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ABSTRACT
Data augmentation is a critical technique for enhancing model performance in
scenarios with limited, sparse, or imbalanced datasets. While existing methods often
focus on homogeneous data types (e.g., continuous-only or categorical-only),
real-world datasets frequently contain mixed data types (continuous, integer, and
categorical), posing significant challenges for synthetic data generation. This article
introduces a novel empirical copula-based framework for generating synthetic data
that preserves both marginal and joint probability distributions and dependencies of
mixed-type features. Our method addresses missing values, handles heterogeneous
data through type-specific transformations, and introduces controlled noise to
enhance diversity while maintaining statistical fidelity. We demonstrate the efficacy
of this approach using synthetic and experimental benchmark datasets such as the
Census Income and the Wisconsin Diagnostic Breast Cancer (WDBC) dataset,
demonstrating its ability to generate realistic synthetic samples that retain the
statistical properties of the original data. The proposed method is implemented in an
open-source Python class, ensuring reproducibility and scalability.

Subjects Artificial Intelligence, Data Mining and Machine Learning
Keywords Data augmentation, Copula, Machine learning, Generative augmentation technique

INTRODUCTION
The growing demand for robust machine learning models has highlighted the importance
of data augmentation, particularly in domains where data scarcity or privacy constraints
limit access to large datasets (Bayer et al., 2023; Cubuk et al., 2019; Dao et al., 2019; Feng
et al., 2021; Inan, Hossain & Uddin, 2023;Mumuni, Mumuni & Gerrar, 2024). Traditional
augmentation techniques, such as Synthetic Minority Over-sampling Technique (SMOTE)
for tabular data (Kotelnikov et al., 2023; Chawla et al., 2002), generative adversarial
networks (GANs) (Goodfellow et al., 2014; Xu et al., 2019; Engelmann & Lessmann, 2020;
Park et al., 2018; Yang et al., 2024) for image data, or Synthetic Data Vault with Gaussian
Copula (SDV-G) (Patki, Wedge & Veeramachaneni, 2016) or variational autoencoders
(VAEs) (Chadebec & Allassonnière, 2021) for generative modeling often struggle with
mixed-type datasets (Jiang et al., 2021) containing continuous, integer, and categorical
variables. These methods typically fail to preserve complex dependencies between
heterogeneous features, leading to synthetic data that poorly reflect real-world probability
distributions (Endres, Mannarapotta Venugopal & Tran, 2022; Goyal & Mahmoud, 2024).
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Copula theory, which models multivariate probability distributions by separating
marginal probability distributions from their dependence structure, offers a promising
solution (Restrepo et al., 2023; Kamthe, Assefa & Deisenroth, 2021). However, existing
copula-based approaches are largely parametric (Benali et al., 2021) and require
assumptions about the underlying distribution (Simon & Tibshirani, 2014), limiting their
applicability to empirical datasets. This article bridges this gap by proposing a
non-parametric empirical copula framework that (1) handles missing values through
imputation or deletion, (2) transforms mixed-type features into uniform margins while
preserving ordinality and categorical relationships, (3) generates synthetic data by
resampling from the empirical copula and inverse-transforming to the original space, and
(4) introduces configurable noise to enhance diversity without distorting statistical
properties.

The proposed empirical copula-based method offers a significant advantage over
SDV-G, which assumes a Gaussian copula for data generation. The Gaussian copula
inherently imposes a normal dependence structure, limiting its ability to model complex,
non-linear relationships like asymmetric or tail-dependent relationships present in
real-world datasets. In contrast, our empirical copula approach is fully data-driven,
capturing the true joint probability distribution without restrictive parametric
assumptions. Additionally, SDV-G struggles with heterogeneous data types, requiring
manual preprocessing to encode categorical and ordinal variables, whereas our method
integrates type-specific transformations to seamlessly handle mixed data. Furthermore, the
empirical copula technique preserves the marginal probability distributions of the features
more accurately, ensuring that synthetic samples maintain statistical fidelity to the original
dataset (Houssou et al., 2022). By avoiding rigid Gaussian constraints, our method
generates more realistic and diverse synthetic data, making it more suitable for tasks
requiring high-fidelity augmentation.

This article is organized as follows. In ‘Dependence Modeling Challenges’, we introduce
copula theory, discussing its foundational concepts and the definition of the empirical
copula function. This section lays the groundwork for understanding the statistical
properties of copulas, which are pivotal to our proposed data augmentation methodology.
In ‘Theoretical Framework of the Data Generator’, we present a detailed exploration of our
methodology. This section not only outlines the technical framework of the empirical
copula-based approach but also delves into the key challenges encountered in dealing with
mixed data types, such as continuous, integer, and categorical features. We describe the
underlying strategies implemented to address these challenges and provide deep insights
into how our method ensures both statistical fidelity and enhanced data diversity. In
‘Assessment and Results’, we present a comprehensive evaluation of our method. We
conduct a series of simulations using benchmark datasets, demonstrating the efficacy of
our approach in generating realistic synthetic data while preserving the original probability
distribution and dependencies of the data in realistic time. We analyze and interpret the
results to validate the strengths and limitations of our method. Finally, in ‘Broader
Implications, Challenges, and Future Directions’, we discuss the broader implications of
our work. We highlight the challenges encountered during the study, outline potential

Ben Hassine and Mili (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3228 2/31

http://dx.doi.org/10.7717/peerj-cs.3228
https://peerj.com/computer-science/


avenues for future research, and propose directions for enhancing the scalability and
versatility of our approach.

DEPENDENCE MODELING CHALLENGES
Copula theory offers a powerful statistical framework to model the dependence structure
among random variables while decoupling this structure from the marginal probability
distributions. This capability is particularly important when working with datasets
containing mixed data types—continuous, integer, and categorical—where standard
techniques often fall short. In this section, we introduce the core concepts of copula theory
and define the empirical copula function. We also describe how our methodology
addresses the challenges posed by mixed data types during the computation of the
empirical copula.

At its essence, a copula is a multivariate cumulative probability distribution function
that “couples” univariate marginal probability distribution functions to form a joint
probability distribution. This is formalized by Sklar’s Theorem, which states that any
multivariate joint probability distribution function, H(x1, x2,…, xd), can be expressed as

H x1; x2; . . . ; xdð Þ ¼ C F1 x1ð Þ; F2 x2ð Þ; . . . ; Fd xdð Þð Þ;
where Fi xið Þ represents the cumulative probability distribution function (CPDF) of the
i-th variable, and C is the copula capturing the dependency among these variables.
Importantly, by transforming each marginal probability distribution into a uniform
probability distribution on the interval [0,1], copulas isolate the dependency structure,
thereby providing a flexible means of modeling both linear and non-linear relationships.

In practice, the theoretical copula is approximated using the empirical copula function,
Cn, a non-parametric estimator derived directly from observed data. Given a sample of n

observations X ið Þ
1 ;X ið Þ

2 ; . . . ;X ið Þ
d

� �n o
n
i¼1 , Cn is defined as

Cn u1 ; u2; . . . ; udð Þ ¼ 1
n

Xn
i¼1

II F1 x1
ið Þ

� �
� u1; F2 x2ð Þ � u2; . . . ; Fd xdð Þ � ud

� �
;

where II :ð Þ is the indicator function and Fi is the empirical CPDFs of the respective
variables. This approach maps observed data to the unit hypercube, facilitating the
estimation of the joint dependence structure.

A central challenge in employing the empirical copula framework is the proper handling
of mixed data types. Since copulas naturally operate on continuous variables, special
strategies must be adopted for integer and categorical data as follows. For continuous data,
the conversion to uniform margins is achieved by ranking the data and then normalizing
these ranks. This transformation is straightforward and retains the original data’s
structure. For integer data, although they are discrete, they often represent measurements
that could be approximated as continuous with slight adjustments. To address this
problem, we introduce a controlled amount of noise—commonly referred to as
“jittering”—to the integer data before applying the rank transformation. This mitigates the
issues arising from their discrete nature while preserving the inherent probability
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distribution and relationships. As for categorical data, they do not possess a natural
ordering, which complicates their transformation. To incorporate them into the copula
framework, we transform categorical values into a probabilistic representation. This is
achieved by assigning each category its empirical cumulative probability, thus mapping
categorical data onto the uniform [0,1] scale. This approach allows us to capture
dependencies between categorical variables and those of other types without losing their
distinct, non-numeric characteristics.

By implementing these tailored transformations, the empirical copula function can
effectively capture the complex dependence structures present in mixed-type datasets. This
is essential for our data augmentation methodology, which relies on accurately preserving
both marginal properties and inter-variable dependencies in the synthetic data. The
application of the empirical copula function in our methodology enables the generation of
synthetic data that mirrors the original dataset’s statistical properties. By carefully
addressing the nuances of continuous, integer, and categorical data through specific
transformation techniques, our approach ensures that the synthesized data accurately
retains the inherent dependency structure. This is particularly critical in scenarios where
traditional augmentation methods fail to capture the diversity and complexity (Yang, Shen
& Zhao, 2024) of mixed data types.

THEORETICAL FRAMEWORK OF THE DATA GENERATOR
In this section, we present the theoretical foundations and algorithmic constructs of the
Empirical Copula Generator (ECG), a method designed to synthesize data that
preserve the distributional and dependence properties of an input dataset with mixed
types—continuous, integer, and categorical. We address missing data treatment, mixed
data handling, perturbation strategies, empirical copula computation, inverse
transformations, and augmented data generation. Each subsection pairs a detailed
theoretical discussion with a mathematically notated algorithm corresponding to specific
functions in the implementation. Figure 1 summarizes the workflow of the proposed
empirical copula-based data generator. It outlines the main phases: (1) missing data
handling, (2) mixed-type transformation, (3) copula fitting and resampling, and (4) inverse
transformation to produce augmented data.

Treatment of missing data
Real-world datasets often contain missing values, necessitating preprocessing to enable
subsequent modeling. The ECG offers two strategies: imputation, which fills missing
entries with statistically derived substitutes, and exclusion, which removes incomplete
observations.

. Imputation: For numerical variables (continuous or integer), missing values are replaced
with the column mean or any convenient function), leveraging central tendency to
maintain distributional coherence. For categorical variables, the mode, the most frequent
category is used, preserving discrete structure. This maximizes data retention, suitable
for moderate deficiency.
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. Exclusion: Rows with any missing values are discarded, ensuring a complete dataset at
the cost of reduced sample size, this is ideal when data incompleteness is minimal.

The algorithm takes as input a dataset D ∈ Rn�m and a strategy S ∈ {impute, drop}, and
outputs a processed dataset D′. Initially, D′ is set equal to D. If the strategy S is “impute”,
the algorithm iterates over each column j = 1,…,m. For each numerical columns D[:,j], it
computes the mean lj of the non-missing values and replaces missing entries in D′[:,j] with
lj. For categorical columns, it computes the modemj and fills in missing values withmj. If

the strategy is “drop”, the algorithm removes all rows D[i,:] that contain missing values in
any column j, resulting in a cleaned dataset D′. Finally, it returns D′ as result.

Handling mixed data types
The heterogeneity of data types—continuous, integer, and categorical—needs a nuanced
approach to modeling and transformation. The ECG adeptly categorizes and processes
each variable according to its intrinsic properties, a foundational step that enables the
separation of marginal probability distributions from their dependence structure, a
hallmark of copula theory.

. Detection type: The method begins by classifying each variable. Continuous variables are
identified as those capable of assuming any real value within a range, typically
represented numerically with floating-point precision. Integer variables, while numeric,
are discrete and confined to whole numbers, often requiring special handling to

Figure 1 The workflow of proposed empirical copula-based data generator.
Full-size DOI: 10.7717/peerj-cs.3228/fig-1
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approximate continuity. Categorical variables, encompassing nominal or ordinal data
such as labels or categories, resist numerical conversion and are treated as discrete
variables. This classification is pivotal, as it dictates the subsequent transformation
strategy, ensuring that the probability distribution characteristics of each variable are
appropriately captured.

. Transformation to uniform margins: Copula theory states that any multivariate
probability distribution can be decomposed into its marginal probability distributions
and a copula that encapsulates their dependence. To isolate this dependence, each
variable is transformed to a uniform distribution over [0,1], a process that standardizes
the margins while preserving inter-variable relationships. For continuous variables, this
transformation employs the empirical cumulative probability distribution function
(ECPDF), where the rank of each observation within the sorted data is normalized by the
sample size. This rank-based approach yields a pseudo-uniform probability distribution,
reflecting the shape of the ECPDF without parametric assumptions. Integer variables,
inherently discrete, undergo a preliminary jittering process, where small random
perturbations are added to break ties and simulate a continuous probability distribution,
followed by the same rank-based transformation. Categorical variables, lacking a natural
ordering, are mapped to the unit interval based on their cumulative frequencies: each
category is assigned a uniform value proportional to its position in the cumulative
probability distribution, effectively discretizing the [0,1] range according to category
prevalence.

The algorithm takes as input a dataset D ∈ Rn�m and outputs a list T = [t1,…, tm], where
each tj indicates the data type of column j. For each column j = 1,…,m, it attempts to
convert the values D[:,j] to float type, stored in F[:,j]. If the conversion is successful, it
further tries to convert them to integers I[:,j]. If all values in F[:,j] equal those in I[:,j], the
column is classified as ‘integer’; otherwise, it is ‘continuous’. If the initial float conversion
fails, the column is labeled as ‘categorical’. The algorithm returns the list T, indicating the
detected type for each column.

Algorithm 1 Handling missing value.

Input: Dataset D ∈ Rn�m, strategy S ∈ {impute, drop}
Output: Processed dataset D′
D’=D
If S=“impute”:
For each column j = 1,…,m:
If D[:,j] is numerical :
Compute lj = mean(D)
Set D’[i:,j] = lj

Else (categorical):
Compute mode mj = mode (D) over non missing values
Set D’[i:,j] = mj

Else (S=“drop”)
Set D’={D[I,:] where D[i:,j] is not missing}

Return D’
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The algorithm transforms a column C ∈ Rn into a uniform distribution on [0, 1], based
on its type ∈ {continuous, integer, categorical}, with optional noise scale e . If t =
“continuous”, it computes the rank R[i] of each value as the proportion of entries less than
or equal to C[i], then sets U[i] = (R[i]−1)/n. If t = “integer” it adds small random noise
gi � uniform �e; eð Þ to each value (jittering), forming C′[i] = C[i] + gi, then computes
ranks R′[i] and uniform values as before. If t = “categorical”, it first determines the set of
unique values V = {v1,…,vk}, then estimates their relative frequencies N[vl], and computes
the cumulative probability P(vl). Each value C[i] is then mapped to its corresponding
cumulative probability U[i] = P(vl). The output is the transformed column U ∈ 0; 1½ �n,
uniformly distributed.

Perturbing continuous data
To ensure that generated data introduces novelty rather than merely replicating the
original observations, the method incorporates a controlled perturbation mechanism for
continuous variables. This step is theoretically motivated by the need to balance fidelity to
the original probability distribution with the generation of plausible variations, a critical
aspect of data augmentation.

. Perturbation mechanism: For each uniform value derived from a continuous variable,
the method identifies its position within the sorted original data. Adjacent values—
termed neighbors—define the local context, establishing bounds within which
perturbation can occur without disrupting the order of the data. The maximum
allowable noise is calculated as the minimum distance to these neighbors, ensuring that
the perturbed value remains consistent with its rank. A small random noise, scaled by a
predefined factor, is then added within this range, and the perturbed uniform value is
mapped back to the original scale via an inverse transformation. This process introduces
subtle variations, mimicking natural variability while preserving the distributional
properties and dependence structure.

The algorithm perturbs a continuous column X ∈ Rn, using a reference sorted column
C, its corresponding uniform transformation U ∈ 0; 1½ �n, and a noise scale ε, to generate

Algorithm 2 Detecting column names (features).

Input: Dataset D ∈ Rn�m

Output: Type list T = [t1,…tm]
For each column j = 1,..,m:
Try converting D[:,j] to floats F[i,j]
If successful:

Convert D[:,j] to integers I[i,j]
If F[:,j] = I[:,j]:
tj=‘integer’

else:
tj= ‘continuous’

else:
tj=“categorical”

Return T
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perturbed data X′ ∈ Rn. It begins by sorting C to obtain the ordered list S = [s1,…,sn]. For
each value v = X[i], it finds the interval [sk, sk+1] that contains v, and sets the bounding
values v1 = smax(1,k-1), and v2 = smin(k+1,n). The maximum noise magnitude η is the smaller
of the distance from v to either bound, or 0.01 if both bounds are equal. Then, a uniform
random noise z∼Unif (−1, 1) is scaled by η⋅ε and added to v to produce U′[i], which is

clipped to [0,1]. Finally, X′[i] is obtained by applying the inverse CDF of C to U′[i], and
the perturbed vector X′ is returned.

Computing the empirical copula
The empirical copula serves as the linchpin of this methodology, providing a
non-parametric estimate of the dependence structure among variables. Grounded in
copula theory, this construct captures the joint behavior of the transformed uniform
margins, enabling the generation of new data that respects observed interdependencies.

. Construction process: After transforming all variables to uniform margins, the empirical
copula is implicitly defined by the joint probability distribution of these uniform
variables. Rather than fitting a parametric copula model, the method retains the
empirical joint probability distribution as observed in the data, leveraging the ranks and
their multivariate configuration. This non-parametric approach eschews assumptions
about the functional form of the copula, relying instead on the inherent structure of the
data.

. Sampling mechanism: To generate new samples, the method employs resampling with
replacement from the uniform dataset. Each sampled row represents a realization of the
empirical copula, preserving the observed dependence through the co-occurrence of
uniform values across variables. This resampling mirrors the bootstrap technique,
adapted here to synthesize new multivariate observations rather than estimate statistical
properties.

Algorithm 3 Transforming to uniform margins.

Input: Column C ∈ Rn, type t, noise scale ε
Output: uniform column U ∈ 0; 1½ �n
If t=”continuous”:
Compute ranks R[i]= 1

n

Pn
k¼1 IðC k½ � � C i½ �Þ

U[i] = (R[i]-1)/(n-1)
Else if t=”integer”:
Jitter: C

0 i½ � ¼ C i½ � þ gi; where gi � uniform �e; eð Þ
Compute ranks R’[i]= 1

n

Pn
k¼1 IðC0 k½ � � C0 i½ �Þ

U[i] = (R’[i]-1)/(n-1)
Else:
Compute unique values V = {v1,…vk}
Counts N[vl] = 1

n

Pn
i¼1 IðC i½ � ¼ vlÞ

Compute cumulative prob as:
P vlð Þ ¼ 1

n

Pn
s¼1 N½vs�=n

Set U[i] = P vlð Þ where C i½ � ¼ vl
Return U
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Algorithm 5 takes a dataset D ∈ Rn�m with a noise scale ε, and transforms it into a
matrix U ∈ 0; 1½ �n�m with uniform margins, suitable for copula modeling. First, it applies
the Handling Missing Value procedure to produce a clean dataset D′. Then, it uses
Detecting Column Names to infer the type T = [t1,…,tm] for each column in D′. For every
column j = 1,…, it applies Transforming to UniformMargins to the column D′[:,j], using
its type T[j] and noise scale ε, resulting in a uniform column U[:,j]. The final output U is a
uniformly transformed version of the data, preserving the dependence structure across
features.

Algorithm 6 generates new samples Us ∈ 0; 1½ �n�m from a previously fitted copula
represented by U ∈ 0; 1½ �n�m, using a specified sample size ns. It begins by drawing ns
random indices I = [i1,…,ins], each sampled independently with replacement from the set
{1,…,n}, following a uniform distribution. For each k = 1,…,ns, it sets the new sample row
Us[k,:] = U[ik,:]. The resulting matrix uspreserves the empirical dependency structure from
U, making it a valid synthetic dataset on the uniform scale.

Inverse transformation via the empirical copula
Generating synthetic data in the original space requires reversing the uniform
transformation, a process that reconstructs each variable’s marginal probability
distribution from the sampled copula values.

. Continuous variables: The inverse transformation for continuous variables approximates
the quantile function (inverse CPDF) using the original data’s sorted values. Uniform

Algorithm 5 Fitting the copula.

Input: Dataset D ∈ Rn�m, noise scales e
Output: U ∈ 0; 1½ �n�m
D’= Handling Missing Value (D)
T = Detecting column names (D’)
For each j = 1,..m
U [:, j] = Transforming to uniform margins (D’[:,j],T[j],eÞ

Return U

Algorithm 4 Perturbing continuous data.

Input: Column C ∈ Rn, U ∈ 0; 1½ �n, X ∈ Rn; noise scale e
Output: Perturbed data X′ ∈ Rn

Sort C to get S = [s1,..sn]
For each i = 1,..n:
Set v = X[i], find k such that sk≤ v ≤ sk+1
Compute v1 = smax(1,k-1), and v2 = smin(k+1,n) (bounds of v)
Compute max noise g as follows:
If v1 ≠ v2:
g ¼ min v2 � vj j; v1 � vj jð Þ

Else:
g ¼ 0:01

Perturb U’[i] = v + g � e.z, where z ~Unif (−1, 1)
Clip U’ ∈ 0; 1½ �

X′ [i] = inverse CDF (U’[i])
Return X′[i]
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samples are mapped to this empirical quantile function, often via interpolation to handle
values between observed points. Post-mapping, the perturbation step described earlier
introduces controlled noise, ensuring that the resulting values reflect both the original
probability distribution and added variability.

. Integer variables: For integers, the uniform samples are mapped to the nearest
corresponding quantile in the original data, effectively rounding to the closest integer
value. This preserves the discrete nature of the variable, aligning the synthetic data with
its empirical probability distribution.

. Categorical variables: Categorical variables are reconstructed by partitioning the [0,1]
interval according to the original categories’ cumulative frequencies. Each uniform
sample is assigned to the category whose cumulative probability range it falls within,
replicating the discrete probability distribution observed in the input data.

This algorithm reverses the copula-based uniform transformation, mapping uniform
samples Us ∈ 0; 1½ �ns back to their original data space using a reference column C ∈ Rnand
its type t ∈ {“continuous”, “integer”, “categorical”}. If t= “continuous”, it first sorts C to
obtain S, defines a function f(u) that interpolates u ∈ [0,1] over S, then computes X = f(Us).
The result is refined using the Perturbing Continuous Data algorithm to add realistic
noise, producing Xs . If t = "integer", each Xs[i] is computed as the empirical quantile of C
at Us[i]. For categorical data, it retrieves the unique values V and their cumulative
probabilities P (as in Algorithm 3), and assigns Xs[i] = vl such that P(vl−1) < Us[i] ≤ P(vl).
The final output is Xs, a column of data samples in the original scale.

Generating augmented data
The culmination of the ECG is the production of augmented data, achieved through an
integrated workflow that synthesizes the preceding components. The process commences
with preprocessing to handle missing data, followed by type detection and transformation
to uniform margins, effectively fitting the empirical copula. New samples are then drawn
from this copula via resampling, and each uniform sample is transformed back to the
original space using the appropriate inverse method. The result is a synthetic dataset that
mirrors the original’s marginal probability distributions and dependence structure,
augmented with controlled variations for continuous variables.

This algorithm creates a synthetic dataset Ds∈Rns�m from an original dataset D∈Rn�m,
using a sample size ns. First, it applies fitting the Copula to D to obtain the uniform
representation U ∈ 0; 1½ �n�m, which captures the dependence structure between features.
Then, it uses sampling from the Copula to draw nsnew samples Us ∈ 0; 1½ �ns�mfrom U. For
each column j = 1,…,m, the algorithm applies Inverse Transformation to Us[:,j], using the

Algorithm 6 Sampling from the copula.

Input: U ∈ 0; 1½ �n�m, sample size ns
Output: Us ∈ 0; 1½ �ns�m
Draw indices I= [i1,…, ins] where ik ~Unif[1,n] with replacement
Set Us[k,:]=U[ik,:] for k:1,…ns
Return Us
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original column D[:,j] and its type T[j], to produce the synthetic column Ds[:,j]. The result
is a fully synthetic dataset Ds, with the same feature structure and dependency patterns as
the original data.

Advantages and theoretical considerations
The ECG offers several theoretical advantages:

. Flexibility with mixed types: By tailoring transformations to each data type, it seamlessly
accommodates heterogeneity, a common feature of real-world datasets.

. Non-parametric nature: Its reliance on empirical probability distributions avoids
restrictive parametric assumptions, enhancing applicability across diverse domains.

. Dependence preservation: The resampling strategy ensures that multivariate
relationships are retained, a critical factor in multivariate analysis.

. Controlled variation: Perturbation introduces novelty without compromising statistical
fidelity, enriching the synthetic output.

The ECG emerges as a robust theoretical framework for synthetic data generation,
harmonizing copula theory with practical adaptations for mixed-type data. Its meticulous
handling of missing values, type-specific transformations, perturbation mechanisms, and
empirical copula construction culminates in a method that balances fidelity and
innovation. This approach holds significant promise for advancing research in data
science, offering a versatile tool for augmentation, privacy preservation, and beyond.

Algorithm 8 Generating synthetic data.

Input: Original dataset D ∈ Rn�m, sample size ns
Output: Synthetic dataset Ds ∈ Rns�m

U = Fitting_the_copula(D)
Us = Sampling_from_the _copula(U,ns)
For each j = 1,..m:
Ds[:,j] = Inverse_transformation(Us[:,j], D[:,j],T[j])

Return Ds

Algorithm 7 Inverse transformation.

Input: Us ∈ 0; 1½ �ns , C ∈ Rn , type t
Output: transformed column Xs

If t=“continuous”:
S = sort(C)
Define f(u) = interp(u, [0, 1], S)
X = f(Us)
Xs = Perturbing_Continuous_Data(C, Us, X, eÞ

Else if t = “integer”:
Xs[i] = quantile(C, Us[i])

Else :
Compute V and P as in Algorithm 3
Xs[i] = vl where P(vl-1) < Us[i] ≤ P(vl)

Return (Xs)
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ASSESSMENT AND RESULTS
In this section, we evaluate the efficacy of the ECG by systematically assessing the
similarity between the original dataset and its synthetically augmented counterpart. Our
assessment methodology leverages a suite of statistical tools designed to scrutinize both
marginal distributions and joint dependence structures, ensuring a comprehensive
validation of the method’s ability to replicate the statistical properties of the input data. We
first elucidate the theoretical foundations of our evaluation framework, detailing the
statistical tests and divergence measures employed to compare the original and augmented
datasets. Subsequently, we present the empirical results of applying this framework to a
representative dataset, highlighting the generator’s performance in preserving
distributional fidelity and multivariate relationships.

Assessment methodology
To rigorously evaluate the synthetic data produced by the ECG, we developed a
multifaceted assessment protocol that examines both univariate and multivariate
properties. This approach ensures that the augmented data not only mirrors the individual
feature distributions of the original dataset but also maintains the intricate
interdependencies among variables. Below, we describe the theoretical constructs and
statistical methodologies underpinning our evaluation, drawing from established
techniques in probability distribution comparison and dependence analysis (Wang, Wang
& Liu, 2025).

Identification of feature types
The initial step in our assessment involves classifying the features of the dataset into
numerical (continuous or integer) and categorical types. This distinction is essential, as it
dictates the appropriate statistical tools for subsequent comparisons. Numerical features,
characterized by their capacity to assume a range of real or discrete integer values, are
subjected to tests suited for continuous or near-continuous probability distributions.
Categorical features, defined by discrete, non-numeric labels, require methods tailored to
frequency-based probability distributions. This classification ensures that our evaluation
respects the intrinsic properties of each variable, aligning the analysis with the mixed-type
nature of the data processed by the ECG.

Comparison of marginal probability distributions
For each feature, we assess the similarity between its probability distribution in the original
dataset and the augmented dataset using tailored statistical tests:

. Numerical features: The Kolmogorov-Smirnov (KS) two-sample test is employed to
compare the empirical cumulative probability distribution functions (ECPDFs) of the
original and augmented data. The KS statistic, defined as

D ¼ supxjForigðxÞ � FaugðxÞj;
where Forig(x) and Faug(x) are the ECPDFs of the original and augmented samples
respectively, quantifies the maximum vertical distance between these probability
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distributions. The associated p-value tests the null hypothesis that both samples are
drawn from the same underlying probability distribution. A low KS statistic and a high
p-value (e.g., p > 0.05) indicates distributional similarity, suggesting that the generator
effectively preserves the marginal probability distribution of the feature. To complement
this statistical test, we visualize the probability distributions using kernel density
estimates (KDE) overlaid on histograms. This graphical representation provides an
intuitive assessment of how closely the augmented data mimics the original, revealing
any discrepancies in shape, spread, or central tendency that might not be fully captured
by the KS test alone.

. Categorical features: To provide a holistic measure of similarity across all categorical
features, we calculate the Jensen-Shannon (JS) divergence, a symmetric and bounded
variant of the Kullback-Leibler divergence. For two probability distributions P and Q
over a discrete space, the JS divergence is defined as

JSðPkQÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2KLððPjjMÞ þ 1=2KLðQjjMÞ

p
;

where M = 1/2 (P+Q) is the mixture distribution and KL denotes the Kullback-Leibler
divergence given by

KLðPkQÞ ¼
X
i

P ið Þlog P ið Þ
Q ið Þ

� �
:

For categorical features, the empirical probability distributions are used directly, with
appropriate normalization to account for all possible categories

Comparison of joint probability distributions
To evaluate the preservation of multivariate relationships, we employ two complementary
approaches: correlation analysis and Jensen-Shannon (JS) divergence.

. Correlation heatmaps: For numerical features, we compute the Pearson correlation
coefficient matrix for both the original and augmented datasets. The correlation
coefficient between two variables X and Y is given by

qX;Y ¼ Cov X;Yð Þ
rXrY

;

where Cov(X,Y) is the covariance, and rX and rY are the standard deviations. These
matrices are visualized as heatmaps, allowing a direct comparison of the dependence
structures. Close alignment between the heatmaps indicates that the ECG successfully
retains the linear relationships among numerical variables, a key aspect of its
copula-based resampling strategy.

. Jensen-Shannon divergence: To provide a holistic measure of similarity across all
features—numerical and categorical—we calculate the Jensen-Shannon (JS) divergence,
the symmetric and bounded variant of the Kullback-Leibler divergence defined above.

This dual approach—correlation for numerical dependencies and JS divergence for
overall distributional fidelity—offers a robust evaluation of the generator’s performance in
capturing both local and global statistical properties.
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Empirical results
Experiments on synthetic datasets

Synthetic datasets provide a controlled setting to assess the generator’s ability to replicate
structured patterns, making them an ideal starting point for evaluation. We begin with
experiments on the Star Shape dataset and the Multiple Forms dataset, conducted in
sequence to test the method’s precision and robustness under varying noise conditions.

Star Shape dataset experiment

The first experiment focuses on the Star Shape dataset, comprising 100 points arranged in
a five-armed star pattern with an initial noise perturbation of 0.05. This dataset tests the
generator’s capacity to preserve a simple yet distinct geometric structure. The experiment
progresses through three stages, each visualized in Figs. 2–4. The experiment begins with
the original dataset, depicted in Fig. 2 as a scatter plot in blue. The five arms of the star are
clearly defined, radiating symmetrically from the center despite the slight noise. This figure
serves as the baseline, illustrating the target structure that the generator must replicate. The
clarity of the star’s shape, even with minor perturbations, establishes a straightforward yet
effective reference for evaluating synthetic outputs.

Next, we generate synthetic data with a minimal noise level of 0.1, overlaid in red on the
original dataset (blue) in Fig. 3.

The experiment concludes with synthetic data generated at a high noise level of 5.0,
shown in red alongside the original (blue) in Fig. 4. Here, the synthetic points exhibit
greater dispersion, spreading outward from the star’s arms in a cloud-like pattern. Despite
this variability, the five-armed structure remains discernible, with each arm still traceable
amid the noise. This outcome highlights the generator’s robustness: it introduces
significant diversity while retaining the core geometric essence of the original dataset. The
trade-off between variability and fidelity is evident, as the increased noise broadens the
synthetic distribution but does not obliterate the underlying pattern. This adaptability
makes the method suitable for scenarios where controlled diversity is beneficial, such as
data augmentation for machine learning, while still anchoring the synthetic output to the
original structure.

Multiple Forms dataset experiment

The second synthetic experiment targets the Multiple Forms dataset, a more complex
collection of 200 points distributed across four distinct shapes: a crescent, a circle, an
asterisk, and a Gaussian cloud. This experiment, visualized in Fig. 5, tests the generator’s
ability to handle multi-modal probability distributions with overlapping and diverse
patterns.

The experiment starts with Fig. 5 (right-hand), a scatter plot of the original dataset. The
crescent’s smooth curvature, the circle’s closed boundary, the asterisk’s radial arms, and
the Gaussian cloud’s dense cluster are all distinctly visible. This diversity of forms poses a
significant challenge, requiring the generator to capture multiple structural characteristics
simultaneously. The clarity of each shape in the original data sets a high bar for the
synthetic outputs, making this dataset an excellent test of the method’s versatility in
replicating complex patterns.
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In the next stage, synthetic data generated with a noise level of 0.01 is overlaid in red on
the original (blue) in Fig. 5 (left-hand). The synthetic points replicate each shape with
remarkable accuracy: the crescent’s curve remains intact, the circle’s outline is precise, the

Figure 2 Star Shape and Multiple Forms datasets. Full-size DOI: 10.7717/peerj-cs.3228/fig-2

Figure 3 Empirical runtime scaling of data generator with respect to sample size and feature
dimensionality. Full-size DOI: 10.7717/peerj-cs.3228/fig-3
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asterisk’s arms are sharply defined, and the Gaussian cloud’s density is consistent. This
close correspondence underscores the generator’s ability to preserve intricate, multi-modal
probability distributions under low noise. The synthetic data mirrors the original so closely
that distinguishing between them visually is challenging, highlighting the method’s

Figure 4 Generated vs. original star shape (Noise level = 5).
Full-size DOI: 10.7717/peerj-cs.3228/fig-4

Figure 5 Generated vs. original star shape (Noise level = 0.1).
Full-size DOI: 10.7717/peerj-cs.3228/fig-5
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precision in capturing both the marginal probability distributions and spatial relationships
of diverse forms. This level of detail is particularly valuable for applications requiring
faithful reproduction of complex datasets, such as simulation studies or generative
modeling.

In Fig. 5 (right-hand) synthetic data at a noise level of 5.0 (red) is plotted against the
original (blue). The increased noise level introduces noticeable dispersion, with synthetic
points spreading outward from each shape. Nevertheless, the core features persist: the
crescent’s arc, the circle’s boundary, the asterisk’s radial pattern, and the Gaussian cloud’s
concentration remain recognizable. This resilience under high noise demonstrates the
generator’s capacity to maintain structural integrity despite significant perturbation. The
synthetic data introduces variability that enriches the dataset without erasing its defining
characteristics, a balance that enhances its utility for tasks like robustness testing or
diversity-driven analysis.

Experiments on real-world datasets
Following the synthetic experiments, we shift to real-world datasets, which introduce
practical complexities such as mixed data types, varying sample sizes, and
high-dimensional feature spaces. The experiments proceed in sequence across the Adult,
Ecoli, Forest Fires, and Wisconsin Diagnostic Breast Cancer (WDBC) datasets, with
analyses tied to Figs. 6–13.

Adult dataset experiment
The Adult dataset is a widely used benchmark dataset in the field of machine learning and
data science. Based on 1,000 records from this dataset and using 6 numeric and eight
categorical features, we will generate 5,000 new records mimicking the original dataset
using a level noise of 0.01. The experiment unfolds across Figs. 6, 7 for some features. The
evaluation leverages the Kolmogorov-Smirnov (KS) test for numeric features,
Jensen-Shannon (JS) divergence for categorical features and overall joint probability
distributions, and correlation heatmaps for dependency structures

The experiment begins with Fig. 6 (left-hand), comparing histograms of the “age”
feature from the original (blue) and synthetic (red) datasets. The probability distributions
align closely, with the synthetic histogram replicating the original’s shape, peaks, and
spread. A KS statistic of 0.0084 and p-value of 1.0000 indicate no significant difference,
confirming the generator’s accuracy in preserving this numeric feature’s marginal
probability distribution. Figure 6 (right-hand), quantifies the similarity of the categorical
“workclass” feature using a JS divergence of 0.0107. This low value—close to 0, the ideal for
identical probability distributions reflects the synthetic data’s ability to mirror the original
frequency distribution across workclass categories (e.g., private, self-employed).

The experiment concludes with Fig. 7, presenting correlation heatmaps for the numeric
features. The original (left) and synthetic (right) heatmaps are nearly indistinguishable,
with correlation coefficients differing by less than 0.05 on average. Features like age and
hours-per-week retain their interrelationships, demonstrating the generator’s success in
capturing joint dependencies. This preservation is essential for applications where feature
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Figure 6 Correlation heatmap (Adult dataset, original vs. augmented). Full-size DOI: 10.7717/peerj-cs.3228/fig-6

Figure 7 Correlation heatmap (Ecoli dataset, original vs. augmented). Full-size DOI: 10.7717/peerj-cs.3228/fig-7

Figure 8 Correlation heatmap (WDBC dataset, original vs. augmented). Full-size DOI: 10.7717/peerj-cs.3228/fig-8
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Figure 9 Histograms of Duff Moisture Code (DMC) and month features (Forest Fires dataset, original vs. augmented).
Full-size DOI: 10.7717/peerj-cs.3228/fig-9

Figure 10 Histograms of age and workclass (Adult dataset, original vs. augmented). Full-size DOI: 10.7717/peerj-cs.3228/fig-10

Figure 11 Histograms of mcg and gvh features (Ecoli dataset, original vs. augmented). Full-size DOI: 10.7717/peerj-cs.3228/fig-11
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interactions inform outcomes, such as income prediction. The average JS divergence for
the two datasets is insignificant (0.0117).

The Adult experiment (Figs. 6, 7) highlights the generator’s prowess with mixed-type
data. Figure 5 confirms marginal fidelity for both examples: Numeric feature (age) and
categorical feature (work class). Figure 6 validates joint fidelity for numeric features
through the correlation heatmap. The low KS and JS metrics, paired with consistent
correlations, highlight the method’s robustness in demographic contexts, where both
individual and relational properties must be accurately replicated.

Ecoli dataset experiment
The Ecoli dataset involves 336 records with seven continuous predictor features. The
proposed method synthesizes 5,000 new records that replicate the statistical properties of
the original dataset, incorporating a noise parameter of 0.01 to introduce controlled
variability. The experiment unfolds across Figs. 8, 9 for some features. The evaluation
leverages the Kolmogorov-Smirnov (KS) test for numeric features, Jensen-Shannon (JS)

Figure 12 Histograms of texture 1 and perimeter 1 features (WDBC dataset, original vs. augmented).
Full-size DOI: 10.7717/peerj-cs.3228/fig-12

Figure 13 Correlation heatmap (Forest Fires dataset, original vs. augmented). Full-size DOI: 10.7717/peerj-cs.3228/fig-13
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divergence for categorical features and overall joint distributions, and correlation
heatmaps for dependency structures.

The experiment starts with Fig. 8, comparing histograms of the “mcg” and “gvh”
features. The original (blue) and synthetic (red) distributions overlap tightly, with a KS
statistic of 0.0174 and p-value of 1.0000 for the mcg feature and a KS statistic of 0.0073 and
p-value of 1.0000 for gvh feature, indicating statistical equivalence. This precision in
replicating a continuous feature’s probability distribution is vital for biological datasets,
where small sample sizes amplify the importance of fidelity.

In Fig. 9, we show the correlation heatmaps for all numeric features. The original (left)
and synthetic (right) heatmaps align closely, with minimal deviations in correlations
among features like mcg and gvh. This consistency underscores the generator’s ability to
preserve joint dependencies, critical for scientific analyses relying on inter-feature
relationships.

The average JS divergence for the two datasets is insignificant (0.0134). The Ecoli
experiment (Figs. 8, 9) demonstrates the generator’s effectiveness in small, continuous
datasets. Figure 8 affirms the marginal fidelity, while Fig. 9 confirms joint fidelity. The low
KS statistics and consistent heatmaps highlight the method’s utility in data-scarce scientific
domains, where precision is paramount.

Forest Fires dataset experiment
The Forest Fires dataset experiment with 517 records, 10 numeric features, and two
categorical features, assesses the generator on environmental data with temporal elements.
The proposed method synthesizes 5,000 new records that replicate the statistical properties
of the original dataset, incorporating a noise parameter of 0.01 to introduce controlled
variability. The experiment begins with Fig. 10 (left-hand), comparing histograms of the
Duff Moisture Code (DMC) feature. The original (blue) and synthetic (red) distributions
are nearly identical, with a KS statistic of 0.012 and p-value of 1.0000. This fidelity ensures
that key environmental indicators are preserved, supporting applications like fire risk
modeling.

Figure 10 (right-hand), quantifies the similarity of the categorical “month” feature using
a JS divergence of 0.0134 indicating high similarity between the original and synthetic
distributions of this categorical variable. The low divergence preserves temporal patterns,
essential for analyzing seasonal trends in environmental data. The experiment concludes
with Fig. 11, presenting correlation heatmaps for numeric features. The original (left) and
synthetic (right) heatmaps align closely, with features like DMC, temp, and wind showing
consistent correlations. This preservation of dependencies enhances the synthetic data’s
utility for environmental studies.

The experiment concludes with Fig. 11, presenting correlation heatmaps for numeric
features. The original (left) and synthetic (right) heatmaps align closely, with features like
DMC, temp, and wind showing consistent correlations. This preservation of dependencies
enhances the synthetic data’s utility for environmental studies. The low KS and JS metrics,
paired with consistent correlations, affirm the method’s robustness in practical settings.
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Wisconsin Diagnostic Breast Cancer dataset experiment
The final experiment targets the Wisconsin Diagnostic Breast Cancer (WDBC) dataset, It
contains 569 records and 29 continuous features, testing the generator in a
high-dimensional medical context. The experiment unfolds across Figs. 12, 13 for some
features.

The proposed method synthesizes 5,000 new records that replicate the statistical
properties of the original dataset, incorporating a noise parameter of 0.001 to introduce
controlled variability.

The experiment starts with Fig. 12, comparing histograms of the “texture1” feature. The
original (blue) and synthetic (red) istributions align closely, with a KS statistic of 0.0118
and p-value of 1.0000, confirming marginal fidelity in a high-dimensional setting, it
continues with the “perimeter1” feature, where the synthetic distribution matches the
original (KS statistic = 0.0126, p-value = 1.0000). This consistency across features
highlights the generator’s scalability to high-dimensional data.

In theWDBC dataset, the ECG achieved an average JS divergence of 0.0292 between the
original and synthetic datasets. This exceptionally low value highlights the method’s
proficiency in replicating the intricate statistical structure of a 29-feature dataset, with
minimal deviations that affirm its robustness for high-dimensional applications.
Correlation heatmaps show that features align closely (Fig. 13).

Dataset complexity effect on augmentation data quality
The quality of augmented data hinges on factors like the noise level, controlled by the noise
level epsilon, and the Q ratio, calculated as the number of records divided by the number of
features, which reflects the dataset’s informational density. Across four real-world datasets:
Adult, Wisconsin Diagnostic Breast Cancer (WDBC), Ecoli, and Forest Fires, we see clear
trends in how these elements shape the preservation of feature distributions. In the Adult
dataset, boasting a high Q ratio of 71, the augmentation shines in Table 1, representing
lower and higher noise levels, respectively. For continuous features like “age,” the KS
statistic barely budges (0.0112 for ε = 0.01, 0.0120 for ε = 5), with p-values holding steady at
0.999, signaling robust similarity despite rising epsilon. Categorical features, such as
“workclass,” also fare well, with JSD shifting only slightly from 0.0065 to 0.0093, hinting
that a high Q ratio acts as a shield against noise, preserving fidelity across conditions. In
contrast, the WDBC dataset, with a leaner Q ratio of 19.62, struggles as noise escalates.
Table 2 shows “perimeter1” closely aligned (KS = 0.0151, p = 0.9997) for ε = 0.001, but
reveals a stark drop-off (KS = 0.1088, p = 0) for ε = 0.01, exposing how low Q ratios leave
datasets vulnerable to distributional drift under higher noise. The Ecoli dataset, sitting at a
moderate Q ratio of 48, strikes a middle ground—Table 3 reports “mcg” with a KS of
0.0125 and p-value of 1.0000 for ε = 0.01, it rises to 0.0441 for ε = 5, yet retains a p-value of
0.5577, suggesting resilience that does not quite match the consistency of the Adult dataset.
Likewise, the Forest Fires dataset, with a Q ratio of 43.08, displays varied outcomes:
“DMC” in Table 4 holds tight (KS = 0.0150, p = 0.9999) for ε = 0.01, but “FFMC”
diverges sharply (KS = 0.4717, p = 0) for ε = 1, though categorical “month” stays stable
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(JSD = 0.0141 and 0.0117), unsurprising since noise targets only continuous features.
Together, these patterns reveal that higher Q ratios bolster robustness against noise,
while lower ratios amplify sensitivity, particularly for continuous features under larger
epsilon values, offering practical guidance for applying the augmentation method
effectively.

Table 1 Similarity statistics for the Forest Fires dataset with 517 records, 12 features, (Q¼ 517/12¼
43.08).

noise scale ε ¼ 0.01

Feature Type KS Statistic/JSD P-value

age Cont 0.0112 0.9999

fnlwgt Cont 0.0124 0.9994

education-num Cont 0.0074 1.0000

capital-gain Cont 0.0036 1.0000

workclass Cat 0.0065 –

education Cat 0.01964 –

marital-status Cat 0.0090 –

noise scale ε ¼ 5

Feature Type KS Statistic/JSD P-value

age Cont 0.0120 0.9997

fnlwgt Cont 0.0136 0.9976

education-num Cont 0.0044 1.0000

capital-gain Cont 0.0066 1.0000

workclass Cat 0.0093 –

education Cat 0.0209 –

marital-status Cat 0.0101 –

Table 2 Similarity statistics for the WDBC dataset with 569 records, 29 features, (Q = 569/29 =
19.62).

noise scale ε ¼ 0.001

Feature KS Statistic P-value

texture1 0.0129 1.0000

perimeter1 0.0151 0.9997

area1 0.0378 0.4453

smoothness1 0.0104 1.0000

noise scale ε ¼ 0.01

Feature KS Statistic P-value

texture1 0.0222 0.9568

perimeter1 0.1088 0

area1 0.3286 0

smoothness1 0.0135 1.0000
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Comprehensive synthesis and implications
Across all experiments, the ECG exhibits the following:

. Marginal fidelity: Low KS statistics (0.0073–0.0174) and JS divergences (0.0107–0.0134)
across datasets.

. Joint fidelity: Consistent heatmaps, with minor challenges in high-dimensional cases
(Wisconsin).

Table 3 Similarity statistics for the WDBC dataset with 569 records, 29 features, (Q ¼ 569/29 ¼
19.62).

noise scale ε ¼ 0.01

Feature KS Statistic P-value

mcg 0.0125 1.0000

gvh 0.0124 1.0000

lip 0.0020 1.0000

chg 0.0008 1.0000

noise scale ε ¼ 5

Feature KS Statistic P-value

mcg 0.0441 0.5577

gvh 0.0647 0.1367

lip 0.0106 1.0000

chg 0.0012 1.0000

Table 4 Similarity statistics for the Forest Fires dataset with 517 records, 12 features, (Q¼ 517/ 12¼
43.08).

noise scale ε ¼ 0.01

Feature Type KS Statistic/JSD P-value

FFMC Cont 0.0469 0.2464

DMC Cont 0.0150 0.9999

DC Cont 0.0181 0.9973

ISI Cont 0.0101 1.0000

month Cat 0.0141 –

Day Cat 0.0120 –

noise scale ε ¼ 1

Feature Type KS Statistic/JSD P-value

FFMC Cont 0.4717 0

DMC Cont 0.1031 0.0001

DC Cont 0.4323 0

ISI Cont 0.0170 0.9989

month Cat 0.0117 –

Day Cat 0.0103 –
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. Noise flexibility: Synthetic experiments (Figs. 2–5) show adaptability from precision to
variability. Bounded noise perturbation procedure ensures stable outputs across varying
levels (0.01 to 5.0) except for leaner ratio.

. Versatility: Success across synthetic and real-world contexts.

Limitations include computational scalability for extremely large datasets, an aspect that
does not compromise its statistical precision but suggests potential for optimization,
suggesting areas for future enhancement. In high-dimensional settings with a low sample-
to-feature ratio, the ECG faces significant challenges. However, this difficulty is not unique
to the generator; it reflects a broader issue in data analysis where the limited number of
data points fails to fully capture the underlying probability distribution of the data.
Nonetheless, this extensive evaluation confirms the generator’s broad applicability for
synthetic data generation.

Computational complexity and empirical runtime evaluation
To investigate the scalability and efficiency of our proposed framework, we analyze the
computational complexity of each stage in the pipeline. The full process consists of three
main components: transforming the marginals to a uniform domain, generating synthetic
samples from the copula-defined dependence structure, and inverting the synthetic
samples back to the original data space. Each of these steps incurs specific computational
costs, which depend on the number of features, original samples, and synthetic points. We
detail these complexities below to highlight the algorithm’s performance characteristics
and identify the dominant operations in practical use cases. In fact the proposed
framework operates in three sequential stages: The first stage transforms each marginal
feature into the uniform domain via empirical cumulative distribution functions (ECDFs).
This requires sorting each feature column, which has a worst-case complexity of O(n. log
(n)) per feature. Hence, for d features, the total complexity of this transformation is O(d.n .
log (n)).

In the second stage, we generate m synthetic samples from the copula model defined
over the uniform marginals. This process involves sampling from a dependence structure
(e.g., Gaussian or empirical copula) and has linear complexity O(d⋅m), assuming

constant-time sampling per dimension.

The third and final stage inverts the synthetic uniform samples back into the original
data space using interpolation over the inverse ECDFs. Since each synthetic point is
transformed dimension-wise, this stage also exhibits a linear cost of O(d⋅m). Aggregating

all stages, the total runtime complexity of the full pipeline becomes:

Oðd:n:logðnÞÞ þ Oðd�mÞ:
which simplifies to O(d⋅m) in high-throughput settings where synthetic data generation

dominates (i.e., m ≫ n).

Runtime assessment on synthetic and real-world mixed-type datasets
Empirical runtimes obtained from a random (n,d) sample with the three mixed types are
visualized in Fig. 14. The plot clearly demonstrates the expected linear scaling of
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computation time with respect to sample size n, across all three-feature dimensions.
Additionally, increasing the number of features d results in proportional increases in
runtime, validating the multiplicative role of dimensionality in the algorithm. Importantly,
no super-linear behavior was observed, confirming the framework’s suitability for efficient
augmentation in large-scale, mixed-type datasets.

The benchmark experiment conducted here consists of using three mixed-type
synthetic datasets. Each dataset composed of a combination of (i) continuous features
drawn from Gaussian or uniform distributions, (ii) ordinal features mimicking ordered
categories, and (iii) nominal categorical features representing non-ordered classes type. All
categorical and ordinal variables were preprocessed using appropriate encoding schemes
to allow unified treatment. We systematically varied the number of features d ∈ {2, 5, 10}
while incrementing the sample size n ∈ [100, 10,000] uniformly to assess the
computational impact of both data dimensionality and original sample size.

Furthermore, the runtime performance of our empirical copula-based data generation
approach was evaluated across multiple datasets and varying feature dimensions. We
measured the average generation time for producing 10,000 synthetic samples
(averaged over 100 runs) using four benchmark datasets. For the Adult dataset (1,000
samples, 10 features), the mean execution time was 0.192 s. The Ecoli dataset (336 samples,
eight features) required 0.137 s, while the Forest Fires dataset (517 samples, 12 features)
took 1.2036 s. The most computationally intensive case was the WDBC dataset (569
samples, 30 features), reaching 5.1162 s. These results confirm that the method is efficient
and scalable for low and high dimensional data (refer to Endres, Mannarapotta Venugopal
& Tran (2022) to compare with other methods).

Figure 14 Multiple forms dataset generated with a noise level of 0.01 and 5.0.
Full-size DOI: 10.7717/peerj-cs.3228/fig-14
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Empirical assessment of downstream model gain
To evaluate the effectiveness of our proposed data augmentation method under low-data
conditions, we conducted a series of 20 independent trials using the Adult dataset from the
UCI Machine Learning Repository. In each trial, we randomly sampled only 2% of the full
dataset (455 training instances), simulating a realistic low-resource scenario. The goal was
to determine whether augmenting this small subset with 5,000 synthetically generated
samples created using our empirical copula-based method tailored for mixed (categorical
and continuous) data could significantly improve downstream classification performance.
We trained a Random Forest classifier using both the original limited dataset and the
augmented version, and evaluated performance on a held-out test set.

The results show a consistent and meaningful improvement in both classification
accuracy and F1-score across all trials. Without augmentation, the model achieved a mean
accuracy of 0.8048 (±0.0187) and a mean F1-score of 0.4562 (±0.0789). With our data
augmentation applied, the accuracy increased to 0.8317 (±0.0161), and more importantly,
the F1-score improved substantially to 0.5676 (±0.0715). This uplift in F1-score despite a
marginal gain in overall accuracy indicates that the augmented data significantly improved
the model’s ability to correctly identify the minority class, which is particularly valuable in
the presence of class imbalance. These findings highlight the robustness and effectiveness
of our method in enhancing classifier performance under constrained data availability.

The code, plots, and results associated with this work are publicly available on our
GitHub repository and Zenodo (https://github.com/mohsenbenhassine/data-
augmentation; DOI 10.5281/zenodo.17288914).

BROADER IMPLICATIONS, CHALLENGES, AND FUTURE
DIRECTIONS
In this section, we discuss the broader implications of our work on the ECG, a method
designed to generate synthetic data that preserves the statistical properties of original
datasets. We highlight the challenges encountered during the study, outline potential
avenues for future research, and propose directions to enhance the scalability and
versatility of our approach.

The ECG represents a significant advancement in synthetic data generation, offering a
robust and non-parametric method to create realistic datasets that maintain the statistical
integrity of the original data while ensuring privacy. This capability has profound
implications across multiple domains where data privacy is a critical concern, such as
healthcare, finance, and social sciences. For instance, in healthcare, the generator can
produce synthetic patient records that mirror real probability distributions and
dependencies, enabling researchers to share and analyze data without risking individual
privacy breaches. Similarly, in finance, it can facilitate the development of models using
synthetic datasets that comply with regulatory requirements.

Beyond privacy-preserving applications, our method enhances machine-learning
workflows by providing augmented datasets for training models (Sawada et al., 2025),
particularly in cases where real data is scarce, imbalanced, or difficult to obtain. The ability
to generate diverse yet statistically consistent datasets also supports robustness testing and
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validation of machine learning models, ensuring they perform reliably across varied
scenarios. By bridging the gap between data availability and statistical fidelity, the ECG
positions itself as a versatile tool with the potential to accelerate innovation in data-driven
fields. Our proposed ECG method demonstrated significant improvements in both
computational efficiency and downstream predictive performance. Compared to the
methods in Endres, Mannarapotta Venugopal & Tran (2022), ECG achieved
substantially lower runtime, particularly in high-dimensional settings, as shown in
our complexity analysis and runtime benchmarks. Beyond speed, ECG also led to notable
gains in downstream model performance, yielding consistently higher accuracy and
F1-scores when evaluated on real-world classification tasks. These results confirm that
ECG not only scales efficiently but also produces high-quality synthetic data that
effectively enhances model learning, especially in low-resource and imbalanced data
scenarios.

While the ECG demonstrates strong performance across various datasets, our study
revealed several challenges that underscore areas for improvement. One prominent
challenge was its performance in high-dimensional settings. Addressing computational
efficiency is vital for large-scale applications; parallelized or distributed implementations
on graphics processing unit (GPU) clusters or cloud platforms could substantially cut
processing times. This issue highlights the need for refinements to ensure the method
remains effective in larger feature spaces. To address the identified challenges and further
enhance the scalability and versatility of the ECG, we propose several avenues for future
research. First, improving the method’s ability to handle high-dimensional data with
non-linear relationship could involve exploring advanced copula statistics as Copula
Statistic (CoS) index (Hassine, Mili & Karra, 2017) or dimensionality reduction
techniques. Leveraging machine-learning techniques within Vine Copulas or applying
block-wise augmentation , encoders or neural networks in general, could better capture
non-linear dependencies, enhancing the generator’s accuracy in complex datasets. Second,
optimizing computational efficiency is critical for scaling the method to big data scenarios.
Developing parallelized or distributed versions of the algorithm could significantly reduce
processing time, making the generator feasible for large-scale applications. This could
involve adapting the method to run on modern computing frameworks, such as GPU or
tensor processing unit (TPU) clusters or cloud-based platforms.

Finally, extending the ECG to accommodate additional data structures, such as time
series (Iglesias et al., 2023) or graph data (Shorten & Khoshgoftaar, 2019) would
significantly enhance its versatility. Many real-world applications involve temporal
dynamics (e.g., stock prices) or relational structures (e.g., social networks), and adapting
the method to these domains could open new opportunities for synthetic data generation.
This might require incorporating temporal copulas or graph-based dependency models
into the framework. Finally, a key future perspective involves rigorous comparisons with
established methods like SMOTE, GANs, SDV-G, and VAEs to fully delineate the
generator’s strengths and trade-offs. Benchmarking against these techniques using metrics
such as JS divergence, Wasserstein distance, or downstream classification accuracy could
quantify its superior preservation of mixed-type dependencies and highlight
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computational efficiency gaps, this could pave the way for hybrid innovations, such as
merging the generator’s copula-based dependency modeling with GANs’ generative
flexibility or VAEs’ latent space efficiency.
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