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ABSTRACT
Many people use mobile devices for communication, including the short message
service (SMS). Attackers can exploit SMS to send spam messages and carry out
phishing or malware attacks. These attacks pose risks to users by potentially
damaging devices or stealing, altering, or deleting data. The purpose of this study is to
detect spam and ham SMSs efficiently. The methodology of this research is to
propose a data-driven process model based on natural language processing (NLP)
and machine learning algorithms to detect spam and ham SMSs. The machine
learning algorithms used in this model are K-nearest neighbors (KNN), decision tree
(DT), random forest (RF), gradient boosting (GB), multi-layer perceptron (MLP),
and support vector machine (SVM). The proposed model uses several steps, such as
deleting punctuation from the dataset, converting data in the dataset into lowercase
letters, applying tokenization on the data in the dataset, deleting English stopwords
from the dataset, utilizing stemming or lemmatization, using the map function to
replace class values with numeric values, using a feature extraction method
(CountVectorizer), applying stratified shuffle split cross-validation, using the
random oversampling method to solve the imbalanced classes in the dataset, and
training and testing the models using the above-mentioned machine learning
algorithms. The classification measures used for the considered machine learning
algorithms are accuracy, precision, recall, and F1-score. The proposed machine
learning models are compared using the classification measures based on balanced or
imbalanced dataset to specify which model provides better classification
performance. In addition, the proposed machine learning models are compared
using the precision-recall curve and the area under the precision-recall curve based
on an imbalanced dataset to evaluate the performance of the classification models of
the compared algorithms. Moreover, the proposed model is compared with related
works to assess its performance against previous works. The experimental results
showed that multi-layer perceptron (MLP) offers the highest accuracy, precision, and
F1-score results. In addition, KNN, RF, MLP, and SVM provide similar and the
highest recall results. Based on the results of the areas under the precision-recall
curves, the classification models of the compared algorithms are performing well.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Neural Networks
Keywords Classification measures, Ham SMSs, Machine learning, Natural language processing,
Spam SMSs

How to cite this article Abdel-Jaber H. 2025. Detecting spam and ham SMS messages using natural language processing and machine
learning algorithms. PeerJ Comput. Sci. 11:e3232 DOI 10.7717/peerj-cs.3232

Submitted 9 April 2025
Accepted 29 August 2025
Published 30 October 2025

Corresponding author
Hussein Abdel-Jaber,
habdeljaber@arabou.edu.sa

Academic editor
Giovanni Angiulli

Additional Information and
Declarations can be found on
page 38

DOI 10.7717/peerj-cs.3232

Copyright
2025 Abdel-Jaber

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.3232
mailto:habdeljaber@�arabou.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3232
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


INTRODUCTION
Background information
With the rise in mobile device usage and the declining cost of short message service (SMS),
the volume of transmitted messages has grown exponentially. SMS is one of the cheapest
and most popular communication methods worldwide for exchanging messages between
servers (Cormack, 2006). Mobile users send SMS messages for various purposes, including
greetings, business communications, and advertisements. This growth has also led to an
increase in attackers sending spam SMSmessages for malicious purposes (Almeida, Gomez
Hidalgo & Yamakami, 2011; Parandeh Motlagh & Khatibi Bardsiri, 2018). Spam SMS
messages can be defined as unsolicited SMSs sent without the recipient’s permission
(Tekerek, 2017; Sheikhi, Kheirabadi & Bazzazi, 2020; Ahmed et al., 2022; Rajput, Athavale
& Mittal, 2019; Alghoul et al., 2018). These messages can contain diverse content, such as
promotions, awards, phishing links, or malware, including viruses and Trojans, making
them potentially harmful (Mohammadi & Hamidi, 2018; Martin et al., 2005; Rajput,
Athavale & Mittal, 2019). For example, a spam SMS might include a phishing link that
redirects users to a fraudulent website designed to steal their credentials and, consequently,
their financial assets. Spammers often collect users’ contact information from websites,
chat rooms, and similar platforms to sell to other spammers, who then use it to send
additional spam SMS messages.

Spam filtering systems can be developed using data-driven approaches such as machine
learning algorithms (Tekerek, 2017; Sheikhi, Kheirabadi & Bazzazi, 2020; Nyamathulla
et al., 2022; Sharma & Arjun, 2023; Moutafis, Andreatos & Stefaneas, 2023; Fatima et al.,
2023; Shrivas, Dewangan & Ghosh, 2021; Reddy et al., 2023; Madhavan et al., 2021).
Data-driven solutions have demonstrated not only high detection rates but also
cost-effectiveness and greater objectivity compared to traditional methods. For instance,
Reddy et al. (2023) proposed a natural language processing (NLP) model combined with
machine learning algorithms to automatically classify incoming emails as either spam or
legitimate.

In Fatima et al. (2023), a machine learning algorithm was proposed to detect spam
emails. This algorithm optimizes hyperparameter settings using various parameter
optimization methods, including manual search, random search, grid search, and genetic
algorithm (GA). Additionally, it incorporates two feature extraction modules: Term
frequency-inverse document frequency (TF-IDF) vectorizer and CountVectorizer. The
algorithm has been applied to three datasets, one of which is the UCI SMS Spam dataset.
The algorithm follows these preprocessing steps: converting all text to lowercase or
uppercase, removing hyperlinks, whitespaces, numbers, and punctuation, deleting
stopwords, and applying tokenization, stemming, and lemmatization. To detect spam SMS
messages, the optimized algorithm employs various machine learning methods. The
classification results, such as accuracy, could be further improved by developing a model
using machine learning algorithms like random forest (RF) (Breiman, 2001; Cutler, Cutler
& Stevens, 2011), multi-layer perceptron (MLP) (Rosenblatt, 1958; Singh & Banerjee,
2019), and support vector machine (SVM) (Cortes & Vapnik, 1995). In Reddy et al. (2023),
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a project focused on preprocessing using machine learning algorithms and NLP was
introduced. This project aimed to provide a system for filtering spam emails. The dataset
used consisted of emails classified as either spam or ham. For NLP, preprocessing steps
included tokenization, stopword removal, stemming, and feature extraction. The machine
learning algorithms employed in this project included naïve Bayes (NB) (Zhang, 2004),
SVM, and K-nearest neighbors (KNN) (Cover & Hart, 1967). The accuracy of SVM in this
context could be improved by developing a model that combines SVM and NLP
techniques, incorporating methods such as punctuation removal, stemming,
lemmatization, and advanced techniques like stratified shuffle split cross-validation.

Several studies have proposed models based on machine learning algorithms to detect
spam SMS messages, such as the works in Sani, Abdulrahman & Adamu (2025), de Luna
et al. (2023),Hossain et al. (2021), Sjarif et al. (2019), GuangJun et al. (2020), Asirvatham &
Meenakshi (2025).

Decision tree (DT) (Breiman et al., 1984;Quinlan, 1993;Hastie, Tibshirani & Friedman,
2009), J48 (Frank, Hall & Witten, 2016), and NB algorithms have been compared to detect
ham or spam short messages (Sani, Abdulrahman & Adamu, 2025). Two datasets from the
UCI repository and ExAIS_SMS were used; the models using k-fold cross-validation were
evaluated. Accuracy and area under the receiver operating characteristic curve (AUC-
ROC) metrics are used to evaluate the performance of the models. The results showed that
the DT achieved the highest accuracy based on the two datasets. NB has accomplished
greater ROC-AUC results. The performance of NB and J48 depends on the dataset; both
NB and J48 achieve higher accuracy and ROC-AUC results using the UCI dataset.
However, they have lower accuracy and ROC-AUC results using the ExAIS_SMS dataset.
Moreover, the proposed model in Sani, Abdulrahman & Adamu (2025) and the baseline
model have been compared using the accuracy. The results demonstrated that the accuracy
of the compared algorithms is higher than that of the baseline model. Therefore, the
accuracy results of the compared algorithms are improved. The Nemenyi test can be used
to compare different models or classifiers (Hollander, Wolfe & Chicken, 2015). The
Nemenyi test P-values are used to show the statistical differences in the rankings of the
model (Sani, Abdulrahman & Adamu, 2025). The DT and NB showed no notable
differences between them. However, DT and J48 showed observable differences between
them.

The SMS spam dataset used in de Luna et al. (2023) was resulted by created three
datasets, two of which are from Kaggle, and the researchers obtained the third one. Eleven
machine learning algorithms have been compared using accuracy to discover which
algorithm provides the highest accuracy in detecting spam or ham SMSs (de Luna et al.,
2023). The algorithms used in the comparison are logistic regression (Bisong, 2019), KNN,
DT, SVM, RF, Extra Trees (Geurts, Ernst &Wehenkel, 2006), gradient boosting, AdaBoost,
XGBoost, Bernoulli naïve Bayes, and Bagging. The results showed that logistic regression
provides the highest accuracy result, while KNN provides the smallest accuracy result. The
remaining algorithms yield adequate accuracy results. The second, third, and fourth
highest accuracy results are achieved by Bernoulli naïve Bayes, RF, and Extra Trees,
respectively. The highest four algorithms regarding to accuracy were chosen for
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optimization. The aim of optimizing these algorithms is to note the influence of optimized
parameters on their performance. These optimized algorithms are compared using
accuracy, precision, recall, and F1-score to determine which optimized algorithm provides
the highest performance results. The results showed that Bernoulli naïve Bayes provides
the highest accuracy, recall, and F1-score. RF achieves the second highest accuracy, recall,
and F1-score. Logistic regression produces an accuracy higher than Extra Trees. Extra
Trees provides higher recall and F1-score than those of logistic regression. In terms of
precision, logistic regression provides the highest precision. RF presents the second highest
precision. Extra Trees outperforms Bernoulli naïve Bayes in terms of precision.
Additionally, the optimized algorithms enhance their accuracy results.

Bernoulli naïve Bayes, Gaussian naïve Bayes, and Multinomial naïve Bayes are
compared using TF-IDF and CountVectorizer to determine which algorithm provides the
highest accuracy and precision results (de Luna et al., 2023). The results showed that
Bernoulli naïve Bayes accomplishes the highest accuracy and precision results using
TF-IDF and CountVectorizer. Additionally, the accuracy and precision results of Bernoulli
naïve Bayes using TF-IDF are the same as those for Bernoulli naïve Bayes using
CountVectorizer. Multinomial naïve Bayes outperforms Gaussian naïve Bayes in terms of
accuracy and precision using TF-IDF and CountVectorizer.

The SMS dataset used in Hossain et al. (2021) was taken from Kaggle. SVM and
multinomial naïve Bayes algorithms are compared based on three feature extraction
processes to determine which algorithm provides the highest accuracy and F1-score
results, as well as the lowest computational time in seconds. The three feature extraction
processes are pre-processing and TF-IDF, pre-processing and TF-IDF with stemming, and
pre-processing, stemming, TF-IDF, and length of the messages. This comparison
comprises six experiments, which show the results of accuracy, F1-score, and the
computational time based on the three feature extraction processes for the compared
algorithms.

The SVM displays the same accuracy and F1-score when the feature extraction process
is either pre-processing and TF-IDF or pre-processing and TF-IDF with stemming.
However, the computational time for the SVM using pre-processing and TF-IDF with
stemming is lower than that of the SVM using pre-processing and TF-IDF. Moreover,
SVM produces the smallest accuracy and F1-score results, and the highest computational
time when using pre-processing, stemming, TF-IDF, and the Length of the messages.

Multinomial naïve Bayes achieves the highest accuracy using pre-processing and
TF-IDF with stemming. Additionally, multinomial naïve Bayes using pre-processing and
TF-IDF achieves higher accuracy than multinomial naïve Bayes using pre-processing,
stemming, TF-IDF, and Length of the messages. Multinomial naïve Bayes using
pre-processing and TF-IDF has the lowest computational time. Moreover, multinomial
naïve Bayes using pre-processing and TF-IDF with stemming has lower computational
time than multinomial naïve Bayes using pre-processing, stemming, TF-IDF, and length of
the messages. Multinomial naïve Bayes accomplishes the same F1-score using any given
feature extraction process.
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Multinomial naïve Bayes outperforms the SVM in terms of accuracy, regardless of the
feature extraction process used. In addition, the computational times of multinomial naïve
Bayes are less than those of SVM using any given feature extraction method. Both
Multinomial naïve Bayes and SVM achieve the same F1-score when either pre-processing
and TF-IDF or pre-processing and TF-IDF with stemming is used. Multinomial naïve
Bayes achieves a higher F1-score than the SVM when pre-processing, stemming, TF-IDF,
and length of the messages are applied.

Multinomial naïve Bayes outperforms SVM in terms of the micro average area under
the ROC curve (Hossain et al., 2021). As a result, Multinomial naïve Bayes can detect spam
SMSs based on stemming and TF-IDF better than SVM.

InHossain et al. (2021), another comparison has been conducted among Bernoulli naïve
Bayes and the works in Sjarif et al. (2019) and GuangJun et al. (2020). The work in Sjarif
et al. (2019) employed the RF algorithm, while the work in GuangJun et al. (2020) utilized
the logistic regression algorithm. The compared algorithms use TF-IDF feature extraction.
This comparison is based on accuracy and F1-score. The results showed that Bernoulli
naïve Bayes outperforms both RF and logistic regression in terms of accuracy and F1-score.
Additionally, logistic regression provides higher accuracy and F1-score results than RF.

Different machine learning algorithms have been compared based on accuracy,
precision, recall, and F1-score to determine which algorithm offers higher performance in
detecting spam or ham SMSs (Asirvatham & Meenakshi, 2025). The compared algorithms
are linear regression, logistic regression, KNN, NB, and SpamSMS. The results
demonstrated that SpamSMS provides the highest accuracy. Both SpamSMS and logistic
regression offer the same and the highest precision result. SpamSMS and NB produce the
same and the highest recall result. NB provides the highest F1-score.

Motivations
The primary motivations for this research are as follows:

. The potential theft of personal credentials through spam SMS messages.

. The consumption of mobile device resources caused by spam SMS messages.

. The disruption caused by the receipt of unwanted SMS messages, particularly spam.

Problem statement
SMS messages are a popular way of communicating between people. Spam SMSs are
undesired messages because they may contain advertisements, malicious links, and other
content that can harm people. Spam SMSs can also affect the security and privacy of
people. Cybercriminals can use malicious links in spam SMS messages to commit
cybercrimes, such as downloading malware, stealing user information, or redirecting users
to phishing websites. Cybercriminals use spam SMSs to commit deceptive operations, such
as stealing users’ financial assets. The device’s resources can be largely consumed when
many spam SMSs are received, such as the device’s storage. As a result, the performance of
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networks is influenced. The recipient of SMSs spends more time filtering SMSs to specify
whether an SMS is spam or ham.

The problems of this research are as follows:

. Cybercriminals can send spam SMSs that convey undesirable content to recipients, such
as advertisements.

. Spam SMSs can be used to commit fraud, such as illegally obtaining users’ credentials
and money.

. Spam SMS can contain malware that can be used to attack users’ devices and data.

. Using memory space in storing spam SMSs.

. Spending more time dealing with spam SMSs by users.

Research questions
The research questions addressed in this work are as follows:

. How can spam and ham SMS messages be detected?

. How can users’ information be secured?

. How can mobile device resources be preserved?

. Which machine learning algorithm among those compared is most effective in detecting
spam SMS messages?

. Which algorithm offers the best classification results among the compared models?

Aims
Detecting spam SMS messages is crucial for achieving several aims, including but not
limited to:

. Securing user information

. Protecting mobile devices

. Saving user time and resources

. Preserving device resources

These aims can be accomplished through the use of spam filter systems.

Main contributions
The main contributions of this research are as follows:

. The novel contribution is developing a data-driven process, which contributes to
proposing a model based on machine learning algorithms and NLP.

. Proposing a data-driven model based on NLP and machine learning algorithms to detect
spam and ham SMS messages. This model classifies SMS messages as either spam or
ham, functioning as a spam filter system. It can block spam SMS messages and allow
legitimate ham SMS messages to reach their recipients, contributing to the protection of
users’ information, finances, and devices.
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. Evaluating the performance of the proposed model using several machine learning
algorithms, balanced dataset, and different evaluation metrics, such as accuracy,
precision, recall, and F1-score. This evaluation helps determine which machine learning
model provides the best classification performance, making it suitable for use as a
detection system for spam and ham SMS messages.

. Evaluating the performance of the proposed model using several machine learning
algorithms, an imbalanced dataset, and the abovementioned evaluation metrics, the
precision-recall curve, and the area under the precision-recall curve. This evaluation
helps determine which machine learning model provides the best classification
performance, making it suitable for use as a detection system for spam and ham SMS
messages. Additionally, evaluating the performance of classification models of the
compared algorithms based on the precision-recall curve and the area under the
precision-recall curve.

. Comparing the results of the proposed model with those of previously published works
to create a benchmark for future research in spam and ham SMS detection. This
comparison also evaluates the performance of the proposed model against prior
methods, helping to establish the superiority of the model based on classification metrics.

Organization of the article
The remainder of this article is organized as follows. ‘Related Works’ presents the related
works, ‘The Proposed Model’ details the proposed model, ‘Discussions’ discusses the
findings, and ‘Conclusions’ concludes the article.

RELATED WORKS
Many studies have been conducted on spam detection in SMS messages. This section
reviews related works on spam detection in SMS using data-driven techniques, focusing
particularly on machine learning algorithms.

In Tekerek (2017), several machine learning techniques for detecting SMS spam were
compared, including KNN, RF, NB, SVM, and RT (Gupta, Mohan & Shidnal, 2018;
Kalmegh, 2015). The authors used the SMS Spam Collection dataset (Almeida, Gomez
Hidalgo & Yamakami, 2011), which includes 4,827 ham SMS messages and 747 spam SMS
messages. A 10-fold cross-validation method was employed during the training and testing
of the machine learning algorithms. The study found that SVM achieved the highest
predictive accuracy of 98.33%, with a false positive rate of 0.087.

In Sheikhi, Kheirabadi & Bazzazi (2020), a machine learning algorithm for detecting
SMS spam was proposed. This method is divided into two key stages: feature extraction
and decision making. To reduce complexity and improve model performance, the feature
extraction stage focuses on identifying features based on the characteristics of spam and
legitimate messages. An average neural network model is then applied to these features to
classify messages as either spam or legitimate. The dataset used in this study is from the
UCI machine learning repository (Dua & Graff, 2017), which contains 4,827 ham
messages and 747 spam messages.
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In Nyamathulla et al. (2022), the authors studied spam detection using several machine
learning algorithms on the same UCI dataset (Dua & Graff, 2017). They employed KNN,
DT (Breiman et al., 1984; Quinlan, 1993; Hastie, Tibshirani & Friedman, 2009), RF, NB,
and SVM algorithms to assess their effectiveness in detecting spam messages. The data
preparation involved constructing a sparse matrix by removing digits, punctuation,
stopwords, and blank spaces from the SMS messages. The dataset was split into 75% for
training and 25% for testing. Experimental results were based on CountVectorizer with an
imbalanced dataset, CountVectorizer with the synthetic minority oversampling technique
(SMOTE) for balancing the dataset, TF-IDF, and hashing vectorizer. The study also
compared the results to other published works, such as a deep learning-based long short-
term memory (LSTM) model (Hochreiter & Schmidhuber, 1997), RF (Amir Sjarif, Mohd
Azmi & Chuprat, 2019), and SVM (Navaney, Dubey & Rana, 2018), with the proposed
method showing higher predictive accuracy than those reported in Amir Sjarif, Mohd
Azmi & Chuprat (2019) and Navaney, Dubey & Rana (2018).

In Sharma & Arjun (2023), the authors compared various classification algorithms,
including NB (multinomial and Bernoulli), KNN, DT, logistic regression (Bisong, 2019),
RF, bagging (Breiman, 1996), Extra Trees (Geurts, Ernst & Wehenkel, 2006), and XGBoost
(Chen & Guestrin, 2016), using the spam dataset from Kaggle (2025). The dataset consists
of 5,572 instances and four attributes, with 672 spam messages and 4,900 ham messages.
The study found that DT and NB produced the best accuracy results.

Moutafis, Andreatos & Stefaneas (2023) investigated spam message detection using
several machine learning algorithms, including SVM, KNN, NB, neural networks
(Rumelhart, Hinton & Williams, 1986; Grosan & Abraham, 2011), RNNs (Marhon,
Cameron & Kremer, 2013), AdaBoost (Mazini, Shirazi & Mahdavi, 2019), RF, GB (Hastie,
Tibshirani & Friedman, 2009; Friedman, 2001), logistic regression (Bisong, 2019), and DT.
The authors used the SpamAssassin dataset, consisting of 501 spam and 2,551 ham emails
(https://www.kaggle.com/code/sergiovirahonda/spamassasin-spam-exploration-prediction/
notebook?scriptVersionId=38100646), as well as the Enron 1 dataset, which includes 3,219
spam and 3,228 ham emails (https://www2.aueb.gr/users/ion/data/enron-spam), and a CSV
file provided by Faisal Qureshi (Kaggle, 2022).

In Fatima et al. (2023), an algorithm was proposed that optimizes hyperparameter
tuning for detecting spam emails. The parameter optimization methods considered were
manual search, random search, grid search, and GA. Two feature extraction modules were
used: TF-IDF vectorizer and CountVectorizer. These modules were applied to three
datasets: Ling Spam (2,893 emails, with 481 spam and 2,412 ham) (Kaggle, 2019a), UCI
SMS Spam (5,574 emails, with 747 spam and 4,827 ham) (Dua & Graff, 2017), and a
dataset with 6,510 emails (1,678 spam and 4,832 ham). Several machine learning
algorithms were used to measure classifier performance, including NB, SVM, RF, MLP,
logistic regression, extra tree (Geurts, Ernst & Wehenkel, 2006), and stochastic gradient
descent (SGD) (Bottou, 2010).

Reddy et al. (2023) presented a project based on machine learning algorithms and NLP
to classify emails. The goal was to develop a spam filter system capable of accurately
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classifying spam emails. The dataset used contained a large number of email messages with
their corresponding spam or ham labels. NLP methods such as tokenization, stopword
removal, and stemming were employed for data preprocessing, and feature extraction was
performed. Machine learning algorithms, including NB and SVM, were tested to
determine the best model for classifying emails. Hyperparameter tuning was applied to
optimize the model’s performance. Empirical results demonstrated that KNN, NB, and
SVM algorithms achieved accuracies above 90%.

In Madhavan et al. (2021), the authors compared several machine learning algorithms
(KNN, SVM, NB, and rough sets (Pawlak, 1982; Pérez-Díaz et al., 2012)) for spam email
detection. They used various evaluation measures, such as accuracy, precision, and recall,
to assess the performance of the models derived from these algorithms. The results showed
that KNN, SVM, NB, and rough sets classifiers all achieved high predictive accuracy,
exceeding 90%.

Shrivas, Dewangan & Ghosh (2021) compared several machine learning algorithms
(NB, RF, J48 (Yadav & Chandel, 2015), RT, and AdaBoost (Mazini, Shirazi & Mahdavi,
2019)) for detecting spam emails. The authors used six different versions of the Enron
dataset and created a new combined Enron dataset by merging these six datasets. During
data preparation, irrelevant words were removed using techniques such as word counting,
stemming, tokenization, pruning, and stopword removal. A 10-fold cross-validation was
applied.

Feature selection methods such as ReliefF (Yang et al., 2011), information gain (IG) (Lei,
2012), chi-square (Rachburee & Punlumjeak, 2015), and SymmetricalUncert (Dai et al.,
2020) were used, followed by a ranker approach in the combined dataset for the RF
algorithm. The confusion matrix was computed for all RF datasets, and performance
measures such as accuracy, precision, specificity, F-measures, false positive rate (FPR), and
true positive rate (TPR) were used. The results indicated that SymmetricalUncert provided
the best results for accuracy, precision, specificity, and F-measures, while chi-square
produced the largest TPR. A comparison of the RF classifier with other machine learning
classifiers showed that RF achieved the highest accuracy across all seven Enron datasets.

The details of the related works are summarized in Table 1, including the year of
publication, machine learning methods used, datasets, dataset sizes, data preparation
methods, evaluation methods, and citations.

The related works have several research gaps. Not all steps of the proposed data-driven
process model, based on NLP and machine learning algorithms, are applied in previous
studies. Additionally, some works did not use all the evaluation metrics employed by the
proposed model. Furthermore, certain studies could benefit from improvements in
classification metrics, such as recall and F1-score.

Comparison of the proposed model and related works
Tables 1 and 2 can be used to compare the proposed model with the related works based on
the datasets used, dataset sizes, data preparation methods, and evaluation methods.
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Table 1 Overview of several related works.

Year of
publication

Machine learning
methods used

Datasets used Dataset sizes Data preparation
methods used

Evaluation methods
used

Citation no.

2017 KNN, RF, NB, SVM,
and RT.

SMS spam collection
(Almeida, Gomez
Hidalgo &
Yamakami, 2011;
Dua & Graff, 2017).

4,827 ham SMSs and
747 spam SMSs.

10-fold cross-
validation.

Success rate and false
positive rate.

Tekerek
(2017)

2020 The proposed model,
RT, NB, J48,
decision stump (Iba
& Langley, 1992),
Hoeffding tree
(Hulten, Spencer &
Domingos, 2001),
SVM, random forest,
H2O + random
forest (Suleiman &
Al-Naymat, 2017).

SMS spam collection
(Dua & Graff, 2017).

4,827 ham SMSs and
747 spam SMSs.

Feature extraction
(first stage) and
decision making
(second stage).

Accuracy, precision,
recall, and F1-score.

Sheikhi,
Kheirabadi
& Bazzazi
(2020)

2022 NB, SVM, and the
maximum entropy;
logistic regression,
KNN, DT, RF;
moreover, long
short-term memory
(LSTM).

SMS spam collection
(Dua & Graff, 2017).

4,827 ham SMSs and
747 spam SMSs.

A sparse matrix is
created after
removing digits,
punctuation marks,
stopwords, and
blank spaces from
SMS messages. The
dataset is split into
75% for training and
25% for testing.
Additional
techniques include
using
CountVectorizer on
an imbalanced
dataset, applying the
synthetic minority
oversampling
technique (SMOTE)
for balancing, and
using TF-IDF and
hashing vectorizer.

Accuracy, precision,
and recall.

Nyamathulla
et al. (2022)

2023 NB-based
multinomial and
Bernoulli, KNN, DT,
logistic regression,
RF, bagging, extra
trees, XGBoost.

Spam dataset on
Kaggle (2025).

5,572 instances: 672
spam emails and
4,900 ham emails,
with 4 attributes.

Clean the dataset by
deleting undesired
data, renaming
variables, labeling
spam and ham
messages, repairing
missing data,
removing duplicates,
and appending extra
features (e.g., letter
count, word count,
sentence count).

Accuracy, confusion
matrix, and
precision.

Sharma &
Arjun
(2023)
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Table 1 (continued)

Year of
publication

Machine learning
methods used

Datasets used Dataset sizes Data preparation
methods used

Evaluation methods
used

Citation no.

2023 SVM, KNN, NB,
neural networks
(Grosan &
Abraham, 2011),
recurrent neural
networks (Marhon,
Cameron & Kremer,
2013), AdaBoost
(Mazini, Shirazi &
Mahdavi, 2019), RF,
GB (Hastie,
Tibshirani &
Friedman, 2009;
Friedman, 2001),
logistic regression
(Bisong, 2019), and
DT.

SpamAssasin (https://
www.kaggle.com/
code/sergiovi
rahonda/spamassasi
n-spam-explorati
on-predicti
on/notebook?
scriptVersionId=
38100646), Enron 1
(https://www2.aueb.
gr/users/ion/data/
enron-spam), and a
csv data file (spam.
csv) provided by
Faisal Qureshi
(Kaggle, 2022).

SpamAssassin dataset:
501 spam emails and
2,551 ham emails.
Enron 1 dataset:
3,219 spam emails
and 3,228 ham
emails. Additional
dataset (spam.csv):
5,572 messages, 13%
spam, and 87% ham.
5,157 unique values.

The dataset is split
with 75% for
training and 25% for
testing, with
CountVectorizer
used for feature
extraction.

Accuracy, with a CSV
file providing source
IP addresses of spam
emails, origin
countries,
geographical
locations of
spammers, and
graphical and textual
statistics.

Moutafis,
Andreatos
& Stefaneas
(2023)

2023 NB, SVM, RF, MLP,
logistic regression,
extra tree (Geurts,
Ernst & Wehenkel,
2006), and stochastic
gradient descent
(SGD) (Bottou,
2010).

Ling spam (Kaggle,
2019b), UCI SMS
spam (Dua & Graff,
2017), and (Fatima
et al., 2023) dataset.

Ling Spam dataset:
2,893 emails (481
spam, 2,412 ham);
UCI SMS Spam
dataset: 5,574 emails
(747 spam, 4,827
ham); additional
dataset: 6,510 emails
(1,678 spam, 4,832
ham).

Hyperparameter
optimization
methods such as
manual search,
random search, grid
search, and genetic
algorithm (GA) are
employed. Two
feature extraction
methods, TF-IDF
vectorizer and
CountVectorizer, are
used.

Accuracy, macro
average precision,
macro average recall,
and macro average
F1-score.

Fatima et al.
(2023)

2021 NB, RF, J48 (Yadav &
Chandel, 2015), RT,
and AdaBoosting
(Mazini, Shirazi &
Mahdavi, 2019).

Six different versions
of the Enron dataset
were used, along
with a combined
dataset created by
merging these six
versions.

Enron-1: 3,671 ham,
1,500 spam; Enron-
2: 4,361 ham, 1,496
spam; Enron-3:
4,012 ham, 1,500
spam; Enron-4:
1,500 ham, 4,499
spam; Enron-5:
1,500 ham, 3,675
spam; Enron-6:
1,500 ham, 4,500
spam.
Combined Enron
dataset: 16,383 ham,
16,383 spam.

Data preparation
includes counting
words, stemming,
tokenization,
pruning, and
stopwords removal.
10-fold
cross-validation is
performed. Feature
selection methods
such as ReliefF,
information gain
(IG), chi-square, and
SymmetricalUncert
are applied, followed
by the ranker
approach in the
combined dataset for
the RF algorithm.

Accuracy, confusion
matrix, true positive
rate (TPR), false
positive rate (FPR),
precision, specificity,
and F-measures.

Shrivas,
Dewangan
& Ghosh
(2021)

(Continued)
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An overview of the similarities and differences between the proposed model and the
related works is presented below:

The model in Nyamathulla et al. (2022) employed methods not used in the
proposed model, including NB, maximum entropy, logistic regression, and LSTM.
Conversely, the proposed model uses GB and MLP, which are not part of the model in
Nyamathulla et al. (2022).

The models in Nyamathulla et al. (2022), Moutafis, Andreatos & Stefaneas (2023) used
75% of the dataset for training and 25% for testing, while the proposed model uses
stratified shuffle split cross-validation.

The technique in Sheikhi, Kheirabadi & Bazzazi (2020) incorporates the methods used
in the proposed model, along with additional techniques such as RT, NB, J48, decision
stump, Hoeffding tree, SVM, and H2O + RF. The technique in Shrivas, Dewangan &
Ghosh (2021) uses NB, RF, J48, RT, and AdaBoosting. The technique in Sharma & Arjun
(2023) includes NB-based multinomial and Bernoulli, KNN, DTs, logistic regression, RF,
bagging, extra trees, and XGBoost. The proposed model in this study uses KNN, DT, RF,
GB, MLP, and SVM.

Table 1 (continued)

Year of
publication

Machine learning
methods used

Datasets used Dataset sizes Data preparation
methods used

Evaluation methods
used

Citation no.

2023 KNN, NB, and SVM. A dataset of email
messages, each
labeled as either
spam or ham.

A large dataset of
email messages
labeled as spam or
ham.

Tokenization,
stopwords removal,
stemming, and
feature extraction
are applied.
Hyperparameter
tuning is conducted.

Accuracy. Reddy et al.
(2023)

2021 KNN, SVM, NB, and
rough sets (Pawlak,
1982; Pérez-Díaz
et al., 2012).

Dataset of emails
(corpus).

A corpus of emails
consisting of spam
and non-spam
messages.

Null, duplicate, and
missing values are
removed. The
dataset is split into
training and testing
sets.

Accuracy, spam
precision, and spam
recall.

Madhavan
et al. (2021)

Table 2 Overview of the proposed model.

Machine
learning
methods
used

Dataset used Dataset size Data preparation methods used Evaluation
methods used

KNN, DT,
RF, GB,
MLP, and
SVM.

SMS Spam
Collection
(Kaggle,
2023).

4,825 ham SMSs and 747 spam SMSs. Removing punctuation marks from SMS messages,
converting the text to lowercase, performing
tokenization, removing English stopwords, applying
stemming or lemmatization, using CountVectorizer for
feature extraction, applying stratified shuffle split cross-
validation, and employing random oversampling for
handling class imbalance.

Accuracy,
precision,
recall, and
F1-measure.
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DT, RF, GB, and MLP are used in the proposed model but are not part of the techniques
in Reddy et al. (2023), Madhavan et al. (2021). In addition, the technique in Reddy et al.
(2023) uses only accuracy as the performance measure, while the technique in Madhavan
et al. (2021) uses accuracy, spam precision, and spam recall. The technique in Sharma &
Arjun (2023) uses accuracy, confusion matrix, and precision, while the proposed model
uses accuracy, precision, recall, and F1-score. Stemming and lemmatization are employed
in the proposed model, while only stemming is used in the techniques in Shrivas,
Dewangan & Ghosh (2021), Pawlak (1982)

The differences between the optimized algorithm (Fatima et al., 2023) and the proposed
algorithm are as follows:

The dataset of the optimized algorithm is split into 80% for the training set and 20% for
the testing set. In contrast, the proposed algorithm splits the dataset using stratified shuffle
split cross-validation, which divides the dataset into ten randomized splits, maintaining the
percentage of samples for each class target as in the entire dataset. Additionally, the
optimized algorithm uses both TF-IDF vectorizer and CountVectorizer modules for
feature extraction, while the proposed algorithm uses only the CountVectorizer module.
The optimized algorithm employs parameter optimization techniques to set the
parameters to their optimal values, whereas these approaches are not applied in the
proposed algorithm. The optimized algorithm converts letters to both upper and lower
case, whereas the proposed algorithm converts all letters to lower case. The optimized
algorithm removes numbers, white spaces, and hyperlinks, while the proposed algorithm
does not remove these elements. Moreover, the optimized algorithm does not address the
imbalanced dataset issue, while the proposed algorithm handles it using the random
oversampling method.

The differences between the technique in Tekerek (2017) and the proposed algorithm
are as follows: the technique uses 4,827 ham SMS messages, while the proposed algorithm
uses 4,825 SMS messages. The technique uses 10-fold cross-validation, while the proposed
algorithm uses stratified shuffle split cross-validation, which provides randomized splits,
ensuring that the percentage of samples for each class label remains the same as in the
entire dataset. The technique does not include several NLP steps, such as removing
punctuation, converting SMS messages to lowercase letters, deleting stopwords, or using
stemming and/or lemmatization. In contrast, the proposed algorithm applies all of these
NLP steps. In the technique, the features are automatically generated from the dataset,
whereas the proposed algorithm uses CountVectorizer for feature extraction. Additionally,
the technique does not address the issue of an imbalanced dataset, as there are more ham
SMS messages than spam SMS messages. On the other hand, the proposed algorithm
tackles this issue by balancing the dataset.

THE PROPOSED MODEL
The proposed model is executed in several steps:

. Obtaining the dataset

. Removing punctuation from the dataset
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. Converting all text to lowercase

. Tokenizing the data to obtain tokens

. Removing English stopwords

. Applying either stemming or lemmatization

. Applying the map function to replace class values with numeric values: spam with 0 and
ham with 1

. Using CountVectorizer for feature extraction

. Applying stratified shuffle split cross-validation, which splits the dataset into ten
randomized splits (Number of folds), ensuring each split maintains the same proportion
of samples from every class label as in the entire dataset (stratification method). The
random_state parameter is set to an integer value that is 42 for reproducible result
through several function calls (Pedregosa et al., 2011).

. Using random oversampling to address class imbalance

. Training and testing machine learning models to obtain classification metrics: accuracy,
precision, recall, and F1-score

The SMS Spam Collection dataset is sourced from Kaggle. The dataset undergoes
preprocessing to clean and prepare the SMSs for analysis. Punctuation marks are removed
as they do not add meaningful value, and the text is converted to lowercase for consistency.
Tokenization is applied to break the SMSs into smaller units, or tokens, which are useful
for analysis. English stopwords are removed, as these are high-frequency words that do not
contribute significantly to the meaning of the dataset. Stemming and lemmatization are
applied to reduce words to their base forms. Stemming involves trimming letters from the
end of words to produce stems, while lemmatization converts words into their lemma, or
base form. The map function relaces spam with 0 and ham with 1. For feature extraction,
CountVectorizer is employed to transform the SMSs into a matrix where the columns
represent tokens, the rows represent SMSs, and each cell contains the count of a token’s
occurrence in an SMS. CountVectorizer is used because it has several advantages (Van
Otten, 2023), such as the simplicity of CountVectorizer, which means CountVectorizer is
simple, easy to understand, and use. In addition, CountVectorizer owns particular
parameters and demands low configuration to begin with the processing of text. The
second advantage is that CountVectorizer is fast and efficient, which means
CountVectorizer is efficient in computation and can process datasets with significant texts
and many documents. CountVectorizer uses representations of sparse matrix that save
processing time and memory, particularly when treating data with high dimensions. The
third advantage is versatility, which means CountVectorizer permits elastic tokenization
selections. Moreover, CountVectorizer controls the vocabulary size and allows filtering of
the stop words. The fourth advantage is that CountVectorizer provides interpretable
results, which means the resulted matrix offers interpretable results, where each cell has a
value that represents the count of a token in a particular document, permitting direct
exploration and analysis.
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The models of transformers have several limitations (AIML.com, 2023), such as the
requirements of large computations, large memory, and large training times. In addition,
there is an enormous complexity of transformer-based models’ architectures. This leads to
the difficulty of interpreting them. The big models are computationally intensive and
energy intensive. Considerations of ethics and bias, which means training upon big
available data, the language models can, without intention, inherit biases provided in the
data. As a result, biased results are presented. The transformer models such as
Bidirectional Encoder Representations from Transformers (BERT), DistilBERT, and
RoBERTa encounter a limitation: the length of content (Bambroo & Awasthi, 2021). The
model size is another limitation (Bambroo & Awasthi, 2021). As a result, these two
limitations can limit the performance of transformer models (Bambroo & Awasthi, 2021).

Convolutional neural network (CNN) has different limitations (Smith, 2025), such as
inadequate dealing with sequential data. Inadequate treatment for time-series data.
Request massive datasets for efficient learning. LSTM has dissimilar limitations (Smith,
2025), such as complex gating methods, which results in computationally expensive. LSTM
has slower training times than either CNN or transformers.

Stratified shuffle split cross-validation is used to divide the dataset into ten randomized
splits, ensuring each class label is proportionally represented in each split. To address class
imbalance, random oversampling is applied, where spam samples are randomly duplicated
until the number of spam messages equals the number of ham messages. Finally, machine
learning models are trained and tested to evaluate the classification results, including
accuracy, precision, recall, and F1-score.

Further details on these steps can be found in ‘The Dataset’–‘Training and Testing the
Models’.

The structure of the proposed model is illustrated in Fig. 1.

The dataset
The SMS Spam Collection dataset, available on Kaggle (2023) and also referenced inDua &
Graff (2017), is used in this study. The dataset contains two columns: the first column
represents the labels, and the second contains the SMS messages. The labels are divided
into two classes: spam and ham. “Spam” refers to unwanted or unsolicited electronic
messages, while "ham" refers to non-spam messages. This dataset consists of 5,572 SMS
messages, with 747 messages classified as spam and 4,825 messages classified as ham. This
creates an imbalanced dataset, with a significant disparity between the number of spam
and ham messages. The minority class is spam, and the majority class is ham. The dataset
was selected based on the following criteria: it is relevant to the problem of detecting spam
SMS messages, as it includes both spam and ham SMSs. It has a sufficient size, offering a
variety of both types of messages. Additionally, the dataset is sourced from Kaggle, a
reliable platform, ensuring its credibility for research purposes.

Preprocessing methods of the data
This subsection outlines the data preparation and cleaning steps applied in this study. NLP
methods are utilized to prepare and clean the data. NLP, a subfield of artificial intelligence
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Figure 1 Structure of the proposed model. Full-size DOI: 10.7717/peerj-cs.3232/fig-1
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(AI), enables computers to understand human languages (Khurana et al., 2023). One of the
key applications of NLP is text classification. In this article, the following NLP methods are
applied to preprocess the data:

. Punctuation marks are removed from the SMS messages.

. All SMS messages are converted to lowercase letters.

. Tokenization is performed, where the SMS messages are split into tokens for easier
processing.

. Common English stopwords, which are frequently occurring words with little
meaningful value, are removed.

. Stemming is applied to reduce words to their root forms by removing suffixes. However,
stemming may result in incorrect spellings and less meaningful words. The stemming
algorithm used is Porter Stemming algorithm (Porter, 1980), which proposed by Porter
in 1980.

. Lemmatization is used to reduce words to their base forms, known as lemmas.
Lemmatization maintains correct spelling and meaning and generally provides more
accurate results than stemming. However, it is slower than stemming because it involves
using a dictionary to determine the base form of a word.

. The feature extraction method employed is CountVectorizer, which is available in
Scikit-learn (Python). This method converts a set of text documents into a matrix where
each column represents a unique token, and each row represents an SMS message. The
values in the matrix correspond to the count of each token in the respective SMS
message.

Stratified shuffle split cross-validation
Stratified shuffle split is a cross-validation method used to obtain the indices for train/test
splits, with the goal of dividing the data into training and testing sets. The result of this
method is a series of stratified randomized splits, meaning that each split maintains the
same percentage of each class label as in the entire dataset. In other words, the splits
preserve the same proportion of samples for every class label.

Random oversampling
As previously mentioned, the dataset is imbalanced, with the number of samples in the
spam class (the minority class) being smaller than the number of samples in the ham class
(the majority class). To address this imbalance, the random oversampling method is
applied. This method increases the number of samples in the minority class by randomly
duplicating existing samples. In this article, random oversampling ensures that the number
of samples in the minority class matches that of the majority class.

Training and testing the models
Once the dataset has been preprocessed and is ready for training, machine learning models
are trained and tested using various algorithms, including KNN, DT, RF, GB, MLP, and
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SVM. The classification results for each algorithm are evaluated using the following
metrics: accuracy, precision, recall, and F1-score.

Hypotheses of the models
This subsection presents hypotheses that are related to the proposed model based on
machine learning algorithms and NLP; these hypotheses are:

. All steps of the proposed data-driven process model, based on NLP and machine
learning algorithms, are applied to offer satisfactory accuracy results.

. All steps of the proposed data-driven process model, based on NLP and machine
learning algorithms, are applied to offer satisfactory precision results.

. All steps of the proposed data-driven process model, based on NLP and machine
learning algorithms, are applied to offer satisfactory recall results.

. All steps of the proposed data-driven process model, based on NLP and machine
learning algorithms, are applied to offer satisfactory F1-score results.

. All steps of the proposed data-driven process model, based on NLP and machine
learning algorithms, are applied to offer satisfactory performance of classification models
based on the precision-recall curves.

. All steps of the proposed data-driven process model, based on NLP and machine
learning algorithms, are applied to offer satisfactory classification models’ performance
based on the areas under the precision-recall curves.

. Certain studies could benefit from improvements in classification metrics, such as recall
and F1-score.

DISCUSSIONS
This section discusses the interpretation of the results, implications, limitations, and future
work of the research.

Interpretation of the results
The results of the proposed model, based on NLP and various machine learning algorithms
using the balanced or the imbalanced dataset, are presented in this section. The algorithms
compared include KNN, DT, RF, GB, MLP, and SVM. The comparison is made using the
following classification metrics: Accuracy, precision, recall, F1-score, precision-recall
curve, and the area under the precision-recall curve. The goal of this comparison is to
identify which algorithm yields the best classification results. All algorithms used stratified
shuffle split cross-validation, where the dataset is split into ten train/test splits. In each
split, the percentage of samples for each class label is maintained to be the same as in the
entire dataset. The software used is PyCharm, the versions are 2022.3.3 and 2023.3.4. The
library used is Scikit-learn (Pedregosa et al., 2011).

This subsection is organized as follows: ‘Parameter Settings’ provides the parameter
settings of the compared algorithms. ‘Classification Measures’ presents the classification
measures. The classification results for both stemming and lemmatization based on
balanced dataset and imbalanced dataset are discussed in ‘Results Relying on Stemming

Abdel-Jaber (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3232 18/43

http://dx.doi.org/10.7717/peerj-cs.3232
https://peerj.com/computer-science/


and Lemmatization based on a Balanced Dataset’ and ‘Results Relying on Stemming and
Lemmatization based on an Imbalanced Dataset’, respectively. The area under
precision-recall curve results are presented in ‘The Area Under Precision-Recall Curve
Results Relying on Stemming and Lemmatization based on an Imbalanced Dataset’.
‘Comparison between the Proposed Model and Other Models’ offers a comparison
between the proposed model and other machine learning models.

Parameter settings
The parameter settings for the algorithms are as follows. For the KNN algorithm, the
number of neighbors is set to 5. In the DT algorithm, the Gini impurity function is used to
measure split quality, and the “best” split method is applied at every node. The minimum
number of samples required to split an internal node is set to 2. Nodes are expanded until
all leaves are pure or the number of samples falls below the minimum required for a split.
The minimum number of samples required at a leaf node is set to 1. For the RF algorithm,
the number of trees in the forest is set to 100. The Gini impurity function is again used to
measure split quality, and the minimum number of samples required to split an internal
node is set to 2. Nodes are expanded until all leaves are pure or the number of samples falls
below the minimum required for a split. The maximum number of features used for
splitting is set to the square root of the total number of features. In the GB algorithm, the
loss function to be optimized is log_loss. The learning rate is set to 0.1, and the number of
boosting stages is set to 100. The proportion of samples used to fit each base learner is set to
1.0. The splitting quality measure is Friedman’s mean squared error (friedman_mse), and
the minimum number of samples required to split an internal node is set to 2. The
maximum depth of the tree, which bounds the number of nodes, is set to 3. The maximum
number of features for splitting is set to the total number of features. For the MLP, the
hidden layer sizes are set to (200), meaning there is one hidden layer with 200 neurons. The
activation function for the hidden layer is the logistic sigmoid function. The weight
optimization solver is Adam, a stochastic gradient-based optimizer proposed by Kingma
and Ba. The initial learning rate is set to 0.001, and the maximum number of iterations
(epochs) is set to 200. Shuffling of the samples occurs at each iteration. In the SVM
algorithm, the regularization parameter is set to 1.0, and the kernel function used is the
radial basis function (RBF). The Gamma parameter is set to “scale,” which represents the
value of 1/(number of features � X.var()).

Classification measures

Accuracy

Accuracy is the classification score that represents the proportion of correct predictions
(Pedregosa et al., 2011). It is calculated by dividing the number of correct predictions by the
total number of predictions (Kumar, 2024). Accuracy can be computed using Eq. (1)
(Pedregosa et al., 2011; Kumar, 2024).

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

(1)
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where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative, respectively.

Precision

Precision is the ratio of true positives to the total number of predicted positives (Pedregosa
et al., 2011; Kumar, 2024). It can be calculated using Eq. (2) (Pedregosa et al., 2011; Kumar,
2024; Amer, 2022).

Precision ¼ TP
TPþ FP

: (2)

Recall

Recall is the ratio of true positives to the total number of actual positives (Pedregosa et al.,
2011; Kumar, 2024). It can be computed using Eq. (3) (Pedregosa et al., 2011; Kumar, 2024;
Amer, 2022).

Recall ¼ TP
TPþ FN

: (3)

F1-score

The F1-score represents the harmonic mean of precision and recall (Pedregosa et al., 2011;
Kumar, 2024), offering a balance between the two measures (Amer, 2022). It can be
calculated using Eq. (4) (Pedregosa et al., 2011; Kumar, 2024).

F1-score ¼ 2� Precision� Recall
Precisionþ Recall

: (4)

Precision-recall curve

A precision-recall curve is a graphical presentation used to evaluate the performance of
classification models (Precision-Recall Curve, 2024; Precision-Recall (PR) Curve, 2024).
This graphical representation shows precision values vs. recall values at different
classification thresholds (Curve, 2025). The precision-recall curve is influential, especially
when imbalanced datasets are used (Precision-Recall Curve, 2024).

The area under the precision-recall curve

The area under the precision-recall curve is a measure used to summarize the performance
of a classification model, illustrated by the precision-recall curve (Precision-Recall (PR)
Curve, 2024). The higher area indicates better model’s performance. In addition, a greater
value for the area under the precision-recall curve leads to better model performance.

Results relying on stemming and lemmatization based on a balanced dataset

This sub-subsection presents the classification metric results for accuracy, precision, recall,
and F1-score for the KNN, DT, RF, GB, MLP, and SVM algorithms. The random
oversampling method is used to address the imbalanced dataset. Therefore, the balanced
dataset is used. A comparison is made among these algorithms based on the
aforementioned classification metrics. Stemming and lemmatization are applied to provide
the base form of the words in this comparison. The metric results for the compared
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Table 4 Precision results of the compared algorithms for stemming and lemmatization using the
balanced dataset.

Algorithm Precision based on stemming Precision based on lemmatization

KNN 0.945205479 0.944281525

Decision Tree 0.975584944 0.982365145

Random Forest 0.972809668 0.974772957

Gradient Boosting 0.979978925 0.978991597

Multi-Layer Perceptron 0.985714286 0.98470948

SVM 0.98071066 0.982706002

Table 5 Recall results of the compared algorithms for stemming and lemmatization using the
balanced dataset.

Algorithm Recall based on stemming Recall based on lemmatization

KNN 1 1

Decision Tree 0.992753623 0.980331263

Random Forest 1 1

Gradient Boosting 0.962732919 0.964803313

Multi-Layer Perceptron 1 1

SVM 1 1

Table 6 F1-score results of the compared algorithms for stemming and lemmatization using the
balanced dataset.

Algorithm F1-score based on stemming F1-score based on lemmatization

KNN 0.971830986 0.971342383

Decision Tree 0.984094407 0.98134715

Random Forest 0.986217458 0.987225345

Gradient Boosting 0.971279373 0.971845673

Multi-Layer Perceptron 0.992805755 0.99229584

SVM 0.990261404 0.991277578

Table 3 Accuracy results of the compared algorithms for stemming and lemmatization using the
balanced dataset.

Algorithm Accuracy based on stemming Accuracy based on lemmatization

KNN 0.949775785 0.948878924

Decision Tree 0.972197309 0.967713004

Random Forest 0.975784753 0.977578475

Gradient Boosting 0.950672646 0.951569507

Multi-Layer Perceptron 0.987443946 0.986547085

SVM 0.982959641 0.984753363
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algorithms are shown in Tables 3, 4, 5, and 6. Specifically, Table 3 presents the accuracy
results, Table 4 shows the precision results, Table 5 displays the recall results, and Table 6
offers the F1-score results.

Table 3 illustrates that the MLP achieves the highest accuracy for both stemming and
lemmatization, as it has the fewest misclassified samples. SVM, with the second fewest
misclassified samples, follows with the second highest accuracy results. RF, which has the
third fewest misclassified samples, ranks third in terms of accuracy. DT outperforms both
KNN and GB in accuracy, as it has fewer misclassified samples. Additionally, the accuracy
results for GB are better than those for KNN, due to GB’s smaller number of misclassified
samples.

Table 4 presents the precision results for the compared algorithms using stemming and
lemmatization, all of which are smaller than 1. These results indicate that each algorithm
has a number of actual negative samples incorrectly classified as positive. MLP achieves the
highest precision for both stemming and lemmatization, as it has the fewest misclassified
actual negative samples and a higher number of correctly classified actual positive samples
compared to DT and GB. Consequently, MLP provides the best precision results. SVM
follows with the second highest precision, as it has the second fewest misclassified actual
negative samples, along with a higher number of correctly classified actual positive samples
than DT or GB. Therefore, SVM ranks second in precision for both stemming and
lemmatization.

For stemming, GB has the third fewest misclassified actual negative samples, resulting in
the third best precision. DT outperforms both KNN and RF in precision for stemming, as
it has fewer misclassified actual negative samples than either of these algorithms.

For lemmatization, DT ranks third in precision, as it has the third fewest misclassified
actual negative samples. GB, with the fourth fewest misclassified actual negative samples,
ranks fourth in precision for lemmatization.

RF has fewer misclassified actual negative samples than KNN for both stemming and
lemmatization, resulting in better precision performance.

Table 5 shows that KNN, RF, MLP, and SVM all produce recall results of 1 for both
stemming and lemmatization. This is because these algorithms have no false negatives,
meaning no actual positive samples are misclassified as negative. In contrast, DT and GB
produce recall results of less than 1, as both algorithms misclassify some actual positive
samples as negative. However, DT performs better than GB, as it has fewer
misclassified actual positive samples and more correctly classified positive samples. As a
result, DT outperforms GB in recall for both stemming and lemmatization. Additionally,
KNN, RF, MLP, and SVM have the same recall results, outperforming both DT and GB in
this regard.

In Table 6, MLP achieves the highest F1-score for both stemming and lemmatization,
due to its highest precision and recall results. Consequently, MLP has the best F1-score for
both stemming and lemmatization. SVM ranks second in F1-score, with the second
highest precision and recall. RF follows with the third highest F1-score, as it has the third
smallest total of false positives and false negatives. DT ranks fourth, with the fourth
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smallest total of false positives and false negatives. Therefore, DT outperforms both KNN
and GB in terms of F1-score for stemming and lemmatization.

For lemmatization, GB achieves a slightly higher F1-score than KNN, as it has a lower
total of false positives and false negatives. Thus, GB performs better than KNN for
lemmatization in terms of F1-score.

For stemming, KNN has a slightly higher F1-score than GB.

Results relying on stemming and lemmatization based on an imbalanced

dataset
This sub-subsection introduces the metric results for accuracy, precision, recall, and
F1-score for KNN, DT, RF, GB, MLP, and SVM algorithms. The imbalanced dataset is
used. A comparison is made among these algorithms based on the abovementioned
classification metrics. Stemming and lemmatization are used. The results of accuracy,
precision, recall, and F1-score for the compared algorithms are shown in Tables 7, 8, 9,
and 10, respectively.

Table 7 shows that the MLP attains the highest accuracy regarding stemming and
lemmatization because it has the fewest misclassified samples. For stemming, RF has the
second highest accuracy results because it has the second fewest misclassified samples.
SVM presents the third fewest misclassified samples; therefore, SVM is the third in terms
of accuracy.

For lemmatization, both RF and SVM achieve similar accuracy results because these
algorithms have similar misclassified samples. In addition, RF and SVM have higher
accuracy results than KNN, DT, and GB.

For stemming and lemmatization, DT has fewer misclassified samples than either KNN
or GB. Therefore, DT has higher accuracy results than either KNN or GB. Moreover, GB
outperforms KNN regarding accuracy results, because GB has fewer misclassified samples
than KNN.

Table 8 shows the precision results for the compared algorithms based on stemming and
lemmatization. For stemming and lemmatization, MLP accomplishes the highest precision
because MLP has the fewest misclassified actual negative samples.

For stemming, RF presents the second highest precision because it has the second fewest
misclassified actual negative samples. SVM has the third fewest misclassified actual

Table 7 Accuracy results of the compared algorithms for stemming and lemmatization using the
imbalanced dataset.

Algorithm Accuracy based on stemming Accuracy based on lemmatization

KNN 0.910313901 0.908520179

Decision Tree 0.965919283 0.972197309

Random Forest 0.974887892 0.976681614

Gradient Boosting 0.9632287 0.955156951

Multi-Layer Perceptron 0.986547085 0.984753363

SVM 0.973991031 0.976681614
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negative samples; therefore, SVM has the third highest precision. DT has the fourth
highest precision, because DT has the fourth fewest misclassified actual negative samples.

For lemmatization, DT has the second fewest misclassified actual negative samples;
thus, DT has the second highest precision. Both RF and SVM present similar precision
results, because they have similar misclassified actual negative samples and correctly
classified actual positive samples. Both RF and SVM outperform KNN and GB in terms of
precision results.

For stemming and lemmatization, GB outperforms KNN in terms of precision because
GB has fewer misclassified actual negative samples than KNN.

Table 9 displays that KNN, RF, MLP, and SVM provide recall results of 1 using
stemming and lemmatization. These results are because these algorithms have zero false
negative values. On the other hand, DT and GB have recall results of less than 1 because

Table 8 Precision results of the compared algorithms for stemming and lemmatization using the
imbalanced dataset.

Algorithm Precision based on stemming Precision based on lemmatization

KNN 0.90619137 0.904494382

Decision Tree 0.969635628 0.974619289

Random Forest 0.971830986 0.973790323

Gradient Boosting 0.96111665 0.954365079

Multi-Layer Perceptron 0.98470948 0.982706002

SVM 0.970854271 0.973790323

Table 9 Recall results of the compared algorithms for stemming and lemmatization using the
imbalanced dataset.

Algorithm Recall based on stemming Recall based on lemmatization

KNN 1 1

Decision Tree 0.991718427 0.99378882

Random Forest 1 1

Gradient Boosting 0.997929607 0.995859213

Multi-Layer Perceptron 1 1

SVM 1 1

Table 10 F1-score results of the compared algorithms for stemming and lemmatization using the
imbalanced dataset.

Algorithm F1-score based on stemming F1-score based on lemmatization

KNN 0.950787402 0.949852507

Decision Tree 0.980552712 0.984110712

Random Forest 0.985714286 0.986721144

Gradient Boosting 0.979177247 0.974670719

Multi-Layer Perceptron 0.99229584 0.991277578

SVM 0.985211627 0.986721144
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these algorithms incorrectly classify some actual positive samples as negatives. GB
outperforms DT regarding recall because GB has fewer misclassified actual positive
samples than DT. Moreover, KNN, RF, MLP, and SVM produce the same recall results,
which are better than those of DT and GB.

Table 10 presents the F1-score for the compared algorithms using stemming and
lemmatization. This table shows that MLP accomplishes the highest F1-score because it
has the fewest total of false positives and false negatives.

For stemming, RF produces the second highest F1-score because it has the second
fewest total of false positives and false negatives. The third highest F1-score is for SVM,
because SVM has the third fewest total of false positives and false negatives.

For lemmatization, both RF and SVM present similar F1-score results because they have
similar totals of false positives and false negatives. Both RF and SVM have F1-score results
that are better than those for KNN, DT, and GB.

For stemming and lemmatization, DT outperforms KNN and GB regarding the
F1-score because DT has fewer total of false positives and false negatives than either KNN
or GB. GB performs better than KNN regarding F1-score because GB has fewer total of
false positives and false negatives than KNN.

The area under precision-recall curve results relying on stemming and
lemmatization based on an imbalanced dataset
This sub-subsection presents the precision-recall curves and the areas under
precision-recall curves for KNN, DT, RF, GB, MLP, and SVM algorithms. The imbalanced
dataset is applied. A comparison is made among these algorithms based on the

Figure 2 Precision vs. recall for KNN using stemming and the imbalanced dataset.
Full-size DOI: 10.7717/peerj-cs.3232/fig-2
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precision-recall curves and the area under precision-recall curves. Stemming and
lemmatization are used. For stemming, the precision-recall curves for KNN, DT, RF, GB,
MLP, and SVM are shown in Figs. 2, 3, 4, 5, 6, and 7, respectively. Precision-recall curves
for KNN, DT, RF, GB, MLP, and SVM using lemmatization are shown in Figs. 8, 9, 10, 11,

Figure 3 Precision vs. recall for DT using stemming and the imbalanced dataset.
Full-size DOI: 10.7717/peerj-cs.3232/fig-3

Figure 4 Precision vs. recall for RF using stemming and the imbalanced dataset.
Full-size DOI: 10.7717/peerj-cs.3232/fig-4
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12, and 13, respectively. Table 11 shows the area under precision-recall curves for the
compared algorithms.

Figures 2–13 illustrate the precision vs. recall results based on different classification
thresholds. Precision-recall curves are employed to evaluate the performance of

Figure 5 Precision vs. recall for GB using stemming and the imbalanced dataset.
Full-size DOI: 10.7717/peerj-cs.3232/fig-5

Figure 6 Precision vs. recall for MLP using stemming and the imbalanced dataset.
Full-size DOI: 10.7717/peerj-cs.3232/fig-6
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classification models (Precision-Recall Curve, 2024). This sub-subsection uses
precision-recall curves to evaluate the performance of the compared algorithms when an
imbalanced dataset is used. Figures 2–13 show high areas under the precision-recall curves.

Figure 7 Precision vs. recall for SVM using stemming and the imbalanced dataset.
Full-size DOI: 10.7717/peerj-cs.3232/fig-7

Figure 8 Precision vs. recall for KNN using lemmatization and the imbalanced dataset.
Full-size DOI: 10.7717/peerj-cs.3232/fig-8
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Therefore, both precision and recall results are high, which leads to the classification
algorithm models performing well.

Table 11 shows the area under precision-recall curves for the compared algorithms
using stemming and lemmatization. This table reveals that the results of the areas under

Figure 9 Precision vs. recall for DT using lemmatization and the imbalanced dataset.
Full-size DOI: 10.7717/peerj-cs.3232/fig-9

Figure 10 Precision vs. recall for RF using lemmatization and the imbalanced dataset.
Full-size DOI: 10.7717/peerj-cs.3232/fig-10
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precision-recall curves for the compared algorithms using stemming and lemmatization
are high. Therefore, the performance of these algorithms is acceptable. In this table, the
highest results are for RF, which means the model performance of RF is the highest, and RF
has the highest ability to balance between precision and recall. SVM has the second highest

Figure 11 Precision vs. recall for GB using lemmatization and the imbalanced dataset.
Full-size DOI: 10.7717/peerj-cs.3232/fig-11

Figure 12 Precision vs. recall for MLP using lemmatization and the imbalanced dataset.
Full-size DOI: 10.7717/peerj-cs.3232/fig-12
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model performance because SVM has the second highest results for the area under the
precision-recall curve. SVM has the second highest ability to offer balancing between
precision and recall. GB has the third highest model performance because GB has the third
highest results for the area under the precision-recall curve. GB has the third highest ability
to present balancing between precision and recall. MLP has the fourth highest model
performance because MLP has the fourth highest results for the area under the
precision-recall curve. MLP has the fourth highest ability to present balancing between
precision and recall. The model performance of DT is better than the model performance
of KNN because the results of the area under the precision-recall curve for DT are better
than those of KNN. DT has a better ability to balance precision and recall than KNN.

Table 11 The areas under the precision-recall curves of the compared algorithms for stemming and lemmatization using the imbalanced
dataset.

Algorithm The area under precision-recall curve based on stemming The area under precision-recall curve based on
lemmatization

KNN 0.973065622 0.97260274

Decision Tree 0.984264471 0.986894638

Random Forest 0.999135405 0.999278528

Gradient Boosting 0.996588804 0.99682781

Multi-Layer
Perceptron

0.996211744 0.995947991

SVM 0.997582607 0.997641867

Figure 13 Precision vs. recall for SVM using lemmatization and the imbalanced dataset.
Full-size DOI: 10.7717/peerj-cs.3232/fig-13

Abdel-Jaber (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3232 31/43

http://dx.doi.org/10.7717/peerj-cs.3232/fig-13
http://dx.doi.org/10.7717/peerj-cs.3232
https://peerj.com/computer-science/


Comparison between the proposed model and other models
This subsection presents a comparison between the proposed model and other models
(Tekerek, 2017;Nyamathulla et al., 2022;Moutafis, Andreatos & Stefaneas, 2023), as well as
the optimized algorithm from Fatima et al. (2023), based on various machine learning
algorithms, to determine which provides the best classification results.

The accuracy results (in percentage) of the models and the optimized algorithm are
shown in Table 12, while the precision/macro average precision and recall/macro average
recall results for the proposed model, the model in Nyamathulla et al. (2022), and the
optimized algorithm (Fatima et al., 2023) are presented in Tables 13 and 14, respectively.
The F1-score/macro average F1-score results for the proposed model and the optimized
algorithm are illustrated in Table 15.

Table 12 Accuracy/performance results (%) of the proposed model, the models in Tekerek (2017), Nyamathulla et al. (2022), Moutafis,
Andreatos & Stefaneas (2023), and the optimized algorithm in Fatima et al. (2023).

The proposed model Model in
Tekerek
(2017)

Model in
Nyamathulla
et al. (2022)

csv by F.
Qureshi in
Moutafis,
Andreatos &
Stefaneas (2023)

The optimized
algorithm in
Fatima et al.
(2023)

Algorithm Accuracy based on stemming Accuracy
based on
lemmatization

Result
(%)

Accuracy Accuracy Accuracy

KNN 94.977578% 94.88789% 95.1381% 92% 95.51% NA

Decision Tree 97.2197% 96.7713% NA 90% 97.85% NA

Random Forest 97.578% 97.7578% 97.4345% 91% 98.11% 97.49%

Gradient Boosting 95.06726% 95.15695% NA NA 95.9% NA

Multi-Layer Perceptron/
Neural Network (NN)/
Recurrent Neural
Network (RNN)

98.74439% (Multi-Layer Perceptron) 98.6547% NA NA 98.23% (NN)
98.3% (RNN)

97.94%

SVM/LSVC 98.29596% 98.4753% 98.3315% 90% 98.39% 97.85%

Table 13 Precision/Macro average precision results of the proposed model, the model in Nyamathulla et al. (2022), and the optimized
algorithm in Fatima et al. (2023).

The proposed model Model in Nyamathulla et al.
(2022)

The optimized algorithm in Fatima
et al. (2023)

Algorithm Precision based on
stemming

Precision based on
lemmatization

Precision Macro average precision

KNN 94.5205% 94.428% 65% NA

Decision Tree 97.558% 98.2365% 87% NA

Random Forest 97.280966767% 97.477% 87% 98.44%

Multi-Layer
Perceptron

98.5714% 98.4709% NA 97.85%

SVM/LSVC 98.0710659898% 98.2706% 80% 98.79%
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The term Result(%) represents the success rate (Tekerek, 2017). For each label, the
precision, recall, and F1-score results are computed. The arithmetic mean of precision
results is the macro average precision (Pedregosa et al., 2011), the arithmetic mean of recall
results is the macro average recall (Pedregosa et al., 2011), and the arithmetic mean of
F1-score results is the macro average F1-score (Pedregosa et al., 2011). These means are
unweighted (Pedregosa et al., 2011).

The results for the model in Nyamathulla et al. (2022) were obtained using the
CountVectorizer and SMOTE techniques.

In Fatima et al. (2023), the proposed optimized machine learning algorithm improves
accuracy, macro average precision, macro average recall, and macro average F1-score
through hyperparameter tuning. The best results are achieved using different parameter
optimization approaches, including manual search, random search, grid search, and GA.
Additionally, the comparison involves optimized algorithms based on linear support
vector classifier (LSVC), RF, and MLP, which all employ CountVectorizer.

For the LSVC-based optimized algorithm in Fatima et al. (2023), the best results for
accuracy, macro average precision, and macro average F1-score are achieved using GA,
while the best macro average recall result is obtained with manual search.

For the RF-based optimized algorithm in Fatima et al. (2023), the best accuracy results
are achieved using general search cross-validation (GSCV), random search
cross-validation (RSCV), or GA. The best macro average precision is obtained with
Manual Search, and the best results for macro average recall and macro average F1-score
are achieved using GA.

Table 14 Recall/macro average recall results of the proposed model, the model in Nyamathulla et al. (2022), and the optimized algorithm in
Fatima et al. (2023).

The proposed model Model in Nyamathulla et al.
(2022)

The optimized algorithm in Fatima et al.
(2023)

Algorithm Recall based on
stemming

Recall based on
lemmatization

Recall Macro average recall

KNN 100% 100% 99% NA

Decision Tree 99.275% 98.033% 97% NA

Random Forest 100% 100% 98% 92.07%

Multi-Layer
Perceptron

100% 100% NA 93.18%

SVM/LSVC 100% 100% 99% 92.46%

Table 15 F1-score/macro average F1-score results of the proposed model and the optimized algorithm in Fatima et al. (2023).

The proposed model The optimized algorithm in Fatima et al. (2023)

Algorithm F1-score based on stemming F1-score based on lemmatization Macro average F1-score

Random Forest 98.6217% 98.7225% 94.32%

Multi-Layer Perceptron 99.2805755% 99.22958% 95.35%

SVM/LSVC 99.0261% 99.1277578% 95.04%
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For the MLP-based optimized algorithm in Fatima et al. (2023), the best results for
accuracy, macro average precision, macro average recall, and macro average F1-score are
obtained using GSCV.

The model with better accuracy results is able to detect the correct class labels more
consistently than other models.

Table 12 shows that the proposed model based on SVM achieves better accuracy
results using lemmatization compared to the models in Tekerek (2017), Nyamathulla et al.
(2022), Moutafis, Andreatos & Stefaneas (2023) and the optimized algorithm
in Fatima et al. (2023). It also indicates that the model inMoutafis, Andreatos & Stefaneas
(2023) delivers the best accuracy results when using the KNN, DT, RF, and GB algorithms.
Furthermore, the SVM-based model in Moutafis, Andreatos & Stefaneas (2023)
outperforms the proposed model based on stemming, the model in Tekerek (2017), the
model in Nyamathulla et al. (2022), and the optimized algorithm in Fatima et al. (2023).
The SVM-based model in Tekerek (2017) also achieves better performance than the
proposed model based on stemming, the model in Nyamathulla et al. (2022), and the
optimized algorithm in Fatima et al. (2023). The accuracy results of the proposed model
based on stemming and using SVM exceed those of the model in Nyamathulla et al. (2022)
and the optimized algorithm. The accuracy of the optimized algorithm based on LSVC
surpasses the SVM-based model in Nyamathulla et al. (2022). The KNN-based model in
Tekerek (2017) performs better than both the proposed model and the model in
Nyamathulla et al. (2022). Additionally, the proposed model based on KNN achieves better
accuracy than the model in Nyamathulla et al. (2022). The proposed model based on RF
provides better accuracy results than the performance in Tekerek (2017), as well as the
results in Nyamathulla et al. (2022) and the optimized algorithm. The optimized algorithm
based on RF also outperforms both the model in Tekerek (2017) and the model in
Nyamathulla et al. (2022). Additionally, the RF-based model in Tekerek (2017) performs
better than the model in Nyamathulla et al. (2022). The proposed model based on DT
delivers better accuracy results than the model in Nyamathulla et al. (2022).

The proposed model based on MLP surpasses the accuracy of the model in Moutafis,
Andreatos & Stefaneas (2023) (which uses NN and RNN algorithms) and the optimized
algorithm. Moreover, the models based on NN and RNN in Moutafis, Andreatos &
Stefaneas (2023) perform better than the optimized algorithm.

It is noted in Table 13 that the optimized algorithm based on RF and LSVC
outperforms both the proposed model and the model in Nyamathulla et al. (2022) in terms
of Macro Average Precision. This is because the optimized algorithm has a lower
percentage of false positives compared to both the proposed model and the model in
Nyamathulla et al. (2022). However, the proposed model based on the MLP algorithm
achieves better precision than the macro average precision of the optimized algorithm, as
the optimized algorithm has a higher percentage of false positives than the proposed
model.

Table 13 also indicates that the proposed model based on KNN, DT, RF, and SVM
algorithms yields better precision results than the model in Nyamathulla et al. (2022), due
to the proposed model having a lower percentage of false positives.
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As shown in Table 14, the proposed model based on RF and SVM provides better recall
results than the RF and SVM models in Nyamathulla et al. (2022) and the macro average
recall results for the optimized algorithm based on RF and LSVC. This is because the
proposed model has fewer incorrectly predicted actual positive classes compared to the
model in Nyamathulla et al. (2022) or the optimized algorithm. Moreover, the RF and
SVMmodels in Nyamathulla et al. (2022) have better recall results than the macro average
recall results of the optimized algorithm based on RF and LSVC.

The proposed model based on MLP also delivers better recall results than the Macro
Average Recall of the optimized algorithm, as it incorrectly predicts fewer actual positive
classes than the optimized algorithm.

Table 14 shows that the proposed model based on KNN and DT algorithms exhibits
better recall results than the corresponding recall results of the model based on these
algorithms in Nyamathulla et al. (2022).

The recall results for the proposed model based on KNN, RF, MLP, and SVM are
all 100%.

Table 15 presents the F1-score for the proposed model and the macro average F1-score
for the optimized algorithm based on RF, MLP, and SVM/LSVC. It is evident from
Table 15 that the proposed model achieves better F1-score results for these algorithms than
the macro average F1-score of the optimized algorithm. This is because the proposed
model has fewer incorrect predictions for both actual positive and negative classes
compared to the optimized algorithm.

Implications
This subsection is divided into two parts: ‘Theoretical Implications’ presents the theoretical
implications, and ‘Practical Implications’ discusses the practical implications.

Theoretical Implications
This subsection presents the classification results that have a significant impact on this
research area. The results from the proposed model, which is based on NLP and machine
learning algorithms, are promising, as they demonstrate high performance.

The accuracy results are notably high, particularly due to the use of the MLP, which
outperforms both the previous model (Moutafis, Andreatos & Stefaneas, 2023) and the
optimized algorithm (Fatima et al., 2023). Additionally, the accuracy of the SVM using
lemmatization is also improved, surpassing the accuracy results of earlier models (Tekerek,
2017; Nyamathulla et al., 2022; Moutafis, Andreatos & Stefaneas, 2023) and the optimized
algorithm.

The precision results of the proposed model based onMLP are also enhanced, exceeding
the macro average precision of the optimized algorithm. Furthermore, the precision results
of the proposed model based on KNN, DT, RF, and SVM are improved compared to those
of the previous model (Nyamathulla et al., 2022).

The recall and F1-score results for RF, MLP, and SVM models are also better than the
macro average recall and macro average F1-score results for the optimized algorithm.
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Moreover, the recall results for KNN, DT, RF, and SVM models show improvement
compared to the recall results of the previous model (Nyamathulla et al., 2022).

The most notable outcome is that the KNN, RF, MLP, and SVMmodels exhibit no false
negative cases, leading to recall results of 1.

Practical Implications

Based on the results of the proposed model, which incorporates NLP and machine learning
algorithms, the model can be applied to the following real-world scenarios:

. The proposed model can be used as a spam filter system to detect SMS messages
containing phishing attempts or malware links. This would help protect users’ data,
finances, and devices.

. By identifying spam SMS messages, the proposed model can reduce the volume of
messages received, thereby conserving device resources and saving users’ time.

. The proposed model ensures that legitimate (ham) SMS messages are delivered to users
without interference.

Limitations
The proposed model, based on NLP and machine learning algorithms, has the following
limitations:

. Some legitimate (ham) SMS messages are misclassified as spam by the machine learning
models. This results in recipients missing important messages, which could contain
critical information.

. The DT and GB models misclassified some spam SMS messages as legitimate. This
allows spam SMS messages to reach recipients, potentially containing phishing or
malware links. This poses a risk to recipients by exposing them to data theft, financial
loss, or malware that could compromise their devices and data.

Future work
The future directions for this research study are as follows:

. Applying the proposed machine learning model to datasets of varying sizes.

. Evaluating the performance of the machine learning models using TF-IDF vectorizer as
the feature extraction method.

. Developing models based on other machine learning and deep learning algorithms
(LeCun, Bengio & Hinton, 2015) to further enhance the classification performance.

CONCLUSIONS
SMS is widely used for communication between individuals. However, spam SMSs are
unwanted as they can contain malicious links, advertisements, or phishing attempts. The
problem of spam SMSs can be addressed through a filter system capable of detecting and
blocking spam while allowing only legitimate (ham) SMSs to be delivered.
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This article proposed a data-driven model using NLP and machine learning algorithms
to detect both spam and ham SMSs. The machine learning algorithms used in the
proposed model include KNN, DT, RF, GB, MLP, and SVM.

There are no overfitting and also no dataset bias. In addition, the accuracy results are
high, and this leads to small number of misclassification cases.

These models were compared based on classification metrics such as accuracy,
precision, recall, and F1-score to determine which algorithm offers the best performance.
This comparison helps identify the most effective machine learning model for detecting
spam and ham SMSs.

Additionally, the proposed model was evaluated against related works (Tekerek, 2017;
Nyamathulla et al., 2022; Moutafis, Andreatos & Stefaneas, 2023; Fatima et al., 2023) to
assess its performance in comparison to previous approaches.

The key findings are as follows:
For stemming and lemmatization, MLP achieved the best accuracy, precision, and F1-

score using the balanced or imbalanced datasets. KNN, RF, MLP, and SVM all produced
the same and the best recall results.

The precision-recall curves were used to evaluate the performance of the classification
models of the compared algorithms using the imbalanced dataset for stemming and
lemmatization. The results showed that the performance of the classification models of the
compared algorithms is acceptable.

The results of the areas under the precision-recall curves are high for the compared
algorithms using the imbalanced dataset, stemming, and lemmatization, which provides
acceptable performance for the compared algorithms.

RF generated the highest results for areas under the precision-recall curves, indicating
that RF’s model performance is the highest and most able to balance precision and recall.

The results showed satisfactory classification results, where all the classification results
are greater than 0.9.

The MLP model outperformed the model inMoutafis, Andreatos & Stefaneas (2023) in
terms of accuracy. The accuracy of the SVM model using lemmatization surpassed the
accuracy results of the model in Tekerek (2017), as well as the models in Nyamathulla et al.
(2022), Moutafis, Andreatos & Stefaneas (2023), and the optimized algorithm (Fatima
et al., 2023). KNN, DT, and RF models delivered better precision results than the model in
Nyamathulla et al. (2022). The MLP model outperformed the macro average precision
results of the optimized algorithm. The proposed model based on KNN, DT, RF, and SVM
outperformed the model in Nyamathulla et al. (2022) in terms of recall. RF, MLP, and
SVM models achieved higher recall results than the macro average recall results of the
optimized algorithm. The MLP model produced better F1-score results than the macro
average F1-score results for the optimized algorithm.

The practical advantages of the proposed model are significant. The model can function
as a detection system for spam and ham SMSs, improving SMS security by ensuring only
ham SMSs reach users while blocking spam. This approach protects users’ data and devices
by preventing malicious or unsolicited messages from being delivered. Furthermore, the
model can reduce the time spent handling spam SMSs, allowing users to focus on
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important messages. By blocking spam and allowing only ham SMSs, the model helps
conserve device resources. It also allocates more space for storing ham SMSs, ensuring
important messages are not lost.

The research questions of this article have been answered as follows: The proposed
model based on NLP and machine learning algorithms can detect spam and ham SMS
messages with high accuracy. This leads to secure users’ information and preserves mobile
device resources by allocating more resources for ham SMS messages. In addition, the
results showed which machine learning model is more effective in detecting spam SMS
messages and which machine learning algorithm offers the most satisfactory classification
results among the compared models.

The users’ information can be secured by detecting spam SMS messages that contain
malicious links, such as those that have malware and phishing websites. If a user receives a
spam SMS message containing a malicious link with malware and clicks it, the malware is
downloaded to the user’s device, potentially compromising the user’s security. Suppose the
malicious link leads to a phishing website. When the user opens it, the malicious link
directs the user to the phishing website, allowing cybercriminals to deceive the user by
stealing their information and financial assets.

The proposed model, based on NLP and machine learning algorithms, helps detect
spam SMS messages and thereby secure the user’s information.

Based on the achieved results of the proposedmodel, which is based onNLP andmachine
learning algorithms, the proposed model can serve as a filter system to detect spam and ham
SMS messages. The satisfactory results of the proposed model indicate that it can effectively
block spam SMSs, which have a significant impact on the user’s security and privacy.
Additionally, the proposed model protects users’ assets and information by blocking spam
SMSs. The proposed model blocks spam SMSs that carry advertisements, malicious links,
and phishing websites, thereby protecting both the privacy and security of users.

The results are valid because of the following reasons: the classification results were
measured based on the balanced dataset to solve the unequal data distribution between
classes. The classification results, precision-recall curve, and the area under the
precision-recall curve were measured based on the imbalanced dataset to consider the
real-world distribution of data between classes. The proposed model was compared with
other existing models.
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