
Heuristic-based load balancing for
identical virtual machines: a fair
scheduling approach using probabilistic
methods
Abdullah Bajahzar

Department of Computer Science and Information, College of Science at Zulfi,
Majmaah University, Al Majmaah, Saudi Arabia

ABSTRACT
The work that is considered in this article is the difficult task of designing a good
scheduling policy for assigning the many activities involved in making multiple
products to the available infrastructure of virtual machines (VMs). The objective of
this study is to achieve an even workload entre virtual machines that are in charge of
running manufacturing tasks. The ultimate goal of the research is to come up with a
complete scheduling of all virtual machine-based tasks, with special attention to
optimisation of a balanced level of lifetime as well as reduced variance between
various virtual machines, which participate in the production activities. The main
goal of this experiment is to mitigate the disparities in the turnaround time of VMs
by allowing maintenance, or task handover to be done in a well-attuned way for a
more uniform operational smoothness. It requires the optimization of the lowest
work cycle of a virtual machine, which is very important to sustain the effective
capabilities over time. Balancing the operational fairness of the VMs is recognised as
the best scheduling policy for dealing with the problem difficulties. In this work, six
different heuristic-based approaches are presented as feasible methods to solve the
problem, based on mathematical formulations to provide a range of approximate
solutions to the issues analyzed. The proposed approach is characterized by a
probabilistic and iterative approach aimed at reinforcing the reliability of the
obtained results. The results confirm that the proposed approximate solutions are
effective, based on strict tests over 1,250 instances, with fixed metrics used to facilitate
a comparison with all the heuristic algorithms. The experiments demonstrate that the
repetitive-probabilistic heuristic dominates the other proposed heuristics in 82.2% of
all instances, resulting in an average gap of 0.11 and time consumption of 0.036 s.
The second-best heuristic, repetitive-mixed probabilistic heuristic, obtains 59.0% in
percentage terms, the average gap is 0.28, and the running time is 0.034 s.

Subjects Human-Computer Interaction, Algorithms and Analysis of Algorithms,
Scientific Computing and Simulation
Keywords Algorithms, Load-balancing, Cloud environment, High-performance computing,
Large scale optimization

INTRODUCTION
In the context of an industrial enterprise, the overarching goal that drives its operations is
the recording of profits. The pivotal element that significantly influences the realization of

How to cite this article Bajahzar A. 2025. Heuristic-based load balancing for identical virtual machines: a fair scheduling approach using
probabilistic methods. PeerJ Comput. Sci. 11:e3234 DOI 10.7717/peerj-cs.3234

Submitted 25 April 2025
Accepted 29 August 2025
Published 8 October 2025

Corresponding author
Abdullah Bajahzar,
a.bajahzar@mu.edu.sa

Academic editor
Massimiliano Fasi

Additional Information and
Declarations can be found on
page 30

DOI 10.7717/peerj-cs.3234

Copyright
2025 Bajahzar

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.3234
mailto:a.�bajahzar@�mu.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3234
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

this goal is the effective and strategic management of resources and processes within the
organization. Conversely, the objective that guides the operations of various information
technology companies, particularly those that focus on the intricate workings of virtual
machines, is fundamentally anchored in the sophisticated manipulation and optimization
of the programs that are executed within these virtual environments. Additionally,
guaranteeing the extended lifespan and lowering the depreciation rates of virtual machines
is an important factor that requires attention for sustaining operational effectiveness and
financial prudence as time passes. The rate of amortization attributable to the virtual
machines is intrinsically linked to the cumulative number of working hours that each
individual virtual machine is engaged in productive tasks, illustrating a direct correlation
between usage intensity and value retention (Fati et al., 2020). It follows that a lower
accumulation of working hours directly corresponds to a reduced rate of depreciation,
thereby enhancing the financial viability of the virtual machine assets. This research
endeavor is specifically designed to explore and identify a just and equitable distribution of
operational strains across the different virtual machines, with the ultimate aim of
diminishing the performance disparities that exist among them, a disparity that is
quantitatively assessed as the differential in completion times when comparing the least
burdened virtual machine to each of its counterparts. Additionally, it is essential to
recognize that throughout each operational cycle, a virtual machine necessitates a certain
duration for its cooling period, which incurs significant costs, and the extent of this
requirement is heavily influenced by both the execution time and the volume of
programs that have been processed by the virtual machine in question (Kinger, Kumar &
Sharma, 2014).

With cloud computing becoming increasingly popular, the virtualization technology
plays a crucial role, by abstracting the physical resources into virtual machines (VMs) in
order to offer flexibility, and run complex workloads at scale. Workload scheduling to VMs
in the multi-workload systems, the assignment of workload to VMs is a key problem which
can directly affect the system performance, fairness and user satisfaction. Conventional
workload assignment schemes may raise large disparities of completion time among VMs
and may affect the efficency of the system or even the service level agreement (SLAC)
violation of some VMs. To overcome these challenges, this work hones in on fair
allocation, which seeks to reduce the inequality of workload completion times while also
keeping utilisation high. Simplistic heuristics are proposed as lightweight and evolving
measures to deal with the inevitable uncertainty and changes in workload demands. These
heuristics provide an empirical tradeoff between the computational cost and the goodness
of the allocation, and are suitable for large-scale systems deployed in practice. The
proposed scheme is a systematic method to attain fairness, minimizing the disparities
among the finish times, and maintaining an equal usage of resources in virtualized systems.

The primary objective of this research is to systematically diminish the disparities
between virtual machines, thereby facilitating the unification of various interventions into
a singular, coherent timeframe that can be effectively managed (Ashraf, Byholm & Porres,
2018). In the context of a specified collection of tasks that are to be allocated across
multiple virtual machines, it is essential to recognize that each individual task possesses its

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 2/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

own distinct running duration and is assigned to a predetermined virtual machine that
does not change (Murad et al., 2024). In order to achieve an optimal balance between the
operational lifetimes of the virtual machines and the attenuation of their performance
while handling complex manufacturing processes (Lv, Fan &Wang, 2021), A sophisticated
mathematical model has been developed to address the intricacies of the defined problem;
furthermore, a series of advanced algorithms has been formulated to provide effective
solutions to this multifaceted issue. The fundamental approach to resolving this intricate
problem is predicated upon the principle of maximizing the minimum total completion
time across all scheduled jobs, ensuring that efficiency is achieved in the overall
processing time.

A well-rounded approach to resource allocation and scheduling is crucial for
maximizing the least running time on virtual machines, aiming to enhance the task or
machine that shows the lowest efficiency, thereby significantly elevating the overall system
performance. In the realm of cloud computing, the process of task scheduling emerges as a
pivotal component for the enhancement of makespan and resource utilization; this is
paramount as demonstrated by the research conducted by Raeisi-Varzaneh et al. (2024),
who have put forth an advanced max–min algorithm designed to strike a balance between
the execution time of tasks and the efficient utilization of resources, thereby exhibiting
superior performance compared to traditional algorithms in terms of both makespan and
waiting time, as referenced in their study. In a similar vein, the research conducted by
Konjaang, Maipan-Uku & Kubuga (2016) has placed a particular emphasis on refining the
max-min scheduling algorithm to boost efficiency within cloud environments, thereby
tackling the pressing issue of minimizing makespan by prioritizing the execution of tasks
that possess the maximum execution time, as articulated in their findings. Furthermore,
the investigation carried out by Rampersaud & Grosu (2015) has addressed the
complexities inherent in the multi-resource sharing-aware virtual machine maximization
problem by proposing a greedy approximation algorithm that aims to maximize profit
while simultaneously taking into account the various constraints imposed by resource
availability, as noted in their research. Moreover, the work conducted by Shi & Xu (2014)
on the Cloud Utility Maximization model further underscores the critical nature of
optimal placement strategies for virtual machines, as a means to maximize the utility
derived from cloud computing resources, utilizing a subgradient algorithm to effectively
resolve the Lagrangian relaxation dual problem, as detailed in their publication.
Collectively, these scholarly contributions illuminate the profound significance of
sophisticated scheduling and resource allocation strategies in the quest to maximize the
minimum running time on virtual machines, thereby ensuring not only efficient utilization
of resources but also a marked enhancement in performance within cloud computing
environments.

Resource distribution, a crucial aspect within the sphere of cloud computing
frameworks designed for extensive data processing, acts as a core strategy that ensures
optimal resource usage, achieves peak performance standards, and fosters economic
efficiency in a fiercely competitive online environment. The swiftly increasing demand for
scalable applications, in conjunction with the unprecedented influx of data produced from

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 3/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

a multitude of varied sources, necessitates the deployment of robust and advanced
load-balancing mechanisms within cloud computing ecosystems to adeptly address these
challenges. Such mechanisms are meticulously designed with the primary objective of
evenly distributing workloads across multiple servers, thereby significantly enhancing
overall system performance metrics in terms of resource utilization, throughput levels, and
response times, as highlighted in previous studies (Patel, Mehta & Solanki, 2021).
Traditional load-balancing methodologies encounter multifaceted challenges, including
issues related to adaptability and unpredictability inherent within cloud architectures,
which has subsequently spurred the exploration and development of meta-heuristic
algorithms that draw inspiration from natural processes such as ant foraging behaviors and
predator hunting strategies. These innovative algorithms possess a remarkable capability
to swiftly identify superior solutions in scenarios where conventional load-balancing
techniques may struggle or falter, as documented in recent research (Fahim et al., 2018).
The intricate nature of load balancing is classified as NP-complete, which signifies that it
encompasses an extensive search space filled with a multitude of potential solutions,
thereby rendering it a particularly challenging problem to resolve optimally, as noted in
academic literature (Ghomi, Rahmani & Qader, 2017). A variety of strategic approaches,
including but not limited to virtual machine migration and the scheduling of Hadoop
queues, have been proposed in the academic discourse to tackle these formidable
challenges, with a concentrated focus on addressing the specific demands of applications
while ensuring a high level of performance and availability, all while striving to minimize
both costs and energy consumption (Dey & Gunasekhar, 2019). These strategic
methodologies are of paramount importance for upholding service level agreements
(SLAs) and averting any degradation in performance within cloud-based data centers, as
emphasized in scholarly research (Dey & Gunasekhar, 2019). In summary, the ongoing
and dynamic evolution of load-balancing algorithms, which encompasses both static and
dynamic approaches, is of critical importance for not only achieving high levels of user
satisfaction but also for ensuring the efficient allocation of resources within cloud
computing environments, as detailed in existing studies (Patel, Mehta & Solanki, 2021).

Cloud computing architectures fundamentally depend on virtualization technologies,
wherein tangible resources are transformed into VMs to facilitate flexibility and scalability
for a myriad of workloads. Within these frameworks, the distribution of workloads to VMs
constitutes a pivotal endeavor that exerts a direct influence on overall system performance,
equity, and user contentment. Conventional workload distribution methodologies
frequently yield substantial variances in completion durations among VMs, culminating in
inefficiencies and possible infractions of service-level agreements. To mitigate these issues,
this research emphasizes equitable allocation, which aspires to diminish discrepancies in
workload completion times while concurrently preserving elevated system utilization.
Probabilistic heuristics are proposed as streamlined and adaptive techniques to navigate
the intrinsic uncertainties and dynamic characteristics of workload demands. These
heuristics present a viable equilibrium between computational efficiency and allocation
excellence, rendering them particularly appropriate for practical large-scale systems. The
suggested methodology furnishes a systematic framework for attaining fairness, lessening

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 4/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

completion time discrepancies, and guaranteeing just resource utilization in virtualized
environments.

The load balancing (LB) capability is fundamental in cloud computing, formulated to
spread workloads evenly across different servers to enhance resource management and
lessen server crowding. A range of algorithms and architectures have been introduced to
elevate LB functions, blending traditional tactics with cutting-edge machine learning
solutions. Vital tactics entail the flexible sharing of tasks between VMs to shorten response
intervals and enhance the system’s overall effectiveness (Ray & Singhal, 2024). The use of
Machine learning frameworks—specifically artificial neural networks (ANNs), random
forest classifiers, and long short-term memory networks—is increasingly seen in LB
methodologies, enabling adaptive workload management informed by performance
indicators like throughput and fault tolerance (Muchori & Mwangi, 2022). The efficacy of
these algorithms is vital for sustaining high user satisfaction and resource utility in cloud
environments, where demand can vary considerably.

In the same context, in Aghdashi &Mirtaheri (2019), a comprehensive investigation was
conducted that centered around a sophisticated two-level job assignment mechanism
specifically designed to address the intricate challenges associated with load balancing
within the realm of cloud computing environments. In Jemmali (2019), an innovative
solution was meticulously proposed that aimed to enhance revenue distribution by
employing the strategic maximization of the minimum revenue, thereby ensuring a more
equitable allocation of resources. The approximate solution articulated in a recent
publication has been judiciously utilized as a foundational reference to delineate and
explore potential approximate solutions pertinent to the specific problem domain.
Another significant area of application for the maximization of the minimum problem can
be observed within the context of the aircraft industry, where it plays a crucial role in
optimizing various operational parameters. In Jemmali et al. (2019), a detailed examination
is presented regarding the derivation and formulation of several lower bounds that pertain
to the maximization of the minimum lifespan of a turbine engine, thereby contributing
valuable insights to the field.

The contributions of the article are:

• Problem formulation based on fairness: A pioneering scheduling framework is presented
that emphasizes equity by optimizing the minimum completion time across virtual
machines. This objective diverges from conventional makespan optimization and has
not garnered significant attention in the existing body of research.

• Design of six heuristic algorithms: Six robust and scalable heuristic algorithms, including
probabilistic, repetitive, mixed, and reversed variants, are developed to tackle the
proposed fair scheduling issue. Each variant employs a distinct methodology for task
organization or selection to thoroughly explore the solution landscape.

• Simulation-based evaluation on extensive benchmarks: Extensive experiments are
conducted on a comprehensive dataset consisting of 2,250 instances (encompassing both
small and large scales) to evaluate the effectiveness of the proposed heuristics in terms of
fairness and computational efficiency.

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 5/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

• Analysis under homogeneous cloud environments: The model assumes a set of identical
virtual machines, with the analysis focused on clarifying load balancing dynamics within
this practical yet simplified framework.

• Foundations for future extensions: Although the present study is simulation-based, it
lays a foundational framework that can be modified for heterogeneous and dynamic
environments, which are identified as potential directions for future research.

The significance of the proposed research is not just theoretical scheduling and
applicable to practical industrial systems and computational systems. More specifically,
four major areas are identified where the proposed method has the potential to have
practical applications and impact:

1. Application in digital manufacturing and smart factory scheduling. This equitable
workload allocation approach is consistent with the strategic requirements of smart
factory systems, where the equal sharing of work of resources and the optimized use of
resources is crucial to maintain performance and energy efficiency. In such
environments, scheduling strategies need to prevent the computational resources
(e.g., edge and cloud nodes) from being overloaded, and that directly impacts the goal of
decreasing production delays and alleviating system bottlenecks.

2. Suitability for cloud-based production systems: The proposed model is designed for
virtualized environments, and thus very applicable to cloud-native production systems
where multiple manufacturing services or simulated instances are distributed among
virtual machines. The new heuristics enable effective VM-to-task allocations, which
help manufacturers endorse the best VMs and enhance cloud resource efficiency among
scalable, on-demand platforms.

3. Foundation for integration with digital twins: The probabilistic and adaptive nature of
the scheduling approach adopted in the sprint scheduling algorithms provides a flexible
base for integration with digital twin frameworks, which require real-time data
simulations equilibrium to be preserved among computational nodes. Fair assignment
of resources improves the predictability and responsiveness of simulations and the
quality of mimics in an industry facility.

4. Contribution to computational sustainability and load fairness: In industrial cloud and
cyberphysical systems, these fairness guarantees is of paramount importance to avoid
large disparity in loads across computational units. Optimising the worst case
completion time is important for sustainable computing, and ensuring that workloads
are fairly divided is vital for the long term health and reliability of a system.

The subsequent sections of this article are structured as follows. ‘Related Works’
examines pertinent literature and underscores current research pertaining to workload
scheduling and heuristic methodologies within cloud computing environments. ‘Problem
Definition’ discusses the articulated problem statement, weaving in system assumptions,
the pertinent mathematical expressions, and the notation patterns consistently adopted in
this inquiry. A thorough examination of the heuristic algorithms, including their specific

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 6/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

adaptations, is laid out in ‘Scheduling Algorithms’. This fifth portion takes a closer look at
the experimental framework, the methodologies for producing instances, the evaluation
metrics, and the insights that surfaced from the simulations performed in the experiments.
To conclude, ‘Conclusion’ encapsulates the document comprehensively and suggests
various paths for subsequent investigations.

RELATED WORKS
In the case of cloud computing load balancing algorithms also play a vital role due to the
dynamic and heterogeneous VM environments. Techniques like Daemon-COA-MMT
improve fault tolerance and resource utilization through predicting possible failures and
migrating applications on efficient hosts, hence minimizing energy consumption and
increasing the reliability of the system (Jahanpour, Barati & Mehranzadeh, 2020).
Meanwhile, dispatching work to VMs according to their processing ability facilitates a fair
allocation of workloads and the goal can be minimizing the time to completion and
maximizing the utilization of resources, which is essential in the elastic and scalable cloud
environment (Kaur & Ghumman, 2018). These developments in load balancing
algorithms through quantum annealing and VM-based approaches are crucial to improve
the performance and efficiency of HPC systems.

Max-min fair allocation is a fundamental and challenging notion that carefully seeks to
maximize the minimum utility or allocation of resources among all the parties in an
allocation problem. In the particular setting of indivisible goods, the overall max-min fair
allocation problem, commonly known as the Santa Claus problem in the academic
literature, seeks to find a fair distribution of resources among multiple players such that the
maximin utility of all players is maximized. This is a complicated problem that is nicely
reformulated into a machine covering problem, and then a c

1 � e-approximate solution that
can be computed in polynomial time by Ko et al. (2021). In the centralized resource
systems, the max-min fair allocation is hard to be achieved due to the strategic behaviors,
in which the nodes may misbehave their actual demand/request or create the fake nodes
that leading to obtain more resources. While incentivization strategies seem to provide the
allocation mechanism some resiliency against the miscoordination problem, it is still
highly vulnerable to a node splitting approach founded on the fact that nodes can
significantly grow their share of the resources by dividing into several imaginary
nodes (prefixed as a spitting strategy), as presented in the articles of Chen, Gu & Wang
(2021, 2020).

In the context of software-defined radio access networks (SD-RANs), the principle of
max-min fairness is strategically employed to elevate network performance by effectively
decoupling the control and data planes, which results in a remarkable increase of up to
fourfold in the minimum data rates when compared to conventional systems, according to
the findings presented by Mehmeti & Kellerer (2022). Furthermore, in scenarios involving
multi-source transmission, the attainment of max-min fairness necessitates the execution
of a complicated joint optimization process that encompasses both bandwidth allocation

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 7/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

and flow assignment, thereby adding layers of complexity to the challenge. A novel
methodological approach utilizing linear programming has been innovatively developed to
proficiently achieve the goal of global max-min fairness, which has demonstrated superior
performance over traditional methods in terms of enhancing network throughput and
reducing transfer completion times, as documented in the research by Li et al. (2019).
Collectively, these studies illuminate the wide-ranging applications and inherent
challenges associated with max-min fair allocation across various distinct domains,
underscoring its significance in contemporary resource management discussions.

The algorithmic framework that facilitates the balancing process, which is extensively
implemented within the realm of high-performance computing, can be specifically
referenced in the scholarly works cited in this particular context, notably those found in
Arunachaleswaran, Barman & Rathi (2019), Li et al. (2019). In their comprehensive
inquiry, the authors delve deeply into the intricate complexities associated with the design
and implementation of mechanisms that are aimed at generating allocations characterized
by a constrained level of envy, thereby addressing a significant challenge in the field.

The implementation of load balancing techniques is strategically applied to enhance the
efficiency and longevity of drone battery usage during operations. In their research, the
authors have meticulously developed innovative algorithms specifically designed to
maximize the utility and performance of battery systems throughout the entirety of the
drone’s flight operations (Jemmali et al., 2022a). Furthermore, the concept of load
balancing has also been effectively applied within the domain of smart parking systems,
thereby improving their operational efficiency and user experience (Sun et al., 2020).
Moreover, the challenges associated with load balancing are comprehensively addressed
across various sectors, including aviation, healthcare, industrial applications, and cloud
computing environments, as evidenced by a substantial body of literature (Jemmali et al.,
2019, 2022b; Dornala et al., 2023; Jemmali, Otoom & al Fayez, 2020; Jemmali, Melhim &
Alharbi, 2019; Alquhayz & Jemmali, 2021; Eljack et al., 2024).

The regression analysis meticulously examined in the works cited as Salhi & Jemmali
(2018a, 2018b) can indeed be effectively utilized to ascertain the specific hard classes that
have been generated within the confines of this article, which addresses the complex
problem that has been the focus of study. Furthermore, it is worth noting that a variety of
alternative scheduling model types can be incorporated into the proposed algorithms as
indicated in the research conducted by Jemmali, Alharbi & Melhim (2018), thereby
enhancing the versatility and applicability of the methodologies discussed. Numerous
scholarly works have approached the critical issue of load balancing by implementing
various scheduling algorithms designed to optimize performance and efficiency in diverse
contexts. In the realm of smart parking management, where the challenges posed are
recognized as NP-hard, achieving approximate solutions is poised to represent a significant
advancement in the field, as highlighted in the findings presented in Jemmali (2022).

Table 1 presents a comprehensive overview of the methodologies employed, the
contributions made, and the limitations identified within the reviewed literature, while

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 8/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

Table 1 Risk assessment methods and contributions.

Ref. Methods used Contributions Limitations

Kashani &
Mahdipour
(2022)

The article categorizes load
balancing algorithms in
fog computing into four
classifications:
approximate, exact,
fundamental, and hybrid
algorithms.

This carefully crafted
manuscript scrutinizes
load-balancing algorithms
in the domain of fog
computing, organizing
them into four defined
categories: approximate,
exact, fundamental, and
hybrid algorithms. This
categorization supports a
detailed comprehension of
the various approaches
applied in load balancing
throughout fog networks.

The manuscript emphasizes
the absence of a
comprehensive
investigation aimed at
synthesizing the scholarly
contributions concerning
load balancing algorithms
within fog networks,
thereby underscoring a
notable deficiency in the
existing literature that
warrants rectification.

Gures et al.
(2022)

The manuscript explores an
array of load balancing
strategies, encompassing
the handover (HO)
mechanism, which
facilitates the transition of
user equipment (UEs) at
the cell boundary to cells
with lower traffic loads,
thereby attaining a more
equitable distribution of
load and enhancing overall
system capacity. Effectively
guiding the flow of traffic
across various types of cells
in extremely crowded and
diverse networks
(HetNets) is crucial.

The manuscript presents an
extensive review of
advanced load balancing
frameworks designed for
ultra-dense heterogeneous
networks (HetNets), with
an emphasis on machine
learning (ML)
methodologies. It
delineates the overarching
challenge of load
balancing, encompassing
its objectives, operational
capabilities, assessment
standards, and a
fundamental operational
framework, thus acting as a
reference for the
development of
economically viable and
adaptable ML-driven
solutions.

The implementation of
machine learning (ML)
algorithms in addressing
load balancing issues
encounters considerable
obstacles, especially
concerning the handover
(HO) process, which
entails the relocation of
user equipment (UEs) at
the cell interface to cells
with lower loads. Although
this strategy can enhance
cell load distribution and
augment overall system
capacity, it also presents
intricacies that require
proficient management.

Zhou et al.
(2023)

This article presents a
detailed comparative
investigation of several
metaheuristic load
balancing strategies
specifically crafted for
cloud computing,
concentrating on
performance measures
such as makespan length,
imbalance level, response
delays, data center
processing duration, flow
duration, and resource use
effectiveness.

The manuscript presents an
extensive and methodical
review of the latest
metaheuristic
load-balancing algorithms,
delivering an operational
insight into these
methodologies and their
implementation within
cloud computing
ecosystems. It evaluates a
range of algorithms, their
classification, essential
characteristics, and the
obstacles related to load
balancing.

The manuscript underscores
that load balancing within
the realm of cloud
computing is characterized
as an “NP-hard” problem,
signifying that it possesses
an extensive solution space
that complicates the
efficient identification of
the optimal solution. This
intricacy necessitates
additional time to
ascertain optimal
solutions, which may
impede performance in
real-time applications.

(Continued)

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 9/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

Table 1 (continued)

Ref. Methods used Contributions Limitations

Nazir et al.
(2022)

The manuscript presents a
newly formulated
approach for load
balancing within cloud
computing at the database
tier, with a particular
emphasis on database
cloud services that are
commonly utilized by
organizations for
application development
and business operations.

The document presents an
innovative approach for
optimizing load
distribution in cloud
computing, particularly at
the database tier, which is
essential for organizations
of varying scales that
leverage database cloud
services for application
development and
operational processes.

The article’s load balancing
framework presents
advancements but exhibits
significant limitations. It is
mostly suited for like
server ecosystems,
potentially falling short in
varied cloud contexts. The
framework also lacks a
thorough security
management system,
despite recognizing its
importance for cloud
services. Moreover, it does
not comprehensively
tackle larger cloud
challenges such as storage
costs or overall capacity
management. Although
intended for scalability, the
analysis of its performance
during extreme user
growth scenarios is
limited. In conclusion, the
review is based on defined,
restricted contexts, which
might not sufficiently
symbolize a range of actual
cloud operations or assure
broader significance.

Kulkarni et al.
(2022)

The report looks into
techniques for improving
productivity and asset
utilization within cloud
computing, accentuating
load governance, task
organization, resource
handling, service
excellence, and workload
administration.

This analysis reviews the
current techniques for
balancing loads within
cloud computing,
underlining their
challenges to support the
refinement of superior
algorithms.

The study underscores the
intricacies of securing ideal
load balancing within
cloud computing
architectures, especially in
the context of dodging
overload and underload
situations for virtual
machines, thereby
affecting the
comprehensive reliability
and operational
performance.

Shakeel &
Alam (2022)

The manuscript examines
load balancing (LB)
algorithms within cloud
and fog computing
frameworks, offering an
exhaustive classification of
LB algorithms alongside an
in-depth analysis utilizing
heuristic, meta-heuristic,
and hybrid methodologies.

The manuscript delineates a
comprehensive
categorization of load
balancing (LB) algorithms
explicitly designed for
cloud and fog computing
environments, tackling the
intricacies and obstacles
linked to the management
of numerous dynamic user
requests and congested
virtual machines (VMs).

The manuscript underscores
that load balancing within
cloud-fog ecosystems
constitutes an NP-hard
problem, signifying the
intricate nature and
computational difficulties
associated with attaining
optimal load allocation
across virtual machines.

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 10/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

elucidating the fundamental distinctions among the diverse studies and emphasizing these
aspects in the proposed approach.

Adaptive workload management in cloud computing is essential in order to meet SLAs
and improve resource utilization. HEPGA is flexible to optimize different objectives:
minimizing the makespan and enhancing the resource utilization when scheduling
scientific workflows by the parallel scheduling (Mikram, El Kafhali & Saadi, 2024) based
on the combination of the ideas of the heterogeneous earliest finish time (HEFT), particle
swarm optimization (PSO) and genetic algorithm (GA). Ghandour, El Kafhali & Hanini
(2024) described an adaptive model of workload management in cloud computing that
maintains SLA compliance and high resource utilization while saving CO2 and costs. It is
developed based on queuing theory and incorporates dynamic VM placement and energy
efficient scheduling to balance loads in different scenarios. Simulation and AWS-based
validation suggest markedly reduced response times, resource utilization, and fault
tolerance in contrast to static methods. Such a model is an efficient, scalable and more
importantly practical solution for dynamic cloud workload management. The chaotic
hybrid particle swarm optimization (CHPSO) algorithm, a chi-squared particle swarm
optimization based task scheduling algorithm for cloud computing was developed in
Mikram & El Kafhali (2025). Taupe created a chi-squared distribution for task arrival and
based on total million instructions per second (MIPS), it guaranteed strategically and
adaptively allocating tasks on CPU virtual servers. Empirical results demonstrate that
CHPSO outperforms existing approaches in terms of response time, makespan, energy
efficiency, and resource utilization. In Jain, Jain & Tyagi (2025), an enhanced dynamic
virtual machine consolidation (DVMC) model named RLSK_US was presented to handle
the energy–SLAV tradeoff in cloud datacenters. The model is comprised of four phases:
Robust Logistic Regression for detecting overloaded host, SLA-based analysis for detecting
underloaded host, VM selection based on Knapsack and VM placement based on
Utilization-SLA. The evaluation with real workload traces demonstrated that RLSK_US
achieved a significant improvement over the benchmarks in terms of service level
agreement violation (SLAV) (77% reduction) and energy saving value (ESV) (83%
reduction).

PROBLEM DEFINITION
The section Problem Definition is divided into three subsections to ensure a thorough
understanding of the proposed method. The first subsection clarifies the notations and
symbols utilized in the formulation. The second subsection outlines the problem context,
including objectives, constraints, and challenges in equitable workload allocation within
virtualized environments. Lastly, the third subsection details the mathematical model that
formally articulates the problem and lays the groundwork for the proposed solutions.

Notation
Table 2 presents the principal notations employed in this article. It specifies parameters
pertinent to programs and virtual machines, as well as indices and completion time

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 11/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

metrics. These notations underpin the proposed workload scheduling model and its
ensuing analysis.

Problem presentation
Let the set J a specific of n distinct programs that are to be systematically organized and
appropriately scheduled across m parallel virtual machines that operate simultaneously.
Each program, designated as j, possesses and is characterized by a unique set of attributes
that dictate its operational requirements and constraints within the scheduling framework.

Table 2 Summary of notations and their descriptions.

Notation Description

n Number of programs.

J Set of n distinct programs.

m Number of virtual machines.

j Index of the program.

i Index of virtual machine.

VM Set of virtual machines.

pj Processing duration of the program j.

tj Total time expended on the processing of program j once it has been allocated

Ci Overall execution time of virtual machine i.

Cmax Uppermost completion times upon the successful finishing of all scheduling programs.

Cmin Lowest completion times upon the successful finishing of all scheduling programs.

User Programs

API Gateway Load Balancer

Scheduler VM1

VM2

VMm

Source Monitoring

Figure 1 Cloud-native workflow architecture. This structure demonstrates the relationships among
system elements in a cloud virtualized environment. Programs are submitted by the user via an API
gateway, which then sends the requests to a load balancer. Load balancer: It, in cooperation with the
scheduler, balances the tasks on multiple VMs (VM1 to VMm) of the same capacity. A source monitoring
module that continuously monitors the VM’s performance metrics and reports it back to the load bal-
ancer and scheduler module. Solid arrows denote dominant control and task flow, dotted arrows indicate
monitoring and feedback communication connections. Full-size DOI: 10.7717/peerj-cs.3234/fig-1

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 12/34

http://dx.doi.org/10.7717/peerj-cs.3234/fig-1
http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

The diagram depicted in Fig. 1 meticulously delineates five fundamental components
that are crucial to the overall architecture, which can be outlined as follows:

• API gateway: This component serves as the primary interface through which all
incoming program submissions are received and processed, effectively acting as the first
line of interaction between external requests and the internal architecture.

• Load balancer: This fundamental system is important for spreading out incoming
requests across various schedulers, guaranteeing that these requests are managed in a
proficient and coordinated fashion without triggering any delays or holdups.

• Scheduler: Operating as a crucial manager, the scheduler is in charge of the thoughtful
task assignment to diverse virtual machines, or VMs, and it skillfully directs the
execution of these tasks to ensure superior performance.

• VM instances ðVM1;VM2;VM3; . . . ;VMmÞ: These virtual machine instances represent
the actual computational environments where programs are executed, providing the
necessary infrastructure for running applications in a cloud-native ecosystem.

• Resource monitor: This sophisticated component is tasked with continuously collecting
real-time metrics, including, but not limited to, CPU usage, memory consumption, and
overall load from each virtual machine. Subsequently, it relays this information back to
the scheduler through a dashed feedback loop, which facilitates dynamic adjustments to
resource allocation.

This architectural framework epitomizes a quintessential cloud-native workflow and
vividly illustrates the cooperative dynamics of monitoring and orchestration that work in
tandem to uphold both performance standards and fairness across the various components
involved. Should you seek a more comprehensive investigation into specific elements, such
as a container orchestrator like Kubernetes, a dedicated datastore, or the subtleties of
network layers, please inform me for more clarity.

Example 1 The number of available programs for utilization is denoted as six, while
the number of virtual machines at disposal is established as two. This particular
example is solely focused on the scheduling of programs that are intended to be executed on
the initial day of operations. Moving forward to the subsequent working day, a fresh
assortment of programs is to be allocated for execution across the two virtual
machines that have been previously identified. In this context, Table 3 provides a
comprehensive enumeration of the various pj values associated with the aforementioned
programs.

Table 3 Six programs and two virtual machine instances.

j 1 2 3 4 5 6

pj 9 12 8 7 11 5

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 13/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

The primary objective of this research endeavor is to meticulously explore and identify a
comprehensive scheduling framework that will effectively allocate and assign all specified
programs across the two designated virtual machines that have been provided for analysis.
When the heuristic known as the largest processing-time-first (commonly abbreviated as
LPT) is implemented as a dispatching rule for optimal scheduling, the resultant schedule is
depicted and illustrated in the graphical representation shown in Fig. 2.

The LPT dispatching rule, as illustrated in the accompanying Fig. 2, delineates a
systematic approach whereby, on the initial virtual machine designated as virtual machine
1, there is a scheduled allocation of the programs identified as f2; 3; 4g, while concurrently,
on the subsequent virtual machine referred to as virtual machine 2, there exists an
assignment of the programs categorized as f5; 1; 6g. Upon thorough examination of Fig. 1, it
can be ascertained that the aggregate processing time for the first virtual machine totals an
impressive 27 units, in contrast to the second virtual machine, which exhibits a total
completion time that amounts to 25 units. Consequently, the disparity that exists between
the completion times associated with virtual machine 1 and its counterpart, virtual machine
2, can be mathematically represented as Cmax � Cmin ¼ 2, indicating a clearly defined gap of
2 units. The primary objective underpinning the research and findings articulated within
this work is fundamentally centered on the aspiration to minimize this identified gap. Thus,

6 = 25

25

6

1

2 = 12

= 27

3 = 20

5 = 11

Virtual Machine 1Virtual Machine 2

= 25

1 = 27

2 = 25

3

4

1 = 20

4 = 27

Figure 2 Illustration of a dispatching rule example. The distribution of six jobs in two virtual machines
by invoking a dispatching rule for every job i, there is a rectangle such that i is inside the rectangle, and the
length of the rectangle is ti. Jobs are scheduled to VMs according to the schedule rule that aims to
equilibrium the makespan. VM1 applies the tasks 2, 3, and 4, having completion time C1 ¼ 27 and VM2
does the tasks 5, 1, and 6, having completion time C2 ¼ 25. The values Cmin ¼ 25, Cmax ¼ 27 are con-
sidered. This figure illustrates how task sequencing and VM selection influence load balance and fairness.

Full-size DOI: 10.7717/peerj-cs.3234/fig-2

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 14/34

http://dx.doi.org/10.7717/peerj-cs.3234/fig-2
http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

it becomes imperative to explore and establish a more effective assignment strategy that
achieves a gap measurement that is quantitatively less than the current threshold of 2 units.

System assumptions and applicability
In this research, the proposed framework operates based on a defined set of explicit
assumptions to ensure both clarity and applicability. The context examined is a virtualized
cloud computing infrastructure, wherein a finite collection of independent workloads (or
applications) must be allocated to a selection of VMs. It is argued that the workloads are
not subject to interruption, implying that once an application is put on a VM, it will run to
its end without any breaks. Each workload possesses a known and deterministic processing
duration (pj), and all VMs are homogeneous in their execution capabilities unless stated
otherwise. Furthermore, there are no interdependencies among workloads, and
communication or migration overheads are regarded as negligible. These assumptions
accurately represent numerous practical scenarios within cloud and data center
environments where task scheduling and resource allocation are of paramount
importance. Even though the model is built for consistent scenarios, it can be adjusted to
meet fluctuating or irregular workloads via additional tools established to confront
uncertainties.

This research presumes that all VMs within the system exhibit homogeneity, signifying
that they possess identical computational power, memory, and storage capabilities. This
assumption facilitates a more precise examination of the fairness and workload balancing
mechanisms proposed in the proposed heuristics. Nonetheless, it is recognized that in
practical cloud environments, VMs frequently display heterogeneity, characterized by
differing central processing unit (CPU) speeds, graphics processing unit (GPU)
capabilities, and memory limitations. The existing heuristics can be modified for
heterogeneous environments by integrating weights or normalization factors that reflect
VM capabilities during the workload allocation process. For example, processing times pj
could be calibrated in relation to VM performance, and the assignment probabilities in the
proposed probabilistic methodologies could be adjusted to prioritize VMs with superior
capacities for resource-intensive tasks. Expanding the heuristics to accommodate such
heterogeneity presents a promising avenue for future work.

In this research, it is assumed that all tasks possess fixed and deterministic processing
durations pj and that the complete workload is predetermined. This assumption of a static
workload enables the assessment of the efficacy of the proposed heuristics in reducing
completion time disparities under controlled conditions. Nevertheless, it is recognized that
actual cloud environments frequently display dynamic characteristics, encompassing
varying task priorities, real-time influx of new workloads, and possible task cancellations.
The proposed heuristics can be tailored to accommodate such dynamic settings by
incorporating online scheduling mechanisms that progressively adjust allocations in
response to variations in workload. For instance, the probabilistic assignment phase could
be refined to include newly arriving tasks without disrupting existing assignments, while
ensuring fairness and load balancing among virtual machines. Evaluating and validating

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 15/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

the heuristics within dynamic workload contexts represents a promising avenue for
future work.

Mathematical model
To thoroughly assess and analyze the disparities that exist among the various virtual
machines, a comprehensive selection of pertinent indicators has been meticulously
identified and chosen for this evaluative process. Within the boundaries of this research
document, the distinct parameter that is presented for review and detailed investigation is
conveyed mathematically as the distinction between the utmost completion timeframe,
signified as Cmax, and the least completion timeframe, indicated as Cmin. When the entire
set of virtual machines under investigation, the overall gap in total completion times is
quantitatively represented in the mathematical formulation provided in Eq. (1).

min
Xm

k¼1
Ck � Cmin½ �: (1)

In Eq. (1), the variation for a designated value of k is labeled difk, which is
mathematically delineated as the difference between Ck and Cmin. Consequently, it follows
that Eq. (1) can be reformulated in the following manner: min

Pm
k¼1 difk. This aggregate is

referred to as gap, which is mathematically represented by the summation

gap ¼Pm
k¼1 difk. The problem under investigation is categorized as NP-hard, thereby

indicating that the objective is to devise a scheduling strategy that effectively minimizes the
cumulative discrepancies, or gaps, that exist between the virtual machine exhibiting the
least total completion time and all other virtual machines within the system.

Proposition 1 The summation of all running time for all programs can be written as given
in Eq. (2).

Xn

j¼1
pj ¼

Xm

k¼1
Ck: (2)

Proof 1 Denote, for the purpose of clarity and specificity, by the notation Jk the
comprehensive set of all computing programs that are executed within the operational
confines of a designated virtual machine denoted by k. Therefore, the aggregate summation
of the processing time associated with each individual program contained within the set Jk
can be articulated mathematically as �j2Jkpj, which is equivalently expressed as Ck,
representing the total computational time consumed by the programs executed by this
particular virtual machine. Conversely, it is imperative to consider that all programs that are
executed by the virtual machine denoted by k, given the condition that

Xn

j¼1
pj ¼

Xm

k¼1

X

j2Jk
pj: (3)

Finally, Eq. (2) is proven.

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 16/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

Remark 1 Equation (2) serves as a pivotal mechanism for rigorously assessing the precision
and reliability of the algorithms that have been proposed for implementation. Indeed, each
individual outcome that is derived from any given algorithm undergoes a comprehensive
evaluation through the meticulous calculation of the summation denoted by

Pm
k¼1 Ck, which

is subsequently returned by the algorithm in question. Should it be determined that this
specific summation aligns with the summation denoted by

Pn
j¼1 pj, one may deduce that the

reliability of the suggested algorithm complies with the recognized benchmarks set forth in
the field. Conversely, if the aforementioned condition is not satisfied and discrepancies are
identified, it signifies the presence of an error, thereby necessitating the rejection of the results
produced by the algorithm.

Example 2 Suppose that a corporation engages in the operation of four identical virtual
machines concurrently and in unison, thereby maximizing their computational capabilities.
The first virtual machine necessitates an immediate intervention to replace its worn
components on the date of April 17th, 2025, at precisely 17:50 h, and subsequently, the
second virtual machine similarly requires an intervention for replacement of parts on April
25th, 2025, at 19:21 h. Therefore, a specific duration of exactly 8 days, 1 h, and 31 min
divides the moment of the first intervention from that of the following intervention. The
primary objective of this research endeavor is to significantly minimize the duration of such
temporal gaps that occur between the necessary interventions. In this article, a variety of
heuristic approaches are put forth to provide viable solutions to the complex problem under
investigation, fundamentally grounded in the principles of the probabilistic method.

SCHEDULING ALGORITHMS
This section delineates and articulates two primary heuristics that are intricately associated
with the problem that is presently under investigation and analysis. The overarching goal
of this endeavor is to elucidate and present approximate solutions that pertain to the
NP-hard problem, while simultaneously suggesting avenues for future research that could
leverage these heuristics to formulate an exact solution through the establishment of
certain upper bounds that govern the problem at hand. The heuristics that have been
proposed are fundamentally grounded in the probabilistic method, characterized by
various distinct variants that significantly influence their application. These variants
encompass the selection of the specific manner in which the iterative approach is
systematically employed throughout the analytical process. The extant literature
extensively documents the formulation and development of a multitude of algorithms
aimed at addressing real-world applications, all of which are fundamentally rooted in the
principles of the randomization approach, as evidenced by the works cited (Ghaderi, 2016;
Liu & Cheng, 2017; Zheng, Wang & Zhang, 2016; Agustín et al., 2016). To effectively tackle
the real-world problem that is the focal point of this article, a probabilistic method is put
forth, meticulously derived from the foundational principles of the randomization
approach.

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 17/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

Probabilistic heuristic
The proposed probabilistic heuristic (PHb) is designed to allocate workloads across VMs in
a manner that minimizes disparities in their completion times. The algorithm
systematically investigates various probabilistic assignment strategies by adjusting a
parameter b, which governs the level of randomness in task selection.

Initially, all programs are ordered in non-increasing sequence based on their processing
times pj, thereby prioritizing larger workloads that exert a significant influence on the
overall system equilibrium. Within the boundaries of [0.1, 0.9], for each b, the algorithm
executes a loop internally where it probabilistically assigns programs. With each round, a
random digit au is drawn evenly from the boundaries [1,100]. In the event that bimes100
encompasses b values from 1 to bimes100, the program that exhibits the longest processing
duration from the leftover group ildeJ is selected; if not, the program with the next longest
processing duration is chosen. This probabilistic decision-making introduces a controlled
element of randomness, enabling the algorithm to circumvent suboptimal deterministic
assignment patterns.

Once a program is selected, the ASSIGN procedure allocates it to an appropriate VM,
updates the VM’s load, and removes the program from the set ~J . After the allocation of all
programs, the algorithm calculates the gap gapb, which quantifies the disparity between
the maximum and minimum completion times across all VMs for the current value of b.
This procedure is reiterated for each b, with the minimum observed gap being returned as
the final outcome.

The parameter b is instrumental in balancing exploitation and exploration. Lower
values of b favor deterministic selections of the largest workloads, whereas higher values of
b introduce greater randomness, which may reveal more advantageous workload

Algorithm 1 Probabilistic heuristic (PHb).

Require: Set of programs J, number of programs n, processing times pj for each j 2 J , set of virtual
machines VM

Ensure: Minimum gap value gap
1: Sort all programs in J by non-increasing order of pj
2: for b 0:1 to 0.9 step 0.1 do
3: Set l 1, ~J J
4: while l � n do
5: Generate a randomly in [1,100]
6: if a � b� 100 then
7: Select the first program J01 from ~J
8: else
9: Select the second program J02 from ~J
10: end if
11: Call ASSIGN ðJ0xÞ to allocate selected program to a VM
12: Update ~J ~J n J0x
13: Increment l l þ 1
14: end while
15: Compute gapb for the current β
16: end for
17: Set gap min0:1�b�0:9gapb
18: return gap

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 18/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

distributions. By examining multiple values of b, PHb determines the most efficient
probabilistic strategy for achieving an optimal balance in system load.

The probabilistic heuristic (PHb) is illustrated in Algorithm 1.

Proposition 2 The probabilistic algorithm PH running with a complexity of OðnlognÞ.
Proof 2 The sorting mechanism that is employed within the confines of the algorithmic
framework in question is characterized as heapsort, which is a well-known and widely
studied sorting technique in computer science. In computational terms, heapsort is defined as
an algorithm that has a time complexity of Oðn log nÞ, pointing out that its effectiveness is
logarithmically linked to the input data size, marked by n. Also, it is imperative to indicate
that an aggregate of n� 1 random numerical outputs are created, and based on the specific
application that is preferred, the related computational assignments are distributed as
necessary; this whole procedure is executed within a time complexity of OðnÞ. The various
programs that are contained within each specific set are systematically assigned to a virtual
machine, which inherently requires a time complexity of OðnÞ for their execution. The
process involves the repetition of the execution for each distinct value of b, leading to a
comprehensive analysis of performance across these parameters. In this context, a total of 9
discrete values is considered. It is also significant to assert that n is notably much greater
than 9, represented mathematically as n� 9. Consequently, the overall complexity
associated with the PH heuristic is determined to be Oðn log nÞ, aligning with the established
theoretical understanding of its performance characteristics.

Repetitive probabilistic heuristic
The iterative probabilistic heuristic (PHlm

b) enhances the foundational PHb algorithm by
performing it multiple times to improve both the quality and dependability of the solution.
This methodology seeks to mitigate the variability introduced by randomization and to
ascertain a more resilient allocation strategy.

The algorithm accepts the number of iterations lm as input. For each iteration
k 2 f1; 2; . . . ; lmg, the PHb algorithm is executed a single time, yielding a gap value gapk.

Each gapk quantifies the difference between the maximum and minimum completion
times across all virtual machines for that specific iteration. Upon the conclusion of all lm
iterations, the algorithm identifies the smallest gap g ¼ min1�k�lmgapk as the conclusive
result and returns it.

Algorithm 2 Repetitive probabilistic heuristic (PHlm
b).

Require: Number of iterations lm, set of programs J, processing times pj for each j 2 J , set of virtual
machines VM

Ensure: Minimum gap value g
1: for k 1 to lm do
2: Execute PHb to obtain gapk
3: end for
4: Compute g min1�k�lmgapk
5: return g

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 19/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

Through the repeated execution of the probabilistic heuristic, PHlm
b amplifies the

probability of discerning a superior workload distribution that minimizes disparities in
completion times. This iterative process is particularly efficacious in counterbalancing the
stochastic nature of PHb, thereby ensuring that the final solution exhibits diminished
sensitivity to the random decisions made during task allocation.

In practical applications, it is feasible to configure the value of lm to be equal to 500,
thereby establishing a robust framework for the iterative process and ensuring the heuristic
explores a wide solution space to minimize completion time disparities effectively.

The Repetitive probabilistic heuristic (PHlm
b) is illustrated in Algorithm 2.

Proposition 3 The repetitive probabilistic algorithm PHlm
b running with a complexity

of Oðn2Þ.
Proof 3 The sorting procedure that is implemented within the confines of this sophisticated
algorithm is none other than the heapsort, which is renowned for its efficiency and
effectiveness in systematically arranging data. The heapsort procedure, which is categorized
as an Oðn log nÞ algorithm, signifies that the time complexity grows logarithmically with the
number of elements, thereby ensuring optimal performance even as the dataset expands in
size. Furthermore, it is crucial to note that a total of n� 1 random numbers are provided as
input, and the assignment of jobs is determined based on the specific job that has been
selected; under these circumstances, this particular procedure operates within a time
complexity of OðnÞ. The various jobs that are grouped together in each set are subsequently
scheduled to be executed on a virtual machine, which itself necessitates a time complexity of
OðnÞ for proper execution and management of the tasks at hand. The execution of this
process is repeated a total of 500 times, and this repetition is recorded as maintaining a
consistent running time order proportional to n. Considering these points, one can definitely
conclude that the complexity linked to the PH heuristic is defined by an Oðn log nÞ
computational complexity.

Mixed-probabilistic heuristic
The mixed-probabilistic heuristic (MPH) presents an advanced task ordering
methodology designed to optimize workload distribution among virtual machines. This
arrangement results in the programs J being partitioned into two equivalent sections. The
initial subset, J1, which consists of 50% of the programs, is organized in a non-increasing
sequence based on their processing times pj. This arrangement prioritizes larger workloads
at the outset of the assignment procedure. In contrast, the second subset, J2, which
encompasses the remaining 50% of programs, is arranged in a non-decreasing order of pj,
thereby postponing the assignment of smaller workloads. Upon joining J1 and J2 to
produce the restructured group J, a chance-based approach is utilized to support task
distribution. Should the original probabilistic heuristic PHb be utilized, the resultant
algorithm is designated as MPHb. In another approach, employing the repetitive
probabilistic heuristic PHlm

b leads to designate the resultant algorithm as MPHlm
b . This

dual-phase sorting strategy introduces variation in task ordering, enabling the heuristic to
effectively balance the prompt allocation of substantial workloads with the delayed

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 20/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

assignment of lighter ones, thereby enhancing the equity of the resultant workload
distribution.

The mixed-probabilistic heuristic is illustrated in Algorithm 3.

Reverse-mixed probabilistic heuristic
The reversed mixed-probabilistic heuristic (RMPH) represents a sophisticated adaptation
of the mixed-probabilistic strategy, specifically crafted to implement an alternative
mechanism for task ordering in workload distribution. This system necessitates a first
division of the array of programs J into two uniform portions, J1 and J2. The first subset, J1,
is organized in a non-decreasing sequence based on the processing times pj, thereby
facilitating the precedence of allocating lighter workloads at the outset of the process. In
contrast, the second subset, J2, is arranged in a non-increasing order of pj, thus ensuring
that heavier workloads are postponed to the subsequent phases of allocation. As J1 and J2
are integrated to develop the reordered collection J, a probabilistic strategy is implemented
to allocate the workloads to the virtual machines.

Should the original probabilistic heuristic PHb be utilized, the resultant algorithm is
designated as RMPHb. Conversely, if the repetitive probabilistic heuristic PHlm

b is applied,
the resulting algorithm is termed RMPHlm

b . This reversed ordering methodology

Algorithm 3 Mixed-probabilistic heuristic (MPH).

Require: Set of programs J, number of programs n, processing times pj for each j 2 J , set of virtual
machines VM, heuristic type (PHb or RPHðb; lmÞ)

Ensure: Workload assignment minimizing completion time disparities
1: Divide J into two subsets: J1 and J2 such that jJ1j ¼ jJ2j ¼ n=2
2: Sort J1 in non-increasing order of pj
3: Sort J2 in non-decreasing order of pj
4: Concatenate J ¼ J1 [J2
5: if using PHb then
6: Execute PHb on reordered set J
7: else if using PHlm

b then
8: Execute PHlm

b on reordered set J
9: end if
10: return workload assignment and associated gap

Algorithm 4 Reversed mixed-probabilistic heuristic (RMPH).

Require: Set of programs J, number of programs n, processing times pj for each j 2 J , set of virtual
machines VM, heuristic type (PHb or PHlm

b)
Ensure: Workload assignment minimizing completion time disparities
1: Divide J into two subsets: J1 and J2 such that jJ1j ¼ jJ2j ¼ n=2
2: Sort J1 in non-decreasing order of pj
3: Sort J2 in non-increasing order of pj
4: Concatenate J ¼ J1 [J2
5: if using PHb then
6: Execute PHb on reordered set J
7: else if using PHlm

b then
8: Execute PHlm

b on reordered set J
9: end if
10: return workload assignment and associated gap

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 21/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

engenders a distinct allocation dynamic in comparison toMPH, thereby facilitating a more
extensive exploration of potential workload distributions and offering an additional
strategy to mitigate completion time disparities among virtual machines.

The reversed mixed-probabilistic heuristic is illustrated in Algorithm 4.

TEST AND EXPERIMENTS
In this section, a detailed discourse concerning the proposed heuristics is thoroughly
articulated, utilizing a diverse array of metrics and instances to enhance a comprehensive
understanding of their efficacy and relevance. A systematic and detailed comparison will
be conducted among all the proposed heuristics to elucidate their relative performance and
characteristics in a clear and precise manner. In order to implement all proposed heuristics
outlined in this study, Microsoft Visual C++ was used, which serves as the foundational
coding platform for the computational experiments. The computational system utilized for
this rigorous research endeavor is an Intel(R) Core (TM) i5-3337U CPU, providing the
necessary processing power to execute the algorithms efficiently and effectively.

Instances
In the researches referenced in Eljack et al. (2024, 2023), a variety of distinct instances are
meticulously presented, which are derived from several categorized classes that have been
rigorously analyzed. The study specifically focuses on two primary types of statistical
distributions that are under consideration, namely the uniform distribution, which is
represented symbolically as UD[], and the normal distribution, which is denoted by the
notation ND[]. Through this comprehensive examination, the research endeavors to
elucidate the characteristics and implications of these two fundamental classes within the
broader context of statistical analysis and its applications.

The specified duration that is necessary for the execution of a particular computational
program, denoted as j, which is represented mathematically as pj, has been articulated in
the following manner:

. Class C1: pj 2 UD½1; 100�.

. Class C2: pj 2 UD½10; 150�.

. Class C3: pj 2 UD½100; 500�.

. Class C4: pj 2 ND½50; 100�.

. Class C5: pj 2 ND½25; 100�.
Two categories of instances were generated: Small Instances and Big Instances. The

ðn;mÞ configurations for the small instances are summarized in Table 4. Moreover, the
configurations for the big instances are summarized in Table 5.

In relation to each individual value represented by the triplet ðn;m; classÞ, a total of ten
distinct instances were systematically generated to ensure a comprehensive exploration of
the parameter space. Upon analyzing the information presented in Table 4, it can be
deduced with a high degree of certainty that the aggregate total of all instances produced
amounts to a substantial figure of 1,250 for the small instances.

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 22/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

Based on Table 5, a total of 1,000 big instances was generated. In addition, 1,250 small
instances were produced (see Table 4), bringing the overall total to 2,250 instances.

Metrics
In this article, the following metrics were used:

. Ab: The best heuristic value is found after the execution of all heuristics.

. A: the value of the heuristic suggested

. Gb ¼ A�Ab
A : the distance between the minimum heuristic value and the given one.

. Time: average running time in seconds. Running times below 0.001 s are indicated “-”.

. Per: fraction of files where Ab ¼ A among all the 1,250 cases.

Performance analysis on small instances
This subsection presents a detailed analysis of the results obtained from the 1,250 small
instances. All statistical evaluations discussed herein are based solely on this subset of
instances.

Table 6 provides a comprehensive illustration demonstrating that the heuristic denoted
as PHlm

b not only stands out as the most effective option but also yields the most favorable
gap, achieving a performance percentage of Per ¼ 82:2%, while concurrently maintaining
an average gap value of 0.11, all accomplished within a remarkably brief average processing
time of 0.036 s. In stark contrast, the heuristic identified as MPHb emerges as the least
effective choice, as it produces the most significant gap, registering a performance
percentage of merely Per ¼ 4:4%, and accomplishing this in a time frame that is less than
0.001 s, alongside a gap value represented as Gb equal to 0.83.

Table 7 provides a comprehensive presentation of the variations in both the gap denoted
as Gb and the corresponding execution time referred to as Time, all in relation to the
varying parameter n. This detailed analysis clearly demonstrates that the algorithm
designated asMPHb achieves an impressive maximum value of the gap, which is recorded
at an exceptional level of 0.94, specifically when the parameter n is set to 120. Conversely, it
is noteworthy to mention that the most favorable gap, characterized by a remarkably low
value of less than 0.01, is realized through the implementation of the algorithm PHlm

b .

Table 4 ðn;mÞ choices for small instances.

n m

10, 15, 20 2, 4, 5

60, 100, 120, 200 2, 4, 10, 15

Table 5 ðn;mÞ choices for big instances.

n m

500, 1,000, 1,500, 2,000, 2,500 50, 100, 150, 200

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 23/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

Furthermore, it is significant to highlight that the algorithm PHlm
b reaches its peak

execution time of 0.105 s precisely when the value of n is increased to 200.
Table 8 presents an extensive analysis of the various values associated with Gb and Time

that emerge as a consequence of alterations in the quantity of support storage, thereby
illustrating the intricate relationships between these parameters. Upon reviewing the data
illustrated in the table, it is evident that the most beneficial gap is achieved through the
algorithm identified as PHlm

b when the variable m equals 2, while the algorithm MPHlm
b

results in the least favorable gap, noted at 0.95, when the variablem is heightened to 10. In
the context of the heuristics denoted as PHb,MPHb, and RMPHb, it is noteworthy that the
mean duration of execution remains consistently below 0.001 s, indicating a remarkable
efficiency in their operational performance. In stark contrast, the algorithm identified as

MPHlm
b demonstrates a significantly longer average execution time that can escalate to

0.072 s when the parameterm is elevated to the value of 15, thereby highlighting a marked
discrepancy in computational efficiency between the various algorithms under
consideration.

Table 9 meticulously delineates the comprehensive results that elucidate the fluctuations
observed in both Gb and Time as a function of the alterations in class categories. This table
explicitly indicates that classes 4 and 5 present a significantly greater level of difficulty in
comparison to the other classes for the algorithms PHb, PHlm

b , andMPHb, as evidenced by
the fact that the average gap yields notably higher numerical values for these specific class
categories. Conversely, with regard to the algorithms MPHlm

b , RMPHb, and RMPHlm
b ,

there is a discernible reduction in the average gap for classes 4 and 5 when juxtaposed with
the other class categories, suggesting a contrasting performance outcome.

Table 6 Overall performance of all algorithms for small instances.

PHb PHlm
b

MPHb MPHlm
b

RMPHb RMPHlm
b

Perc 29.5% 82.2% 4.4% 28.6% 20.5% 59.0%

Gb 0.48 0.11 0.83 0.59 0.61 0.28

Time – 0.036 – 0.039 – 0.034

Table 7 Variation of Gb and execution time as a function of n for small instances.

n PHb PHlm
b

MPHb MPHlm
b

RMPHb RMPHlm
b

Gb Time Gb Time Gb Time Gb Time Gb Time Gb Time

10 0.29 – 0.00 0.003 0.60 – 0.31 0.004 0.52 – 0.26 0.003

15 0.56 – 0.03 0.004 0.75 – 0.48 0.004 0.73 – 0.39 0.004

20 0.69 – 0.04 0.006 0.87 – 0.57 0.005 0.78 – 0.37 0.006

60 0.58 – 0.18 0.021 0.90 – 0.68 0.021 0.63 – 0.30 0.019

100 0.43 – 0.11 0.040 0.82 – 0.61 0.042 0.65 – 0.41 0.037

120 0.52 – 0.24 0.051 0.94 – 0.71 0.060 0.48 – 0.05 0.049

200 0.32 – 0.12 0.105 0.87 – 0.66 0.109 0.51 – 0.24 0.101

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 24/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

In the comprehensive presentation of the findings, a greater level of detail is
meticulously provided in Table 10, which serves to elucidate the performance metrics
encompassing both the average gap achieved and the time expended for all heuristics that
have been developed throughout this research endeavor.

Figure 3 presents a comprehensive visual representation of the varying values of the
average gap in relation to the numerical variable denoted as nb, specifically for the heuristic
methodologies referred to as PHb and PHlm

b . This particular figure effectively demonstrates
that the graphical representation of the curve associated with the heuristic PHb

consistently resides at a higher position on the graph compared to the curve linked to the
heuristic PHlm

b . Therefore, this analysis reveals that the heuristic PHlm
b is positioned to offer

a more advantageous solution than the heuristic PHb when the assorted values of the
parameter nb are considered.

Figure 4 presents a comprehensive depiction of the varying numerical values associated
with the average gap in relation to the parameter denoted as nb, which is being analyzed for
the two distinct heuristics, namely MPHb and MPHlm

b . This particular figure serves to
elucidate the observation that the graphical representation of the heuristic MPHb

consistently resides at a higher position on the plotted axis when compared to the graphical
representation of the heuristic MPHlm

b . As a result, this deduction leads to the assertion
that the heuristic MPHlm

b demonstrates a greater efficacy in producing a more optimal
solution relative to the heuristic MPHb when assessed against a range of specified values
for the parameter nb.

Table 8 Variation of Gb and execution time as a function of m for small instances.

m PHb PHb MPHb MPHlm
b

RMPHb RMPHlm
b

Gb Time Gb Time Gb Time Gb Time Gb Time Gb Time

2 0.43 – 0.00 0.027 0.79 – 0.02 0.030 0.50 – 0.06 0.028

4 0.54 – 0.05 0.028 0.87 – 0.81 0.031 0.74 – 0.50 0.028

5 0.38 – 0.04 0.004 0.74 – 0.68 0.004 0.56 – 0.36 0.004

10 0.65 – 0.40 0.059 0.96 – 0.95 0.060 0.61 – 0.12 0.054

15 0.36 – 0.18 0.067 0.78 – 0.76 0.072 0.59 – 0.40 0.061

Table 9 Gb and Time variation regarding Class for small instances.

Class PHb PHlm
b

MPHb MPHlm
b

RMPHb RMPHlm
b

Gb Time Gb Time Gb Time Gb Time Gb Time Gb Time

1 0.30 – 0.04 0.037 0.85 – 0.63 0.040 0.59 – 0.32 0.035

2 0.44 – 0.06 0.036 0.83 – 0.62 0.039 0.63 – 0.32 0.034

3 0.53 – 0.05 0.036 0.87 – 0.59 0.038 0.71 – 0.33 0.034

4 0.54 – 0.19 0.036 0.87 – 0.60 0.039 0.61 – 0.26 0.035

5 0.59 – 0.24 0.035 0.73 – 0.50 0.037 0.49 – 0.18 0.034

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 25/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

Performance analysis on big instances
Table 11 presents a comparative evaluation of six algorithms predicated on three
performance indicators: solution percentage (Perc), average deviation from the optimal
known solution (Gb), and computational duration (Time). The findings show that local
improvement variants, PHlm

b , MPHlm
b , and RMPHlm

b , consistently surpass their base
versions in solution quality. Notably, PHlm

b achieves the highest success rate of 72.6%, with
a minimal average gap of 0.17, significantly outperforming PHb, which has a 55.5% success
rate and a gap of 0.20, despite its faster runtime (0.010 s vs. 3.553 s).

On the other hand, the multi-population variants MPHb and MPHlm
b demonstrate

suboptimal performance regarding Perc, achieving only 1.8% and 1.9% success rates,
alongside high average gaps approximately 0.80, which suggests a possible misalignment
with the problem configuration. In contrast, the randomized multi-population variant

Table 10 Gb and Time variation regarding nb for small instances.

nb n m PHb PHlm
b

MPHb MPHlm
b

RMPHb PHRMlm
b

Gb Time Gb Time Gb Time Gb Time Gb Time Gb Time

1 10 2 0.57 – 0 0.003 0.77 – 0.12 0.003 0.88 – 0.34 0.003

2 4 0.28 – 0.01 0.003 0.49 – 0.32 0.005 0.56 – 0.33 0.003

3 5 0.01 – 0 0.002 0.52 – 0.48 0.003 0.12 – 0.1 0.003

4 15 2 0.6 – 0.01 0.004 0.68 – 0.02 0.004 0.66 – 0.06 0.003

5 4 0.63 – 0.08 0.004 0.77 – 0.7 0.004 0.68 – 0.37 0.004

6 5 0.46 – 0 0.004 0.79 – 0.73 0.004 0.84 – 0.75 0.005

7 20 2 0.67 – 0 0.007 0.77 – 0 0.005 0.68 – 0 0.007

8 4 0.71 – 0 0.005 0.93 – 0.86 0.005 0.94 – 0.88 0.005

9 5 0.67 – 0.12 0.005 0.9 – 0.84 0.005 0.73 – 0.22 0.005

10 60 2 0.45 – 0 0.015 0.82 – 0 0.017 0.46 – 0 0.015

11 4 0.61 – 0 0.017 0.95 – 0.92 0.017 0.97 – 0.92 0.016

12 10 0.72 – 0.41 0.023 0.95 – 0.93 0.023 0.66 – 0.13 0.021

13 15 0.56 – 0.32 0.027 0.89 – 0.88 0.028 0.44 – 0.15 0.025

14 100 2 0.31 – 0 0.031 0.77 – 0 0.034 0.37 – 0 0.032

15 4 0.57 – 0 0.033 0.97 – 0.95 0.036 0.97 – 0.94 0.032

16 10 0.67 – 0.45 0.044 0.96 – 0.95 0.044 0.64 – 0.13 0.04

17 15 0.15 – 0 0.051 0.57 – 0.53 0.055 0.6 – 0.57 0.045

18 120 2 0.27 – 0 0.041 0.88 – 0 0.055 0.25 – 0 0.042

19 4 0.54 – 0.17 0.043 0.98 – 0.97 0.057 0.57 – 0.05 0.043

20 10 0.63 – 0.39 0.057 0.96 – 0.95 0.06 0.58 – 0.07 0.051

21 15 0.63 – 0.39 0.064 0.95 – 0.94 0.066 0.53 – 0.09 0.058

22 200 2 0.15 – 0.01 0.088 0.82 – 0 0.093 0.2 – 0 0.092

23 4 0.44 – 0.12 0.092 0.98 – 0.97 0.095 0.47 – 0.02 0.092

24 10 0.6 – 0.36 0.113 0.98 – 0.97 0.111 0.57 – 0.14 0.104

25 15 0.1 – 0 0.126 0.71 – 0.69 0.138 0.81 – 0.79 0.116

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 26/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

RMPHlm
b provides a balanced option with a success rate of 36.0% and a gap of 0.43, while

keeping a runtime similar to other local improvement variants (3.504 s).
In summary, PHlm

b stands out as the most effective algorithm for solution quality,
whereas PHb is the fastest. The data brings to light the gains from incorporating local
search frameworks into fundamental algorithms to raise solution quality, even if it does
mean more computational time.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

1 3 5 7 9 11 13 15 17 19 21 23 25

Gb

nb

PH beta PH beta lm

Figure 3 The average gap with respect to nb for PHb and the case PHlm
b compared for small instances.

Full-size DOI: 10.7717/peerj-cs.3234/fig-3

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 3 5 7 9 11 13 15 17 19 21 23 25

Gb

nb

MPH beta MPH beta lm

Figure 4 Average gap according to nb for MPHb and MPHlm
b for small instances.

Full-size DOI: 10.7717/peerj-cs.3234/fig-4

Table 11 Performance evaluation of proposed algorithms in terms of best-value frequency (Perc),
average gap (Gb), and computation time (Time).

PHb PHlm
b

MPHb MPHlm
b

RMPHb RMPHlm
b

Perc 55.5% 72.6% 1.8% 1.9% 17.1% 36.0%

Gb 0.20 0.17 0.80 0.79 0.51 0.43

Time 0.010 3.553 0.009 3.292 0.010 3.504

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 27/34

http://dx.doi.org/10.7717/peerj-cs.3234/fig-3
http://dx.doi.org/10.7717/peerj-cs.3234/fig-4
http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

Table 12 presents an extensive comparison of six algorithmic variants—specifically

PHb, PHlm
b , MPHb, MPHlm

b , RMPHb, and RMPHlm
b —assessed across various instance

classes (n ¼ 500 to 2,500). The assessment of performance utilizes two main metrics: the
average optimality gap (Gb) and the average execution time (Time in seconds). The
analysis reveals that including local moves, indicated by the “lm” suffix, consistently boosts
solution quality for every algorithm variant. In particular, PHlm

b achieves the lowest
average gaps across all instance sizes, attaining a minimum of 0.07 for n ¼ 2;500, thereby
significantly surpassing its foundational counterpart PHb. Likewise, the reordered variants,

RMPHb and RMPHlm
b , exhibit competitive performance, with the latter evidently

benefiting from local refinement, achieving Gb ¼ 0:28 at n ¼ 2;000 and subsequently
improving to Gb ¼ 0:57 at n ¼ 2;500 in contrast to 0:62 in the absence of local moves.
Conversely, this enhancement in validity is offset by an extension in computational time.
All “lm” variants exhibit a considerable increase in execution time, particularly as the
problem size escalates—e.g., MPHlm

b escalates from 0.869 s (n ¼ 500) to over 6 s
(n ¼ 2;500). Conversely, the basic variants devoid of local moves maintain remarkable
speed but exhibit noticeably higher optimality gaps. In summary, the locally improved
editions deliver higher solution quality albeit with increased computational demands,
whereas the more straightforward options ensure scalability and quick processing, thus
fitting well in time-critical situations.

Discussion
The heuristics that have been put forth in this study are fundamentally grounded in the
principles of the probabilistic method, which is further enhanced and diversified through
the implementation of various distinct variants. These defined variations connect to the
unique choice and implementation of the iterative framework, which can be approached in
diverse manners relative to the context of the problem at play. The findings from this
research decisively confirm the exceptional efficiency and effectiveness of the probabilistic
technique, especially when utilized alongside an iterative framework that supports the
refinement and enhancement of results. Indeed, it has been rigorously established through
comprehensive analysis that the synergistic combination of the probabilistic method
alongside the iterative approach yields significantly superior results when juxtaposed with
alternative methodologies that may be employed in similar scenarios.

Table 12 Performance comparison of six algorithms with respect to average gap (Gb) and running
time (Time) on different problem sizes n.

n PHb PHlm
b

MPHb MPHlm
b

RMPHb RMPHlm
b

Gb Time Gb Time Gb Time Gb Time Gb Time Gb Time

500 0.16 0.003 0.12 1.023 0.67 0.003 0.66 0.869 0.53 0.003 0.48 0.778

1,000 0.26 0.005 0.22 2.263 0.78 0.005 0.77 1.935 0.47 0.006 0.36 2.281

1,500 0.21 0.010 0.18 3.133 0.85 0.009 0.85 2.930 0.52 0.008 0.44 3.351

2,000 0.28 0.015 0.26 5.323 0.88 0.013 0.88 4.506 0.38 0.014 0.28 5.120

2,500 0.09 0.019 0.07 6.020 0.80 0.018 0.80 6.219 0.62 0.018 0.57 5.991

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 28/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

Trade-off between solution quality and runtime efficiency
Though the considered heuristic algorithms perform well in fairness and load balance,
especially when the smallest completion time is desired, it is worth noting that there are
some trade-offs between the quality of solutions and the computation time. This can be
clearly seen for the multiple repetitions of the heuristics, for example PHlmb,MPHlmb and

RMPHlm
b , which in a recurrent way apply the probabilistic assignment to obtain better

scheduling results.
While such algorithms provide better solutions by considering a wider range of possible

task assignments, they also have higher computational cost with the number of repetitions
(lm). For the large-scale scenarios having hundreds or thousands of programs and virtual
machines, the repeated implementation of the heuristic may have longer running time,
which is infeasible for the real time or latency-sensitive tasks in large cloud systems. Also,
the current work takes a sequential approach, which is adequate for a simulation study, but
it may not be able to utilize available parallelism in cloud or distributed systems. This even
more emphasizes the trade-off between complexity of the algorithms and scalability.

To mitigate these issues, future research could explore adaptive stopping criteria,
parallel implementations of the heuristics, or the integration of online learning approaches
to adjust algorithm parameters on-the-fly and according to the workload properties. These
improvements can ensure both solution quality and less computation cost, and make the
proposed scheme more feasible in practical cloud scenarios.

Limitation on task duration assumptions
The scheduler model considered throughout this article is based on the notion that task
durations are given a priori, indicating that the scheduler operates in a deterministic
setting. This assumption allows the problem to be modeled in a less complex way and
facilitates a meaningful comparison of the proposed heuristics on instances with different
settings. It is recognized that in realistic cloud settings, such dynamism is inherent since
task execution times can be unpredictable owing to resource availability fluctuations,
system up and down states, and variability of external dependencies. The exclusion of
random or variable processing times is thus a limitation of this study. Dealing with this
limitation is a promising path for future research, in which integration of predictive
modeling, adaptive scheduling, or stochastic optimization methods may enable the
potential application of the proposed approach to more realistic cloud computing contexts.

CONCLUSION
This comprehensive research endeavor has successfully proposed a total of six distinct
heuristics subsequent to the establishment of a robust mathematical model that
encapsulates the complexities of the problem under investigation. The primary objective of
this scholarly work was to significantly diminish the discrepancies observed in the
completion times associated with virtual machines, thereby facilitating the standardization
of the intervention period within the operational framework of an enterprise. The
inaugural category of the algorithms put forward was predicated upon the random
selection of a singular task drawn from a pool of the ten largest tasks identified within the

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 29/34

http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

dataset. The second category was developed through the iterative application of a
randomized and probabilistic heuristic, executed multiple times to ascertain a singular
minimum value that would be optimal for the given context. The third category was
constructed utilizing a methodology grounded in mixed ordering principles to enhance the
overall effectiveness of the algorithm. A detailed evaluation of the performance
benchmarks for the proposed algorithms, especially in connection with time efficiency and
gap closure when analyzed against the best-performing algorithm, provided meaningful
revelations. The findings unequivocally demonstrate the remarkable efficiency of the
algorithms that have been proposed in this study. Notably, the algorithm identified as

PHlm
b emerged as the most effective solution, achieving optimal results in 82.2% of cases,

with a minimal gap of 0.11 and an execution time of merely 0.036 s. The innovative
solutions articulated within this research may serve as a foundation for future endeavors
aimed at deriving precise solutions to the complex problem delineated in this study.
Furthermore, the methodologies employed throughout this article to compute the
proposed algorithms possess the potential to be adapted for the determination of other
algorithms, particularly in diverse metaheuristic contexts. Conversely, it is noteworthy that
alternative constraints could be integrated into the problem at hand, thereby facilitating
the development of a new NP-hard problem that could pose additional challenges. The
practical implications of the problem under investigation within industrial applications
could substantially contribute to a significant reduction in maintenance costs, while
simultaneously ensuring that the organization can optimize its utilization of virtual
machines effectively. In real-world scenarios, the problem presented in this study holds the
potential to be generalized and applied to a variety of other domains, including but not
limited to healthcare systems, smart parking solutions, hospital management, and network
optimization challenges.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Abdullah Bajahzar conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data is available in the Supplemental Files.

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 30/34

http://dx.doi.org/10.7717/peerj-cs.3234#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.3234#supplemental-information.

REFERENCES
Aghdashi A, Mirtaheri SL. 2019. A survey on load balancing in cloud systems for big data

applications. In: High-Performance Computing and Big Data Analysis: Second International
Congress, TopHPC 2019, Tehran, Iran, April 23–25, 2019, Revised Selected Papers 2. Cham:
Springer, 156–173.

Agustín A, Gruler A, de Armas J, Juan AA. 2016.Optimizing airline crew scheduling using biased
randomization: a case study. In: Advances in Artificial Intelligence: 17th Conference of the
Spanish Association for Artificial Intelligence, CAEPIA 2016, Salamanca, Spain, September 14–16,
2016. Proceedings 17. Cham: Springer, 331–340.

Alquhayz H, Jemmali M. 2021. Max-min processors scheduling. Information Technology and
Control 50(1):5–12 DOI 10.5755/j01.itc.50.1.25531.

Arunachaleswaran ER, Barman S, Rathi N. 2019. Fair division with a secretive agent. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33, 1732–1739
DOI 10.1609/aaai.v33i01.33011732.

Ashraf A, Byholm B, Porres I. 2018. Distributed virtual machine consolidation: a systematic
mapping study. Computer Science Review 28(2):118–130 DOI 10.1016/j.cosrev.2018.02.003.

Chen Z, Gu Z, Wang Y. 2020. Can the max-min fair allocation be trustful in a centralized resource
system? In: International Conference on Wireless Algorithms, Systems, and Applications. Cham:
Springer, 51–64.

Chen Z, Gu Z, Wang Y. 2021. Incentives against max-min fairness in a centralized resource
system. Wireless Communications and Mobile Computing 2021(1):5570104
DOI 10.1155/2021/5570104.

Dey NS, Gunasekhar T. 2019. A comprehensive survey of load balancing strategies using hadoop
queue scheduling and virtual machine migration. IEEE Access 7:92259–92284
DOI 10.1109/access.2019.2927076.

Dornala RR, Ponnapalli S, Lakshmi AR, Sai KT. 2023. An advanced cloud security and load
balancing in health care systems. In: 2023 International Conference on Self Sustainable Artificial
Intelligence Systems (ICSSAS). Piscataway: IEEE.

Eljack S, Jemmali M, Denden M, Sadig MA, Algashami AM, Turki S. 2024. Intelligent solution
system for cloud security based on equity distribution: model and algorithms. Computers,
Materials & Continua 78(1):1461–1479 DOI 10.32604/cmc.2023.040919.

Eljack S, Jemmali M, Denden M, Turki S, Khedr WM, Algashami AM, ALsadig M. 2023. A
secure solution based on load-balancing algorithms between regions in the cloud environment.
PeerJ Computer Science 9(3):e1513 DOI 10.7717/peerj-cs.1513.

Fahim Y, Rahhali H, Hanine M, Benlahmar E-H, Labriji E-H, Hanoune M, Eddaoui A. 2018.
Load balancing in cloud computing using meta-heuristic algorithm. Journal of Information
Processing Systems 14(3):569–589.

Fati SM, Jaradat AK, Abunadi I, Mohammed AS. 2020. Modelling virtual machine workload in
heterogeneous cloud computing platforms. Journal of Information Technology Research (JITR)
13(4):156–170 DOI 10.4018/jitr.20201001.oa1.

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 31/34

http://dx.doi.org/10.7717/peerj-cs.3234#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3234#supplemental-information
http://dx.doi.org/10.5755/j01.itc.50.1.25531
http://dx.doi.org/10.1609/aaai.v33i01.33011732
http://dx.doi.org/10.1016/j.cosrev.2018.02.003
http://dx.doi.org/10.1155/2021/5570104
http://dx.doi.org/10.1109/access.2019.2927076
http://dx.doi.org/10.32604/cmc.2023.040919
http://dx.doi.org/10.7717/peerj-cs.1513
http://dx.doi.org/10.4018/jitr.20201001.oa1
http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

Ghaderi J. 2016. Randomized algorithms for scheduling VMS in the cloud. In: IEEE INFOCOM
2016—The 35th Annual IEEE International Conference on Computer Communications.
Piscataway: IEEE.

Ghomi EJ, Rahmani AM, Qader NN. 2017. Load-balancing algorithms in cloud computing: a
survey. Journal of Network and Computer Applications 88:50–71.

Ghandour O, El Kafhali S, Hanini M. 2024. Adaptive workload management in cloud computing
for service level agreements compliance and resource optimization. Computers and Electrical
Engineering 120(2):109712 DOI 10.1016/j.compeleceng.2024.109712.

Gures E, Shayea I, Ergen M, Azmi MH, El-Saleh AA. 2022. Machine learning-based load
balancing algorithms in future heterogeneous networks: a survey. IEEE Access 10(2):37689–
37717 DOI 10.1109/access.2022.3161511.

Jahanpour H, Barati H, Mehranzadeh A. 2020. An energy efficient fault tolerance technique based
on load balancing algorithm for high-performance computing in cloud computing. Journal of
Electrical and Computer Engineering Innovations (JECEI) 8(2):169–182
DOI 10.1109/iccceee49695.2021.9429597.

Jain P, Jain R, Tyagi B. 2025. RLSK_US: an improved dynamic virtual machine consolidation
model to optimize energy and SLA violations in cloud datacenter. Journal of Network and
Systems Management 33(3):70 DOI 10.1007/s10922-025-09936-x.

Jemmali M. 2019. Approximate solutions for the projects revenues assignment problem.
Communications in Mathematics and Applications 10(3):653 DOI 10.26713/cma.v10i3.1238.

Jemmali M. 2022. Intelligent algorithms and complex system for a smart parking for vaccine
delivery center of COVID-19. Complex & Intelligent Systems 8:597–609
DOI 10.1007/s40747-021-00524-5.

Jemmali M, Alharbi M, Melhim LKB. 2018. Intelligent decision-making algorithm for supplier
evaluation based on multi-criteria preferences. In: 2018 1st International Conference on
Computer Applications & Information Security (ICCAIS). Piscataway: IEEE.

Jemmali M, Bashir AK, Boulila W, Melhim LKB, Jhaveri RH, Ahmad J. 2022a. An efficient
optimization of battery-drone-based transportation systems for monitoring solar power plant.
IEEE Transactions on Intelligent Transportation Systems 24(12):15633–15641
DOI 10.1109/tits.2022.3219568.

Jemmali M, Melhim LKB, Alharbi M. 2019. Randomized-variants lower bounds for gas turbines
aircraft engines. In: World Congress on Global Optimization. Cham: Springer, 949–956
DOI 10.1007/978-3-030-21803-4_94.

Jemmali M, Melhim LKB, Alharbi SOB, Bajahzar AS. 2019. Lower bounds for gas turbines
aircraft engines. Communications in Mathematics and Applications 10(3):637
DOI 10.26713/cma.v10i3.1218.

Jemmali M, Melhim LKB, Alourani A, Alam MM. 2022b. Equity distribution of quality
evaluation reports to doctors in health care organizations. PeerJ Computer Science 8(4):e819
DOI 10.7717/peerj-cs.819.

Jemmali M, Otoom MM, al Fayez F. 2020. Max-min probabilistic algorithms for parallel
machines. In: Proceedings of the 2020 International Conference on Industrial Engineering and
Industrial Management, 19–24.

Kashani MH, Mahdipour E. 2022. Load balancing algorithms in fog computing. IEEE
Transactions on Services Computing 16(2):1505–1521 DOI 10.1109/tsc.2022.3174475.

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 32/34

http://dx.doi.org/10.1016/j.compeleceng.2024.109712
http://dx.doi.org/10.1109/access.2022.3161511
http://dx.doi.org/10.1109/iccceee49695.2021.9429597
http://dx.doi.org/10.1007/s10922-025-09936-x
http://dx.doi.org/10.26713/cma.v10i3.1238
http://dx.doi.org/10.1007/s40747-021-00524-5
http://dx.doi.org/10.1109/tits.2022.3219568
http://dx.doi.org/10.1007/978-3-030-21803-4_94
http://dx.doi.org/10.26713/cma.v10i3.1218
http://dx.doi.org/10.7717/peerj-cs.819
http://dx.doi.org/10.1109/tsc.2022.3174475
http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

Kaur R, Ghumman NS. 2018. A load balancing algorithm based on processing capacities of VMS
in cloud computing. In: Big Data Analytics: Proceedings of CSI 2015. Cham: Springer, 63–69.

Kinger S, Kumar R, Sharma A. 2014. Prediction based proactive thermal virtual machine
scheduling in green clouds. The Scientific World Journal 2014(1):208983
DOI 10.1155/2014/208983.

Ko S-Y, Chen H-L, Cheng S-W, Hon W-K, Liao C-S. 2021. General max-min fair allocation. In:
Computing and Combinatorics: 27th International Conference, COCOON 2021, Tainan, Taiwan,
October 24–26, 2021, Proceedings 27. Cham: Springer, 63–75.

Konjaang JK, Maipan-Uku J, Kubuga KK. 2016. An efficient max-min resource allocator and task
scheduling algorithm in cloud computing environment. ArXiv DOI 10.48550/arXiv.1611.08864.

Kulkarni M, Deshpande P, Nalbalwar S, Nandgaonkar A. 2022. Taxonomy of load balancing
practices in the cloud computing paradigm. International Journal of Information Retrieval
Research (IJIRR) 12(3):1–15 DOI 10.4018/ijirr.300292.

Li Y, He C, Jiang Y, WuW, Jiang J, ZhangW, Fan H. 2019.Max-min fair allocation for resources
with hybrid divisibilities. Expert Systems with Applications 124(3):325–340
DOI 10.1016/j.eswa.2019.01.071.

Liu E, Cheng P. 2017. Achieving privacy protection using distributed load scheduling: a
randomized approach. IEEE Transactions on Smart Grid 8(5):2460–2473
DOI 10.1109/tsg.2017.2703400.

Lv Z, Fan J, Wang L. 2021. Dynamic construction of virtual manufacturing cell considering
workload balancing and machine failure. In: E3S Web of Conferences. Vol. 268. EDP
Sciences, 01060 DOI 10.1051/e3sconf/202126801060.

Mehmeti F, Kellerer W. 2022.Max-min fair resource allocation in SD-RAN. In: Proceedings of the
18th ACM International Symposium on QoS and Security for Wireless and Mobile Networks. New
York: ACM, 27–35.

Mikram H, El Kafhali S. 2025. CHPSO: an efficient algorithm for task scheduling and optimizing
resource utilization in the cloud environment. Journal of Grid Computing 23:15
DOI 10.1007/s10723-025-09803-8.

Mikram H, El Kafhali S, Saadi Y. 2024. HEPGA: a new effective hybrid algorithm for scientific
workflow scheduling in cloud computing environment. Simulation Modelling Practice and
Theory 130:102864 DOI 10.1016/j.simpat.2023.102864.

Muchori JG, Mwangi PM. 2022.Machine learning load balancing techniques in cloud computing:
a review. Available at http://41.89.243.34:8080/xmlui/handle/123456789/6096.

Murad SA, Azmi ZRM, Muzahid AJM, Bhuiyan MKB, Saib M, Rahimi N, Prottasha NJ, Bairagi
AK. 2024. SG-PBFS: shortest gap-priority based fair scheduling technique for job scheduling in
cloud environment. Future Generation Computer Systems 150(14):232–242
DOI 10.1016/j.future.2023.09.005.

Nazir J, Iqbal MW, Alyas T, Hamid M, Saleem M, Malik S, Tabassum N. 2022. Load balancing
framework for cross-region tasks in cloud computing. Computers, Materials & Continua
70(1):1479–1490 DOI 10.32604/cmc.2022.019344.

Patel K, Mehta A, Solanki K. 2021. A survey of various load balancing algorithms in cloud
computing. International Journal of Engineering Research & Technology (IJERT) Icradl 9(5).

Raeisi-Varzaneh M, Dakkak O, Fazea Y, Kaosar MG. 2024. Advanced cost-aware max–min
workflow tasks allocation and scheduling in cloud computing systems. Cluster Computing
27(9):13407–13419 DOI 10.1007/s10586-024-04594-1.

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 33/34

http://dx.doi.org/10.1155/2014/208983
http://dx.doi.org/10.48550/arXiv.1611.08864
http://dx.doi.org/10.4018/ijirr.300292
http://dx.doi.org/10.1016/j.eswa.2019.01.071
http://dx.doi.org/10.1109/tsg.2017.2703400
http://dx.doi.org/10.1051/e3sconf/202126801060
http://dx.doi.org/10.1007/s10723-025-09803-8
http://dx.doi.org/10.1016/j.simpat.2023.102864
http://41.89.243.34:8080/xmlui/handle/123456789/6096
http://dx.doi.org/10.1016/j.future.2023.09.005
http://dx.doi.org/10.32604/cmc.2022.019344
http://dx.doi.org/10.1007/s10586-024-04594-1
http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

Rampersaud S, Grosu D. 2015. A multi-resource sharing-aware approximation algorithm for
virtual machine maximization. In: 2015 IEEE International Conference on Cloud Engineering.
Piscataway: IEEE, 266–274.

Ray SK, Singhal MK. 2024. Comprehensive survey on load balancing techniques in cloud
computing environments. International Journal of Scientific Research in Science and Technology
11(6):853–860 DOI 10.32628/ijsrst24114336.

Salhi B, Jemmali M. 2018a. Entrepreneurship intention scoring. Journal of Entrepreneurship
Education 21(1).

Salhi B, Jemmali M. 2018b. Formulating and modelling of entrepreneurship intention and
training. In: ICIE 2018 6th International Conference on Innovation and Entrepreneurship: ICIE
2018.

Shakeel H, Alam M. 2022. Load balancing approaches in cloud and fog computing environments:
a framework, classification, and systematic review. International Journal of Cloud Applications
and Computing (IJCAC) 12(1):1–24 DOI 10.4018/ijcac.311503.

Shi X-L, Xu K. 2014. Utility maximization model of virtual machine scheduling in cloud
environment. Chinese Journal of Computers 36(2):252–262 DOI 10.3724/sp.j.1016.2013.00252.

Sun N, Shi H, Han G, Wang B, Shu L. 2020. Dynamic path planning algorithms with load
balancing based on data prediction for smart transportation systems. IEEE Access 8:15907–
15922 DOI 10.1109/access.2020.2966995.

ZhengW,Wang C, Zhang D. 2016. A randomization approach for stochastic workflow scheduling
in clouds. Scientific Programming 2016:9136107 DOI 10.1155/2016/9136107.

Zhou J, Lilhore UK, Hai T, Simaiya S, Jawawi DNA, Alsekait DM, Ahuja S, Biamba C, Hamdi
M. 2023. Comparative analysis of metaheuristic load balancing algorithms for efficient load
balancing in cloud computing. Journal of Cloud Computing 12:85
DOI 10.1186/s13677-023-00453-3.

Bajahzar (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3234 34/34

http://dx.doi.org/10.32628/ijsrst24114336
http://dx.doi.org/10.4018/ijcac.311503
http://dx.doi.org/10.3724/sp.j.1016.2013.00252
http://dx.doi.org/10.1109/access.2020.2966995
http://dx.doi.org/10.1155/2016/9136107
http://dx.doi.org/10.1186/s13677-023-00453-3
http://dx.doi.org/10.7717/peerj-cs.3234
https://peerj.com/computer-science/

	Heuristic-based load balancing for identical virtual machines: a fair scheduling approach using probabilistic methods
	Introduction
	Related works
	Problem definition
	Scheduling algorithms
	Test and experiments
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

