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ABSTRACT

The gut microbiome plays a significant role in the development of type 2 diabetes
(T2D), yet its underlying mechanisms remain unclear. Explainable artificial
intelligence offers a promising approach to elucidating machine learning models and
enhancing our understanding of these mechanisms. However, identifying the most
effective explainer for specific problems remains a significant challenge. To address
this issue, we propose the consistency- and informativeness-aware explanation
framework (CIAE), which integrates multiple explainers to improve the consistency
and informativeness of explanations. Using the top 100 Kyoto Encyclopedia of Genes
and Genomes (KEGG) Orthology (KO) features identified by CIAE, models achieved
robust results on individual datasets (area under the curve (AUC): 0.870 and 0.808)
and demonstrated strong cross-dataset generalization (AUC: 0.822 and 0.778).
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microbiome and T2D (Wu et al., 2020; Fan & Pedersen, 2021; Zhao et al., 2018). Among
them, the predominant emphasis has been on analyzing the associations between bacterial
taxa and T2D. Some prior research have identified impact of bacterial genera on T2D
through statistical or machine learning (ML) approaches using the data obtained from 16S
rRNA sequencing (Candela et al., 2016; Sedighi et al., 2017; Gou et al., 2021). The 16S rRNA
sequencing normally provides resolution at the genus level, however, highly diverse species
could belong to the same genus (Gurung et al., 2020), leading to inconsistency in genus-level
analysis across various studies regarding T2D. In contrast, shotgun metagenomic sequencing
can unveil a broader diversity of species and the functional information (Hugenholtz ¢
Tyson, 2008). In Metagenomic prediction Analysis based on Machine Learning (MteaML)
(Pasolli et al., 2016), two types of features was extracted: species-level relative abundances
and presence of strain-specific markers. Subsequently, a random forest (RF) model was used
to identify the most important species for various disease prediction. More recently, deep
learning (DL)-based approaches, including convolutional neural networks and autoencoders
(Lietal, 2021; Pinaya et al., 2020), have emerged to predict the relationships between species
and diseases (Chen et al., 2022; Shen et al., 2022). Traditional gene sequencing techniques are
only able to identify specific species associated with disease. However, species are multi-
dimensional, and their functions in different diseases are not consistent. Gut microbes
usually participate in the body’s metabolic activities through metabolites, and the production
of metabolites is closely related to the function of enzymes carried by microorganisms.
Therefore, the function performed by the gut microbiome may be related to the joint action
of multiple species. Thus, it is one-sided to study the relationship between gut microbes and
diseases only through a single species.

To address this issue, other studies attempt to discover the association between
biological functions of gut bacteria with T2D by directly extracting functional biomarkers.
The Non-supervised Orthologous Groups (eggNOG) (Jensen et al., 2007), the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa ¢ Goto, 2000) and the Gene
Ontology (GO) (Ashburner et al., 2000) are widely served as extensive knowledge bases of
biological function. Several studies extracted function-related features, such as KEGG
Orthology (KO) relative abundances through sequence alignment with the KEGG dataset.
Further, conventional statistical approaches were applied to identify most relevant KOs for
predicting T2D (Qin et al., 2012; Karlsson et al., 2013; Dash et al., 2023). Likewise, in the
study (Zhang et al., 2021), the eggNOG and KEGG databases were used for gene
annotation of microbiota. Incremental feature selection method were applied, followed by
support vector machine (SVM) (Hearst et al., 1998) as the classification algorithm to
predict T2D disease and identify latent biomarkers associated with T2D. In contrast, the
species relative abundance and GO hierarchical structure information were utilized in
Liu, Zhang & Imoto (2021) to predict T2D and liver cirrhosis diseases. Incorporating GO
hierarchical structure information, the work extracted two types of GO features and the
effectiveness both features were evaluated through extensive experiments. However, these
prior studies either overlooked complex correlation and interaction among functional
features or ignored their relative abundance differences between T2D and healthy control
groups, potential leading to incomplete analysis in T2D.
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Functional features, due to the intricate nature of microbial functions, are often
represented as high-dimensional tabular data. Most of recent works on high-dimensional
tabular data use either gradient-boosted decision trees (GBDT) based ML approaches,
including eXtreme Gradient Boosting (XGBoost) (Chen ¢ Guestrin, 2016), Light Gradient
Boosting Machine (LightGBM) (Ke et al., 2017), and Categorical Boosting (CatBoost)
(Dorogush, Ershov & Gulin, 2018), or deep neural networks, including Feature Tokenizer +
Transformer (FT-Transformer) (Gorishniy et al., 2021), Attentive Interpretable Tabular
Learning neural network (TabNet) (Arik ¢ Pfister, 2021) and Weight Predictor Network
with Feature Selection (WPES) (Margeloiu et al., 2023). While GBDT approaches often
outperform DL models in many scenarios, some state-of-the-art (SOTA) DL models have
been reported to perform better than GBDT in various cases (Gorishniy et al., 2021;
Margeloiu et al., 2023). Although MLs and DLs have achieved promising performance in
disease prediction tasks, the lack of transparency and explainability of models’ decisions
poses a significant challenge. Currently, decision tree built-in feature importance, Local
Interpretable Model-agnostic Explanations (LIME) (Ribeiro, Singh ¢ Guestrin, 2016) and,
SHapley Additive exPlanations (SHAP) (Lundberg ¢» Lee, 2017) are widely used to identify
important features in ML models (Hancock & Khoshgoftaar, 20205 Li, 2022; Alabi et al.,
2023). In contrast, the post-hoc explanation methods, including Saliency (Simonyan,
Vedaldi & Zisserman, 2013) SmoothGrad (Smilkov et al., 2017), and Integrated Gradients
(Sundararajan, Taly ¢» Yan, 2017) are employed to elucidate the decision-making process
of DL models (Dwivedi et al., 2024; Liang et al., 2023). In reality, explanations provided by
different explainers may vary, and it is challenging to identify a single explainer that
performs best universally (Agarwal et al., 2022; Roy et al., 2022; Krishna et al., 2022).
Different post-hoc explanation methods vary in their objectives, approximation domains
and the loss functions they employ (Han, Srinivas & Lakkaraju, 2022; Agarwal et al.,
2022). The suitability of post-hoc explanation methods varies with the type of input data
across different tasks (Han, Srinivas ¢ Lakkaraju, 2022). For example, continuous features
are typically handled using additive continuous noise methods, such as SmoothGrad;
binary features with binary noise methods, such as LIME; while most local function
approximation-based methods are currently not applicable to discrete features. These
fundamental differences collectively contribute to variations in the explanations generated
by different explainers, with the quality of their results exhibiting clear distinctions across
different tasks (Roy et al., 2022; Krishna et al., 2022). Therefore, selecting appropriate
explainers or even designing specific explanation frameworks for specific tasks is
particularly important.

Contribution

In this study, we propose consistency-and informativeness-aware explanation framework
(CIAE), a novel explanation framework that effectively ensembles multiple explainers by
considering both the consistency of explanations and the informativeness of the identified
important features, to provide a reliable explanation on the most associated functional
features in T2D prediction. Unlike traditional explainers that provide a single explanation
result directly, CIAE starts from the perspective of the specific task and evaluates the
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outputs of multiple explainers in terms of consistency and informativeness. By doing so, it
integrates various explainers to derive more effective and reliable explanations. Our
extensive experiments show that functional features directly extracted from metagenomic
sequences are informative for T2D prediction. The top 100 KOs identified by CIAE show
promising performance in T2D prediction tasks, both within a single T2D dataset and
across multiple T2D datasets. Finally, we investigate how certain KO functional features
play significant roles in T2D and whether they collectively participate in a pathway to
influence the T2D.

Structure of the article

First, this article begins with an abstract that summarizes the overall content, followed by
an introduction that provides background information and outlines the main
contributions. Then, the methodology section includes data preprocessing and feature
extraction, feature selection, the choice of a classifier for T2D, computing infrastructure,
and assessment metrics. Next, this article presents the performance evaluation of the KO
features, the aggregation of the results from interpretable models, the evaluation of the
proposed interpretation optimization framework, and the evaluation of the significant KOs
identified by the CIAE in the T2D dataset. Furthermore, this article also discusses the
potential implications of the KOs identified through CIAE in the development of T2D.
Finally, the article concludes with a discussion and summary of the findings.

MATERIALS AND METHODS

Data pre-processing and feature extraction

Our experiment analyzed two publicly available human gut microbiome datasets on T2D,
including European female type 2 diabetes (EW-T2D) (Karlsson et al., 2013), and Chinese
type 2 diabetes (C-T2D) (Qin et al., 2012). The two T2D datasets are shown in Table 1.
C-T2D dataset contains total of 344 samples with 170 T2D samples and 174 control
samples, while EW-T2D dataset contains total of 96 samples with 53 T2D samples and 43
control samples.

Our feature extraction pipeline is shown in Fig. 1. The initial inputs are raw
metagenome sequencing reads obtained from two previous T2D cohorts. Subsequently, we
apply a quality control step using fastp (Chen et al., 2018) to filter out low-quality reads and
trim adapters. Additionally, human genomes are removed using Bowtie2 (Langmead ¢
Salzberg, 2012), with the reference genome specified as Genome Reference Consortium
Human Build 38 (GRCh38). The obtained clean reads are used to extract functional
features using Diting which serves as a pipeline for generating KO relative abundances
from the KEGG database. Within Diting (Xue et al., 2021), MEGAHIT (Li et al., 2016) is
used to assembles the metagenomic reads and generate contigs, while Prodigal (Hyatt
et al., 2010) is used to predict genes from these assembled contigs. Following that, Diting
maps the input metagenomic reads to the predicted genes to obtain gene relative
abundances, and generates KO relative abundances by aligning predicted proteins to the
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Table 1 Human metagenomic datasets for T2D prediction.

Dataset Total samples  Control samples  Case samples KO features  Species features
EW-T2D 96 43 53 7,155 573
C-T2D 344 174 170 7,434 764

Raw Metagenomic Sequencing

Reads Quality Control by Fastp Clean Reads
-—
L]
Remove Human Genes by
Bowtie2
GRCh38
Assemble the Reads by Meghit
Predict and Translate Genes by Prodigal
Predicted
Proteins Hmm Kofam
Gene Relative Abundance search Database KO Abundance Table

Figure 1 Data pre-processing pipeline and feature extraction.
Full-size Kl DOI: 10.7717/peerj-cs.3223/fig-1

KOfam (Aramaki et al., 2020) database using hmmsearch (Finn, Clements ¢ Eddy, 2011).
Due to variations in sequence data across individual samples, the KO functional categories
matched also differ, with potentially significant distributional differences between the
experimental and control groups. For functional features that are not matched in certain
samples, a value of 0 can be assigned, which does not affect the end-to-end predictive
performance of the model. To address outliers such as excessively high feature abundances,
all data must be normalized before being fed into the model to ensure stable and effective
training.

Feature selection
Due to the high dimensionality and sparsity of the KO features, we apply feature selection
based on the relative abundance and Pearson correlation coefficient.

Firstly, we filter out the KO features with relative abundances below 0.05% across all
samples (Boscaro et al., 2022; Sereti et al., 2023), as calculated below:

le ij an
M. :f d 5 d g ooy d (1)
! D1 Xti D i X D ie1 Xni

where f(X) represents the maximum element in the vector, while u; represents the

maximum relative abundance value in the j-th KO feature. As mentioned in Zhou, Wang
¢ Zhu (2022), the higher the correlation between features (closer to 1), the greater the
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redundancy among the features. Removing highly correlated features aims to eliminate
redundant information.

Secondly, we calculated the correlation between features using the Pearson correlation
coefficient and filtered out features with a correlation coefficient greater than 0.95. the
correlation coefficient can be formulated as:

b i =X —))
VS (= 2P ()

where x and y represent the abundance features in the samples after z-score normalization.
The final KO features are selected if 1; > 0.0005 and r < 0.95. Through the aforementioned
feature selection methods, we are able to eliminate irrelevant and redundant features in the
samples. The number of KO features decreased from 7,155 to 1,188 in EW-T2D and from
7,434 to 1,813 in C-T2D, respectively.

(2)

T2D classification
As discussed previously, CatBoost and FT-Transformer are two primary artificial
intelligence (AI) models in classification tasks using tabular data (Borisov et al., 2022;
Gorishniy et al., 2021). In all experiments in this work, we apply these two classifiers.
CatBoost incorporates an innovative algorithm that automatically transforms
categorical features into numerical features. Additionally, it employs an ordered boosting
approach, which prevent bias in gradient estimation, resolve prediction shift issues, and
minimize overfitting occurrences. The CatBoostClassifier is trained by minimizing the
expected loss, which can be represented by the formula:
h' = argminEZ (y, F*' (x) + h(x)) (3)
heH
where y represents the true output, F'~!(x) represents the prediction value of the first t — 1
trees, and h(x) represents the prediction of the current candidate decision tree.
FT-Transformer (Gorishniy et al., 2021) is a model designed for the tabular data, using
the backbone of Transformer (Vaswani et al., 2017) architecture. It tokenizes features
(categorical and numerical) into embeddings through random initialization and then feeds
these embeddings into a Transformer architecture. The Binary cross entropy with Logits
was utilized as the loss function:

& = _%Z i -loga(xi) + (1 — yi) - log(1 — a(xi))] )

where x; represents the predicted value, y; represents the true label, and ¢ represents the
sigmoid activation function. The frameworks of the classifiers are shown in Fig. 2.

Explanation framework

Feature Importance in CatBoost’s ensemble of decision trees is determined by assessing
how frequently a feature is used for splitting and the consequent improvement in model
performance resulting from these splits. LIME obtains local level explanation by training
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Ordered Boosting
CatBoost
y
ooo
X
Feature Tokenizer CLS
CLS
y
Transformer
X*W
FT-transformer
Figure 2 The architecture of the classifiers. Full-size K&l DOT: 10.7717/peerj-cs.3223/fig-2

an interpretable model, such as a linear model, to gain the understanding of the behavior of
a black-box model within a local neighborhood (Ribeiro, Singh & Guestrin, 2016).
TreeSHAP is designed for interpreting and analyzing tree-based models (Lundberg et al,
2020). Tt captures the interaction effects among features, considering how features jointly
influence predictions rather than affecting them in isolation. Compared to traditional
Shapley values, which consider all possible subsets of features, TreeShap optimizes this by
leveraging the tree structure (Lundberg et al., 2020). Integrated Gradients is guided by
axioms and designed to attribute importance to features without requiring modifications
to the original network, offering straightforward implementation. Saliency is previously
used to interpret deep convolutional neural networks by highlighting the parts of an image
that influence the class score. For tabular deep learning, it can be used to emphasize
important features within tabular data. DeepShap is specifically tailored for interpreting
deep learning models. It combines DeepLift (Shrikumar, Greenside ¢ Kundaje, 2017), a
method that backpropagates the contribution of all neurons in the network to each input
feature by comparing each neuron’s activation to a ‘reference activation’, and Shapley
values. These explainers fall into different categories within the same local function
approximation framework (Han, Srinivas ¢ Lakkaraju, 2022). For example, some
explainers combine continuous perturbations with gradient matching loss, while others
use discrete perturbations with squared error loss. Each explainer is based on specific
modeling assumptions and approximation strategies, which may introduce biases under
certain data or task conditions. By integrating multiple explainers, their strengths can
complement each other, reducing explanatory errors caused by the limitations of any
single explainer.

In this study, we identify the features that have a significant impact on the model’s
overall prediction results by referring to the global explanation strategy of local function
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approximation (Han, Srinivas ¢ Lakkaraju, 2022), which involves taking the absolute
values of multiple local explanation predictions and averaging the attribution scores. To
mitigate the inconsistency in explanations provided by individual explainers, we apply an
aggregation strategy to improve their reproducibility. Conversion of multiple trails’ local
explanations to aggregated global explanations can be expressed with the following
formula:

1 m n

I; :%;;}[ij1,wjkz,..-,ijdH ®

where wj. € R? represents a vector of attribution scores to each input feature for j-th trail’s
k-th sample and d represents the number of KO feature in T2D dataset. I; represents the
global explanation result of i-th explainer. To eliminate prediction biases across different
explainers, it is important to standardize the global explanations provided by each
explainer. This process standardizes the attribution scores within a consistent range,
facilitating the integration of various explanations. The formula for the standardized global
explanation of j-th feature from i-th explainer. f;;, can be expressed as:

I. — I
ﬁj - 1 dl] : T2
\/El Zj:l (Iij - Ii)

where I;; represents the original attribution score of the j-th feature by the i-th explainer,

(6)

and I; represents the standard deviation of contribution scores of all features.

The consistency of explanations and informativeness of identified most important
features are two essential dimensions for measuring the effectiveness of an explainer.
Consequently, we propose the CIAE framework, an algorithm ensembles multiple model
explainers by considering both of these factors. The formula is as follows:

Xj

g(xj) = T ()/max - ymin) + Ymin (7)

w = Sof tmax (a%Zg(Ri) +(1 - oc)g(P)) (8)

where R; represents the performance of the explainers on the i-th reproducibility metric,
and P represents the performance of the explainers on the area under the curve (AUC)
metric. o represents the degree of importance placed on the reproducibility of
explanations. Further, we normalize the evaluation metrics to the same range.
8(%j) € (Wmin» Ymax)> and (Vmin, Ymax) defaulting to (0, 1) indicates the scaling range.
Subsequently, the final attribution score of the j-th feature is determined by the
weighted sum of the attribution score assigned to the j-th feature by each explainer. The
score; is formulated as:

n
scorej = Z wifij )

i=1
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where f;; represents the standardized attribution score of the i-th explainer for the j-th
feature, and w; represents the weight assigned to the i-th explainer based Eq. (8). Finally,
the ranking of feature importance in CIAE can be expressed as:

CIAE = Rank(score, F) (10)

where score = [scorey, scores, ..., scorey] € R? is a vector representing the attribution scores
of all features, and F = [F,, F», ..., F4] € R? is a vector representing the list of KO features.
Rank(x, y) represents sorting the score in descending order and mapping the indices to the
F list to obtain the importance ranking of the KO features.

Computing infrastructure

All experiments were conducted on a system running Ubuntu 22.04. The deep learning
models were implemented using PyTorch (version 1.12.1+cull6). The training and
evaluation processes were performed on an NVIDIA A40 GPU to accelerate computation.

Assessment metrics

To comprehensively evaluate the performance of our classification models on the EW-T2D
and C-T2D datasets, we employed five commonly used metrics: AUC, Accuracy (ACC),
Recall, Precision, Fl-score and Matthews Correlation Coefficient (MCC).

« AUC: AUC measures the area under the receiver operating characteristic (ROC) curve,
which plots the True Positive Rate (TPR) against the False Positive Rate (FPR). A higher
AUC value indicates better discrimination between T2D and non-T2D samples, with 1.0
representing perfect classification and 0.5 indicating a random guess

« ACC: ACC is the proportion of correctly classified samples among all samples and is
computed as:

ACC — TP+ TN ()
"~ TP+ TN + FP+ FN

where TP, TN, FP, and FN represent the number of True Positives, True Negatives, False

Positives, and False Negatives, respectively.

o Recall: recall measures the ability of the model to correctly identify positive samples
(T2D cases) and is given by:

TP
Recall = ————. (12)
TP+ FN
A higher recall indicates fewer missed positive cases.

» Precision: precision quantifies the proportion of correctly predicted positive cases among
all predicted positives:

Precisi TP (13)
recision = ————.
TP + FP

High precision implies that most of the samples classified as T2D are indeed positive cases,
reducing false alarms.
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o Fl-score: F1-score is the harmonic mean of Precision and Recall, balancing both metrics
in cases where one is disproportionately high or low:

Precision x Recall
F1=2x — ) (14)
Precision + Recall

A high F1-score indicates a well-performing model, especially in datasets with class

imbalance.

« MCC: MCC is used to evaluate the performance of binary classification models,
particularly suitable for imbalanced class scenarios. It ranges from -1 to 1, where —1
indicates completely incorrect prediction, 0 indicates prediction no better than random
guessing, and 1 indicates perfect prediction.

TP x TN — FP x FN
MCC = . (15)
/(TP + FP)(TP + EN)(TN + FP)(TN + EN)

A higher MCC value indicates better discrimination between T2D and non-T2D samples.

RESULTS

Performance evaluation

In this study, we adapted Feature Tokenizer + Transformer (FT-Transformer) (Gorishniy
et al., 2021) and Categorical Boosting (CatBoost) (Dorogush, Ershov ¢ Gulin, 2018) as our
classifiers. Both models are are respectively the SOTA models in DL and ML for tabular
data. During the experiments, we randomly split the dataset into 80% training and 20%
testing sets. Further, within the training dataset, we reserved 20% of the data as the
validation set to prevent overfitting. To increase the reproducibility of the results, we
conducted five trials using different random seeds, while maintaining the same
hyperparameters. Subsequently, we presented the averaged outcomes, ensuring a robust
and reliable evaluation. We evaluated performance using the following five metrics: AUC,
ACC, Recall, Precision and F1-score. The evaluation results for EW-T2D and C-T2D
dataset are shown in Table 2. On the EW-T2D dataset, CatBoost using KO features
outperform other model in terms of all five metrics, achieving an AUC of 0.830. While on
the C-T2D dataset, CatBoost using KO features receive the best AUC of 0.777, the best
Acc, Recall, F1-score are achieved by FT-Transformer using KO features with values of
0.715, 0.735, and 0.717 respectively. The best precision is achieved by both CatBoost and
FT-Transformer on KO features, both with a precision of 0.702. Overall, on both datasets,
models using KO relative abundance features outperform models using species relative
abundance features, which evidence that KO relative abundance features are essential
informative features in T2D prediction.

Model aggregation

In the field of model explainability, there is a lack of a common foundational approach and
consistent conceptual or practical understanding of explanations. It is necessary to choose
appropriate explainers for specific models and scenarios (Han, Srinivas ¢» Lakkaraju,
2022). CatBoost, a type of GBDT-based approach, commonly uses LIME, TreeSHAP
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Table 2 Performance evaluations on EW-T2D and C-T2D datasets.

Dataset Feature Methods AUC ACC Recall Precision F1
EW-T2D Species FT-Transformer 0.783 0.680 0.690 0.713 0.699
CatBoost 0.806 0.730 0.745 0.754 0.742
KO FT-Transformer 0.810 0.750 0.818 0.756 0.782
CatBoost 0.830 0.770 0.836 0.772 0.799
C-T2D Species FT-Transformer 0.738 0.663 0.676 0.670 0.666
CatBoost 0.745 0.681 0.652 0.685 0.665
KO FT-Transformer 0.765 0.715 0.735 0.702 0.717
CatBoost 0.777 0.707 0.705 0.702 0.703

Note:

The best performance is in bold.

(Lundberg et al., 2020) and its inherent feature importance to provide model explanation
(Hancock & Khoshgoftaar, 20205 Li, 2022; Alabi et al., 2023). In contrast, DL-based models
like FT-Transformer normally adapt Integrated Gradients, Saliency, and DeepSHAP
(Lundberg ¢ Lee, 2017) to provide reliable explanations (Dwivedi et al., 2024; Liang et al.,
2023). We adhere to the convention in this work. Furthermore, we assessed the
reproducibility of the behavior of an individual explainer by comparing the overlapping
and Spearman’s correlation of top 100 features identified by that explainer between pairs of
trials. The average consistency results over all pairs of trials, represented by blue bars, are
reported in Fig. 3. Subsequently, we introduced model aggregation, which was also used in
Zhao, Shao & Asmann (2022), to average the contribution scores of features obtained
through an explainer across multiple trails. The overall consistencies were calculated by
averaging the consistency scores between the aggregated results and the results from each
trail. They are represented by green bars in Fig. 3. The results indicate that the model
aggregation can effectively reduce explanation biases cross different trails, thus improve
the reproducibility of model’s explanation.

Subsequently, we examined the detailed consistency across different classifiers and their
corresponding explainers. Inter Classifiers: the overall consistency of explainers on
Catboost classifier outperforms that on FT-Transformer. This may be attributed to the fact
that the FT-Transformer has a significantly more intricate architecture compared to
Catboost, resulting in a more complex explanation. A slight variation in model parameters
could lead to notable fluctuations in the explanation results. Intra Classifier: Integrated
Gradients, Saliency, and DeepShap explainers show relatively similar consistency in terms
of Spearman’s correlation and overlapping score on C-T2D set. However, Saliency
demonstrates better consistency in terms of Spearman’s correlation and overlapping score
on EW-T2D set. In terms of Spearman’s correlation, TreeShap shows best consistency on
EW-T2D set, while CatBoost exhibits highest consistency on C-T2D set. However, in
terms of overlapping score, both Lime and TreeShap show higher consistency over
CatBoost. The results indicate that there is no universal explainer that consistently
performs best across different classifiers and consistency evaluation metrics. Consequently,
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Figure 3 The impact of model aggregations on model reproducibility. Classifiers: Cat-* represents CatBoost; FT-* represents FT-Transformer.
Explanation methods: FI represents Feature importance; LM represents LIME; TS represents TreeSHAP; IG represents Integrated Gradients; SL
represents Saliency; DS represents DeepSHAP. (A) Overlaps among the top 100 significant KOs across various classifiers and explanation methods
(upper panel) and spearman’s correlation of KO contribution scores (lower panel) in EW-T2D dataset. (B) Same as (A) but on C-T2D dataset.
Full-size K&l DOT: 10.7717/peerj-cs.3223/fig-3

for the remainder of the article, we use the aggregated explanation over five trials to
represent the explanation reported by an explainer.

Optimized explanation framework

As analyzed in the previous section, despite significant successes in interpretable AI (IAI)
and explainable AI (XAI), a common foundational and consistent approach is still lacking
(Agarwal et al., 2022; Han, Srinivas ¢ Lakkaraju, 2022). The main reason behind is that
individual explainers struggle to capture all characteristics and underlying reasons of a
model’s decisions (Roy et al., 2022; Krishna et al., 2022). In this context, finding a reliable
approach to effectively integrate various explainers into a unified framework becomes an
important topic. To achieve that, we propose a consistency and informativeness aware
explanation (CIAE) framework, which effectively ensembles multiple explanations to
reduce the bias caused by individual explainers. In Fig. 4, we show the overlap of the top
100 significant KOs obtained from each explainer on two T2D dataset. The results indicate
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Figure 4 Overlaps among the top 100 significant KOs across various classifiers and explanation
methods. Full-size Kl DOL: 10.7717/peerj-cs.3223/fig-4

that the degree of overlap is significantly higher in the intra-classifer explanations
compared with inter-classifer explanations. This disparity may be due to the different
architectures of CatBoost and the FT-Transformer, which result in distinct predictive
patterns and preferences (Dargan et al., 2020). Within a single classifier, there is still some
variation across different datasets. However, the average overlap is above 70%, indicating
that these explainers agree on the majority of top significant KOs while disagreeing on
some of them. This result is more clearly displayed in the Venn diagram in Fig. 5.
Afterward, we assessed the informativeness of KOs chosen by each explainer. Table 3
shows the evaluation results on EW-T2D and C-T2D datasets using top 100 KOs chosen
by individual explainers and the CIAE framework. We started with comparing the
effectiveness among individual explainers. On the EW-T2D dataset, using
FT-Transformer as the classifier, the highest AUC of 0.858 is achieved with the top 100
KOs identified by Saliency. In contrast, using CatBoost as the classifier, the highest AUC of
0.868 is achieved with the top 100 KOs identified by TreeShap. On the C-T2D dataset,
using FT-Transformer as the classifier, the highest AUC of 0.802 is achieved with the top
100 KOs identified by Integrated Gradients. In contrast, using CatBoost as the classifier,
the highest AUC of 0.805 is achieved with the top 100 KOs identified by Feature
Importance. On average, the AUC improved by 3% to 4% when using 100 KOs identified
by the explainers. This might be due the existence of numerous irrelevant or redundant
features within high-dimensional inputs. IAI and XAl-based explainers can effectively
identify the most informative features and efficiently reduce data dimensionality, thus
improving the classifier’s performance. This finding is consistent with the results reported
in the work (Liu et al., 2022). Consequently, we propose the CIAE framework, which takes
into consideration both the consistency of explanations and the informativeness of the
identified important features to optimize the overall explanations of classifier’s behavior.
The details of CIAE framework is described in Explanation framework. As shown in
Table 3, our CIAE framework outperforms all other explainers across all T2D datasets and
classifiers.
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Figure 5 The Venn diagram illustrates the overlaps of the top 100 significant KOs identified by
various explainers using CatBoost and FT-Transformer as the classifiers.
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Evaluation of significant KOs identified by CIAE across T2D datasets

In gut microbiome research, cross-dataset validation of important features is crucial for
identifying disease-associated biomarkers (Dai et al., 2022). Li et al. (2023) conducted a
cross-cohort validation study on 20 diseases using machine learning models and analyzed
the consistency of disease biomarkers across different cohorts for the same diseases. Gao
et al. (2024) developed xMarkerFinder, a four-stage computational framework for
identifying and validating microbial biomarkers across cohorts. By integrating meta-
analysis, machine learning, and biomarker interpretation methods, the framework
efficiently identifies robust and highly specific biomarkers. In cross-dataset studies of
hepatitis C, machine learning and pre-clustering techniques were used to improve
detection accuracy, while XAI tools enhanced model interpretability, helping medical
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Table 3 AUC scores for T2D prediction using the top 100 significant KOs identified by different

explainers.

Dataset Classifier Explainer AUC
EW-T2D FT-Transformer FT-1G 0.842
FT-SL 0.858

FT-DS 0.848

FT-CIAE 0.870

CatBoost Cat-FI 0.854

Cat-LM 0.864

Cat-TS 0.868

Cat-CIAE 0.869

C-T2D FT-Transformer FT-IG 0.802
FT-SL 0.801

FT-DS 0.797

FT-CIAE 0.807

CatBoost Cat-FI 0.805

Cat-LM 0.794

Cat-TS 0.801

Cat-CIAE 0.808

Note:

The best performance is in bold and the second best performance is underlined.

professionals better understand and trust the model’s predictions (Sharma, Khade &
Satapathy, 2025).

In this section, we evaluate the effectiveness and generalization of the top significant
KOs identified by CIAE framework across two T2D datasets. Initially, we identified the top
100 significant KOs within each T2D dataset using individual explainers and our CIAE
approaches. Subsequently, we tested the generalization of these top significant KOs across
T2D datasets. More specifically, we trained CatBoost and FT-Transformer on the C-T2D
dataset using the top 100 significant KOs identified by the explainers from the EW-T2D
dataset, and vice versa. The results are shown in Table 4. On the C-T2D dataset, the best
AUC score of 0.7789 is achieved with CatBoost as the classifier and Cat-CIAE as the
explainer. This represents a performance improvement of approximately 0.2%
compared to directly using CatBoost on the C-T2D dataset with all KOs. Additionally,
when using FT-Transformer as the classifier, the best AUC score of 0.7508 is achieved with
FT-CIAE as the explainer. However, the performance dropped by approximately 1.5%
compared to directly FT-Transformer on the C-T2D dataset with all KOs. On EW-T2D
dataset, the best AUC score of 0.8222 is achieved with FT-Transformer as the classifier and
FT-CIAE as the explainer. This represents a performance improvement of approximately
1.2% compared to directly using FT-Transformer on the EW-T2D dataset with all KOs.
Additionally, when using CatBoost as the classifier, the best AUC score of 0.7980 is
achieved with Cat-CIAE as the explainer. However, the performance dropped by
approximately 3% compared to directly CatBoost on the EW-T2D dataset with all KOs, the
results are shown in Table 5. Meanwhile, an analysis of our CIAE approaches and other
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Table 4 AUC scores for T2D prediction using the top 100 significant KOs identified by different
explainers across T2D datasets.

Dataset C-T2D EW-T2D

Classifier FT-Transformer CatBoost FT-Transformer CatBoost

Single explanation Cat-FI 0.7063 0.7389 0.7858 0.7697
Cat-IM 0.7226 0.7670 0.7374 0.7697
Cat-TS 0.7005 0.7512 0.7656 0.7778
FT-IG 0.7279 0.7319 0.8000 0.7899
FT-SL 0.7279 0.7522 0.7515 0.6909
FT-DS 0.7361 0.7474 0.7818 0.7818

CIAE explanation Cat-CIAE 0.7418 0.7789 0.8121 0.7980
FT-CIAE 0.7508 0.7559 0.8222 0.7858

Note:

The best performance is in bold.

Table 5 MCC scores for T2D prediction using the top 100 significant KOs identified by different
explainers across T2D datasets.

Dataset C-T2D EW-T2D

Classifier FT-Transformer Catboost FT-Transformer CatBoost

Single explanation ~ Cat-FI 0.3567 0.3753 0.2244 0.4817
Cat-IM 0.3420 0.3852 0.3117 0.5065
Cat-TS 0.2513 0.3501 0.2921 0.4923
FT-1G 0.3573 0.3226 0.4897 0.3968
FT-SL 0.3070 0.3720 0.2539 0.3440
FT-DS 0.3281 0.3651 0.4100 0.4191

CIAE explanation Cat-CIAE 0.3741 0.4003 0.3708 0.5483
FT-CIAE 0.3883 0.3758 0.5347 0.4265

Note:

The best performance is in bold.

individual explainers stability concerning the receiver operating characteristic (ROC)
curve is shown in Fig. 6. In addition, we further employed MCC as an additional metric.
The results are shown in Table 5. On the C-T2D dataset, the best MCC score of 0.4003 was
achieved using CatBoost as classifier and Cat-CIAE as the explainer, while using
FT-Transformer with FT-CIAE yielded the best MCC score of 0.3883. On the EW-T2D
dataset, the best MCC score of 0.5483 was achieved using CatBoost as classifier and
Cat-CIAE as the explainer, while using FT-Transformer with FT-CIAE yielded the best
MCC score of 0.5347.

We conclude our findings as follows:

e The top 100 significant KOs show a higher ability to generalize when the source and
target classifiers are identical. As previously discussed, this phenomenon may be due to
the different architectures of CatBoost and FT-Transformer, which lead to distinct
predictive patterns and preferences (Dargan et al., 2020).
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Figure 6 ROC curves and AUCs for CIAE and baseline explainers we experimented with.
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o Compared to other explainers, Cat-CIAE and FT-CIAE consistently outperform them,
regardless of whether the source and target classifiers are identical or not. This indicates
that our proposed CIAE framework is more robust and generalizable compared to

existing single -explainer approaches.

* Given the promising performance of our proposed CIAE framework in T2D prediction
tasks, both within a single T2D dataset and across multiple T2D datasets, it has the
potential to serve as a efficient and reliable feature selection tool to mitigate overfitting

issues commonly exist in high-dimensional, low sample-size dataset.

Underlying significance of identified KOs in the development of T2D
In this section, we discuss and validate the most significant KOs identified by our proposed
CIAE explainer in the context of T2D. Detailed information of those KOs is provided in

Table 6.
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Table 6 The KOs associated with T2D from KEGG.

KO Function Reference The role in T2D Dataset
K00688 Glycogen phosphorylase Alruhaimi et al. ~ Controls blood sugar by hydrolysis of starch to produce glucose-1P. EW-T2D
(2023) C-T2D
K25026 Glucokinase Li & Zhu (2024)  The commander in the glucose homeostasis regulatory system EW-T2D
promptly regulates the secretion of the blood-glucose regulating C-T2D
hormones-insulin and glucagon.
K07029 Diacylglycerol kinase (ATP) Massart & Diacylglycerol accumulation is associated with the development of ~ C-T2D
Zierath (2019) lipid-induced insulin resistance.
K01610 Phosphoenolpyruvate Gonzalez-Rellan ~ Controls glucose metabolism. C-T2D
carboxykinase (ATP) et al. (2023)
K21836 D-lactate dehydrogenase Lam et al. (2005) Hypothalamic pyruvate metabolism regulates blood glucose, C-T2D
(acceptor) potentially improving glucose homeostasis in diabetic patients.
K01687 Dihydroxy-acid dehydratase Jang et al. (2016)  Activation of branched-chain amino acid (BCAA) metabolism EW-T2D
improves glucose and lipid homeostasis.
K01658 Anthranilate synthase Ruiz-Canela et al. Aromatic amino acids (AAAs): phenylalanine, tyrosine, and EW-T2D
component II (2018) tryptophan were positively associated with T2D risk
K00950 2-amino-4-hydroxy-6- Lind et al. (2019) Folate supplementation may be beneficial for glucose homeostasis and EW-T2D
hydroxymethyldihydropteridine reducing insulin resistance.
diphosphokinase
K03465 Thymidylate synthase (FAD) Yamada, 5-Formyltetrahydrofolate promotes the conformational reshaping of EW-T2D
Mendoza & the active site of methylenetetrahydrofolate reductase and inhibits its

Koutmos (2023)  activity.

The prominent functions obtained from EW-T2D

Among the top 10 significant KOs obtained in the EW-T2D dataset, K01687 and K01658
are involved in the biosynthesis of amino acids and are associated with the synthesis of
valine, isoleucine and tryptophan. These three amino acids, or their intermediates are
associated with the occurrence and development of diabetes (Jang et al., 2016; Menni et al.,
2013; Gao et al., 2023). In addition, The involvement of K03465 and K00950 in the
synthesis of folic acid is also noteworthy. Folic acid can improve insulin resistance in
diabetic patients, and can play a role in alleviating diabetes (Yang et al., 2023).

The prominent functions obtained from C-T2D

Similarly, among the top 10 significant KOs obtained from C-T2D dataset, K01610 and
K21836 are involved in the Pyruvate metabolism pathway and play important roles in
energy metabolism. K07029 is involved in the Glycerolipid metabolism pathway, disorders
of which can cause insulin resistance in the body, which in turn can lead to obesity and
diabetes.

The prominent functions obtained from both EW-T2D and C-T2D

Among the top 10 of important KOs, K00688 and K25026, identified from both datasets,
have been shown to have a strong association with T2D in previous studies. K00688 and
K25026 are involved in the Starch and sucrose metabolism pathway, as shown in Fig. 7.
The K00688 encodes the synthesized glycogen phosphorylase that catalyzes the formation
of starch to D-Glucose 1-phosphate, which further generates D-Glucose. The K25026
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encodes the synthesized glucokinase that catalyzes the formation of D-Glucose
6-phosphate, which can be interconverted with D-Glucose 1-phosphate, and they are
involved in the glycolytic pathway. These two KOs not only affect the progress of
subsequent glycolysis, but their intermediate metabolite D-Glucose will also directly cause
an increase in blood glucose, so they are closely related to the occurrence and development
of diabetes.

DISCUSSION

Numerous earlier studies have evaluated and delineated potential biomarkers concerning
T2D using gut microbiota data. However, most of these studies primarily analyze at
taxonomic levels and overlook the functional and systematic exploration (Chen et al., 2022;
Shen et al., 2022). Through extensive experiments in this study, we observed that
functional features, such as KO relative abundances, outperformed taxonomic features,
such as species-level relative abundances, in T2D prediction, achieving the highest AUC
scores of 0.830 and 0.777 for EW-T2D and C-T2D, respectively. In addition, compared to
studying the association between species and the T2D, directly analyzing the function of
gut microbiota provides valuable insights into the role of these microorganisms in the
onset and progression of T2D. With the help of machine learning and XAI techniques,
researchers can gain deeper insights into the pathogenesis of T2D (Chari et al., 2023;
Tuppad & Patil, 2024; Sharma, Saini & Hasija, 2024). However, due to inconsistency in the
explanation results, there may be deviations or even misinterpretations in understanding
the mechanisms underlying T2D. Furthermore, to identify the most significant KO
biomarkers in T2D prediction, we introduced a novel explanation framework, CIAE,
which can effectively ensembles various explainers by considering both the consistency
and informativeness provided by each explainer. CIAE demonstrates promising
performance on both single T2D datasets and across multiple T2D datasets. Extensive
experiments indicated that using the top 100 identified KOs for T2D prediction received
AUC scores of 0.870 on the EW-T2D dataset and 0.808 on the C-T2D dataset. These KOs
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continued to demonstrate competitiveness, achieving AUC scores of 0.822 and 0.789 in
predicting T2D across two distinct T2D datasets.

Finally, in our biomarker discussion, we have predicted the KOs that are related to
diabetes through artificial intelligence, which provides a new research direction for us to
understand and treat diabetes. The results showed that K00688 and K25026 were selected
as key KOs in both datasets, they were involved in the metabolism of starch and the
regulation of blood glucose homeostasis in the body, and were closely related to the
occurrence of diabetes. K01610, K21836, and K07029 were screened from the C-T2D
dataset for the metabolism of carbohydrates and lipids. K01687, K01658, K03465 and
K00950 were mainly related to amino acid metabolism in the EW-T2D dataset. This may
be related to differences in eating habits, which suggests that the causes of diabetes in
different regions are different, and the means to prevent diabetes should also be adapted to
local conditions.

CONCLUSIONS

This study analyzed the relationship between functional features (KO features) of the gut
microbiota and T2D to improve prediction and interpretation. Compared to traditional
taxonomic features (species features), functional features demonstrated superior predictive
ability for T2D, achieving the highest AUC scores of 0.830 and 0.777 on the EW-T2D and
C-T2D datasets, respectively. These findings suggest that directly analyzing the functional
characteristics of the gut microbiota provides more insight into their roles in the onset and
progression of T2D. Furthermore, the proposed consistency- and informativeness-aware
explanation framework (CIAE) effectively integrates multiple explainers, significantly
improving the consistency and informativeness of model explanations. The CIAE
framework demonstrated promising performance in both single-dataset and cross-dataset
experiments. Using the top 100 significant KO features identified by CIAE, the models
achieved competitive results on individual datasets (EW-T2D: AUC = 0.870, C-T2D: AUC
= 0.808) and exhibited strong generalization capabilities in cross-dataset T2D prediction
(EW-T2D: AUC = 0.822, C-T2D: AUC = 0.778). These results highlight the potential of
the CIAE framework as an efficient and reliable feature selection tool for high-
dimensional, low-sample-size datasets.

Through biological analysis of the most significant KO features, we identified K00688
and K25026 as key KOs in both T2D datasets, which are closely associated with starch
metabolism and blood glucose homeostasis. Subsequently, K01610, K21836, and K07029,
identified in the C-T2D dataset, were primarily involved in carbohydrate and lipid
metabolism, while K01687, K01658, K03465, and K00950, identified in the EW-T2D
dataset, were associated with amino acid metabolism. These differences may be related to
regional eating habits, suggesting that the mechanisms underlying T2D can vary between
populations, and prevention strategies should be tailored to local conditions. In
conclusion, this study not only validated the importance of functional features in the
prediction of T2D, but also introduced the CIAE framework as a novel approach to feature
selection and model interpretation in high-dimensional data. The identified key KOs
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provide valuable references for further research into the mechanisms of T2D and potential
therapeutic targets.

Due to limited access to metagenomic samples of T2D, the conclusions drawn in this
study might be insufficient and may contain biases. On the one hand, due to differences in
sequencing methods, metagenomic data may exhibit systematic biases across datasets.
Additionally, limited coverage of the KEGG database often leads to incomplete annotation
of KO functions. These factors may collectively undermine the stability and
generalizability of the model in cross-dataset validation. On the other hand, the
high-dimensional nature of KO features poses a significant challenge for algorithms in
making accurate predictions. In our future work, we will explore larger and more diverse
T2D sample sets while integrating various data augmentation approaches to expand
microbial datasets. Additionally, exploring dimension reduction approaches such as
autoencoders and PCA could be a promising direction to improve prediction performance
for T2D.

Moreover, the essential future direction explores deep learning models specifically
designed for biomedical tabular data, which are not only suitable for high-dimensional,
small-sample datasets, but also possess interpretability, thereby facilitating the end-to-end
identification of key KOs related to T2D. This would enable the rapid and efficient
discovery of important functional biomarkers across multiple T2D datasets.
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