
Predicting software developer sentiment
on self-admitted technical debt
Haichuan Zhang1, Xingguang Yang1, Zhenyu Shu1, Zijie Huang2,
Gang Wang1, Yuzhao Yang1 and Yan Zhao1

1 School of Computer and Data Engineering, NingboTech University, Ningbo, Zhejiang Province,
China

2 Shanghai Key Laboratory of Computer Software Testing and Evaluating, Shanghai Development
Center of Computer Software Technology, Shanghai, China

ABSTRACT
Technical debt is a metaphor for sacrificing long-term code quality in order to
achieve short-term project goals. The technical debt that developers intentionally
introduce into project is called self-admitted technical debt (SATD), which usually
exists in the form of code comments in software projects. The existence of SATD
poses a huge challenge to software quality and robustness. Analyzing the sentiments
of SATD helps to understand the behavioral habits of developers when annotating
SATD. In order to explore the performance of generative pre-trained models in
SATD sentiment prediction, a SATD sentiment prediction method based on the
GPT-3.5-turbo fine-tuning model is proposed, and research is carried out on 18 open
source projects. Empirical results show that, compared with a set of traditional
machine learning and deep learning techniques, the fine-tuning GPT-3.5-turbo
model improves the evaluation indicators precision, recall and F1-score by 14.2%,
11.5%, and 17.3%, respectively. The effectiveness of the SATD sentiment prediction
method based on GPT-3.5-turbo is verified, indicating the potential of generative
pre-trained models to capture nuanced complex sentiment—i.e., developer
comments that combine neutral technical observations with subtle negative cues
such as hesitation or frustration. However, our comparison does not include recent
large language model (LLM)-based approaches, which are reserved for future
investigation.
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INTRODUCTION
Technical debt (TD) (Cunningham, 1992) refers to compromises made in system design,
code quality, etc. during software development in order to quickly deliver features or meet
short-term requirements, which may lead to long-term disadvantages (Izurieta et al., 2017;
Kruchten, Nord & Ozkaya, 2012; Li, Avgeriou & Liang, 2015; Lim, Taksande & Seaman,
2012; Nord et al., 2016; Pointa & Dagstuhl, 2015). They increase the maintenance burden,
reduce code quality, and may make future changes more time-consuming and expensive,
which requires interest repayment. This concept compares the consequences of technical
decisions to financial debt, emphasizing the trade-off between short-term benefits and
long-term risks. Self-admitted technical debt (SATD) is a special form of technical debt,
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which refers to technical debt explicitly acknowledged by developers in software artifacts
such as code comments, documents, and commit messages (Potdar & Shihab, 2014). By
recording these technical compromises, development teams can better understand and
track the causes and impacts of technical debt. However, the accumulation of SATD may
have a negative impact on software quality, increase subsequent maintenance costs, and
even lead to maintenance crises (Xiao et al., 2024).

Since the concept of SATD was proposed, academia and industry have conducted
extensive research on its identification and management. Early research mainly identified
SATD through static source code analysis, using keywords (such as TODO, FIXME) in
code comments as identifiers of technical debt (Maldonado & Shihab, 2015). These
methods have made significant progress in SATD identification at the code level and can
efficiently discover design debts or code defects that are explicitly acknowledged by
developers. However, these methods have certain limitations in identifying other types of
technical debt (such as documentation debt, requirements debt, etc.), especially technical
debt that is not explicitly annotated or exists implicitly and is difficult to capture. In recent
years, researchers have begun to explore the use of machine learning and deep learning
technologies to improve the accuracy and coverage of SATD recognition. For example,
Huang et al. (2018) proposed an automated method that combines multiple classifiers
(traditional machine learning classifiers, such as Naive Bayes, support vector machine
(SVM), etc.,) to detect SATD. These classifiers are trained on annotated data from open
source projects to predict the presence of SATD in target projects. Studies show that these
methods achieve good F1-scores in SATD detection. There are also studies using deep
learning models such as convolutional neural networks (CNN) and long short-term
memory networks (LSTM) to capture more complex semantic features (Li et al., 2024).

More importantly, Li et al. (2024) conducted one of the first systematic studies to apply
large language model (LLM) to SATD detection. They extensively evaluated ChatGPT on
zero-shot, few-shot BM25, and few-shot Chain of Thought (CoT) prompting strategies
and found that LLM significantly outperformed traditional CNN, LSTM, and Transformer
models, especially in terms of recall and interpretability. In addition, they proposed a
fusion method (FSATD) that combines the predictions of ChatGPT with those of a small
model to further improve the classification performance. Their work strongly
demonstrated that LLM-based methods are very promising for the SATD detection task.
However, their study mainly focused on SATD classification (i.e., whether a comment
indicates technical debt) rather than the sentiment dimension of SATD, which remains
underexplored.

Although research on the classification and detection of SATD is relatively mature,
there is little in-depth discussion on the analysis of emotional expression in SATD.
Currently, research on SATD sentiment analysis is still in its infancy. Fucci et al. (2021)
systematically analyzed emotional expressions in SATD annotations for the first time in
2021. By analyzing 1,038 SATD comments from 10 open source projects, the proportion of
SATD with negative sentiment is only 30%. Therefore, developers usually adopt a more
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neutral or objective expression when recording technical debt. In addition, the presence of
negative sentiment is particularly evident in two specific SATD categories: functional
issues (i.e., reviews that describe software functional defects or failures) and waiting issues
(e.g., reviews involving tasks that are blocked by external dependencies such as third-party
libraries or unresolved issues). In these categories, the proportion of negative sentiment in
SATD reviews is as high as 49% and 46%, respectively. This suggests that developers may
be more inclined to express frustration or dissatisfaction when technical debt involves
functional defects or dependencies on external conditions.

However, existing sentiment analysis tools for SATD, such as Senti4SD (Calefato et al.,
2018), face limitations when applied to this context. Fucci et al. (2021) evaluated the
performance of several sentiment analysis tools in SATD detection and found that some
negative comments were misclassified as neutral due to the presence of technology-specific
terms. For example, the sentence “FIXME: This is a big pitfall because the parser expects
scope names to be preserved as strings” was marked as negative by human judges but
misclassified as neutral by Senti4SD. Fucci et al. (2021) concluded that sentiment analysis
tools in software engineering may not fully capture the true emotional expressions of
developers in SATD, especially when technical vocabulary is involved.

In the field of sentiment analysis, the Generative Pretrained Transformer (GPT) model
has deeply learned the statistical laws and contextual associations of language through
pre-training on massive text data, and can generate fluent and grammatical text (Kheiri &
Karimi, 2023). Recent studies have shown that designing well-structured prompts for GPT
models can significantly improve the performance of sentiment analysis tasks (Kheiri &
Karimi, 2023). Therefore, this article proposes a SATD sentiment prediction method based
on the generative pre-training model ChatGPT. By fine-tuning the ChatGPT model to
adapt it to the SATD sentiment prediction task, we aim to improve the accuracy of
sentiment analysis. Specifically, in order to fully mine the complex emotional expressions
in SATD text, the pre-trained large language model ChatGPT was fine-tuned to build a
SATD sentiment prediction model. Secondly, the performance of the fine-tuned GPT
model in SATD sentiment prediction is systematically evaluated. By comparing it with
machine learning methods and deep learning models, the effectiveness of the fine-tuned
ChatGPT model in the SATD sentiment prediction task was verified, revealing the
application potential of generative models in the field of sentiment analysis.

The main contributions of this article can be summarized as follows:

(1) A generative model framework for SATD sentiment prediction is proposed. By
fine-tuning the GPT model, its performance in complex sentiment capture tasks is
systematically evaluated.

(2) The performance of the fine-tuned GPT model is compared with traditional machine
learning methods and deep learning models through experiments, and its potential
advantages in SATD emotion recognition are demonstrated. The rest of this article
introduces related work in SATD, presents the proposed method, describes the
experimental setup and materials, analyzes the results, and summarizes the main
findings and future directions.
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RELATED WORK
Research on SATD
Regarding the study of SATD, Potdar & Shihab (2014) first analyzed the code comments in
open source projects and found that developers tend to use specific keywords (such as
“TODO” and “FIXME”) to mark the existence of technical debt. Subsequently,Maldonado
& Shihab (2015) developed a pattern matching method to automatically detect SATD and
divide it into categories such as defect debt, design debt, document debt, implementation
debt, and test debt. Mainstream research focuses on the identification and classification of
SATD. For example, Bavota & Russo (2016) redefined the SATD taxonomy and proposed
more refined subcategories; in addition, Maipradit et al. (2020) introduced the concept of
“on-hold” SATD to describe the comments left by developers while waiting for internal or
external conditions of the project to be met. They further constructed a classifier
specifically for detecting this type of “on-hold” SATD and achieved an average area under
the curve (AUC) of 0.97 in the experiment (Maipradit et al., 2020). These studies have
effectively improved the identification and classification methods of SATD, but there are
still deficiencies in the systematic analysis of emotional factors, especially how sentiments
affect the priority of technical debt management, which has not been deeply explored.

Sentiment analysis in software development
In recent years, sentiment analysis has gradually become popular and developed steadily in
empirical software engineering research. Murgia et al. (2014) preliminarily explored the
sentiments in software artifacts by manually annotating the problem reports of the Apache
Foundation and found that developers expressed a variety of sentiments such as gratitude,
joy, and sadness in the reports. Ortu et al. (2015) studied the correlation between
sentiments in problems and repair time, and the results showed that negative sentiments
(such as sadness) were associated with longer repair times. Mäntylä et al. (2016) analyzed
the relationship between sentiments and bug priorities. By mining the sentiments in
problem tracking comments, calculating valence (emotional polarity), arousal (emotional
intensity), and dominance, it was found that bug reports are usually accompanied by more
negative valence, and the higher the priority, the stronger the emotional arousal.

Fucci et al. (2021) focused on how developers communicate the presence of technical
debt by manually labeling sentiment in SATD reviews. The results further confirmed the
effectiveness of sentiment as a proxy for issues and priorities in the software development
process. In addition, researchers in the field of requirements engineering also use
sentiment analysis to support software maintenance and requirements classification.
Panichella et al. (2015) classified the sentiment of user reviews on Google Play and Apple
Store, while Maalej et al. (2016) combined sentiment and other text features to
automatically classify application reviews into four categories: bug reports, feature
requests, user experience, and text ratings.

In the study of negative sentiments in the software development process, Gachechiladze
et al. (2017) studied anger and its direction in collaborative development, and trained
an anger detection classifier by manually annotating sentences in Apache issue reports.
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Fucci et al. (2021) also focused on negative sentiments and verified its effectiveness in the
problem of agent software development.

SATD detection and GPT-based sentiment classification
In recent years, large pre-trained language models (LLMs) have shown great potential in
software engineering text analysis tasks. Li et al. (2024) evaluated ChatGPT’s ability to
detect software technical debt (SATD) in a zero-shot setting. The results showed that
ChatGPT outperformed traditional CNN, LSTM, and Transformer models in both
precision and recall, especially in small sample or unsupervised scenarios. Kheiri & Karimi
(2023) proposed SentimentGPT, a method for advanced sentiment analysis using GPT.
They found that the performance of GPT models in sentiment classification tasks can be
significantly improved by carefully designed prompt templates. For example, an effective
prompt template can guide the model to focus on the emotional tendency and complex
language features (such as irony, emoticons, etc.,) in tweets, rather than just the literal
meaning. They tested SentimentGPT on the SemEval 2017 dataset and showed that its
F1-score was more than 22% higher than that of advanced models such as Bidirectional
Long Short-Term Memory (BiLSTM) with attention, Convolutional Neural Network–
Gated Recurrent Neural Network (CNN-GRNN) hybrid model, and Robustly Optimized
BERT Pretraining Approach (RoBERTa).

MATERIALS AND METHODS
This study conducts sentiment analysis on technical debt comments marked by developers
in the source code, aiming to deeply understand their emotional responses when facing
technical debt. To ensure long-term accessibility and reproducibility, we have permanently
archived the processed datasets and source code on Zenodo (Version v1, DOI: 10.5281/
zenodo.15605579). Additionally, the README file with implementation details is
available at https://github.com/yangxingguang/satd_sentiment_GPT/blob/main/
README.md.

The datasets used in our experiments are provided by Fucci et al. (2021), extracted from
open-source projects. These datasets have been uploaded and made publicly available by
the authors. The datasets can be downloaded from the following URL:

3rd Party SATD Dataset URL: https://figshare.com/s/0b83bc75dbc9ea99f2f6?
file=26027183 and https://figshare.com/s/0b83bc75dbc9ea99f2f6?file=26027201

First, the original dataset is processed to ensure that the model can adapt to the complex
characteristics of the SATD corpus. The original dataset contains SATD annotations
annotated by developers and their corresponding sentiment labels. These categories cover
common situations in sentiment analysis, including Non-Negative, Negative, Neutral,
Mixed, and No Agression. Specifically, “No Aggression” refers to the situation where the
annotation does not express aggressive or offensive emotional content, while “No
Agreement” refers to the situation where human annotators cannot reach a consensus on
the emotional label. During the data cleaning process, samples with labels such as Mixed
and No Agreement were removed, and only Negative and Non-Negative samples with
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clear sentiment annotations were retained. Since mixed and disagree categories together
account for less than 5% of all SATD comments and often contain ambiguous,
context-dependent judgments, we removed them to improve the reliability of the
classification. This resulted in a clear binary distinction between negative comments
(where developers explicitly express frustration or dissatisfaction) and non-negative
comments. Furthermore, Fucci et al. (2021) demonstrated that negative sentiment in
SATD comments is concentrated in the most actionable categories—functional failures
(49%) and blocking issues (46%)—confirming that even a crude negative vs. non-negative
classifier can automatically identify the most critical technical debt items for the team to
focus on immediately.

In order to enable the model to learn the mapping pattern from SATD annotations to
sentiment labels, the data was converted into JSONL format. Each record contains a
system role defined by the task, a user role (i.e., the SATD annotations provided as model
input), and a helper role (i.e., the sentiment label output by the model). This format is
consistent with the structure used in the OpenAI fine-tuning framework, which teaches the
model to map input text to corresponding responses. Based on this data, the experiment
uses the GPT-3.5-turbo version provided by OpenAI, and adapts the model through
fine-tuning technology to complete the SATD sentiment prediction task.

The model training process is based on the 10-fold cross-validation method. The dataset
is divided into 10 subsets. In each round of training, nine subsets are selected as training
sets, and the remaining one subset is used for testing. By repeating this process 10 times, it
is ensured that each piece of data is validated as part of the test set and the training set,
thereby minimizing the bias of data partitioning on the evaluation results. The fine-tuning
process is performed through OpenAI’s application programming interface (API), and the

Figure 1 The process of proposed method. Full-size DOI: 10.7717/peerj-cs.3227/fig-1
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model training is completed with the default parameter configuration without additional
parameter tuning. After training, the test set is input into the fine-tuned model to generate
sentiment prediction labels, and the classification performance of the model is evaluated,
using indicators including precision, recall, and F1-score. As shown in Fig. 1, the flowchart
of our proposed method.

EXPERIMENTAL SETUP
In order to verify the effectiveness of the fine-tuned GPT model in the SATD sentiment
analysis task, the following two research questions were designed:

RQ1 (feature-based machine learning (ML) comparison): to what extent does
fine-tuning GPT-3.5-turbo improve sentiment classification performance compared to
traditional ML methods that rely on handcrafted Term Frequency–Inverse Document
Frequency (TF-IDF) features (e.g., SVM, random forest, logistic regression, Naive Bayes,
K-nearest neighbor (KNN))?

RQ2 (end-to-end deep learning comparison): how does GPT-3.5-turbo compare to end-
to-end trained neural architectures (CNN, LSTM, Transformer) that learn embeddings
and context from scratch without generative pre-training?

While both questions employ our 10-fold cross-validation scheme and evaluation
metrics (precision, recall, F1), RQ1 highlights the benefits of large-scale language model
pre-training over shallow feature engineering baselines, while RQ2 measures the benefits
of GPT over similar deep learning models that already capture contextual patterns but lack
the scale of pre-training.

Dataset
The dataset used in this study is from the public dataset provided by Fucci et al. (2021).
This dataset is an extension and re-analysis of the original dataset released by Maldonado
& Shihab (2015). The dataset is 4,071 SATD annotations extracted from 10 open source
Java projects. Fucci et al. (2021) removed duplicates from the dataset on this basis, and
finally retained 3,289 annotations, from which 1,038 were randomly selected for detailed
manual analysis and expansion.

The extended dataset adopts a new classification system to classify the content of SATD
in a more fine-grained manner and proposes a classification method with nine top-level
categories and 32 subcategories. These categories cover various types such as functional
issues, poor implementation choices, unfinished features, waiting events, documentation
issues, and testing issues, thereby more comprehensively describing the content
characteristics of technical debt reviews. As shown in Table 1, the complete categories and
subcategories are shown. In addition, the dataset performs sentiment annotation on each
annotation, and divides the sentiment tendency into three categories: negative, non-
negative, and mixed, which further reveals the emotional state of developers when
recording technical debt. To facilitate an intuitive understanding of the distribution of
sentiments, Table 2 shows the specific distribution of different sentiment categories in the
dataset, including the number and proportion of each sentiment category. At the same
time, the dataset also extracts information such as class name, method name, BUG ID,
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URL and date contained in the comments, aiming to support the study of the patterns,
sentiment tendencies and priority decisions of technical debt records. To further illustrate
the emotional categories used in our sentiment analysis, we provide representative
examples for the major sentiment types. For instance, a negative SATD comment such as:

“// FIXME: Is ‘No Namespace is Empty Namespace’ really OK?”

expresses dissatisfaction and questioning of correctness.
A mixed sentiment comment might be:

“// pattern now holds �� while string is not exhausted // this will generate false positives but
we can live with that.”

which reflects a negative technical assessment combined with an accepting or tolerant
tone.

As shown in Table 2, the dataset also includes a small number of samples under the
exclude and no agreement categories. These require further clarification. The exclude
category refers to comments that lack clear sentiment indicators or are ambiguous in
interpretation. For example:

“// TODO: This isn’t an exact port of MRI’s pipe behavior, so revisit.”

Table 1 SATD’s fine-grained classification framework.

Top-level category Sub-categories

Functional issues Bug, Bad input validation, Unexpected behavior, Compatibility issue

Poor implementation choices Code smell, Inefficient algorithm, Poor API usage, Hardcoding, Memory leak, Poor exception handling,
Redundant/Duplicate code

Waiting/On-hold Waiting on external dependency, Waiting on library update, Waiting for review, Waiting on design

Deployment issues Build script issue, Environment configuration issue, Deployment pipeline failure

Outdated SATD comments Comment not removed after fix, Stale comment

Partially/Not implemented
functionality

Stub function, TODO placeholder, Temporary workaround

Testing issues Missing test, Flaky test, Low test coverage

Documentation issues Missing comment, Inaccurate documentation, Out-of-date README/Guide

Misalignment Implementation–design mismatch, Requirements drift, Architectural inconsistency

Table 2 Distribution of each sentiment categories in the dataset.

Sentiment category Count (#) Percentage (%)

Non-negative 714 68.79%

Negative 304 29.29%

Mixed 15 1.45%

Exclude 3 0.29%

No agreement 2 0.19%
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The no agreement category corresponds to cases where human annotators could not
reach a consistent labeling decision, such as:

“//TODO: is there a more elegant way than downcasting?”

Both of these categories were removed during data preprocessing to ensure training data
quality.

Evaluation indicators
To comprehensively evaluate the classification performance of the model in the sentiment
analysis task, this study compared the model’s prediction results with the true labels and
calculated the following three evaluation indicators:

Precision ¼ TP
TPþ FP

Recall ¼ TP
TPþ FN

F1-score ¼ Precision� Recall
Precisionþ Recall

� 2:

Among them, true positive (TP) represents the number of samples correctly predicted
as a certain type of sentiment, false positive (FP) represents the number of samples
incorrectly predicted as a certain type of sentiment, and false negative (FN) represents the
number of samples that actually belong to a certain type of sentiment but are incorrectly
predicted as other categories. Precision represents the proportion of samples that actually
belong to a certain category among all samples predicted as a certain type of sentiment,
which is used to measure the accuracy of model prediction. Recall represents the
proportion of samples that are correctly predicted as a certain category among samples
that actually belong to a certain type of sentiment, which is used to measure the model’s
ability to capture the sentiments of that category. F1-score is the harmonic mean of
precision and recall, which is used to comprehensively evaluate the accuracy and coverage
of the model. The higher the scores of these three indicators, the better the classification
performance of the model.

In order to deal with the problem of imbalanced category distribution, the experiment
uses weighted precision, recall and F1-score as evaluation indicators. In the specific
calculation formula, the weights are allocated according to the actual number of samples in
each category to reduce the impact of category imbalance on result evaluation.

Baseline models
(1) Traditional machine learning models

In order to evaluate the proposed method, five common traditional machine learning
models were selected as benchmarks, namely logistic regression (LR), random forest (RF),
support vector machine (SVM), Naive Bayes (NB) and K-nearest neighbor (KNN). LR, as
an efficient supervised learning method, uses word frequency information to predict
sentiment probability in this task, but has limitations in modeling complex nonlinear
decision boundaries. RF, by integrating multiple decision trees for voting, can model
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nonlinear relationships and is robust to overfitting, but may not be as good as specialized
sequence models at capturing long-distance context. SVM, as a powerful benchmark for
text classification, is particularly good at processing high-dimensional sparse space using
TF-IDF features, but its performance depends on the careful selection of kernel functions
and regularization parameters. NB is a probabilistic classifier based on the assumption of
feature independence, and is efficient in tasks where sentiment is strongly related to
specific words. KNN, as a non-parametric method, classifies by comparing the labels of
samples with those of neighboring points. The method is intuitive, but it is susceptible to
the “curse of dimensionality” and noise in high-dimensional sparse text space.
(2) Deep learning models

To further explore more complex feature representations, we also selected convolutional
neural networks (CNNs), long short-term memory networks (LSTMs), and Transformers
as deep learning benchmarks. CNNs extract local features with sentimental meaning (such
as keywords) from word vectors through convolution operations, and are good at
identifying local patterns, but their limited receptive field makes it difficult to model
long-distance dependencies. In contrast, LSTMs, as recurrent neural networks, can
maintain and update memories with their gating mechanism, effectively tracking the
sentiment context of the entire comment, and are particularly suitable for processing
sentiment clues in long or complex sentences. Finally, the core of the Transformer model is
the self-attention mechanism, which can directly model the relationship between any
words in the sequence to capture global dependencies, and incorporate word order
information through explicit positional encoding, which is particularly effective for
understanding suggestive sentiment expressions that are distributed throughout the text or
require complex logical inferences.

Data preprocessing
In the preprocessing process of all models, the original data was first cleaned and samples
marked as mixed, exclude, and no agreement were removed. These samples are small in
number and have unclear emotional tendencies, which cannot provide effective learning
signals for the model, so they are removed.

For traditional machine learning models, LabelEncoder is first used to encode emotional
labels and convert text categories (such as positive and negative) into numerical
representations. The labels of the training set are encoded by fit_transform, and the test set
is processed by the transform method to ensure consistency between the two. The TF-IDF
vectorization method (TfidfVectorizer) is then used to convert the text data into a sparse
feature matrix. The parameters set include a maximum number of features of 5,000
(max_features = 5,000), removal of stop words (stop_words = ‘english’), and unigrams and
bigrams (ngram_range = (1, 2)) to capture the semantic information of words and phrases.
This vectorization operation processes the training set and the test set separately to
generate high-dimensional feature representations suitable for machine learning models.

In the deep learning model, text data is tokenized by Tokenizer, and the vocabulary is
built by fit_on_texts. The text is then converted into integer sequences and the length
is unified by pad_sequences (the maximum sequence length is 100). The vocabulary size is
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limited to 5,000 to balance feature richness and computational efficiency. Sentiment labels
are binary processed, comparing the equality of text labels with “negative” to generate
binary labels (0 and 1), and converted to one-hot encoding by to_categorical to fit the
output layer of the classification model.

After the above steps, the text data is converted into a numerical matrix and the labels
are converted into one-hot encoding, providing a unified and efficient input format for
subsequent model training. These preprocessing processes are repeated in each fold cross
validation to ensure the independence and consistency of data processing.

Parameter settings
(1) Machine learning model parameter settings

In the multinomial Naive Bayes model, the smoothing parameter alpha is set to the
default value of 1.0, and the feature extraction range is unigram and binary n-gram. The
regularization strength C of the logistic regression model is set to 1.0, the optimization
algorithm is lbfgs, and the maximum number of iterations is set to 1,000 to ensure
convergence on sparse data sets. At the same time, the random seed is set to 42 to ensure
the reproducibility of the experimental results. In the random forest model, the number of
decision trees is set to 100, the splitting criterion is Gini impurity, the maximum tree depth
is not limited, and the minimum number of samples required for node splitting uses the
default value of 2. In addition, the stability of the experimental results is ensured by setting
the random seed to 42. The support vector machine model uses a linear kernel function
and enables the probability estimation function. The regularization parameter C is set to
1.0 and the random seed is also set to 42. In the K-nearest neighbor model, the number of
neighbors is set to 5, the distance metric uses the Euclidean distance, and the weight
distribution is uniform weight.

All models are evaluated by 10-fold cross validation, and the average precision, recall,
and F1-scores are reported to comprehensively measure the model performance.
(2) Deep learning model parameters

The CNNmodel receives a text sequence of fixed length as input and maps the text into
a 128-dimensional vector representation through an embedding layer. Subsequently, the
model uses three one-dimensional convolutional layers with kernel sizes of 2, 3, and 4,
each containing 128 filters and an activation function of rectified linear unit (ReLU). The
convolution operation is followed by a global maximum pooling layer to reduce the
dimension of features and retain key information. The pooled features are concatenated
and input into a 128-unit fully connected layer (ReLU activation), and are regularized by a
dropout layer with a dropout rate of 0.5. Finally, a softmax layer with two classification
nodes is used to complete the classification task.

The LSTM model captures text context information through a bidirectional long
short-term memory network (Bidirectional LSTM). The input text is first mapped to a
128-dimensional vector through an embedding layer, and then passed to a bidirectional
LSTM layer with 256 units. This layer is configured with dropout and recurrent dropout
parameters (both are 0.2) to reduce overfitting and enhance model robustness.
Subsequently, the feature vector passes through a 128-unit fully connected layer (ReLU
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activation), and is further regularized by a Dropout layer with a dropout rate of 0.5, and
finally outputs the sentiment category probability distribution through a softmax layer of
two classification nodes.

The Transformer model uses global feature extraction and a high-dimensional fully
connected network to complete the classification task. The text sequence is mapped to a
120-dimensional vector representation through an embedding layer, and then the global
features of the sequence are extracted through a global average pooling layer. The pooled
features are sequentially passed through two fully connected layers with 1,024 units (ReLU
activation), and a Dropout layer with a dropout rate of 0.5 is inserted between the layers for
regularization, and finally the sentiment classification task is completed through a softmax
layer of two classification nodes.

All deep learning models use the Adam optimizer with a learning rate of 0.001. The
objective function is the categorical cross entropy loss function, which is used to minimize
the deviation between the model prediction results and the true labels.

RESULTS
Analysis for RQ1
We use the Scott-Knott effect size difference (ESD) test (Jelihovschi, Faria & Allaman,
2014) to group all methods into statistically distinct classes based on their performance
metric (precision, F1-score, or recall). This process recursively groups the techniques,
maximizing the variance between groups at each split (p < 0.05). The “ESD” part of the test
helps identify and mitigate the impact of significant outliers, ensuring that the ranking
reflects true performance differences. Therefore, methods in the same color-coded group
are not statistically significantly different, while methods in different color groups are
significantly different. The groups are ranked by their average performance, with black
representing the highest performing group, followed by red, then green, and finally blue or
light blue representing lower performing groups. It is important to note that this clustering
is done independently for each performance metric. As can be seen in Figs. 2, 3, and 4,
fine-tuning GPT consistently outperforms all traditional machine learning models by a
significant margin. Its average performance dominates the black group in all significant
groupings for all three metrics, fully reflecting its excellent and statistically superior
performance. The consistently strong performance of the fine-tuned GPT-3.5-turbo may
be related to its complex Transformer architecture, extensive pre-training, and
task-specific fine-tuning, which are expected to enhance its ability to capture complex
semantic nuances critical to SATD sentiment prediction. However, this remains a plausible
interpretation rather than a definitive conclusion, as further experiments such as ablation
studies would be required to confirm the precise contributions of these factors.

Taking accuracy as an example (Fig. 2), fine-tuning GPT has a significantly higher
accuracy distribution than other models and is only in the black group, with the most
stable performance. Among traditional machine learning models, SVM has relatively high
accuracy performance and is classified as the red group. The advantage of SVM may stem
from its effectiveness in the high-dimensional space of sparse features typical of text data.
Logistic regression and random forest have relatively close accuracy performance and are
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classified as the green group, slightly inferior to SVM, and have a slightly wider distribution
range; their ensemble (random forest) or linear (logistic regression) properties may not
fully capture complexity like SVM or GPT. KNN and Naive Bayes are classified as the blue
group, respectively, and their performance gradually decreases. Naive Bayes has the widest
distribution range, with its lower limit close to 0.4, indicating that its performance is the
most unstable, which may be due to its strong feature independence assumption that is

Figure 2 Scott-knott results of fine-tuning GPT vs. machine learning on indicator precision.
Full-size DOI: 10.7717/peerj-cs.3227/fig-2

Figure 3 Scott-knott results of fine-tuning GPT vs. machine learning on indicator recall.
Full-size DOI: 10.7717/peerj-cs.3227/fig-3

Zhang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3227 13/29

http://dx.doi.org/10.7717/peerj-cs.3227/fig-2
http://dx.doi.org/10.7717/peerj-cs.3227/fig-3
http://dx.doi.org/10.7717/peerj-cs.3227
https://peerj.com/computer-science/


often violated in natural language. Taking recall as an example (Fig. 3), fine-tuned GPT is
again grouped separately in black. Among traditional models, support vector machine
(SVM) is in the red group. Random forest and logistic regression are in the green group.
Naive Bayes and KNN are in the blue and light blue groups, respectively. It is worth noting
that KNN’s recall performance (light blue group, mean 0.559) is in a lower statistical group
than its precision performance (blue group, mean 0.698). The difference in color grouping
of KNN on different metrics is due to the fact that clustering for each metric is performed
independently. This highlights that KNN’s relative position among similar models varies
depending on specific aspects of performance; in this case, its relatively weak ability to
capture all true positives (recall) and its relatively weak ability to ensure that its positive
predictions are correct (precision). Taking F1-score as an example (Fig. 4), Fine-tuned
GPT is still in the black group. Among traditional machine learning models, SVM and
random forests have similar F1-score performance and are both grouped in the red group.
Logistic regression is grouped in the green group. Naive Bayes and KNN are in the blue
and light blue groups, respectively, with KNN again showing the widest distribution and
the lowest F1-score. The fact that SVM and random forest are in the red group in terms of
F1-score indicates that they achieve a better balance of precision and recall on this
particular metric than logistic regression, which is in the green group.

To provide a unified performance ranking for each metric of RQ1, we also calculated a
weighted composite score for each technique (0.5 × F1-score + 0.25 × precision + 0.25 ×
recall). These composite scores were then subjected to the Scott-Knott ESD test. The
results of the summary analysis, as shown in Fig. 5, largely confirm the findings of the
individual indicators, where fine-tuning GPT still ranks at the top (black group), followed
by SVM and random forest (red group), logistic regression (green group), Naive Bayes

Figure 4 Scott-knott results of fine-tuning GPT vs. machine learning on indicator F1-score.
Full-size DOI: 10.7717/peerj-cs.3227/fig-4
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(blue group) and KNN (light blue group). This addresses the overall performance issue
beyond the perspective of specific indicators.

After completing the significant group analysis, the 10 folds in the cross-validation were
analyzed separately as 10 independent data subsets to conduct a detailed performance
comparison between fine-tuning GPT and five traditional baseline models. Through the
precision, F1-score and recall metrics, we calculated the performance of each fine-tuning
GPT and baseline model, and counted the number of wins (Win), draws (Draw) and losses
(Loss), thereby obtaining the win-loss ratio (W/D/L) results. These results are listed in
Tables 3, 4 and 5, respectively.

Figure 5 Scott-knott results of fine-tuning GPT vs. machine learning on indicator weighted
composite score. Full-size DOI: 10.7717/peerj-cs.3227/fig-5

Table 3 Precision analysis of fine-tuning GPT vs. machine learning.

Rounds Fine-tuning GPT Logistic Regression Random forest SVM KNN Naive Bayes

1 0.848 0.762 0.597 0.773 0.613 0.762

2 0.884 0.830 0.817 0.829 0.879 0.830

3 0.792 0.786 0.677 0.710 0.717 0.815

4 0.859 0.737 0.691 0.744 0.686 0.793

5 0.903 0.759 0.715 0.715 0.680 0.802

6 0.858 0.741 0.773 0.821 0.774 0.566

7 0.824 0.634 0.709 0.713 0.458 0.634

8 0.802 0.451 0.741 0.702 0.695 0.453

9 0.850 0.789 0.747 0.665 0.672 0.402

10 0.890 0.831 0.830 0.775 0.809 0.815

Average 0.851 0.732 0.730 0.745 0.698 0.687

W/D/L – 10/0/0 10/0/0 10/0/0 10/0/0 9/0/1
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The “Average” row shows the average of all items. The “Win/Loss Ratio” row
summarizes the number of projects where fine-tuning GPT outperforms, is equal to, or
underperforms a specific baseline method. We find that fine-tuning GPT significantly
outperforms all baseline models in terms of precision, recall, and F1-score. In terms of
precision (Table 3), the average value of fine-tuning GPT is 0.851, which is significantly
higher than 0.732 for logistic regression, 0.730 for random forest, 0.745 for SVM, 0.698 for
KNN, and 0.687 for Naive Bayes. Compared with these baseline models, fine-tuning GPT’s
performance improves by 16.3%, 16.6%, 14.2%, 21.9%, and 23.9%, respectively. According
to the W/D/L analysis, fine-tuning GPT has an absolute advantage over the baseline
models in all 10 compromises, except for logistic regression (9/0/1), and the results of other
models are all 10/0/0. In terms of recall (Table 4), the average value of fine-tuning GPT is
0.837, which is significantly higher than 0.724 for logistic regression, 0.733 for random

Table 4 Recall analysis of fine-tuning GPT vs. machine learning.

Rounds Fine-tuning GPT Logistic regression Random forest SVM KNN Naive Bayes

1 0.832 0.604 0.614 0.703 0.426 0.604

2 0.782 0.911 0.772 0.901 0.475 0.911

3 0.802 0.772 0.713 0.743 0.653 0.752

4 0.861 0.713 0.713 0.743 0.703 0.703

5 0.901 0.733 0.733 0.733 0.634 0.723

6 0.861 0.762 0.792 0.822 0.644 0.752

7 0.822 0.614 0.703 0.693 0.396 0.614

8 0.782 0.663 0.743 0.713 0.653 0.673

9 0.851 0.683 0.713 0.673 0.683 0.634

10 0.872 0.78 0.835 0.789 0.321 0.752

Average 0.837 0.724 0.733 0.751 0.559 0.712

W/D/L – 9/0/1 10/0/0 9/0/1 10/0/0 9/0/1

Table 5 F1-score analysis of fine-tuning GPT vs. machine learning.

Rounds Fine-tuning GPT Logistic regression Random forest SVM KNN Naive Bayes

1 0.833 0.465 0.576 0.654 0.291 0.465

2 0.821 0.868 0.794 0.863 0.572 0.868

3 0.781 0.714 0.686 0.709 0.672 0.664

4 0.859 0.632 0.683 0.700 0.690 0.598

5 0.902 0.663 0.714 0.697 0.647 0.632

6 0.859 0.684 0.770 0.795 0.668 0.646

7 0.817 0.493 0.679 0.655 0.241 0.493

8 0.787 0.537 0.709 0.665 0.664 0.542

9 0.850 0.594 0.663 0.624 0.652 0.492

10 0.876 0.716 0.823 0.766 0.219 0.662

Average 0.839 0.637 0.710 0.713 0.531 0.606

W/D/L – 9/0/1 10/0/0 9/0/1 10/0/0 9/0/1
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forest, 0.751 for SVM, 0.559 for KNN, and 0.712 for Naive Bayes, increasing by 15.6%,
14.2%, 11.5%, 49.7%, and 17.6%, respectively. W/D/L analysis shows that the scores of
fine-tuning GPT for logistic regression, SVM, and Naive Bayes are 9/0/1, and for KNN and
random forest are 10/0/0. In the F1-score indicator (Table 5), the average value of
fine-tuning GPT reached 0.839, which is significantly higher than 0.637 of logistic
regression, 0.710 of random forest, 0.713 of support vector machine, 0.531 of KNN and
0.606 of Naive Bayes, with an increase of 31.7%, 18.2%, 17.7%, 58.0% and 38.4%
respectively. W/D/L analysis shows that fine-tuning GPT scores 9/0/1 against logistic
regression, support vector machine and Naive Bayes, and scores 10/0/0 against KNN and
random forest. Overall, compared with traditional machine learning models, fine-tuning
GPT shows strong performance advantages and stability in all three indicators.

Analysis for RQ2
To analyze question RQ2, we compared the emotion capture ability of fine-tuning GPT
with other deep learning models (CNN, LSTM, Transformer). The experiment again used
the Scott-Knott ESD test and the same clustering logic and color scheme as question RQ1
(black represents the best performance, red, green, and blue represent the groups with poor
performance) to significantly group the performance of these models. The results are
shown in Figs. 6, 7, and 8. As can be seen from Figs. 6, 7, and 8, fine-tuning GPT always
maintains a significant performance advantage among all compared deep learning models,
and its average performance only occupies the share of the black group in the significant
grouping, fully demonstrating its excellent performance. This continued advantage over
other deep learning models highlights its advantage of large-scale pre-training combined
with precise fine-tuning on the SATD emotion task.

Taking the accuracy rate (Fig. 6) as an example, fine-tuning GPT is significantly higher
than other models and is only in the black group, with a narrow distribution range and
reliable performance. Among other deep learning models, CNN has a relatively high
accuracy and is classified into the red group; CNN is known for effectively capturing local
features, which is very useful for certain text patterns. LSTM and Transformer have low
accuracy and are both classified into the green group. Taking the recall rate (Fig. 7) as an
example, fine-tuning GPT is only in the black group. Among other deep learning models,
CNN has a relatively high recall rate and is classified into the red group, but the
distribution range is wide and there is a certain fluctuation. The recall rate of Transformer
is slightly lower than that of CNN and is classified into the green group, and the
distribution is relatively stable. LSTM has the worst recall performance and is classified
into the blue group, and there are multiple obvious low value points, and the stability is
poor. Taking the F1 value as an example (Fig. 8), fine-tuning GPT is completely in the
black group and has a narrow distribution range. Among other deep learning models,
CNN has a higher F1 value and is classified into the red group; LSTM has a slightly lower
F1 value than CNN and is classified into the green group. Transformer has the most
unstable F1 performance and is classified into the blue group, with a wide distribution and
multiple outliers. The performance difference of the baseline Transformer model
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compared to fine-tuning GPT, which is also built on Transformer, highlights the key role
of large-scale pre-training and targeted fine-tuning for fine-tuning GPT.

Similarly, in order to provide a unified performance ranking for each metric of RQ1, we
also calculated the weighted composite score of each technology. Subsequently, as with
RQ1, these composite scores were subjected to the Scott-Knott ESD test. The results are

Figure 6 Scott-knott results of fine-tuning GPT vs. deep learning on indicator precision.
Full-size DOI: 10.7717/peerj-cs.3227/fig-6

Figure 7 Scott-knott results of fine-tuning GPT vs. deep learning on indicator recall.
Full-size DOI: 10.7717/peerj-cs.3227/fig-7
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shown in Fig. 9, where fine-tuning GPT still ranks first (black group), followed by CNN
(red group), Transformer (green group) and finally LSTM (green group).

After completing the significant grouping analysis, we use the same W/D/L method as
Question 1 to analyze the 10 folds in the cross-validation. The specific results are shown in
Tables 6, 7, and 8. In terms of the precision indicator (Table 6), the average value of

Figure 8 Scott-knott results of fine-tuning GPT vs. deep learning on indicator F1-score.
Full-size DOI: 10.7717/peerj-cs.3227/fig-8

Figure 9 Scott-knott results of fine-tuning GPT vs. deep learning on indicator weighted composite
score. Full-size DOI: 10.7717/peerj-cs.3227/fig-9
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fine-tuning GPT is 0.851, which is significantly higher than CNN’s 0.737, LSTM’s 0.663,
and Transformer’s 0.663, with improvements of 15.5%, 28.4%, and 28.4%, respectively.
W/D/L analysis shows that fine-tuning GPT maintains a clear advantage (10/0/0) among
all these deep learning models. In terms of the recall metric (Table 7), the average value of
fine-tuning GPT is 0.837, which is significantly higher than CNN’s 0.740, LSTM’s 0.667,
and Transformer’s 0.709, with increases of 13.1%, 25.5%, and 18.1%, respectively. W/D/L
analysis shows that its scores for CNN and Transformer are 9/0/1, and for LSTM it is 10/0/
0. In terms of the F1-score metric (Table 8), the average value of fine-tuning GPT is 0.839,
which is significantly higher than CNN’s 0.715, LSTM’s 0.652, and Transformer’s 0.631,
with increases of 17.3%, 28.7%, and 33.0%, respectively. The W/D/L analysis results show
that fine-tuning GPT scores 9/0/1 with CNN and Transformer, and 10/0/0 with LSTM.

Table 6 Precision analysis of fine-tuning GPT vs. deep learning.

Rounds Fine-tuning GPT CNN LSTM Transformer

1 0.848 0.690 0.555 0.557

2 0.884 0.842 0.841 0.829

3 0.792 0.683 0.629 0.660

4 0.859 0.767 0.631 0.655

5 0.903 0.704 0.670 0.797

6 0.858 0.751 0.740 0.566

7 0.824 0.691 0.644 0.698

8 0.802 0.750 0.622 0.678

9 0.850 0.672 0.580 0.652

10 0.890 0.818 0.719 0.537

Average 0.851 0.737 0.663 0.663

W/D/L – 10/0/0 10/0/0 10/0/0

Table 7 Recall analysis of fine-tuning GPT vs. deep learning.

Rounds Fine-tuning GPT CNN LSTM Transformer

1 0.832 0.693 0.584 0.594

2 0.782 0.842 0.752 0.901

3 0.802 0.683 0.663 0.723

4 0.861 0.772 0.634 0.673

5 0.901 0.723 0.653 0.713

6 0.861 0.772 0.762 0.752

7 0.822 0.673 0.653 0.683

8 0.782 0.733 0.663 0.683

9 0.851 0.683 0.624 0.644

10 0.872 0.826 0.679 0.725

Average 0.837 0.740 0.667 0.709

W/D/L – 9/0/1 10/0/0 9/0/1
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By comparing RQ1 and RQ2, fine-tuning GPT shows significant performance
advantages over traditional machine learning models and other deep learning models.
Whether it is accuracy, recall or F1 score, fine-tuning GPT’s performance is always
statistically significantly ahead of other models, and its stability in cross-validation is also
excellent.

DISCUSSION
This study aims to evaluate and compare the performance of fine-tuning GPT with various
traditional machine learning models and other deep learning models for sentiment
analysis of self-admitted technical debt (SATD) reviews. The results of both RQ1 and RQ2
clearly show that fine-tuning GPT (which is in the black group in the Scott-Knott ESD test)
significantly outperforms all other evaluated models in terms of precision, recall, and F1-
score metrics. It is important to note that this comparison focuses on a select set of
traditional machine learning and deep learning baselines and does not include other
LLM-based methods.

The continued strength of fine-tuning GPT can be attributed to several factors inherent
in its architecture and training paradigm. Unlike traditional models that rely on often
hand-crafted or relatively shallow features (e.g., TF-IDF for SVMs or word embeddings for
simpler neural networks (NNs)), fine-tuning GPT leverages a deep Transformer
architecture with an attention mechanism. This enables it to capture long-range
dependencies and complex contextual nuances in text, which is critical for accurately
interpreting sentiment in developer reviews that are often informal and domain-specific.
Its extensive pre-training on a massive and diverse text corpus provides rich semantic
understanding, which is then refined by fine-tuning on a specific SATD task. This is in
stark contrast to the baseline Transformer model evaluated in RQ2. This model lacks the
same scale of pre-training and specific fine-tuning as “fine-tuned GPT” and performs
significantly worse (usually in the blue or green group), highlighting the key role of these
two aspects. Among traditional machine learning models (RQ1), SVM (usually in the red

Table 8 F1-score analysis of fine-tuning GPT vs. deep learning.

Rounds Fine-tuning GPT CNN LSTM Transformer

1 0.833 0.679 0.540 0.460

2 0.821 0.842 0.792 0.863

3 0.781 0.683 0.643 0.658

4 0.859 0.753 0.632 0.661

5 0.902 0.705 0.660 0.611

6 0.859 0.715 0.746 0.646

7 0.817 0.627 0.628 0.686

8 0.787 0.681 0.620 0.580

9 0.850 0.652 0.563 0.529

10 0.876 0.814 0.693 0.617

Average 0.839 0.715 0.652 0.631

W/D/L – 9/0/1 10/0/0 9/0/1
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group) generally performs best. This is consistent with the effectiveness of SVM in
high-dimensional sparse feature spaces (usually text classification tasks using TF-IDF).
However, its performance ceiling is still significantly lower than fine-tuned GPT. Models
such as logistic regression and random forests (usually in the green group) provide
reasonable baseline performance, but lack the ability to model complex interactions like
support vector machines (SVM) (via kernel functions) or deep learning models. KNN and
Naive Bayes (usually blue or light blue groups) struggle the most, likely because KNN
suffers from high dimensionality issues and Naive Bayes’ strong feature independence
assumption is often violated in natural language. CNNs (usually red groups) perform well
compared to other deep learning models (RQ2), likely because they are able to effectively
capture local n-gram patterns. LSTM and baseline Transformer (usually green or blue
groups) are less efficient than fine-tuning GPT and CNN, suggesting that while they can
model sequences, fine-tuning GPT’s specific architecture, pre-training size, and
fine-tuning strategy give it a decisive advantage in this particular task.

The Scott-Knott ESD test provides clear statistical groupings for these techniques. Top
models like fine-tuning GPT have consistent color groupings for most metrics, indicating
robust and comprehensive performance. While models like KNN have slightly different
colors for different metrics (e.g., blue for precision, light blue for recall), this highlights that
their relative strengths and weaknesses vary depending on the evaluation dimension;
testing is done on a per-metric basis, allowing for such detailed observations. Aggregate
analysis using the combined score (Figs. 5, 9) further solidifies the overall ranking,
confirms fine-tuning GPT’s leading position, and provides a comprehensive view of
performance. The ESD portion of the test ensures that these groupings are robust to minor
outliers in the performance scores. The different performance tiers (black, red, green, and
blue) identified by Scott-Knott clustering have significant practical implications for
managing spontaneous technical debt (SATD). In the highest-performing black group, the
fine-tuned GPT model, with its superior accuracy and reliability, is a prime candidate for
integration into automated systems (such as Continuous Integration/Continuous
Deployment (CI/CD) pipelines or code review tools), providing high-confidence
sentiment labels for developer comments, thereby helping to proactively identify and
prioritize technical debt. Although the models in the red group (such as SVM in question 1
and CNN in question 2) are slightly inferior to the black group in statistical performance,
they are robust secondary options and can be used as alternatives when the black group
models are computationally resource-constrained or as reliable baselines; however,
additional human supervision may be required for full automation. Models in the green
group (such as logistic regression/random forest in RQ1 and LSTM/Transformer in RQ2)
have moderate performance and should be used with caution in fully automatic SATD
detection due to the high risk of misclassification. They are more suitable for assisting
human annotators or performing preliminary analysis, where a certain degree of noise can
be tolerated. As for models in the blue/light blue group (such as KNN/Naive Bayes in
RQ1), they are generally not recommended for automatic SATD sentiment analysis due to
their significant limitations in performing the task, as they are more prone to errors and
may cause critical debts to be ignored or generate too many false positives. Therefore, by
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gaining a deeper understanding of these performance levels, development teams can make
informed model deployment decisions based on their specific needs, available resources,
and fault tolerance. For example, an organization that aims to maximize the automation
and accuracy of SATD identification should prioritize investment in models in the black
group.

VALIDITY THREATS
This section discusses possible threats to the validity of our study and follows a widely
adopted validity framework that includes construct validity, internal validity, external
validity, and conclusion validity.

Construct validity
Construct validity refers to whether the methods and metrics used in the study accurately
measure the intended concepts. Our study relies on the existing SATD dataset, which
contains manually annotated sentiment labels. The inherent subjectivity of sentiment
annotation may lead to inconsistencies or label biases. Although the dataset is carefully
prepared and widely used in previous studies, some sentiment labels may not perfectly
reflect the real emotional expressions of developers.

In addition, although we adopt widely accepted performance metrics—precision, recall,
and F1-score—these metrics may not fully capture the actual impact of sentiment
misclassification in software engineering settings. For example, misclassifying highly
negative SATD reviews may incur greater operational costs than misclassifying neutral
reviews, which is not explicitly simulated in this study.

We mitigate these risks by using cross-validation to provide more reliable performance
estimates and choosing metrics commonly used in sentiment analysis and SATD research.
Nonetheless, future studies may consider incorporating cost-sensitive evaluations or
exploring more fine-grained, domain-specific sentiment taxonomies.

Internal validity
Internal validity focuses on whether the observed differences in model performance are
truly attributable to the experimental intervention rather than confounding factors.

The baseline traditional machine learning and deep learning models in this study were
implemented specifically for this experiment. While we used standard libraries (e.g., scikit-
learn, PyTorch) and followed best practices and parameter settings reported in relevant
studies, we acknowledge that these baseline implementations may not fully reflect the best
performance of these methods in all cases. Due to computational limitations, exhaustive
hyperparameter tuning was not performed for all baseline models, which may affect the
fairness of the comparison. This poses a potential threat to validity.

We have made the full source code and experimental details publicly available so that
other researchers can reproduce and improve these baselines.

We also mitigated another common internal validity threat by strictly distinguishing
each set of training and test sets and ensuring that no data leakage occurred during the 10-
fold cross-validation process.
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External validity
External validity refers to the generalizability of our findings beyond the specific dataset
and setting used in this study.

Our experiments were conducted on the SATD dataset from a single software project,
which may limit the generalizability of our results to other domains, programming
languages, or software ecosystems. Developers’ emotional expressions may vary across
organizations, teams, or cultures, especially in multilingual settings. In addition, our
fine-tuned GPT-3.5-turbo model is task-specific and its performance on SATD on other
datasets remains to be verified.

We mitigated this threat by employing 10-fold cross-validation to ensure generalization
within the dataset. However, future research should explore the application of this method
on cross-project, cross-domain, and multilingual SATD datasets to verify the broader
applicability of our findings. Furthermore, the exclusion of other LLM-based baselines
(e.g., Code Bidirectional Encoder Representations from Transformers (CodeBERT)) limits
direct comparisons with state-of-the-art methods in this field.

Conclusion validity
Conclusion validity refers to the appropriateness of the statistical methods used to support
the conclusions of the study.

We applied the Scott-Knott ESD test to statistically compare the performance of
different models, which is a well-established method for grouping and ranking classifiers
under multiple evaluation settings. We also report the average performance metrics and
win/tie/loss statistics across all evaluation settings. However, all statistical methods rely on
underlying assumptions, so other nonparametric tests (e.g., Friedman and Nemenyi post
hoc tests) may be considered in future studies to further validate the findings.

CONCLUSIONS
This article studies the SATD sentiment prediction problem in software development and
proposes a method based on the GPT-3.5-turbo fine-tuning model. SATD is a form of
developers explicitly recording technical compromises through comments, and analyzing
its sentiment information is of great significance for technical debt management. An
efficient sentiment analysis framework is built by fine-tuning the GPT-3.5-turbo model to
adapt to the SATD sentiment prediction task. The experimental design uses 10-fold
cross-validation and is systematically compared with traditional machine learning models
and deep learning models to evaluate the precision, recall and F1-score indicators of the
model. Experimental results show that the fine-tuning GPT-3.5-turbo model performs
significantly better than traditional machine learning and deep learning models in
sentiment analysis tasks. In terms of precision, the average value is 0.851, which is 14.2%
higher than the best traditional machine learning model SVM; in terms of recall, the
average value of fine-tuning GPT is 0.837, which is 11.5% higher than the best traditional
machine learning model SVM; in terms of F1-score, the average value is 0.839, which is
17.3% higher than the best deep learning model CNN. These results prove that fine-tuning
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GPT not only has higher classification accuracy and recall ability in sentiment analysis
tasks, but also shows superior overall performance and balance.

This study proposes a generative pre-training model framework for SATD sentiment
prediction for the first time, verifying the unique potential of the GPT model in capturing
complex sentiments. Through comprehensive experimental comparisons, the significant
advantages of GPT in sentiment prediction tasks are revealed, providing new ideas and
technical references for SATD management research. The experimental data, source code,
and detailed instructions for reproducing the results of this study are publicly available at
https://github.com/yangxingguang/satd_sentiment_GPT.

This code repository contains: (1) preprocessed SATD dataset for 10-fold
cross-validation (train and test are provided in CSV and JSONL formats, respectively);
(2) source code for fine-tuning GPT models (‘Fine-tuning GPT.py’), deep learning models
(CNN, LSTM, Transformer in ‘Deep Learning.py’), and traditional machine learning
models (e.g., SVM, Random Forest in ‘Machine Learning.py’); (3) a detailed ‘README.
md’ file that details the project overview, prerequisites, data description, code explanation,
and step-by-step experimental steps to reproduce our results.

This work also has practical relevance in software engineering. For example, in an issue
tracking system, when developers’ comments show repeated negative sentiment (e.g.,
“//FIXME: This hack is scary, but necessary”), our model can flag these issues to help
project managers identify potential technical debt risks or team bottlenecks. Similarly,
sentiment trends in code review discussions can be tracked to assess team communication
dynamics. By integrating this framework into the development workflow, teams can gain
new insights into sentiment patterns related to project quality or delivery delays.

Moreover, this approach is relevant to modern technical debt management (TDM). As
highlighted by Albuquerque et al. (2023), intelligent techniques such as machine learning
and natural language processing (NLP) are increasingly used for debt detection,
monitoring, and prioritization in TDM. Our model complements this trend by introducing
developer sentiment as an auxiliary signal for technical debt awareness. For example, a
cluster of negative SATD comments may indicate a fragile or problematic area of code.
These insights provide additional value to technical managers who aim to proactively
identify and mitigate debt-related risks.

In addition to detecting individual SATD comments with negative sentiment, the
proposed sentiment prediction framework can also be integrated with issue tracking
systems and software repository mining to support a more comprehensive software quality
management workflow. Previous studies have shown that the sentiment and ranking of
issue comments are closely related to issue resolution time and team productivity (Ortu
et al., 2016; Mäntylä et al., 2016). Automatically identifying SATD sentiment trends over
time can help project managers prioritize technical debt items that lead to growing
developer frustration or recurring issues in unresolved issues. In addition, issue type
classification and repository text mining have been shown to be effective in supporting
software maintenance and project evaluation (Dobrzyński & Sosnowski, 2023; Herzig, Just
& Zeller, 2013). By combining sentiment analysis with issue type classification, intelligent
project dashboards can be developed that not only track the number of SATDs, but also
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display emotional comments associated with high-risk issue types (e.g., functional failures
or blocking dependencies). This integration can provide valuable signals for proactively
managing technical debt and improving team communication dynamics throughout the
software development lifecycle.

Despite the positive results achieved in this study, several limitations remain, which are
discussed in detail in ‘Validity Threats’, “Threats to Validity.” To address these limitations,
future research directions include: expanding the dataset to cover cross-domain and
multilingual SATD corpora; developing context-aware sentiment classification methods
tailored to the semantics of technical debt; employing nonparametric hypothesis testing
techniques for more rigorous statistical validation; and exploring domain adaptation
techniques to enhance the ability of large language models to handle software engineering
expertise. Furthermore, future research could further compare with other large language
model (LLM)-based approaches, including alternative hint engineering strategies,
contextual learning mechanisms, or newer versions of LLM fine-tuning models. While this
comparison was not included in the current evaluation, such research is expected to
provide deeper insights into the relative strengths and potential for improvement of LLM
approaches in SATD sentiment classification. For example, comparative analysis with
other LLM approaches, such as CodeBERT and BERT, would contribute to the
construction of a more comprehensive SATD sentiment analysis benchmark.

Although current experimental results show that the fine-tuned GPT-3.5-turbo
outperforms some traditional machine learning and deep learning baseline models, future
work will prioritize expanding the scope of comparison to include more advanced LLM
methods to more comprehensively evaluate its effectiveness and applicability.
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