools like intrusion detection, secure key sharing, and
blockchain logs. These help detect fake messages, block outside access, and trace system
activity. Work will focus on tools that are fast and light, so they do not slow down the UAV
or increase the energy use too much.

(4) Group control of many UAVs: A single UAV can do small jobs. A group can do more.
Future systems will manage many UA Vs using one cloud-based control unit. This unit will
plan routes, assign tasks, and keep things running if one UAV fails. It will help in wide-area
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jobs like farming, search missions, and site inspection. Shared planning also saves time and
reduces overlap between UAVs.

These areas offer ways to make UAVs more useful, safe, and ready for large jobs. The
goal is to build systems that can act fast, handle rough settings, and work as a team when
needed.

CONCLUSION

In this work, we proposed a comprehensive software architecture for drones and
successfully demonstrated its effectiveness in achieving precise positioning of autonomous
UAVs over target areas. This was accomplished through the integration of various
modules, including autonomous waypoint navigation, target detection and recognition,
and vision-based control strategies. These modules were developed within the robot
operating system (ROS) framework and integrated with cloud services. A challenging
mission was chosen to test the proposed architecture, which was simulated using SITL in
Gazebo with the ArduPilot plugin. All modules can be readily configured for real-time
execution with minimal effort. The proposed software architecture offers a versatile
solution applicable to a wide range of scenarios and real-world applications, paving the
way for enhanced precision and reliability in autonomous UAV positioning and enabling
advancements across various fields and industries.
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