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ABSTRACT

The combination of blockchain technology with machine learning (ML) has emerged
as a transformative approach to addressing cybersecurity challenges in microgrids
(MG). As these systems become increasingly interconnected and dependent on
real-time data transmission, they face growing risks from cyber threats such as false
data injection attacks (FDIA), data tampering, denial of service (DoS), and
adversarial attacks. This study provides a comprehensive analysis of how blockchain
and ML can be integrated to mitigate these vulnerabilities. While ML offers advanced
capabilities for anomaly detection, threat prediction, and adaptive response,
blockchain’s decentralized, transparent, and secure architecture provides a reliable
foundation for data and transaction processing. By combining these technologies,
MGs can enhance operational efficiency, safeguard data integrity, and strengthen
system resilience. This article reviews recent developments in blockchain and ML
applications for MG cybersecurity and highlights key enabling technologies and
implementation challenges. Future research directions include the design of hybrid
models and improvements in scalability. The findings highlight the potential of
blockchain and ML to transform cybersecurity in MGs and support the development
of safer, more reliable, and sustainable energy systems.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Cryptography,
Cryptocurrency, Blockchain
Keywords Blockchain, Machine learning, Cybersecurity, Microgrids

INTRODUCTION

Global use of microgrids (MGs) has accelerated with the integration of distributed energy
resources (DERs), such as energy storage systems and renewable energy sources (RESs)
like solar and wind. To meet global energy efficiency and decarbonization goals, these MGs
are essential for improving energy reliability, flexibility, sustainability and resilience to
disruptions. Despite these advantages, the widespread adoption of MGs has led to a greater
reliance on cutting-edge digital technologies, raising cybersecurity concerns (Dutta ¢
Prasad, 2020). Due to their widespread use, information and communication technologies
(ICT) are particularly vulnerable to operational failures, privacy violations and
cyberattacks (Irmak, Kabalci ¢ Kabalci, 2023; Muhammad, Alshra‘a ¢ German, 2024).
Smart inverters are critical components of MGs as they connect distributed resources to
the grid and provide essential grid support functions, including frequency and voltage
control. These devices pose significant cybersecurity risks due to their integration with
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various ICT systems and their remote communication capabilities. Their increasing use
underscores the urgency of addressing vulnerabilities to mitigate potential cyber threats
such as manipulation and unauthorized access (Li ¢» Yan, 2023; Jamil et al., 2021). These
cybersecurity challenges are further complicated by the complexity and diversity of
communication protocols and ICT components within MGs, necessitating sophisticated
and robust security solutions (Chen et al., 2025; Paul et al., 2024).

Promising solutions to these cybersecurity problems are provided by emerging
technologies such as blockchain and machine learning (ML). The reliable integration and
functioning of DERs depends on the secure, transparent and impenetrable transaction
management of the blockchain. Due to its decentralized structure, which protects against
unwanted changes and guarantees data integrity and secure communication between MG
stakeholders, cybersecurity resilience is enhanced (Dutta ¢ Prasad, 2020; Soumya et al.,
2024). ML approaches, on the other hand, significantly improve the proactive protection
capabilities of MGs by enabling real-time detection, predictive analytics and automated
responses to potential cyberthreats. By improving anomaly detection, threat classification,
and response automation, ML is being integrated into MG operations to develop strong
defensive tactics against cyber incidents (Paul et al., 2024; Soumya et al., 2024). This review
makes a contribution by:

e providing a thorough overview of the current cybersecurity issues of MGs.

o A thorough analysis of blockchain applications specifically designed for MG
cybersecurity.

 Exploring the use of ML algorithms for threat prediction, automated defense plans, and
real-time anomaly detection to significantly improve the cybersecurity of MGs.

 Highlighting the joint application of blockchain and ML to strengthen cybersecurity
frameworks.

The roadmap of the article structure is shown in Fig. 1. The ‘Survey methodology’
section describes the formulation of this review. The ‘Related work’ section covers our
literature search and its results. The ‘Microgrids overview’ section briefly introduces the
concept and structure of MG. The ‘Foundations of Blockchain’ section explains the basics
of blockchain. The ‘Machine learning techniques’ section provides a brief overview of the
algorithms and philosophy of machine learning. The section ‘Cyberattack types in
Microgrids’ describes the types of cyberattacks specific to MGs. The section ‘Cybersecurity
applications in Microgrids’ introduces cybersecurity applications that utilize blockchain
and machine learning for MGs. The section ‘Combine blockchain with machine learning’
discusses how blockchain can be combined with machine learning to improve
cybersecurity in MGs and makes suggestions. Finally, the ‘Conclusions’ section concludes
this review.

SURVEY METHODOLOGY

The method systematically collects, examines, interprets and integrates information to
promote a comprehensive understanding of the topic. We conducted a search strategy that
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Figure 1 The roadmap of the article structure. Full-size K4l DOT: 10.7717/peerj-cs.3237/fig-1

focused on specific keywords, concentrating on articles that included blockchain, machine
learning, cybersecurity or microgrids in their titles or abstracts to confirm relevance. We
prioritized and focused on searching for recent articles by year within 3 years, from 2022 to
2024; if not, then 5 years, from 2020 to 2024, no more than 10 years, focusing on recent
advances, excluding important articles or theoretical background information.

RELATED WORK

To address the growing vulnerabilities created by the widespread digitization and
decentralization of energy systems, a potential field of research has emerged: the
integration of blockchain and ML technology into cybersecurity applications for MGs.
MGs are vulnerable to a range of cyberthreats due to their tightly interconnected
cyber-physical nature, especially false data injection attacks (FDIA) (Soumya et al., 2024).
The stability and resilience of MGs are greatly impacted by these attacks. They pose a
serious hazards to protection systems, voltage and frequency regulation and state
estimation (SE). The reliance on cutting-edge ICT has brought new, greater cyber-physical
risks. To reduce these new cyberattacks, resilient cybersecurity solutions and the
integration of secure, resilient and adaptive tactics are of great importance (Nejabatkhah
et al., 2021).

Decentralized energy management, peer-to-peer transactions, electric vehicles (EV),
Internet of Things (IoT) integration, financial transactions and environmental
sustainability are all enabled by blockchain technology (Canaan, Colicchio ¢ Abdeslam,
2020). This broad classification provides a comprehensive understanding of the
adaptability of blockchain in solving various security and operational issues in MG
systems. Mololoth, Saguna ¢ Ahlund (2023) have investigated how blockchain technology
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and machine learning methods can be used together to enable intelligent, decentralized
operations in future smart grids. Their analysis highlights how machine learning provides
predictive analytics, demand forecasting and effective energy management, while
blockchain enables secure transactions.

The digital transformation of MGs is explored by Irmak, Kabalci & Kabalci (2023), who
highlight technologies such as cloud computing, augmented reality, big data analytics,
digital twin technology and the IoT. They highlight the possible advantages and difficulties
of digitalization and emphasize the need for strong cybersecurity safeguards to maintain
system stability and operational integrity. A thorough examination of cybersecurity
implementation in smart grids is provided by Swathika et al. (2024), who classify
cyberattacks by advanced metering infrastructure (AMI), information technology (IT) and
operational technology (OT) components. To successtully detect, categorize and combat
cyber threats in smart grids, they propose strong mitigation solutions that mainly rely on
machine learning, deep learning (DL) and signal processing approaches.

Hasankhani et al. (2021) explore the integration of blockchain and machine learning,
especially for smart grids, how these two technologies can work together to improve
operational dependability, secure energy trading, and optimize distributed energy
management. The analysis points to important areas for future research as well as technical
difficulties in successfully combining these two technologies. The analysis highlights
important areas for future research as well as technical difficulties in successfully
combining these two technologies. Rajeyyagari et al. (2024) present a new cybersecurity
framework based on convolutional neural networks (CNN) augmented by the African
Vulture Optimization Algorithm (AVOA), with excellent accuracy and detection rates in
recognizing typical and anomalous network activity. This method dramatically improves
cybersecurity performance in blockchain-based smart grids. Utilizing Long Short-Term
Memory (LSTM) controllers in conjunction with blockchain technology to integrate
digital twin systems. With enhanced real-time monitoring and secure data management
capabilities, this cutting-edge framework significantly increases operational stability and
resilience, especially in networked MGs during fault circumstances (Hong et al., 2024).

To successfully counter the increasingly complex cyber threats and safeguard renewable
MGs, Rouhani et al. (2024) emphasize the critical need for established cybersecurity
standards, especially IEC 61850 and IEC 62351. Their analysis identifies vulnerabilities and
suggests thorough preventive and flexible cybersecurity measures. Table 1 summarizes the
methods, MG applications, security approaches and contributions of the related work
mentioned above.

In addition, seven existing survey articles are also studied. Their contributions and
limitations are then organized in Table 2 as follows.

MICROGRIDS OVERVIEW

MG is a small-scale power generation and distribution system consisting of decentralized
power sources, energy storage devices, energy conversion devices, loads, monitoring and
protection devices, among others (Ahmethodzic & Music, 2021; Mariam, Basu & Conlon,
20165 Zhou, Guo & Ma, 2015). An MG is a localized electrical system that combines small
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Table 1 Summary of related work.

Methods Microgrid Security approaches Contributions
applications
Markov/Bayesian models, Renewable MGs Threat modeling, risk Systematic framework addressing cybersecurity gaps

Blockchain (Soumya et al.,
2024)

Cyber-physical system review,
FDIA analysis (Nejabatkhah

Smart MGs (AC/DC)

et al., 2021)
Review of cybersecurity General MG
methods (Canaan, Colicchio  management
& Abdeslam, 2020)
Blockchain, ML (Mololoth, Energy trading,
Saguna & Ahlund, 2023) Demand response,
EVs

Smart Grid (IT, OT,
AMI components)

P2P trading, EV,
Demand response

Blockchain-based
smart grids

ML, DL, Signal processing
(Swathika et al., 2024)

Blockchain (Hasankhani
et al., 2021)

CNN, African vulture
optimization (Rajeyyagari
et al., 2024)

Digital Twin, Blockchain, Networked MGs
LSTM controllers (Hong

et al., 2024)

Cyber resilience frameworks ~ Renewable smart MGs

(Rouhani et al., 2024)

Dynamic reconfiguration of ~ Smart power

multi-microgrids (Yaghoubi  microgrids,
et al., 2024) specifically multi-
microgrids

assessment

Detection and mitigation of
FDIAs

Cyber-physical resilience

Distributed ledger, ML-based
detection

Taxonomy of cyber threats,
Intrusion Detection

Smart contracts, decentralized
management

DL, anomaly detection

Blockchain (PoS), Digital twin
validation

Defense-in-depth, ML-driven
detection

Protect against cyber-attacks,
particularly FDIAs and
cyber-physical attacks

Detailed impact analysis of cyber threats on stability

Overview of cyber threats and resilience strategies

Integration of blockchain and ML for enhanced security

Framework for securing smart grids using AI and ML
Categorizes blockchain uses for secure energy trading

High accuracy and efficiency in cyber-attack detection

Real-time fault detection, system stability improvement

Comprehensive review of standards, attack scenarios,
solutions

A real-time hierarchical framework using LSTM neural
networks and multi-objective optimization to dynamically
reconfigure multi-microgrids

Table 2 The comparisons to the existing survey articles.

Summary

Limitations

Our contributions

Examines how blockchain and ML enhance peer-to-peer Focuses only on P2P energy trading, in
(P2P) energy trading in smart grids (Fatima ¢ Arshad,

2025)

Reviews distributed control (DCT) techniques for
microgrids (MGs) (Ahmad et al., 2025)

Analyzes cybersecurity risks in MGs, emphasizing data
protection (Islam et al., 2025)

Explores IoE’s role in modernizing energy systems
(Meslouhi et al., 2025)

Surveys DL applications to secure renewable energy
supply chains (Halgamuge, 2024)

Reviews architectures and controls for networked MGs
(NMGs) (Mutluri & Saxena, 2024)

DL-based proactive defense mechanisms for smart grids Focuses on proactive DL for smart
grids, ignoring blockchain.

(Abdi, Albaseer & Abdallah, 2024)

coverage.

Reviews distributed control but omits

blockchain-ML synergy.

Limited to cybersecurity challenges
without ML/blockchain solutions.

Covers IoE but lacks depth in

adversarial ML defenses.

Surveys DL for supply chains, not

MG-specific cybersecurity.

Broad on networked MGs but
superficial in attack mitigation.

which it lacks adversarial attack

Expands to full-spectrum cyber threats (FDIA,
DoS, etc.) and integrates real-time ML anomaly
detection.

Discusses blockchain-enhanced DCT for secure,
decentralized MG operations.

Provides ML-driven intrusion detection +
blockchain immutability for data integrity.

Introduces adversarial training for ML models and
blockchain-based audit trails.

Tailors DL + blockchain to MG resilience, with
case studies on inverter security.

Details hybrid consensus algorithms (PoS/PBFT)
for attack-resistant MGs.

Combines DL with blockchain for tamper-proof
threat detection logs.
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Figure 2 An illustration of MG with cyberattack path. Full-size Kal DOI: 10.7717/peerj-cs.3237/fig-2

power generation sources (such as solar panels, fuel cells, microturbines or small wind
turbines), energy storage systems and controllable loads in a coordinated network (Xiao,
Wu & Jenkins, 2010). From the perspective of the utility, a microgrid functions as a single
controllable power source that can automatically disconnect and maintain independent
operation in the event of disruptions to the main grid (Cagnano, Tuglie ¢ Mancarella,
2020). Unlike the traditional concept of large-scale power grids, MGs refer to a network of
distributed power sources and associated loads connected to the regular power grid
according to a certain collection and distribution structure. Among the current power
grids, decentralized power generation has the advantages of high energy efficiency, low
pollution, high reliability and flexible installation locations. However, decentralized
renewable energy generation (REG) is intermittent and unstable, and if the proportion of
regional renewable energy (RE) gradually increases, it will inevitably affect the stability of
regional power system operation. The use of MG is an important means for efficient and
stable power supply and the best way to increase the share of RE. Figure 2 illustrates a MG
that integrates fossil fuel power plants, wind turbines, photovoltaic (PV) systems, energy
storage systems (ESS), EVs, smart homes, and the main grid. The Energy Management
System (EMS) actively coordinates energy and communication flows, represented by solid
black and dashed yellow arrows, respectively. Red dashed-dotted lines and lightning
symbols indicate cyberattack paths and impact points. The figure highlights the potential
for hackers to exploit communication channels, underscoring the critical need for robust
cybersecurity measures within smart microgrid infrastructures.
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Figure 3 The blockchain structure contains a sequence of blocks.
Full-size K&l DOT: 10.7717/peerj-cs.3237/fig-3

FOUNDATIONS OF BLOCKCHAIN

Modern blockchain technology was proposed and developed by Satoshi Nakamoto, whose
identity remains unknown, in a white paper entitled “Bitcoin: A Peer-to-Peer Electronic
Cash System” (Nakamoto, 2008). Originally, the main goal was to solve the problem of
double spending in digital payment systems by proposing and developing a digital
signature, namely Bitcoin. However, its entire system architecture gained attention and
paved the way to a new application and research field.

System architecture of blockchain

The structure of a blockchain consists of a sequence of blocks, as shown in Fig. 3. Each

block contains two groups of information: (1) block header and (2) transaction records.

The block header consists of six types of information: (1) Block version, (2) Merkle tree
root hash, (3) Timestamps, (4) n-bits, (5) Nonce, and (6) Parent block hash, as shown in
Fig. 4 (Haber & Stornetta, 1991).

In the blockchain, the first block is referred to as the genesis block. Within a block, the
block header contains the hash of the previous block, and there is only one parent block,
the genesis block is the only one that does not have a parent block hash. Table 3 listed the
individual composition of the information stored in the block header of a single block
(Zheng et al., 2017).

Transaction records are stored in the main part of the block, including a transaction
counter and a list of transactions, whereby the number of transactions varies depending on
the block and transaction size. The authenticity of each transaction is verified with a digital
signature based on asymmetric cryptography in an untrusted environment (Gad et al.,
2022). With the digital signature, each party has a private key for signing transactions,
which must be kept secret, and a public key, which is distributed openly across the
blockchain. The algorithm used for the digital signature in a blockchain is usually the
Elliptic Curve Digital Signature Algorithm (ECDSA) (Johnson, Menezes ¢ Vanstone,
2001). The encryption algorithm can differ depending on the cryptocurrency and its
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Figure 4 A detailed illustration of a single block structure.
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Table 3 Listed definition of individual composition block header of a single block.

Composition Definition

Block version Shows the set of block validation guidelines to adhere to.

Merkle tree root hash The entire block’s hash value of all transactions.

Timestamp Present universal time as seconds since 1970-01-01.
n-Bits The hashing target of a valid block hash.
Nonce A 4-byte field that typically begins with 0 and increases for each hash calculation.

Parent block hash A 256-bit hash value that points to the previous block.

version. The current version of Bitcoin, for example, uses the SHA-256 (FIPS Pub, 2012)
hashing algorithm for data encryption.

Types of blockchain

The study categorizes blockchain technology into five different types: firstly the public
blockchain, secondly the private blockchain, thirdly the consortium blockchain, fourthly
the permissioned (fully private) blockchain and fifthly the hybrid blockchain, which we
explain comprehensively and in detail in Table 4 (Paul et al., 2021; IBM, 2021).

Components and features of blockchain

There are three main elements of the blockchain: (1) distributed ledger (AWS, 2023); (2)
smart contract (Taherdoost, 2023), and (3) consensus (Lashkari ¢ Musilek, 2021). The
distributed ledger is of crucial importance for the blockchain, as it stores data publicly and
for everyone to view and read, but is unchangeable once it has been written. Smart
contracts can be thought of as tiny applications that can be stored in the blockchain
(distributed ledger). There is a special programming language for this called Solidity
(Wood, 2024). 1t is a rule-based agreement that, once written to the blockchain, is
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Table 4 Summary of five types of blockchain.
Type Description

Public The public blockchain, exemplified by Bitcoin (Nakamoto, 2008), is a decentralized system that anyone can participate in and read, with
transparency increasing as more users join.

Private The key difference between public and private blockchains is that private blockchains are managed by an organization or administrator,
making them less decentralized and typically used internally rather than openly.

Consortium  Similar to private blockchains, consortium blockchains are managed by selected members, but unlike private blockchains, they are
governed by multiple organizations or members with shared goals.

Permissioned A permissioned blockchain network requires additional permissions for writing access, while read access may remain public, and
currently, only Ethereum (Buterin, 2014) can extend into such a system (The Investopedia Team, 2024).

Hybrid A hybrid blockchain combines elements of both public and private blockchains, allowing controlled data access and storage while
maintaining public accessibility and keeping certain data private.

Table 5 Summary of proof-based consensus mechanism.

Type Description

Proof-of-Work (PoW) In proof-of-work, new blocks compete to solve difficult cryptographic problems (mining) to be added to the
blockchain, requiring high computation and energy, with verification being easier than solving; this method is
mainly used by Bitcoin (Mololoth, Saguna ¢ Ahlund, 2023; Nakamoto, 2008).

Proof-of-Stake (PoS) PoS, introduced by PPCoin (King ¢ Nadal, 2012), is energy-efficient and doesn’t require high computation
power, using coin age (value multiplied by holding time) to reduce attack likelihood and grant more rights,
while proposing accounting rights for mining.

Delegated Proof-of-Stake (DPoS) ~ DPosS lets stakeholders choose representatives for block validation, ensuring efficiency, with representatives
adjusting block size and interval, and voting eliminating dishonest delegates to prevent malicious activity.

Proof-of-Authority (PoA)/Proof-of- The PoA/Pol consensus mechanism uses trusted nodes with verified identities to create blocks, staking their
Identity (PoI) reputation influenced by user behavior, essential for high-trust, permissioned blockchains (Yaga et al., 2018).

Proof-of-Elapsed-Time (PoET) In permissioned blockchains, authenticated participants are identified before joining. PoET uses Intel SGX to
ensure fair block creation by verifying waiting times and generating tamper-proof attestations, enhancing
security and fairness (Masood & Faridi, 2018).

automatically executed and immutable, although updates are possible but difficult to
implement. The consensus mechanism/algorithm is the security system of the blockchain
that determines whether a new block can be safely added to the chain and protects against
potential attackers and threats. There are two main categories of consensus mechanisms:
(1) proof-based and (2) voting-based (Jain ¢ Jat, 2022; Khan et al., 2020). In proof-based
consensus algorithms, which are common in public blockchains, a proof of work is
provided to compete for the addition of blocks. Private permissioned blockchains and
consortium blockchains use voting-based consensus, where blocks collectively verify
transactions before new ones are added. Table 5 summarizes the proof-based mechanisms
and Table 6 summarizes the voting-based mechanisms. Table 7 (Viriyasitavat ¢
Hoonsopon, 2019) summarizes the characteristics of blockchain in three categories:
(1) decentralization, (2) immutability, and (3) consensus.

Machine learning techniques
A common method for developing adaptive algorithms is to combine ML (Obulesu,
Mahendra & ThrilokReddy, 2018) with reinforcement learning (RL). ML and RL can
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Table 6 Summary of voting-based consensus mechanism.

Type Description
Practical byzantine fault PBFT, used in private and permissioned blockchains, handles up to 33% malicious nodes with Byzantine fault
tolerance (PBFT) tolerance but has limited scalability due to increased message complexity with more nodes (Mololoth, Saguna ¢
Ahlund, 2023).
Ripple consensus In the Ripple network, nodes generate a Unique Node List (UNL) of reliable nodes, achieving consensus through

rounds of transaction validation and voting, with 80% agreement required for ledger acceptance and 40% UNL
overlap between nodes (Khan et al., 2020).

Tendermind consensus In Tendermind consensus, clients directly create and broadcast transactions to validating block nodes via the gossip
protocol, which must gather and validate transactions before including them in the block (Jain & Jat, 2022; Khan
et al., 2020).

Table 7 Summary of characteristics of blockchain in three categories.

Characteristics Description

Decentralization Decentralization shifts control from a central system to a distributed network, reducing costs, increasing efficiency, and enhancing
transparency by spreading trust among participants.

Immutability Immutability means blockchain data cannot be altered, making transaction records tamper-proof; errors can only be corrected by
adding new transactions or blocks.

Consensus The consensus mechanism sets rules for participants to agree on recording transactions and storing data, requiring majority consent
for new entries.

ML methods

Cybersecurity decision Hybrid integration

Inputs Data (Optimal security (Merge ML and RL
(Real-world data) Preprocessing actions) outputs)

RL methods

Feedback loop
(Continuous learning,
evaluation and update)

Smart Microgrids
(Cyber-enhanced grid)

Figure 5 Hybrid RL methods integrate various ML strategies to enhance the cybersecurity of MGs.
Full-size K&l DOT: 10.7717/peerj-cs.3237/fig-5

improve real-world problem solving by identifying the best solutions to specific problems.
In the following sections, the features of this algorithm and the changes made to improve
the cybersecurity of MG are explained. The ML, RL and hybrid models used in this study
have been explained in detail as shown in Fig. 5.

Supervised learning

In supervised learning (Muhammad ¢» Yan, 2015), learning models are created by labeling
data to solve classification and regression problems. Regression methods including linear,
polynomial and exponential techniques - extract attributes for independent and dependent
variables. Among these, techniques based on Gaussian Process Regression (GPR) are
becoming increasingly popular. Unlike parametric schemes, which define the shape of
samples based on their mean and variance functions, GPR adheres to a Gaussian random
process distribution, as shown in Egs. (1) to (3).
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f(x) = Gp(m(x), k(x,x)) (1)
where,

m(x) = E{f(x)} @
and

k(x,x') = Gy| {{f(x) — m(x))(f(x) — m(x))}"]. (3)

The input vectors in Egs. (1) to (3) are denoted by x and x/, the mean function is
specified by m(x) and the covariance function by k(x, x'). Linear kernels, square
exponential kernels, Matern kernels, periodic kernels or various types of complex qualified
equations can be used as covariance functions (also called kernel functions). When
training with the labeled sample dataset, the hyperparameters in Eq. (1) are optimized. The
accuracy of GPR in dealing with nonlinear relationships is one of its advantages over LR
methods.

One of the most commonly used kernel-based supervised learning methods is the
Support Vector Machine (SVM). By using the SVM to separate the data from the input
pattern vector (x) and the labeled target vector (y), the linearly separable dataset (x, y) can
be clearly represented by two hyperplanes (edges). The form of the decision area for two
parallel hyperplanes is explained by Eq. (4), where w stands for the weights and b for the
vector of bias factors. If you use normalized or standardized datasets, the decision area and
each hyperplane are 1/||w|| away from each other. SVM reduces classification errors by
applying a hinge loss algorithm to a hyperplane of classification targets on linearly
indivisible datasets.

wlix+b=0. (4)

The goal is to minimize the function L in Eq. (5), where L is the regularization
parameter and 7 is the number of modes.

L= %;max(o, 1— y(wlx; + b)) | + Afw]™ (5)

By using kernel functions (such as those in Table 8 (Patle ¢» Chouhan, 2013)) to convert
input states into wide-dimensional feature regions and then applying hyperplanes to
delineate the input data, SVM can also be used to determine decision boundaries (decision
boundaries are defined in Eqgs. (6) and (7) where ¢ denotes the mapping function).

wlp(x) +b=0. (6)
k(x,-, xj) = <p(xl-)T<p(xj). (7)
Kernel functions (see Table 8) first transform the input state into a wide-dimensional
feature space, and hyperplanes delimit the input data. Support Vector Machines (SVM)
optimize the parameters for these hyperplanes using methods such as stochastic gradient
descent (SGD), sequential minimal optimization (SMO) and interior point techniques
(IPT), which makes them effective for regression tasks. Common SVM variants also
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Table 8 Frequently used kernel functions of vector machines.

Kernel function Mathematical formulation

Linear k(xi, x;) = {x,T , xj)

Polynomial k(xi, x) = (x],

Radial basis function (RBF) k(x,, x]) ( y||x, — x| ) y>0
Sigmoid k(xi, xj) = tanh( xi — x;) +7)

Two samples of vectors are x; and x;.

Parameter r is specified by initial coefficient (coef0).

include Bayesian SVM and Support Vector Clustering (SVC). From the point of view of
sparse Bayesian learning theory, Relevance Vector Machines (RVM) (Tipping, 2001, 1999,
2003) are also known as kernel-based models. There are real-time intrusion detection
systems using RVMs that are similar to SVMs in the cybersecurity domain, including MGs
(Naveen, 2012).

Decision Trees (DT), another approach to supervised learning, begin by selecting a root
node based on the feature with the highest information gain rate. While the main node has
the greatest information gain, the sub-nodes rank the data according to the different attribute
values of the main node. This process is repeated until there are no more attributes or
additional information in the new sub-nodes. To maximize information gain, DT algorithms
such as ID3, C4.5 and Classification and Regression Trees (CART) use information entropy.
Random Forest, an ensemble learning method that combines multiple DT models, improves
the flexibility of tree-based algorithms. After evaluating the predictions of all DT models, the
RF algorithm selects the model with the highest majority vote.

Unsupervised learning

Unsupervised learning (Usama et al., 2019), which works with unlabeled data, is often used
to solve clustering problems. Common techniques include k-means clustering algorithms
(e.g., k-Nearest Neighbor), where k cluster centers are randomly initialized and then each
data point is assigned to the nearest center. The algorithm iteratively adjusts these centers
to minimize an objective function based on the distance between the clusters and the data
points and stops when the cost function stabilizes or a maximum iteration limit is reached.
Another approach is hierarchical clustering, which groups the data according to their
similarity (measured by linkage methods or Euclidean distance) and stops once a
predefined number of clusters has been formed. Density-based spatial clustering,
introduced by Ester et al. (1996), identifies dense regions based on parameters such as scan
radius (¢) and minimum points labeling outliers in low-density areas. It concludes by
processing all data points. Alternative strategies include mean-shift or Gaussian mixture
models, which adaptively refine cluster positions based on data density or probabilistic
distributions.

Deep learning
Artificial neural networks (ANN) (Uhrig, 1995) form the backbone of DL systems and
operate in both supervised and unsupervised modes. They use non-linear functions to
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Figure 6 An illustration depicts the architecture of DNNs.
Full-size Kal DOI: 10.7717/peerj-cs.3237/fig-6

model relationships between input and target variables while optimizing their parameters.
Advances in big data mining and computer technologies are driving the growing
popularity of DL. Figure 6 illustrates the architecture of deep neural networks (DNN).
DNNs mainly contain several hidden layers.

Backpropagation is not only used for training DNNs, but is also considered as an
optimization method that uses gradient descent to determine the weights and biases of the
neural network (NN). The mathematical formulation is shown in Eq. (8). Another popular
type of ANN is the deep belief network (DBN) (Hinton, Osindero & Teh, 2006).

fo) = fa[Wita(Wiy - fa(Wox + bo)) + bi]. ®
CNNs (O’Shea ¢ Nash, 2015) are advanced DL models that learn hierarchical

representations and extract features and excel at tasks such as image and object
recognition. Their convolutional layers achieve this by applying convolutional kernels to
process the input tensor and the outputs of the previous layers. Fully connected layers and
pooling layers are used to further identify features, as shown in Fig. 7. The format of the
convolutional layers is shown in Egs. (9) and (10) (Goodfellow, Bengio ¢ Courville, 2016),
where Z*1(i, j) denotes the (i-th, j-th) output pixel from the (I + 1) feature map of the
convolutional layer, Z! denotes the input to the (I + 1) convolutional layer (the k-th
channel), K is the number of channels in the first convolution layer, L;,, is the size of zH

wh™(x, y) is the weight of the (x-th, y-th) element in the convolution kernel in the

(I + l)th convolution layer, b is the bias vector, f is the size of the convolution kernel, s, is
the stride number and p is the padding number.

K f
ZM1(i, j) ZZZ Zy(soi + x,50] + 7 )W (6, 9)] + b, (i,7) € {0,1,-+ L} (9)

k=1 x=1 y=
L1+2p f
so+1

The process of selecting features and filtering information is called pooling and it

—_

Ly = (10)

usually takes the form of Eq. (11) (Estrach, Szlam ¢ LeCun, 2014), where a is the parameter
that defines the pooling strategy (a = 1 indicates the average pooling; a — oo indicates the
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maximum pooling), and P,l:’l (i,7) is the output. Maximum or average values are common
pooling algorithms.

f S
PEGg) = | SN Zsoi 4 x40 )7 (11)
x=1 y=1

Combining the convolutional layer with the pooling layer usually improves the
performance of data exploration. CNNs are usually trained with a backpropagation
algorithm, similar to DNNs. The extracted functions are aggregated by the fully linked
layer in (8) and then sent to the output layer and optimized for DNNs. To improve training
performance and flexibility, some DNN and CNN models can benefit from ensemble
learning (EL) and transfer learning (TL) methods. TL uses tiny training datasets to train
complex NNs. Basically, the accuracy and flexibility of an NN increases when it contains
multiple learning systems.

As shown in Fig. 8, recurrent neural networks (RNN) have become increasingly popular
for processing time series data. Each RNN block receives an input variable x(¢) at each
time ¢. The input variable x(t) is the same as the input variable x(¢). The output of each
block is y(¢) and its hidden state is h(t). The output y(t + 1) is obtained by importing
h(t) and combining it with x(f + 1) to form h(t + 1). During this process, a time series
memory is created. The trained RNN can predict the input time series variables.
Hochreiter originally proposed the LSTM framework, which is a representative RNN
framework (Hochreiter ¢ Schmidhuber, 1997). By forgetting inputs that are irrelevant to
the block and strengthening key inputs, the forgetting gates in LSTM solve the problems of
gradient vanishing and explosion problems. It is well known that reservoir computing
(RC) algorithms, Bidirectional RNNs and Stacked RNNs outperform traditional RNN
algorithms in terms of training performance. One of the variants of the RNN architecture
is the Gate Recurrent Unit (GRU). It is also considered an improved architecture of RNN
and is a mutation form of LSTM (Cho et al., 2014).

Reinforcement learning
A unique branch within machine learning is RL. It is based on the principle of mimicking
human learning and development through trial and error, which was originally proposed
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by Sutton & Barto (2018). In RL, agents interact with their environment by observing
states, performing actions, and receiving rewards that include both positive incentives and
negative punishments. Agents choose actions from a finite set of possibilities in their
environment, and we measure their success by evaluating these rewards. To balance
long-term goals, discounting factors adjust the weight of future incentives over immediate
rewards, preventing an excessive focus on short-term gains. Agents primarily engage with
their environment through this iterative process and refine their behavior based on
reward-driven feedback. Rewards are given to the agent based on their behavior. A typical
reinforcement learning process is shown in Fig. 9. Here, the states and actions are

S =1{1, ..., n}and A = {1,...,n} Which of these value sets are continuous and which
are discrete depends on the problem. This strategy was then defined for this function. The
next goal for the reinforcement learning agent was to maximize the reward and obtain it by
acting appropriately according to its current condition. Since this method is a closed loop,
it requires an initial condition. To achieve the desired results, the RL must be set correctly.
If the condition is simplified, the RL condition is not properly designed. The result is poor
performance and an inability to respond positively to rewards.

When the agent interacts with its environment, RL is mainly used to identify the
activities that will generate the highest cumulative rewards. The Markov Decision Process
(MDP) principle is used for this. It usually consists of an agent and an environment.
Depending on whether the environment needs to be explicitly modeled or not, RL can be
divided into two categories: model-based and model-free, as Fig. 9 shows. Agents derive
their behavior from their environment and this environment motivates them. Standard RL
methods are used:

o Q-learning (Watkins ¢ Dayan, 1992): using the combination between Q-values Q(s, a)
and the Q-table to create the next action. This results in a new Q-value that is generated
using Eq. (12), where R stands for rewards, a and s for the following steps o and y for
learning rates.

Q(s, a) < Q(s, a) + a[R + ymaxyQ(s', a') — Q(s,a)],s « s'. (12)
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o Deep Q-networks (DQN) (Mnih et al., 2013): the goal is to use DL techniques
(e.g., DNN, CNN, LSTM) to overcome the exponentially increasing computational cost
of Q learning.

o Policy gradient methods (Sutton et al., 1999): instead of using Q-values, build post-test
steps using policy functions, which are measures of the state and operational behavior in
the current step.

o Actor-Critic (A2C) algorithms (Konda & Tsitsiklis, 1999): in order to modify its scoring
policy based on the score of the critic, the actor creates the posterior-step action using the
current-step state. The critic then assigns the actor a score at the current step.

Q-learning

Q-learning is a reinforcement learning technique that enables agents to learn optimal
decision-making strategies by maximizing cumulative rewards through trial-and-error
interactions with an environment. The agent can use Q-learning to learn the optimal
policy that maximizes the long-term rewards and leads it to achieve its goal. Random
variations and incentive alignment challenges can be effectively addressed without
changing the existing framework of the environment. This technique identifies an optimal
policy for a finite Markov decision process (FMDP) by maximizing the expected
cumulative reward across all future time steps. Q-learning aims to identify the optimal
policy for an FMDP by maximizing the cumulative expected future rewards from the
current state, rather than focusing only on immediate or stage-specific gains. The
Q-function evaluates the long-term utility of an action by iteratively updating its value
estimates using reward feedback, thus reinforcing the learning process of the agent. The
value-based model-free reinforcement learning approach uses approximation functions
(e.g., NNs) to estimate action values. One-step Q-learning for training action-valued
variables is based on iterative minimization of the loss function, which is how DNNs work.
This off-policy learning technique uses current conditions to determine the best course of
action. In Q-learning, decision making that deviates from the current policy, such as
randomly exploring small actions, is classified as “off-policy” because the process does not
rely on the existing policy at every step. In addition, Q-learning attempts to optimize its
overall reward through execution. Through this feedback loop, the learning process

Yang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3237 16/45


http://dx.doi.org/10.7717/peerj-cs.3237/fig-9
http://dx.doi.org/10.7717/peerj-cs.3237
https://peerj.com/computer-science/

PeerJ Computer Science

Time step, ¢ Time step, {+1

Observation and Observation and
action (0, a;¢) action (0, a;¢)

State, v

Reward,

. -> Actions
Previous

Action

Internal state, s; Internal state, s;

Q-Network Q-Network

Figure 10 LSTM-based Q-Network agent. Full-size K&] DOT: 10.7717/peerj-cs.3237/fig-10

becomes more accurate and the rewards are optimized. The input can be categorized by an
agent that has time series analysis capability and the output is delivered in a timely manner.
By training the DL LSTM agent, the memory component within the DNN layer can
recognize the actions and states of the time series-based elements. With the developed deep
Q-learning model, a variety of optimization tasks can be solved. Figure 10 shows an agent
based on the architecture of the LSTM model. The input vectors consist of the prior action,
the current state and the reward received. To mitigate overfitting and reduce the
inaccuracy of the model in the current ensemble, the architecture includes additional
LSTM layers paired with a batch normalization layer. Subsequently, the data was processed
through the fully connected layer, a fundamental component of DL architectures. The
entire layers and nodes of the architecture dynamically adapt to variations in input
variables coming from real circuit signals or simulation data. The selection process can be
efficiently performed by a straightforward grid search in combination with representative
data samples, as shown in Fig. 11.

Perspective on the application of ML techniques in microgrids

The selection of an appropriate ML model is not arbitrary but must be tailored to the
specific cybersecurity challenge within an MG. The choice depends critically on the
requirements of the application, such as real-time performance, data availability, and the
specific nature of the protected assets.

Suitability for real-time threat detection

Real-time threat detection is arguably the most critical application of ML for MG
cybersecurity, necessary to preempt system instability. For this purpose, DL models that
can analyze time-series data are exceptionally well-suited. RNNs, including LSTM and
GRU models are prime candidates. Their inherent ability to process sequential data allows
them to learn the normal temporal patterns of voltage, current, and frequency signals
within an MG. An attack, such as an FDIA, would create anomalies in these patterns that a
well-trained RNN could detect with high accuracy. However, the computational
complexity of these DL models presents a significant trade-off. Deploying a complex
LSTM model on resource-constrained devices like smart inverters or remote terminal units
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may be infeasible. In these scenarios, less computationally intensive algorithms like SVMs
or RVMs offer a more practical solution. While perhaps offering slightly lower accuracy
than a deep DL model, their speed makes them better suited for initial, rapid threat
detection at the edge of the network. Furthermore, in real-world MGs, obtaining large,
accurately labeled datasets of cyberattacks is a major challenge. This limitation makes a
strong case for unsupervised learning approaches. Clustering algorithms can identify
deviations from normal operating clusters without prior knowledge of attack signatures,
making them invaluable for detecting novel or zero-day attacks that would evade
supervised models.

Suitability for energy transactions
For securing energy transactions, the primary security mechanism is blockchain itself,
which ensures integrity and non-repudiation. However, ML can serve as a vital secondary
defense layer. The most suitable ML techniques for this application are supervised
classification models. DT, Random Forests, and SVMs are well-suited for analyzing
transactional data to detect fraudulent or anomalous patterns. For instance, a model could
be trained on historical data to identify transactions that deviate from a typical energy
consumption of a user or trading behavior, flagging them for review. This is not a real-time
control application, so the slight latency of these models is acceptable. The key is their
ability to classify transactions based on learned features, adding an intelligent monitoring
layer to the structural security of blockchain.

A robust cybersecurity framework for MGs requires a hybrid approach, as no single ML
technique is universally optimal. Such a framework integrates lightweight, real-time
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models (e.g., SVM) at the edge, sophisticated time-series deep learning models (e.g., LSTM)
at the central control level, and unsupervised models for novel threat detection. This entire
architecture leverages a blockchain to ensure an immutable data record.

CYBERATTACK TYPES IN MICROGRIDS

The integration of advanced technologies and complex networks increases the
cybersecurity vulnerabilities of MGs and exposes them to various cyberattack vectors.
Attackers exploit vulnerabilities in critical components to compromise the intelligent MG
infrastructure. Each type of cyberattack has unique characteristics and has different
consequences. This section examines the main cyberattacks on MGs, including FDIA, DoS,
adversarial attacks, Time Delay Attack (TDA), Replay Attack (RA), Man-in-the-Middle
(MiTM), Switching Attacks (SA), malware and malicious command injection.

Our literature analysis reveals that FDIAs and Denial-of-Service (DoS) attacks
constitute the most researched and potent threats to microgrid security. The focus on
FDIAs arises from their capacity to directly corrupt the data governing critical MG
functions, such as SE, frequency control, and economic dispatch. Stealthy FDIAs can
emulate normal system fluctuations to bypass traditional bad data detectors that use
simple thresholds, which poses a significant challenge to detection systems. Similarly, DoS
attacks present a severe threat by exploiting the heavy reliance of MGs on ICT for real-time
control. A DoS attack can overwhelm communication channels, incapacitating the EMS,
severing control over DERs, and potentially initiating cascading failures. The proliferation
of IoT devices continually expands the attack surface, making DoS and its distributed
variant (DDoS) persistent and scalable threats. Although other attack types like Switching
Attacks can cause catastrophic damage, they often demand specialized knowledge of the
physical system topology and present greater difficulty for remote execution. These
factors likely account for the greater emphasis on research on data-centric attacks like
FDIAs and DoS.

False data injection attacks

FDIAs occur in various forms, including deceptive tactics that compromise the reliability
of control systems or manipulate measurement data (Pasqualetti, Dérfler ¢» Bullo, 2013).
The most well-known variants of FDIAs include random, pulse, ramp, scaling, and
Additive White Gaussian Noise (AWGN) attacks (Prasad, 2020; Ali et al., 2024; Elsisi, Su ¢
Ali, 2024). In this section, we review common FDIA types and analyze their intended
targets and the resulting consequences. The attacks start at time ¢, and interfere with the
original transmission signal Sy, resulting in the formation of mixed data Sg, a mixture of
real and manipulated information at time ¢.

1. Random attack: the random attack aims to corrupt the measurement signal by injecting
random data, which obscures the transmission signal as shown in Eq. (13). S,u4

represents the vector of random values introduced by the attacker.
S, — { Sr + Srnd; Latk
x —

Sk, otherwise’ (13)
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2. Pulse attack: the pulse attack interferes with and alters measurement signals by
introducing a pulse signal into the normal signal. S,,; refers to the pulse signal that is
deliberately introduced by an attacker. As Eq. (14) shows.

(14)

S, — Sr + Spul; tbegin <t <fend
e SR, otherwise

3. Ramp attack: the attacker alters the transmitted signal by integrating ramp signals and
thus changes the true measurement by means of a ramp attack. S,,,,, stands for the ramp
signal that the attacker intentionally injects. As Eq. (15) shows.

Sy = { Sr + Smm7 Z'begin <t <tend ) (15)

Sk, otherwise
4. Scaling attack: the scaling attack manipulates the measurement signal via a scaling
variable or function, resulting in unstable and inconsistent measurement data. As
Eq. (16) shows. Sy, stands for the scaling attack, while e, stands for the scaling factor.

_ SRa vt ¢tatk
Sscal = { (14 e)Sr, Vi€ tyx (16)

5. AWGN attack: the AWGN attack works subtly by injecting Gaussian noise into the
signals and disguising the interference as natural disturbances to avoid detection. The
name reflects the mechanics: additive combines the noise with the signal, white
distributes it evenly across the frequencies, and Gaussian follows a normal distribution.
As Eq. (17) shows. S,y refers to a signal that has been compromised by an AWGN
attack, where an attacker maliciously injects noise.

Sr + Sawens  theoin <t <tend
S — gn s °gin ] en . 17
tx { Sk, otherwise (17)

6. Load redistribution attack (LRA): Yuan, Li & Ren (2011) developed the LRA, a
targeted FDIA that disrupts smart MGs by compromising the economic dispatch (ED)
system, a system designed to minimize operational costs (e.g., generation expenses, load
shedding penalties) through strategic adjustments to power generation. As Eq. (18)
shows. Here, AP, represents the attack on power flow metering, —Sr represents the shift
factor matrix, Kp represents the bus load incidence matrix, and AD represents the attack
on metering.

AP, = —Sg-Kp - AD. (18)

Denial of service

In a DoS attack, the attacker floods the system with excessive data packets, overwhelming
communication channels between measuring devices and the control center for a
predetermined timeframe. This disruption forces the system to drop any signals
transmitted during the attack. As shown in Eq. (19).

0 tveoin <t <tend
S — ) egin i en . 19
b { Sr, otherwise (19)
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In addition to flooding the system and overloading it with data packets, a DoS attack can
also take the form of protocol manipulation, weak spots, jamming and routing attacks
(Wenyuan et al., 2006; Jhaveri, Patel & Jinwala, 2012; Liang et al., 2017). Yi et al. (2014)
characterize the Puppet attack, a novel DoS tactic, as an intrusion that transforms
regular nodes in Advanced Metering Infrastructure (AMI) networks into puppet nodes.
The attackers instruct these hijacked nodes to flood the network with attack packets,
overloading communication capacity and draining energy reserves through excessive
traffic. In contrast to conventional DoS attacks with a single source, Distributed Denial-of-
Service (DDoS) attacks, a variation of DoS in MGs, are executed simultaneously from
multiple geographically dispersed systems (Raja et al., 2022).

Adversarial attack

The primary goal of attacks is to compromise analytical models (Elsisi et al., 2024; Liu
et al., 2019). The Fast Gradient Sign Method (FGSM) exploits the vulnerabilities of a
pre-trained model by generating adversarial noise over the gradient of the input signal,
thus intentionally maximizing the classification errors. As defined in Eq. (20) (Goodfellow,
Shlens &~ Szegedy, 2014), the FGSM attack generates adversarial examples by modifying the
original input data.

Nady, = X + €sign(V T (0, x, 7)) 0

where 17,4, is the perturbed image, x is the original image, 5 is the target (victim) image, J
denotes the loss function of the model, 6 represents the parameters of the model, and ¢
defines the perturbation magnitude.

The Projected Gradient Descent (PGD) attack derives from the single-step FGSM,
originally proposed by Madry et al. (2017). The PGD attack is a method designed to fortify
classifiers against first-order adversarial threats, as shown in Eq. (21) (Madry et al., 2017;
Elsisi et al., 2024). The iterative method produces a sequence of adversarial examples:

{xgdw Xays '”xfz\{itl
xgd" = x,
V.L(0,x) (21)
d- . d 1)
st o4+
X s Ay 2

where, the hyperparameter a, typically defined as /N for a given ¢, is applied iteratively.
The Clip, . operation ensures per-pixel constraints on the adversarial image.

Kurakin, Goodfellow & Bengio (2018) proposed the Basic Iterative Method (BIM),
which extends the FGSM framework by iteratively refining adversarial perturbations.
Unlike single-step noise application of the FGSM, BIM applies incremental adjustments
through a multi-step process, generating small perturbations that cumulatively maximize
errors, as formalized in Eq. (22).

adv __
Xy = X,

(22)
x?ﬂl = Clipy, {x?\,dv + o - sign(VeJ (Xﬁha 7))}
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Time delay attack

The TDA influences the system by introducing random delays in both the transmission
and reception of packets (Wu et al., 2019). Receiving the control signal at the right time is
crucial for effective system management. This attack interrupts the transmission of signals
from the remote terminal units (RTU) to the control center over the communication
channel as described in Eq. (23).

Ste = Sr(t — (1)) (23)

where 7(t) represents the time delay encountered in the reception of plant states at the
control center location. Uncertainty in time delay attacks can result in varied patterns.

Replay attack

The RA strategy operates by capturing sensor data over a specific time window and
substituting genuine measurements to corrupt control signals, or by maliciously passing
operator-generated commands to actuators to disrupt normal operation (Zhu ¢ Martinez,
2014).

Man in the middle

MiTM attacks threaten MGs by intercepting and manipulating communications between
devices to secretly monitor data (eavesdropping) or impersonate devices (spoofing), all
while mimicking the normal flow of data (Conti, Dragoni ¢ Lesyk, 2016). Kulkarni et al.
(2020) analyzed these attacks and pointed out the risks associated with the vulnerabilities
of the Modbus TCP/IP protocol, while Fritz et al. (2019) demonstrated a prototype MiTM
attack on an emulation platform and showed practical exploitation methods.

Switching attack

SAs destabilize MGs by targeting circuit breakers to disturb the phase angles and
frequencies of generators and eventually force disconnection (Liberati, Garone ¢ Giorgio,
2021). Liu et al. (2011a, 2011b) demonstrated this using a Single-Machine Infinite Bus
(SMIB) model that simulates transmission systems with a generator and a load connected
via a circuit breaker. Attackers execute SAs by disconnecting devices in substations such as
transformers, transmission lines or busses via compromised local networks. These actions
risk grid congestion, instability, and cascading failures such as blackouts (Yamashita et al.,
2020). Researchers warn that attackers can exploit IP-connected substations by hijacking
local computers with breaker access to breakers or digital relays with partial control,
enabling cascading trips. Yamashita, Ten ¢» Wang (2020) describe how attackers use
IP-based intelligent electronic devices (IED), commonly used in MGs, to remotely open
circuit breakers during SAs.

Malware attacks and malicious command injection

Malware attacks such as logic bombs, Trojan horses and botnets threaten systems in
different ways. Logic bombs remain inactive until certain conditions trigger their payload,
causing systems to crash, data to be corrupted or hard disks to be irrevocably erased
(Dusane & Pavithra, 2020). Trojan horses disguise malicious code as legitimate software to
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trick users into running it (Namanya et al., 2018), while botnets use networks of
compromised devices to spread malware, send spam or intercept communications (Liu
et al., 2009). Malicious command injection attacks infiltrate systems to seize unauthorized
control, as shown by Lin, Kalbarczyk ¢ Iyer (2018), who simulate adversarial command
sequences to study their destabilizing effects on MG dynamics.

Perspective on cyberattack landscape in microgrids

While the literature describes a wide array of cyberattacks, a critical analysis from the
perspective of MG operations reveals why certain threats receive more attention and are
considered more probable. The extensive focus on FDIAs in research is not arbitrary; it
stems from their unique potential to compromise the cyber-physical nature of MGs
stealthily. Unlike DoS attacks that overtly disrupt communication, FDIAs subtly alter
sensor measurements and control signals. This allows them to directly manipulate critical
MG functions like SE and economic dispatch, potentially causing physical damage or
widespread instability before detection. The challenge of distinguishing malicious data
from legitimate operational fluctuations makes FDIA a particularly insidious and
academically compelling problem.

From a practical standpoint, the most plausible attacks on current and future MGs
exploit the expanding digital footprint created by ICT and the IoT. Therefore, FDIAs,
MiTM attacks, and RAs are highly probable threats. These attacks target the
communication channels between DERs, smart inverters, and control centers, essential for
smart grid functionality. Their feasibility is heightened because they often do not require
overwhelming force but exploit common communication vulnerabilities of protocols. In
contrast, attacks like coordinated large-scale SAs may be less probable as they often require
more system knowledge and synchronized access to multiple physical devices. However,
the increasing interconnection of substation automation systems means their potential
impact cannot be overlooked. Thus, the focus of the literature reflects a risk matrix where
both the likelihood and the potential impact of an attack are considered. FDIAs represent a
critical intersection of high likelihood (due to ICT vulnerabilities) and severe impact (due
to physical system manipulation).

CYBERSECURITY APPLICATIONS IN MICROGRIDS

Advanced communication networks, IoT devices, and automated control systems expose
MGs to significant cyber threats (Gaggero, Girdinio ¢» Marchese, 2021). To counter these
risks, experts have developed sophisticated protective measures, including AI-driven
intrusion detection systems (IDS), blockchain protocols, and real-time anomaly
monitoring. However, attacks such as FDIA, DDoS, and ransomware continue to
destabilize MGs, risking widespread outages and underscoring the urgency of robust
security measures (Dai ef al., 2024).

Blockchain-based framework
Blockchain is mainly used in MGs to solve the problem of energy trading in energy
sharing. Leveraging the decentralized nature of blockchain for peer-to-peer (P2P) energy
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transmission not only reduces energy loss, but also ensures secure energy transmission.
Figure 12 illustrates the blockchain application between MGs and buyers.

Coordinating energy trading between multiple buyers is a complex challenge for MG
operations. The authors of Kost'dl, Khilenko ¢ Hundk (2024) introduce a two-level
hierarchical blockchain framework to optimize P2P energy trading and demand
management. The platform employs game algorithms to help participants make
cost-efficient decisions while maintaining grid stability, and implements cryptographic
protocols to block fraudulent transactions. The simulation results show that the
integration of recommendation algorithms for buyers and sellers reduces the peak-to-
average ratio (PAR), reduces network congestion and increases overall efficiency. A real
world case study on P2P energy trading in the MG system is conducted by the authors of
Khubrani ¢ Alam (2023). In addition to P2P energy trading, they also proposed Renewable
Energy Certificates (REC) management and secure billing. This ensures transparent,
tamper-proof transactions, strengthens trust in energy trading and reduces security risks.

Despite the inherent security of the blockchain, the communication channels
connecting the blockchain to MGs or buyers are still fraught with cybersecurity risks,
prompting developers to deploy smart contracts as tailored communication protocols with
predefined rules and functions to secure these connections. The authors of Faheem et al.
(2024) propose an Advanced Solana Blockchain (ASB) framework that utilizes smart
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contracts to monitor and control DERs in real time. By minimizing communication
overhead and increasing efficiency, the ASB framework ensures data integrity and
authentication mechanisms, thus increasing the resilience of smart grids against
cyberattacks. The authors (Zhang et al., 2024) propose a blockchain-based security
architecture for scalable IoT-integrated microgrids that use multi-layer smart contracts to
secure authentication and interactions between components. They introduce a Computing
Balance-based Exchange (CBE) algorithm to optimize data exchange and reduce latency,
while the framework ensures secure device communication and addresses trust/privacy
concerns. Simulations show improved security and efficiency in large-scale smart grids.
The reliability of power distribution must be guaranteed, especially in medium voltage
networks where power failures can lead to blackouts or serious operational disruptions.
Using distributed ledger technology (DLT), the authors (Hahn et al., 2024) propose a
Cyber Grid Guard (CGG) system that verifies and authenticates data received from
electricity meters and protection relays. The system provides an additional layer of security
for monitoring the power grid, detects faulty phases and immutably logs event data in the
blockchain using IEC 61850 GOOSE messages. With the increasing penetration of solar
energy in residential areas, smart inverters now play a crucial role in modern electricity
grids. However, these IoT-enabled devices expose grids to cyber threats, jeopardizing
stability. To address this issue, the authors (Akkaoui et al., 2024) introduce Resilient
Authenticated Smart-inverter Secure Firmware via Auditable Blockchain (RASSIFAB), a
blockchain framework that secures smart inverter firmware updates by increasing security,
resilience, and auditability. By leveraging the immutability of blockchain, RASSIFAB
guarantees authentic firmware over-the-air (FOTA) updates and prevents tampering, even
against malicious insiders. Appasani et al. (2022) emphasize enhanced security,
transparency, and decentralization in domains such as AMI, EVs, and synchrophasors.
The discussion suggests that integrating blockchain with ML can strengthen MG
cybersecurity by enabling secure data management and intelligent threat detection. Table 9
summarizes the blockchain-based framework for application of cybersecurity in MGs.

Machine learning-based framework

ML improves the cybersecurity of microgrids through real-time threat detection, adaptive
anomaly monitoring and proactive risk mitigation. By analyzing IoT and sensor data to
detect attacks such as FDIA and DoS, ML systems adapt to evolving threats, increase grid
resilience and ensure reliable power distribution. Figure 13 shows the cyberattack path and
critical targets that represent optimal locations for ML model deployment. FDIAs are the
most widespread and effective cyberattack method, particularly targeting the transmission
of signaling data. Numerous studies have dealt with the detection of FDIAs using different
machine learning approaches. The authors of Y, Hou ¢ Li (2018) propose a real-time
method for detecting FDIAs that integrates wavelet transforms (WTs) with DNNs

and exploits temporal correlations in system states to overcome the one-point
limitations of traditional approaches. Their DL model extracts hidden patterns from
wavelet-transformed signals and can accurately distinguish cyberattacks from normal
operations. One of the biggest challenges in identifying FDIA, besides detecting the attack
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Table 9 Summary of blockchain-based cybersecurity applications in MGs.

Methods Microgrid Security approaches  Contributions Critical insights

applications

Hierarchical blockchain Optimizing Blockchain with Developed a hierarchical The integration enhances microgrid
energy trading with game  energy trading cryptographic blockchain system for efficiency, security, and scalability by
theory (Kost'dl, Khilenko ~ and load security measures and  optimized microgrid energy = reducing PAR and ensuring transparent
& Hundk, 2024). balancing in game theory management. trading; however, it introduces design

microgrids. optimization. complexity, relies on accurate user
modeling, and may incur computational
overhead.

Blockchain-based Peer-to-peer Decentralized Proposed a blockchain-based The article proposes a secure
decentralized MG energy trading transactions with decentralized microgrid for ~ blockchain-based microgrid for Saudi
framework (Khubrani ¢ and REC blockchain for secure energy trading Arabia, enhancing transparency and
Alam, 2023). management. security and decentralization, but lacks real-world

transparency. validation and faces regulatory and
scalability challenges.

Lightweight smart Secure Smart contracts for Introduced an Advanced The authors propose a lightweight
contracts on Solana communication authentication, data Solana Blockchain (ASB) Solana-based smart contract framework
blockchain (Faheem for DERSs. integrity in DER framework for DER that enhances secure, low-latency DER
et al., 2024). communication, communication security. communication, though its complexity

Multi-layer smart contracts

and CBE algorithm
(Zhang et al., 2024).

Cyber Grid Guard system
with DLT (Hahn et al.,

2024).

Blockchain-based firmware

update security

(RASSIFAB) (Akkaoui

et al., 2024).

Blockchain with smart
contracts and distributed
ledger (Appasani et al,

2022).

and computational overhead may hinder
practical scalability.

Secure identity Multi-layer smart Designed a smart The article presents a secure and efficient
authentication contracts with contract-based secure smart grid framework using blockchain
and data sharing  cryptographic architecture for smart grid ~ and smart contracts, though its
in smart grids. authentication. communication and data complexity limits practical scalability.

exchange.

Fault detection in DLT for data Implemented DLT for The CGG system with DLT enhances fault
medium-voltage  validation, fault enhanced fault detection detection security by validating relay
feeders. detection and cyber and power grid security data, but it lacks fault-type distinction

resilience. and may introduce detection delays.

Securing firmware Blockchain for Developed RASSIFAB, a The article introduces a blockchain-based
updates for immutable firmware  secure blockchain-based FOTA framework that strengthens
smart inverters.  updates, resistance firmware update firmware security and auditability for

against cyber threats.  framework for smart smart inverters, but incurs overhead and
inverters. depends on a trustworthy majority of
OEM nodes.

Synchrophasor Digital signatures, Enables secure, decentralized The article highlights the potential of
systems, AMI, consensus algorithms,  data exchange and blockchain to secure and decentralize
EVs, Home private/consortium enhances resilience against ~ smart grid applications but provides
Automation. chains. cyberattacks. limited practical validation and

insufficient analysis of implementation
challenges.

itself, is to find the exact origin of the attack. To address this problem, researchers use a
multilabel classification strategy (Wang, Bi ¢ Zhang, 2020). They combine CNNs with
traditional bad data detectors (BDD) to accurately identify compromised nodes in
microgrids. Location detection is critical for real-time threat defense as it enables targeted
countermeasures. AC smart islands, where DERs operate in isolated grid configurations,
provide a unique environment for viewing FDIA (Dehghani et al., 2020). Their method
uses wavelet singular values as feature inputs to a DL model and utilizes wavelet transforms
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to detect subtle anomalies in voltage and current signals and identify attacks early. The
model has been trained on simulated attack scenarios and achieves exceptional accuracy in
distinguishing between normal grid operation and compromised states. The researchers
propose a federated learning (FL) system for detecting FDIAs in distribution networks that
offsets the inefficiencies and privacy risks of centralized methods through an end-edge
cloud collaboration that distributes the computational tasks (Li et al., 2024). Key
innovations include temporal-spatial Graph Convolutional Networks (GCN) that analyze
temporal-spatial data correlations, demonstrating the potential of FL to strengthen
cybersecurity while preserving data privacy.

Increasing reliance on IoT and communication networks exposes smart grids to cyber
threats such as DoS attacks and malware intrusions, prompting researchers to use ML and
DL techniques for robust countermeasures (Hasan et al., 2024). However, challenges such
as hyperparameter optimization, critical feature selection, privacy assurance, and real-time
detection require special attention. Without proper feature selection techniques, the
performance of ML models decreases and increases the attack effect. There are three main
types of feature selection techniques: first, rule-based; second, signature-based; and third,
anomaly-based (Mohammed et al., 2024). Using the right features can not only reduce the
attack effect but also reduce the computational cost. Most studies using ML techniques are
based on supervised learning. Supervised learning requires labeled datasets with high
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Table 10 Summary of ML-based cybersecurity applications in MGs.

Methods Microgrid Security approaches Contributions Critical insights

applications

DWT and deep neural networks for FDIA detection in  Temporal-spatial Introduces combined The study proposes a DWT-DNN-based
AC SE FDIA detection (Yu, Hou ¢ AC systems (large  feature learning, DWT and DNN for  FDIA detection method that achieves
Li, 2018) MGs). anomaly detection ~ AC state FDIA high accuracy in AC systems but requires

via DNN. detection. extensive training and careful parameter
tuning.

CNN with BDD for multilabel FDIA locational Multilabel First multilabel The article proposes an accurate and
locational FDIA detection (Wang,  detection in smart  classification with CNN-based FDIA efficient CNN-based FDIA locational
Bi & Zhang, 2020) grids (microgrid CNN, no alteration  locational detection  detector but limits generalizability due to

level detection). to existing systems.  framework. reliance on synthetic data.

Wavelet singular value FDIA detection in  Sliding mode Novel FDIA The study develops a DL-based FDIA
decomposition with DL (Dehghani ~ AC smart islands  control, feature detection model detection method with high accuracy, but
et al., 2020) (MG scenarios) extraction with using wavelet SVD its simulation-based validation limits

wavelet singular and deep learning.  practical applicability.
values.

End-edge-cloud collaboration, FL, ~ FDIA detection in  Privacy-preserving  First end-edge-cloud The article presents a federated

temporal-spatial GCN (Li et al, distribution FL, distributed FDIA detection TSGCN-based FDIA detection
2024) networks using detection, with FL and framework that enhances scalability and
FL. edge-cloud temporal-spatial privacy but slightly compromises
aggregation. GCN. accuracy and struggles with subtle attacks.

Comprehensive ML and DL review Smart grid CPS Analyzes security Comprehensive The article offers a comprehensive
for CPS security (Hasan et al., cybersecurity protocols, attack ML-based security =~ ML-based review for smart grid
2024) (general overview  mitigation, review, gaps and cyber-physical systems security but lacks

including MGs). detection future directions. real-world validation and deployment
strategies. insights.

Feature selection evaluation with Smart grid Supervised, semi- Evaluation of FS Heuristic and embedded feature selection
ML methods (Mohammed et al., cyberattacks supervised, techniques for significantly improve the accuracy and
2024) detection ensemble ML with  attack detection efficiency of ML-based smart grid attack

(includes MG feature selection. improvement. detection but face limited validation,
relevance). scalability challenges, and reliance on
synthetic datasets.

Unsupervised learning (clustering, =~ MG FDIA Anomaly detection  Highlights use of Clustering and association rule mining
association rule mining) (Pinto, detection with using clustering, unsupervised enable detection of novel false data
Siano & Parente, 2023) unsupervised association rule learning for FDIA injection attacks without labeled data but

learning mining. detection. demand high computational resources
approaches. and yield reduced accuracy under severe
tampering.

ML challenges in MG attack Challenges and Practical IDS Generalizes IDS The article shows that adaptive, ensemble,
detection, intrusion detection considerations of  deployment deployment and context-aware ML intrusion
system (IDS) analysis (Ramotsoela, ~ML-based IDS for  challenges, challenges in detection effectively detects data integrity
Hancke & Abu-Mahfouz, 2023) microgrids. behavior-based microgrid and DoS attacks in microgrids but induces

detection applications. high false positives and burdens
emphasis. resource-constrained devices with

intensive preprocessing.

quality and large quantity, which are difficult to obtain in the real world. Therefore,

unsupervised learning approaches that use clustering algorithms and data mining to detect
anomalies without prior attack knowledge can be more effective compared to supervised
learning approaches (Pinto, Siano ¢ Parente, 2023). In practice, other constraints must be
considered when adapting ML approaches for cybersecurity in MG environments, such as
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computational limitations, communication overhead, and false positive rates (FPR). To
mitigate this, hybrid approaches that combine signature-based detection with adaptive
learning models can provide more flexibility and robust mechanisms (Ramotsoela, Hancke
¢ Abu-Mahfouz, 2023). Table 10 summarizes the ML-based framework for cybersecurity
application in MGs.

Based on our review, the choice of an ML technique should be directly tied to the
specific cybersecurity challenge it aims to solve within the MG context. We offer the
following perspective:

 For Real-Time Attack Detection: DL models, particularly RNNs like LSTM and GRU,
are exceptionally well-suited. MG operations are inherently time-series-based
(e.g., voltage, current, frequency data). RNNs excel at learning temporal dependencies,
allowing them to accurately model normal grid behavior and flag subtle deviations
indicative of an attack. For attacks manifesting across multiple nodes, CNNs can be
highly effective in learning spatial correlations from sensor data to pinpoint the attack
location.

o For Autonomous Resilience and Defense: RL is the most promising approach for
moving beyond passive detection to active defense. An RL agent can be trained to make
optimal control decisions, such as isolating a compromised part of the grid or
re-dispatching energy, to maintain stability during an attack. Its trial-and-error learning
mechanism makes it adaptive to novel, zero-day threats without signatures.

* For Privacy-Preserving Collaborative Security: FL is the superior architecture in
multi-stakeholder MG environments where data sharing is restricted. It allows multiple
MGs to collaboratively train a robust detection model without sharing their sensitive raw
data, sharing only anonymized model updates. This is crucial for building collective
intelligence while respecting data privacy.

o For Environments with Limited Data: the challenge of obtaining large, labeled datasets
of real-world attacks is significant. Unsupervised learning methods are invaluable for
anomaly detection, as they do not require pre-labeled data. Furthermore, TL offers a
practical solution by enabling the adaptation of models trained on extensive datasets
from other domains to the MG context with minimal fine-tuning.

COMBINE BLOCKCHAIN AND MACHINE LEARNING

Blockchain secures data integrity in microgrids; ML detects FDIAs and malware. Their
synergy enables decentralized trust, mitigates vulnerabilities and ensures scalable,
privacy-preserving defenses for resilient energy systems. The integration of blockchain and
ML establishes a robust cyber-defense framework, wherein each technology mutually
mitigates the inherent limitations of the other. While powerful, ML models exhibit
vulnerabilities to adversarial attacks and data poisoning, compromising the reliability of
their decisions if the integrity of their training data is undermined. Blockchain technology
addresses this vulnerability by providing a cryptographically secure and auditable trail.
Storing ML training data, models, and real-time sensor readings on an immutable and
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decentralized ledger ensures the trustworthiness of the data that informs ML-driven
decisions. Conversely, ML models function as intelligent oracles for smart contracts. Upon
detecting a threat, an ML model can initiate a defensive action codified within a smart
contract, such as revoking device access credentials or isolating a microgrid segment. This
process creates a secure, automated, and transparent response loop. Smart contracts are
one of the most important and secure application implementations of blockchain. Since a
smart contract has the property that once it is written, it cannot be changed or modified,
combined with its tamper resistance and the detection sensitivity provided by ML models,
it can detect and defend against cyberattacks. The author of Li, Vott & Krishnamachar
(2024) suggested training the ML model with smart contracts as training data. Since a
smart contract must be designed with its programming language, it can be translated.
Figure 14 (Li, Vott & Krishnamachar, 2024) shows the combination of a smart contract
and an ML model. Although the smart contract is immutable, it is not impossible to update
it as the attack methods may evolve. The methods have been converted into an
open-source tool and can be found on GitHub, as stated by the authors (Vott, Li &
Krishnamachari, 2023).

The authors of Albakri, Alabdullah ¢ Alhayan (2023) have developed a
cryptocurrency-based framework that combines blockchain technology with DL models
and optimizes them using a hybrid metacomputation method. They presented the
Blockchain-assisted Hybrid Metaheuristics with Machine Learning-based Cyber Attack
Detection and a Classification (BHMML-CADC) model, which uses the Ethereum
blockchain to ensure transparency and prevent tampering in network attack detection
records. The model integrates a quasi-recurrent neural network (QRNN) and applies
Hunter-Prey optimization (HPO) to refine the parameters. To improve performance, the
team has also used biologically inspired swarm optimization techniques, adding another
layer of innovation to its approach. As EV become more widespread, the charging system
for EVs with MGs faces further challenges. Two persistent challenges are trust and
scalability. Researchers (Kashyap et al., 2024) have tackled both problems using blockchain
and quantum RL approaches, categorizing them as energy trading optimization problems
with cybersecurity. Their approach, Blockchain and quantum Machine learning driven
Energy Trading model for EVs (B-MET), treats EVs and MGs as environments for the
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Table 11 Summary of combined blockchain and ML cybersecurity applications in MGs.

Methods Microgrid
applications

Security approaches

Contributions

Critical insights

ML2SC Translator (PyTorch Deploying ML
to Solidity), On-chain MLP  models as smart

On-chain computation
using Solidity,

models (Li, Vott ¢ contracts for fixed-point math,
Krishnamachar, 2024). verifiable verifiable ML
inference. inference.
Blockchain, Hybrid Cyberattack Ethereum blockchain,
Metaheuristics, QRNN, detection and optimization-based
HPO (Albakri, Alabdullah classification in detection, feature
& Alhayan, 2023). MG with IoT. selection.
Blockchain, quantum RL, P2P energy trading Consortium
MDP formulation (Kashyap  for EVs. blockchain,
et al., 2024). decentralized
auditing, quantum RL
optimization.

Federated Learning (FL- Intrusion analysis
XGB), Blockchain Smart and secure
Contracts (Sundareswaran communication
& Sasirekha, 2023). in MGs.

DT, SDN, Blockchain MG cybersecurity,
Authentication, Deep intrusion
Learning (Bi-GRU) (Kumar  detection,
et al.,, 2023). real-time

monitoring.

Blockchain-based
Federated Learning
Smart Contracts.

Blockchain-based
mutual
authentication, SDN
security, DL-based
IDS.

Built the first

open-source translator
for PyTorch models to

Solidity smart
contracts

Proposed
blockchain-assisted
hybrid metaheuristic
DL detection
framework.

Designed quantum
RL-based energy
trading system with
consortium

blockchain.

Introduced FL-XGB
with blockchain for
intrusion detection in
MGs.

Developed integrated
digital twin-SDN-
Blockchain system for
grid security.

The ML2SC framework accurately translates
PyTorch MLPs into Solidity for on-chain
execution while preserving off-chain
accuracy, yet substantially elevates gas
consumption and confines deployment to
elementary architectures.

The blockchain-enabled
metaheuristic-driven QRNN attains up to
99.74% accuracy on the BoT-IoT dataset
but its intricate feature-selection,
hyperparameter-tuning, and blockchain
overhead impede real-time deployment
and wider applicability.

The B-MET framework secures P2P energy
trading via consortium blockchain with
quantum RL achieving 0.92 utility in 160
episodes but its quantum virtual machines,
Grover amplification, and Fabric
dependencies incur heavy overhead.

The integration of federated XGBoost with
blockchain achieves approximately 99%
intrusion detection accuracy and
immutable audit logs while imposing
considerable computational and storage
overhead.

The proposed digital twin-driven SDN with
blockchain authentication and
self-attention Bi-GRU achieves 99.73%
real-time intrusion detection accuracy but
adds substantial complexity and scalability
overhead

interaction of multiple agents that directly broking energy transactions. By using a

consortium blockchain, the exposure to a single failure is avoided, while quantum RL

interacts with complex, large-scale situations that would overwhelm typical ML models
and conventional algorithms. The system learns the best trading strategies to encourage
more MGs to participate in local energy trading by balancing loan amounts, shared energy
quantities, and energy prices. The authors of Sundareswaran & Sasirekha (2023) have
proposed a privacy-preserved approach to detect cyberattacks on multiple MGs. They
present a combination of blockchain and FL and use Extreme Gradient Boosting
(XGBoost) to classify the attacks. The participating nodes learn autonomously from local
data in a decentralized environment and only share aggregated insights with the
blockchain. This not only protects privacy, but also builds a collective intellect that is more
powerful than the work of a single person. MGs with an increasing penetration of REs
increase the complexity of connecting with different buyers, such as EVs and smart homes.
Vulnerabilities lurk in this sophisticated network. This problem has been addressed by

Yang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.3237 31/45


http://dx.doi.org/10.7717/peerj-cs.3237
https://peerj.com/computer-science/

PeerJ Computer Science

researchers using Digital Twin (DT) technology to mirror the MG system with digital
immunity and monitor MG behavior in real time (Kumar et al., 2023). At its core, it is a
software-defined network (SDN) that redirects traffic securely, efficiently and dynamically.
The framework combines blockchain-based authentication to secure the communication
in between and its legitimacy and verification, with the bi-directional GRU (Bi-GRU) DL
model as IDS detection that uncovers anomalies in communication patterns. Table 11
summarizes the combination of blockchain and ML for the framework for cybersecurity
applications in MGs.

PROSPECTIVE INTEREST IN RESEARCH AND
DEVELOPMENT

Interest in merging blockchain and ML to secure MGs is growing as cyberthreats become
more sophisticated. Blockchain anchors trust by enshrining data integrity in decentralized
networks, making tampering nearly impossible. Meanwhile, ML algorithms analyze
real-time grid data to detect anomalies such as FDIA or DoS attacks before they escalate.
Together, they form a dynamic defense: the immutable ledgers of the blockchain validate
transactions via smart contracts, while ML adapts to new attack patterns by training on
secure, decentralized datasets. This combination solves critical problems such as protecting
solar inverters or defending against malware that disrupts the power grid without
compromising privacy. There are still some challenges, such as balancing computing speed
with ironclad security, but early breakthroughs point to a future where MGs heal
themselves from attacks, maintain seamless energy flows and outpace hackers. By
combining the transparency of blockchain with the predictive power of ML, researchers
are not only fixing vulnerabilities but redefining the resilience of future energy grids.

Complex MG systems with high dependencies and high data requirements need
advanced methods that combine blockchain and machine learning technologies for
improved cybersecurity (Ghadi et al., 2024). Several possible future research directions can
be derived from the results of current research.

o DL holds great potential when integrated with blockchain-based data integrity
capabilities (Dong, Li ¢» Kamruzzaman, 2023). Together, the integration can enable both
accurate forecasting and immutable, verifiable audit trails in microgrid security designs.

» Hybrid RL models deployed on IoT devices offer promising paths to decentralized
management and energy conservation. However, future study will attempt to address the
inherent security challenges of such RL models by utilizing blockchain technologies to
protect the data from tampering, unwanted interferences, complexity and economic
prohibitions during computations.

e The diversity of future experimental conditions limits the applicability of machine
learning algorithms to microgrid environments. This limitation underscores the need for
standardized blockchain-based collaboration and data sharing platforms that would
facilitate reproducible research, systematic testing of algorithms, and consensus-based
identification of the most effective machine learning methods tailored to specific
microgrid environments.
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¢ In addition, the establishment of secure, blockchain-based cloud platforms for
interdisciplinary collaboration between researchers, industry stakeholders, and
policymakers is recommended. These platforms would accelerate the development and
deployment of ML solutions in the MG industry and also promote transparency, trust
and immunity to emerging cyberthreats.

OPEN CHALLENGES AND QUESTIONS

o Interoperability and standardization: the integration of blockchain and ML
technologies into microgrid systems offers promising improvements in security,
efficiency and resilience. These technologies individually contribute to improved data
integrity, real-time analytics and automated decision making. However, the lack of
uniform standards for integrating these technologies across different platforms poses a
major challenge, especially in hybrid AC/DC microgrid systems that use a variety of
communication protocols, which could be considered an open question and challenge
for the future.

 Energy-computation trade-offs: the energy overhead is always caused by consensus
mechanisms (e.g., Proof of Work (PoW), Proof of Stake (PoS)). Moreover, the use of
ML/DL techniques always consumes a lot of energy during the training process in
microgrids, especially when resources are limited and constrained. This is a major gap
for large-scale deployment in practice for real-world scenarios.

 Adversarial Robustness of Hybrid Systems: the use of immutable blockchain ledgers
for ML training data can ensure cryptographic audit trails, tamper-proof storage and
decentralized consensus on the provenance of the data. However, this mechanism can
lead to critical unresolved tensions with adversary robustness, such that some irrevocable
datasets on the vulnerability of models to circumvention attacks are yet to be verified.

o Human-Centric Security Governance: this raises significant concerns about
accountability, operational transparency and system reliability, as the autonomous
blockchain ML systems operate without a human oversight framework for cyber
incidents. It is necessary that a human is involved in the system and that resilience
protocols are in place to overcome the issues related to system vulnerabilities, trust
undermining and ethical and legal dilemmas in critical applications.

CONCLUSIONS

The integration of blockchain and ML represents a transformative approach to addressing
cybersecurity challenges in MGs. As these energy systems become more complex and
interconnected, their vulnerability to cyber threats increases, requiring innovative
solutions. With its decentralized architecture, immutability and cryptographic security,
blockchain technology ensures robust data integrity and secure transaction management.
Meanwhile, ML improves threat detection and response through advanced anomaly
identification, predictive analytics and adaptive learning from real-time data streams.
Together, these technologies form a synergistic defense framework: blockchain enhances
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trust and transparency in data sharing, while ML dynamically mitigates evolving threats,
creating a resilient, layered security posture.

However, there are other challenges. The limited scalability and latency of the
blockchain must be reconciled with the real-time requirements of MG operations, while
ML faces hurdles in data quality, model robustness and vulnerability to adversarial attacks.
Furthermore, the integration of these technologies requires efficient data interoperability
and energy-efficient design to avoid increasing computational overhead. Future research
should focus on scalable consensus algorithms, lightweight blockchain architectures and
FL techniques to preserve data privacy. Integrated systems combining blockchain
traceability with ML adaptability could strengthen resilience against advanced
cyber-physical threats. Collaboration between policymakers, industry stakeholders and
researchers is crucial to create standardized protocols and regulatory frameworks that
support secure and sustainable deployment.

A focused cybersecurity strategy is essential for the practical implementation of ML and
blockchain in MGs. Countering high-impact threats like FDIAs requires real-time ML
analysis, necessitating a trade-off between the accuracy of complex models and the
efficiency of lightweight algorithms for edge deployment. Furthermore, the scarcity of
labeled attack data makes unsupervised learning critical for detecting novel zero-day
threats. While these technical limitations must be overcome through interdisciplinary
innovation, the immense potential of combining ML with blockchain for MG protection is
clear. Through the simultaneous advancement of these technologies, the vision of safe,
smart, and self-healing energy systems is becoming increasingly tangible.
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