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ABSTRACT

Pour-over coffee brewing is influenced by multiple interdependent variables—roast
level, grind size, brew ratio, extraction time, water temperature, and total dissolved
solids (TDS)—that collectively determine the final flavor and quality. This study
explores the optimization of these variables using reinforcement learning (RL) and
compares its performance with three common machine learning models: K-nearest
neighbors (KNN), decision tree, and support vector machine (SVM). The RL agent
was designed to balance exploration and exploitation, aiming to maximize rewards
by adjusting brewing parameters. Data were gathered from both professional baristas
and homebrewers to train and evaluate the models. The RL approach achieved the
highest accuracy (90.00%), precision (90.76%), recall (90.00%), and F1-score
(90.08%), outperforming KNN (accuracy: 88.33%, F1-score: 88.90%), and
significantly surpassing decision tree and SVM classifiers, both of which exhibited
high recall (100%) but only 50.00% accuracy and 66.67% F1-score. These findings
highlight RL’s superior capability for optimizing complex, interdependent variables
in pour-over coffee brewing, offering a systematic and dynamic approach to
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meticulously brewed (Gunawan et al., 2021). Therefore, in the third wave, coffee brewing
techniques have become highly diverse and carefully considered, positioning coffee not
merely as an instant beverage but as a crafted and appreciated experience.

This shift has driven a steady increase in global coffee consumption, leading to the
popularity of various brewing methods, including the pour-over technique. The pour-over
method is a manual brewing process that involves filtering coffee through a specific filter,
commonly a paper filter, using a filter holder or dripper. Popular drippers include the
Hario V60, Kalita Wave, Chemex, and others. This method focuses on carefully controlling
brewing variables to enhance the complexity and richness of coffee flavors (Hidayat,
Anugrah & Munir, 2019; Yu et al., 2021). Key variables influencing the pour-over brewing
process include extraction level, brew ratio, grind size, brew time, water temperature,
agitation, and total dissolved solids (TDS, the concentration of dissolved substances in the
brewed coffee) (Santanatoglia et al., 2023). The extraction level, determined by the
interaction of these variables, plays a critical role in the final taste of the coffee. The brew
ratio refers to the proportion of coffee grounds to water, while grind size affects particle
surface area and extraction yield. A finer grind size increases the contact surface area,
enhancing extraction but also impacting brew time. Similarly, water temperature
influences solubility and viscosity, with higher temperatures increasing solubility while
reducing viscosity, both of which affect extraction outcomes (Schmieder et al., 2023).

In addition to these internal brewing variables, external factors such as coffee type,
post-harvest processing, and roast level must also be considered. While these factors
cannot be adjusted during brewing, the process must adapt to their influence. For instance,
roast levels affect the concentration of caffeic acid, a key compound that decreases with
increased roasting due to chemical reactions. This compound is predominantly extracted
at the early stages of brewing, with its concentration declining in subsequent pourings
(Sano et al., 2019).

Among all brewing variables, the brew ratio is often considered the most critical. An
incorrect coffee-to-water ratio leads to suboptimal extraction. Under-extracted coffee has
underdeveloped flavors and a watery taste, while over-extraction results in a dominant
bitterness and diminished flavor complexity (Cordoba et al., 2020). These outcomes
highlight the importance of precise control over brewing parameters to achieve optimal
extraction levels.

Given the complexity of the brewing process, preparing pour-over coffee requires
significant knowledge and expertise. However, the advent of machine learning has
introduced new opportunities for optimizing such processes. Machine learning techniques
have been widely applied in food preparation, including the use of reinforcement learning
(RL) for recipe optimization (Fujita, Sato ¢ Nobuhara, 2021). RL is a branch of machine
learning that uses a trial-and-error approach to map situations (states) to actions in order
to maximize cumulative rewards. Think of RL as a barista learning to brew the perfect cup
of coffee through trial and error, much like a chef perfecting a recipe in the kitchen. The
barista might experiment with a new grind size or water temperature (exploration) to see if
it improves the flavor, or stick to a known recipe that consistently produces a great cup
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(exploitation). Over time, the barista learns which adjustments lead to the best coffee,
guided by feedback—like a reward for a delicious brew.

Unlike traditional supervised learning, RL does not explicitly instruct the agent on
which actions to take but allows it to learn through experimentation (Bekkemoen, 2024;
Ernst et al., 2024; Ris-Ala, 2023; Sutton & Barto, 2018). RL has been successfully applied in
various fields. For example, in education, RL improves personalized learning experiences
by recommending adaptive learning paths based on feedback (Amin et al., 2023). In
healthcare, RL has been employed to manage complex conditions like diabetes, enabling
agents to optimize decision-making based on dynamic patient states (Yau et al., 2023). In
finance, RL powers automated trading systems, helping agents determine optimal buy and
sell actions for maximum profit (Dharmawan ¢ Bintang, 2020).

The pour-over brewing process is dynamic and interdependent, with multiple
variables—such as water temperature, brew ratio, brew time, and grind size—interacting to
influence the final cup profile. This complexity makes the process well-suited for
optimization using machine learning. Among the various techniques, RL is particularly
advantageous due to its ability to learn optimal strategies through trial-and-error
interactions within an environment, rather than relying solely on labeled datasets.

While other machine learning methods, such as supervised learning (e.g., k-nearest
neighbors (KNN)) or unsupervised learning, have been applied in coffee-related studies for
tasks like classification of roast levels (Anita ¢ Albarda, 2020), they are less suited for the
dynamic optimization required in pour-over brewing. Supervised learning relies on labeled
datasets, which are difficult to obtain for the vast combinations of brewing variables, and
unsupervised learning lacks the ability to directly optimize for a reward signal like flavor
quality. In contrast, RL excels in sequential decision-making and adapts to dynamic
environments through trial-and-error, making it ideal for balancing interdependent
brewing parameters to achieve the desired flavor profile.

In this study, we propose the use of RL to optimize pour-over coffee brewing. By
employing an RL agent, we aim to identify the best actions for each brewing variable based
on reward signals, leading to consistent, high-quality extractions. To evaluate the
effectiveness of the proposed RL approach, KNN is used as a benchmark method. KNN is a
simple yet effective supervised learning algorithm that classifies instances based on the
majority label of their closest neighbors in the feature space. Its non-parametric nature and
ease of implementation make it a common baseline in various machine learning tasks,
including those involving sensor data or low-dimensional inputs. Although KNN does not
account for sequential dependencies or dynamic interactions between variables—key
characteristics of the pour-over brewing process—it provides a useful point of comparison
for assessing the advantages of RL, particularly in terms of adaptability and consistency in
complex, real-world conditions.

Recent academic work also reflects a growing interest in the application of artificial
intelligence for coffee and food preparation. Motta et al. (2024) provided a comprehensive
review of machine learning techniques used for coffee classification tasks, such as
predicting roast levels, bean origin, and flavor attributes. Similarly, Kim ¢ Kim (2024)
applied convolutional neural networks (CNNs) and robotic automation to optimize food
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preparation, showing how AI can be used to tailor processing parameters to desired
outcomes. These studies highlight the emerging role of Al in personalizing and enhancing
beverage quality. Our work builds on this direction by applying reinforcement learning not
to classify or replicate, but to dynamically optimize the sequential brewing decisions in
pour-over coffee, with the goal of producing consistent, high-quality extractions across
diverse conditions.

COFFEE EXTRACTION

Pour-over coffee is a popular brewing technique that filters coffee through a dripper
equipped with a paper filter. This method involves pouring hot water from a kettle over
coffee grounds held in the filter, extracting the flavors and aromas of the coffee (Hidayat,
Anugrah & Munir, 2019). At its core, coffee extraction is a critical step in brewing,
involving the absorption of water by coffee grounds, the dissolution of soluble compounds,
and the separation of the resulting brew from the grounds. This mass transfer process,
where hot water interacts with coffee particles, directly determines the flavor and quality of
the final cup (Sano et al., 2019). Despite its brevity, typically lasting only a few minutes,
coffee extraction demands precision to achieve the desired taste profile (Cordoba et al.,
2020).

The effectiveness of coffee extraction is often measured by the extraction percentage,
which represents the proportion of soluble compounds removed from the grounds. While
preferences for extraction levels can vary, the Specialty Coffee Association (SCA)
recommends an ideal extraction range of 18% to 22%, paired with TDS concentrations
between 1.15% and 1.55% (Lingle, 2011). Under-extracted coffee, caused by insufficient
dissolution, tends to be sour and lacks complexity, while over-extracted coffee, resulting
from excessive dissolution, can taste overly bitter and harsh.

Several variables influence coffee extraction, requiring careful control to achieve optimal
results. These include roast level, grind size, brew ratio, brewing time, and water
temperature. Roast level determines the degree to which coffee beans are heated, which
affects their chemical composition, flavor profile, and appearance. During roasting,
reactions like caramelization and the Maillard process produce the compounds that
contribute to coffee’s distinctive flavors and aromas (Hakim, Djatna & Yuliasih, 2020).
Lightly roasted coffee often retains floral and acidic notes, while darker roasts emphasize
bitterness and body, often at the expense of subtle flavors.

Grind size, which dictates the surface area of coffee particles, also plays a key role. Finer
grinds increase the surface area, speeding up extraction, while coarser grinds reduce it,
slowing the process. Adjusting grind size is essential to balance the extraction rate.
Similarly, the brew ratio—the proportion of coffee grounds to water—affects the
concentration and intensity of the resulting brew. Adjustments to the brew ratio often
depend on other factors, such as grind size and desired strength.

Brew time and water temperature are equally important. Longer brewing times
generally allow for greater extraction but risk over-extraction if not carefully managed.
Meanwhile, water temperature affects the solubility of coffee compounds, with higher
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temperatures accelerating extraction. Maintaining the correct balance of these variables
ensures a well-rounded flavor profile.

The pour-over brewing method involves several key steps, each of which contributes to
the final cup’s quality. Preparation begins with assembling the necessary tools, such as a
dripper, filter, gooseneck kettle, coffee server, thermometer, scale, and timer. Flushing the
paper filter with hot water helps remove any residual paper flavor, ensuring that it does not
interfere with the coffee’s taste. The blooming phase follows, where a small amount of
water is poured over the grounds to release carbon dioxide, enabling more even extraction.
This step is crucial, typically lasting 30-45 s.

During the pouring phase, water is added in a slow, spiral motion to ensure even
saturation. The flow rate and technique directly impact extraction uniformity. Once the
brewing process is complete, the coffee is ready to be enjoyed, showcasing the interplay of
precise techniques and variable adjustments (Dashwood, 2017; Stephenson, 2019).

While foundational texts such as (Sutton ¢ Barto, 2018) have laid the groundwork for
RL, recent literature has expanded and updated these principles. Chadi ¢» Mousannif
(2023) provide a comprehensive review of RL algorithms, tracing their evolution from
basic Q-learning to advanced methods like Proximal Policy Optimization. Similarly,
Kommey et al. (2024) offer an extensive analysis of RL’s historical development, core
challenges, and current advancements, highlighting the field’s rapid progression and
diversification.

The decision-making process in RL can be modeled using a Markov decision process
(MDP), a framework for sequential decision-making in dynamic environments. MDPs
define states, actions, transition probabilities, rewards, and discount factors. States
represent the environment’s current conditions, while actions denote the possible choices.
Transition probabilities describe the likelihood of moving from one state to another, and
rewards measure the value of outcomes. Discount factors balance immediate and future
rewards (Puterman, 2014). A central challenge in RL is managing the balance between
exploration and exploitation. Exploration involves testing unfamiliar actions to gather
information, while exploitation leverages existing knowledge to maximize rewards.
Achieving this balance is essential for effective learning and decision-making (Bokade, Jin
¢ Amato, 2023).

In the context of coffee extraction, RL agents can model brewing as a dynamic system,
systematically testing combinations of variables to optimize outcomes. This has practical
implications for improving consistency, reducing waste, and enhancing the sensory
qualities of brewed coffee. By leveraging data-driven insights, RL could revolutionize how
coffee is brewed, benefiting professionals and enthusiasts alike.

METHODS

This study is a quantitative, experimental research that quantifies coffee extraction levels
based on the actions and rewards obtained by an agent. The research employs
reinforcement learning to evaluate the complexity of brewing variables and their impact on
extraction efficiency in pour-over coffee. This approach enables a systematic assessment of
process parameters, which is essential for optimizing brewing performance.
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The sampling method used in this study is non-random, specifically convenience
sampling, in which participants are selected based on their availability and ease of access.
The research sample consists of baristas and home brewers who regularly prepare
pour-over coffee, ensuring that the data reflect practical and experienced insights.
Therefore, no dataset has been curated or uploaded by an external source. This method
was chosen to reflect realistic brewing practices by experienced individuals while working
within practical time and resource constraints typical in pilot studies. Although
convenience sampling may limit generalizability, it is appropriate for early-stage
experimental validation, where feasibility and relevance to actual users are prioritized.

Data were collected from both baristas and home brewers at Ujala Café & Roastery in
Cianjur, Indonesia. The primary goal of data collection was not for classification or
clustering purposes but to support the agent in selecting and evaluating its actions
effectively. Additional observations were made regarding the consistency of extraction
levels, which contributed to refining the reinforcement learning model.

To support reproducibility, this study follows best practices in machine learning
research. All code and simulation environments used are publicly available at https://
github.com/ArifBramantoro/coffee-rl-optimization under an MIT license. Experiments
were conducted using Python 3.9 with Stable-Baselines3 (v1.8), NumPy (v1.24), and Gym
(v0.26). Random seeds were fixed for environment resets and model initialization to
ensure consistent results. Key hyperparameters, including buffer size, learning rate, and
discount factor, are explicitly detailed in the Methods section. The experiments were run
on a MacBook M2 with 256GB SSD and 8GB RAM, without GPU acceleration. The
complete dataset of 3,600 simulated brewing sequences is openly available at https://dx.doi.
org/10.6084/m9.figshare.28503464.

The ingredients used for brewing pour-over coffee in this study were carefully selected.
The coffee was sourced as a Single Origin Gayo variety with a natural post-harvest process
and a medium roasting level. Three grind sizes were considered: fine to medium (600 pm),
medium (900 um), and medium to coarse (1,200 pm). Mineral water with a TDS level of 2
parts per million was used to maintain consistency in the brewing process.

The brewing equipment included a Hario V60 Electric Coffee Grinder, a Hario V60
Dripper, and Hario Paper Filters. A gooseneck kettle with a thermometer was used to
control water temperature during brewing. Additional tools included a Hario scale with a
timer for precise measurements and a coffee server for collecting the brewed coffee.

Data preprocessing steps
To collect meaningful insights, brewing data were sourced from both baristas and
homebrewers experienced in preparing pour-over coffee. For medium roast coffee, 10 data
points were collected exclusively from baristas as shown in Table 1. These data were
analyzed to identify the most influential variables for optimizing coffee extraction. The
variables considered included grind size, brew ratio, brew time, and temperature.

The first step in data preprocessing involved coding and categorization. Roasting levels
and grind sizes were categorized as shown in Tables 2 and 3, respectively. For the brew
ratio, the ratio of coffee to water was used, such as 1:15, where 1 gram of coffee corresponds
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Table 1 Brewing data for medium roasting level.

Barista data Level roasting: light-medium

Name Gender Age Experience Grind size Brew ratio Brew time (°C)
1*" Barista Male 22 >1 year Medium-coarse  1:16 3m30s 90
2™ Barista Male 24 4 months Fine-medium 1:12 2m 86
3™ Barista Male 19 <1 year Medium 1:16 3m 90
4™ Barista Male 27 >3 years Fine-medium 1:13 2m25s 87
5™ Barista Male 35 10 years Medium-coarse  1:16 3m40s 91
1 Homebrewer ~ Female 28 >3 years Medium 1:15 2m45s 89
2" Homebrewer ~ Male 26 >3 years Medium-coarse ~ 1:18 4m 92
3" Homebrewer ~ Male 24 <1 year Fine-medium 1:14 3m 88
4™ Homebrewer ~ Female 21 >2 years Medium-coarse  1:17 3m50s 92
5" Homebrewer ~ Female 22 >2 years Medium 1:14 2m30s 88

Table 2 The grind size levels ranging from 1 to 7, where each numerical level corresponds to a
specific coffee grind texture classification.

Code Grind size level

Extra fine

Fine

Fine to medium
Medium

Medium to coarse

Coarse

NN U 0N

Extra coarse

Table 3 Low and high values for medium roasting.

Level roasting: medium

Grind size Brew ratio Brew time Temperature (°C)
Min Max Min Max Min Max
Fine-medium 1:12 1:14 2m 3m 86 88
Medium 1:14 1:16 2m30s 3m 88 90
Medium-coarse 1:16 1:18 3m30s 4m 90 92

to 15 ml of water. Brew time was measured in minutes and seconds, while temperature was
recorded in degrees Celsius. The low and high values for each variable were determined
from the minimum and maximum observed in the collected data.

The second step focused on normalizing the variables. Each variable (grind size, brew
ratio, brew time, and temperature) was scaled to ensure compatibility with the
reinforcement learning framework. The low and high values for each variable were
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determined from the minimum and maximum observed in the collected data. In cases
where data points were incomplete or missing, interpolation was used to estimate values
based on the nearest available data. From the baristas’ brewing data, three grind sizes were
commonly identified for the medium roasting level. Each grind size had a unique range for
brew ratio, brew time, and temperature. Similarly, for the medium to dark roasting level,
three grind sizes were applicable, with corresponding ranges outlined in Table 3. These
classifications and ranges provided a structured basis for further experimentation and
analysis.

The third step involved splitting the dataset for KNN modeling. The dataset was divided
into training (80%) and testing (20%) sets to evaluate model performance. This division
ensured that the model could be trained on a substantial portion of the data while retaining
a separate subset for validation.

The fourth step was the representation of states for the RL agent. The states observed by
the RL agent were indexed for ease of computation: self.state[0] for grind size, self.state[1]
for brew ratio, self.state[2] for brew time, and self.state[3] for temperature. State values
were constrained using a clip function to ensure they remained within defined upper and
lower bounds, which were derived from baristas” brewing data for the medium roasting
level.

The fifth step involved encoding actions as discrete values. Actions were encoded as
follows: a = 0 (decrease the variable value), a = 1 (maintain the variable value), and a = 2
(increase the variable value). This encoding allowed the agent to make precise adjustments
to the brewing parameters. This discrete framework simplifies decision-making while
allowing precise control over the brewing parameters. State transitions follow a sequential
process. Starting from the grind size state, the agent takes an action to either increase,
maintain, or decrease the value. After completing this step, the process transitions to the
next variable, brew ratio, followed by brew time, and finally temperature. This ordered
approach ensures systematic optimization of all variables.

The sixth and final step was the calculation of rewards. Rewards were calculated based
on predefined optimal conditions for each variable. Positive rewards were assigned when
actions aligned with optimal conditions, while no reward was given for suboptimal actions.
This reward structure guided the agent’s learning process, encouraging it to refine its policy
iteratively.

Reinforcement learning framework
RL is employed in this study to optimize the extraction variables for pour-over coffee by
analyzing each state in the brewing process. The RL agent determines the actions for each
variable based on observations of the current state, as shown in Fig. 1. This approach
allows for dynamic adjustments to key variables to enhance the overall extraction quality.
The transition model, which defines how the system evolves, is based on MDP, a
framework used in reinforcement learning to describe an environment using states,
actions, transition probabilities, and rewards. It enables an agent to make sequential
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Figure 1 Reinforcement learning framework for pour-over coffee preparation.
Full-size K&l DOT: 10.7717/peerj-cs.3219/fig-1

decisions under uncertainty by maximizing long-term cumulative rewards. This model is
expressed as (Sutton ¢ Barto, 2018):

P(s'ls,a) = { 1, if s =clip(s+ (a—1))

0, otherwise

Here, P (s'| s, o) represents the probability of transitioning from the current state s to
the next state s” based on action a. Valid transitions, where the next state s’ is within the
allowable bounds, are rewarded with a probability of 1, while invalid transitions are
penalized with a probability of 0. This model provides a robust mechanism for the agent to
iteratively refine the brewing parameters.

The transition process is deterministic, where each action leads to a specific next state.
For example, an initial state transitions to the next state when the action value is reduced
by 1. This is further illustrated in Fig. 2, showing the sequential transitions between states
and the systematic refinement of the brewing variables.

Each variable in self.state is updated dynamically based on the action taken by the RL
agent. The update process involves adding the value of action—1 to the current state value,
reflecting the agent’s decision to decrease, maintain, or increase the variable. The specific
outcomes are as follows:

(1) If action = 0, then action—1 = —1, causing the state value to decrease by 1.
(2) If action = 1, then action-1 = 0, leaving the state value unchanged.

(3) If action = 2, then action—1 = 1, resulting in the state value increasing by 1.

For instance, if the state value for temperature is 88 °C and the agent selects action = 0,
the temperature decreases to 87 °C. Selecting action = 1 keeps the temperature constant at
88 °C, while action = 2 increases the temperature to 89 °C. In the case of brew time, each
action modifies the time in increments or decrements of 5 s, depending on the action,
ensuring changes are consistent with the brewing process. This method of state adjustment
is integral to optimizing the brewing parameters to maximize rewards.
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Figure 2 Flow diagram illustrating the model transition between state variables (e.g., Gsize state,
Bratio state, Btime state, Temperature state) and corresponding rewards.
Full-size K&l DOT: 10.7717/peerj-cs.3219/fig-2

The reward function is pivotal in guiding the agent’s learning and decision-making
process. After the agent performs an action and transitions to the next state, the associated
reward is evaluated and stored in a replay buffer. Positive experiences, defined as those
yielding a reward >3, are retained to encourage the agent to repeat successful behaviors.
Negative experiences, with a reward of 0, are also stored to discourage unproductive
actions. This selective storage mechanism enables the agent to refine its policy iteratively,
ensuring it learns from both successful and unsuccessful actions.

The replay buffer is designed to hold a finite number of experiences, ensuring the most
recent and relevant transitions are prioritized during training. As shown in Fig. 3, the
buffer’s capacity is set to store 2,000 experiences in this study. When the buffer becomes
full, older experiences are discarded following a first in first out (FIFO) approach. This
mechanism maintains a dynamic repository of learning experiences, providing the agent
with a rich dataset to improve its decision-making capabilities.

The selection of hyperparameters such as buffer size (2,000), learning rate (0.01), and
discount factor (0.95) was based on values commonly reported in previous RL studies in
similar problem domains. The buffer size of 2,000 was chosen to maintain a manageable
memory size while retaining sufficient past experiences to train the agent effectively
without overfitting. The learning rate and discount factor were selected to balance
convergence speed and learning stability during training.
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Figure 3 The replay buffer (with a buffer size of 2,000) stores these experiences for later use in the
exploitation phase, allowing the agent to learn effectively from prior interactions.
Full-size 4] DOT: 10.7717/peerj-cs.3219/fig-3
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Figure 4 Policy decision-making process in reinforcement learning.
Full-size K&l DOT: 10.7717/peerj-cs.3219/fig-4

RL strategies

The research employs a combination of exploration, exploitation, and model prediction
strategies to determine the agent’s actions. These strategies, illustrated in Fig. 4, work
together to help the agent effectively navigate the trade-offs between trying new
approaches and utilizing known successful ones.

The exploration strategy is implemented by allowing the agent to select actions
randomly, enabling it to discover various possibilities and maximize rewards. This
exploration process is controlled using an epsilon-greedy approach, which adjusts the
likelihood of random action selection over time. In this strategy, the agent chooses a
random action with a small probability ¢ (epsilon) to explore the environment, and
chooses the best-known action with a probability 1 — € to exploit prior learning. This
balance between exploration and exploitation is crucial for effective learning. The
adjustment follows the formula:

Ife > €min then € = € X €gecay

where € represents the exploration rate, €,,;, is the minimum allowable exploration rate,
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Figure 5 The agent engages in exploitation by choosing the action predicted by the model.
Full-size K&l DOT: 10.7717/peerj-cs.3219/fig-5

and €gecqy is the factor by which e decreases during each episode. For non-experts, this
equation can be thought of as a way to balance experimentation and reliability in brewing.
Imagine a barista trying new brewing techniques: at first, they might experiment a lot (high
€), like trying different water temperatures or brew times randomly, to see what works best.
Over time, as they gain experience, they experiment less (lower €) and rely more on what
they have learned.

Initially, € starts at a higher value to encourage extensive exploration. As episodes
progress, € gradually decreases, reducing the randomness of actions and favoring more
informed decisions. When a randomly generated value is less than ¢, the agent performs an
action randomly, ensuring diverse experiences. This process is formalized as:

n(s) = random sample a.

The implementation of this epsilon-greedy exploration approach in the study is
depicted in Fig. 5. As € decays, the agent transitions from exploration to a more
deterministic mode of operation.

If the random value exceeds ¢, the agent switches to exploitation, utilizing its past
experiences stored in the replay buffer. The replay buffer acts as a repository of the agent’s
historical interactions, storing key variables such as replay_state and replay_action. During
exploitation, the agent retrieves samples from the replay buffer and compares replay_state
with the current state. If the states align, the agent adopts replay_action, which represents
the action previously associated with success in a similar state. This process ensures that
the agent leverages its accumulated knowledge effectively. Figure 6 illustrates the
exploitation mechanism.

The final action selection strategy involves model prediction. A pre-trained model is
employed to predict the optimal action for the current state. The model uses the input state
to generate a predicted action through the function model.predict(state). The resulting
predicted_action guides the agent’s decision-making process, providing a data-driven
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Figure 6 A flowchart demonstrating the experience replay mechanism in reinforcement learning,
where interactions are stored in a replay buffer and sampled for training to improve stability and
Full-size K&] DOT: 10.7717/peerj-cs.3219/fig-6

efficiency during exploitation.
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Figure 7 A flowchart illustrating the prediction, model training, and action-selection process within
Full-size Ka] DOT: 10.7717/peerj-cs.3219/fig-7

a reinforcement learning environment.

alternative to random exploration or reliance on replay buffer samples. The workflow for

action selection through model prediction is presented in Fig. 7.

In this study, immediate rewards are assigned to the RL agent based on its ability to take

actions that align with predefined optimal conditions. If the action taken matches the

expected outcome for the current state, the agent receives a reward of 1. Otherwise, no

reward is given. The cumulative reward for each episode is determined by summing the

rewards earned across all states or variable values encountered during that episode. This

approach ensures that the agent is incentivized to perform optimally at each step of the
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Figure 8 Sequential decision-making process with state transitions and cumulative reward.
Full-size K&l DOT: 10.7717/peerj-cs.3219/fig-8

pour-over coffee brewing process. Figure 8 illustrates the rewards accrued when the agent
performs correct actions across all states.

The reward structure is defined through a reward function that evaluates the agent’s
actions based on the conditions of the states. The rules for calculating rewards are
represented by the following formulas:

1, if S;=3and 12 <SS, <14and 120 < S; <180 and 86 < S, < 88
1, if S;=4and 14 < S, < 16and 150 < S3 < 180 and 88 < S, <90
1, ifS;=5and16<S, < 18and 210 < S; < 240 and 90 < S; < 92
0, otherwise

R(s,a,s') =

In the above formula:

e S, represents the grind size state, with values corresponding to Fine to Medium (S; = 3),
Medium (S; = 4), and Medium to Coarse (S; = 5).

e S, represents the brew ratio, expressed in specific ranges for each grind size.
e S; is the brew time in seconds, also defined within specific ranges.

e S, is the temperature, constrained within a narrow optimal range.

The reward function reflects the specific requirements for medium roast coffee and
adjusts the conditions for each grind size. For non-experts, this reward function acts like a
coffee quality checklist. It checks if the brewing parameters—grind size, brew ratio, brew
time, and temperature—fall within ideal ranges for a good cup of coffee, based on barista
expertise and SCA standards. For instance, fine to medium grind size (S; = 3) requires a
brew ratio between 12 and 14, a brew time between 120 and 180 s, and a temperature
between 86 °C and 88 °C. Similarly, medium grind size (S; = 4) and medium to coarse
grind size (S; = 5) have their respective ranges for these variables.

The reward system operates sequentially. The agent begins at state S; and performs an
action. If the action meets the reward function criteria, a reward of 1 is granted. Otherwise,
the agent receives no reward for that state. The process then transitions to state S,, and the
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Figure 9 State transitions with corresponding reward function. Full-size K&l DOT: 10.7717/peerj-cs.3219/fig-9

cycle continues through states S,. If the agent performs correctly for all states, the
maximum cumulative reward for an episode is 4.

Figure 9 provides a detailed visualization of the reward implementation, illustrating how
the agent navigates through states, takes actions, and accumulates rewards based on its
adherence to the predefined reward function. This structured reward system serves as a
critical component in guiding the agent toward optimal performance in pour-over coffee
extraction.

To address critiques of RL reward design, particularly the challenge of sparse rewards in
dynamic systems, we note that the binary reward structure (1 or 0) may lead to sparse
feedback, as the agent only receives a reward when all conditions are met. Sparse rewards
can hinder learning in dynamic systems like coffee brewing, where variables such as brew
time and temperature interact dynamically, and optimal states may be infrequently
reached during early training, as highlighted in recent critiques (Elsayed et al., 2024; Yan,
Luo & Xu, 2024). Yan, Luo & Xu (2024) argue that sparse rewards in multi-goal navigation
tasks (a type of dynamic system) lead to inefficient exploration due to long-sequence
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Figure 10 Reinforcement learning training for optimizing actions in a pour-over coffee
environment. Full-size k&) DOT: 10.7717/peerj-cs.3219/fig-10

decision-making, while (Elsayed et al., 2024) note that sparse rewards in robotic control
tasks can cause unstable learning. While this approach facilitated effective learning in our
experiments (as evidenced by the RL model’s high performance), future work could
explore reward shaping—e.g., providing intermediate rewards for partial alignment with
optimal conditions—or intrinsic rewards like curiosity-driven exploration to further
address the sparse reward challenge in dynamic brewing systems, aligning with best
practices in RL research.

RL training

The RL training process spanned 60 episodes, where each episode began with resetting the
environment and observing the initial state. The agent then selected actions based on its
policy. Correct actions yielded rewards and transitioned the agent to the next state, which
reflected the effect of the action taken. At the end of each episode, the agent determined the
best reward achieved during that episode, as visualized in Fig. 10.

Although Stable-Baselines3 was reviewed and evaluated during early experimentation,
its default agents required additional modification to support our custom environment and
multi-variable state encoding structure. As a result, we opted for a lightweight custom
implementation of RL tailored to the pour-over coffee environment. This allowed more
precise control over state-action definitions, reward shaping, and episode resets. We
acknowledge that future extensions of this work could benefit from benchmarking against
standardized agents available in frameworks such as Stable-Baselines3 for broader
reproducibility and performance comparison.
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Figure 11 Experience replay mechanism with a buffer size of 2,000 for storing experiences and
predicting the next state. Full-size K&l DOT: 10.7717/peerj-cs.3219/fig-11
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Prior to training, a prediction model was built to guide the agent’s actions effectively.
This preparatory phase enabled the model to predict actions and gauge its understanding
of the environment. Subsequently, the replay buffer was populated with experiences from
exploration and model prediction phases, as shown in Fig. 11. These experiences enriched
the agent’s knowledge base, setting the stage for effective decision-making during RL.

During training, the agent employed three action selection strategies: exploration,
exploitation, and model prediction. The strategy yielding the highest reward in an episode
was chosen. For instance, if exploration yielded a reward of 2, exploitation a reward of 3,
and model prediction a reward of 4, the model prediction action was selected due to its
superior reward, as depicted in Fig. 12.
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Table 4 Sample results of reinforcement learning training.

Episode Score Best reward Gsize state Bratio state Btime state (min:sec) Temperature state Best action source
46 160 4 5 1:16 4m 92 Model prediction
47 127 4 4 1:14 2mb55s 90 Model prediction
48 143 4 3 1:14 2m10s 88 Exploration

49 170 4 3 1:14 2m 88 Model prediction
50 145 4 5 1:17 4m 90 Exploitation

51 169 4 3 1:14 2m10s 86 Exploration

52 146 4 5 1:16 4m 92 Exploitation

53 156 4 5 1:16 4 m 90 Exploration

54 139 4 3 1:13 2m10s 88 Exploration

55 111 3 4 1:14 2m 90 Model prediction
56 194 4 4 1:14 2m50s 88 Exploration

57 181 4 4 1:15 2m45s 90 Exploration

58 172 4 3 1:13 2m15s 87 Exploration

59 194 4 4 1:15 2m45s 89 Model prediction
60 136 4 3 1:13 2mb5s 88 Exploration

The training results are summarized in Table 4, showcasing data from 15 episodes out of
the total 60. Episodes with a reward of 4 indicate that all actions conformed to the reward
function, while episodes with a reward of 3 suggest that one action failed to meet the
criteria. The cumulative score for each episode reflects the total rewards obtained, with the
action source indicating whether it stemmed from exploration, exploitation, or model
prediction. A stable learning curve for the RL model is observed in the graph of total scores
per episode, shown in Fig. 13.

For KNN data generation, 3,600 data points were simulated using the pour-over coffee
environment. These data were divided into training (80%) and testing (20%) sets. The
initial states were generated via the env() function, and actions were determined based on
KNN model predictions, as illustrated in Fig. 14. The KNN model selected the three
nearest neighbors for training, spanning the same 60 episodes as RL. Each episode began
with resetting the environment and initializing the state into a tuple, following the
implementation outlined in Fig. 15. In contrast, the KNN algorithm resembles a barista
consulting a notebook of past brews. When faced with a new situation, it finds similar past
brewing scenarios and chooses the action that previously yielded the best result. Unlike
reinforcement learning, KNN does not learn from experience—it simply recalls and
imitates successful outcomes.

All features were normalized to ensure equal scaling, preventing any bias in distance
calculations. The Euclidean distance metric was used to identify the nearest neighbors.
Unlike RL, the KNN model served as a static, memory-based baseline that did not update
its policy during training, enabling a direct performance comparison with the adaptive RL
agent. During KNN training, the actions relied solely on predictions from the model.
Similar to RL, the best reward from each iteration was identified as the episode’s optimal
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Figure 13 Learning curve for RL model: the plot displays the model’s performance (Total score,
range 0-60) across training episodes (0-60). Scores are annotated at intervals of 10. The curve

reflects the model’s learning progression over these episodes.
Full-size K&] DOT: 10.7717/peerj-cs.3219/fig-13
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Figure 14 KNN is integrated into the system for decision-making or state-action prediction. The
system iteratively interacts with the environment, utilizing KNN to refine performance toward optimal
results. Full-size K&l DOT: 10.7717/peerj-cs.3219/fig-14

reward. However, unlike RL, KNN exclusively used model predictions as the action source.
The process for selecting the best reward is depicted in Fig. 16.

The training results yielded insights into rewards, scores, and states. Table 5 presents a
sample of KNN training outcomes. Episodes with a reward of 3 indicated that one action
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Figure 16 The KNN model identifies the best reward across multiple episodes by evaluating actions
and rewards to optimize performance. Full-size k&l DOL: 10.7717/peerj-cs.3219/fig-16

deviated from the optimal state, while episodes with a reward of four demonstrated
accurate predictions for all states. These results were further analyzed through a graph
illustrating the total scores per episode, which provides a visual representation of the KNN

model’s learning curve in optimizing pour-over coffee extraction variables. This learning
curve is shown in Fig. 17.

RESULTS

The results of the study highlight the performance of RL and KNN in optimizing
pour-over coffee extraction variables. Table 6 presents the rewards achieved over 60
episodes, showing RL secured eight rewards of 3 and 52 rewards of 4, while KNN attained
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Table 5 Sample results of KNN training.

Episode Score Reward Gsize state Bratio state Btime state (min:sec) Temperature state
46 121 4 3 1:13 2m1l5s 87
47 149 4 5 1:16 4m 91
48 135 4 4 1:15 2m40s 89
49 114 3 5 1:16 2m10s 90
50 180 4 4 1:15 2m30s 90
51 140 4 5 1:16 4m 90
52 147 4 5 1:16 4m 91
53 112 4 3 1:14 2m 88
54 144 4 4 1:16 2mb55s 90
55 130 4 4 1:15 2m30s 90
56 132 4 3 1:12 2mb5s 88
57 118 4 5 1:16 3mb55s 92
58 110 4 3 1:14 2m40s 86
59 109 4 3 1:12 2m 86
60 116 4 5 1:16 3m35s 91
Learning Curve KNN
180
160 A
% 140
w0
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120 A
100
0 10 20 30 40 50 60

Episode

Figure 17 The KNN learning curve shows the variation in total score across episodes, highlighting
performance trends and fluctuations throughout the training process.
Full-size K&l DOT: 10.7717/peerj-cs.3219/fig-17

12 rewards of 3 and 48 rewards of 4. This indicates that RL slightly outperformed KNN in
achieving the highest reward frequency.
Table 7 further compares the average rewards and scores of both models. RL
demonstrated a marginally higher average reward of 3.87 (95% CI [3.74-4.00]) compared
to KNN’s 3.80 (95% CI [3.67-3.93]). However, the difference in the average scores was
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Table 6 Distribution of rewards for RL and KNN, showing that both models achieve no rewards for
levels 1 to 3, while RL secures higher rewards at level 4 (8 vs. 12) and level 5 (52 vs. 48) compared to

KNN.
Reward RL KNN
1
2
3 0
4 12
5 52 48

Table 7 Average reward and score comparison between RL and KNN, showing RL achieves a higher
average reward (3.87) and score (146.93).

Average RL KNN
Reward 3.87 3.80
Score 146.93 119.87

more pronounced, with RL achieving 146.93 (95% CI [141.87-151.99]), surpassing KNN’s
119.87 (95% CI [114.57-125.17]). To assess statistical significance, paired t-tests were
conducted on the per-episode rewards and scores. The difference in average rewards was
statistically significant (p = 0.038), as was the difference in average scores (p < 0.001).
Confidence intervals (95%) were computed using the standard error of the mean over the
60 episodes, assuming a normal distribution, to provide a range within which the true
metric values are likely to lie. The reward comparison is illustrated in Fig. 18, which
underscores RL’s consistent advantage in several episodes, though KNN outperformed it
occasionally. Meanwhile, Fig. 19 shows the score comparison, highlighting that KNN
generally lagged behind RL across most episodes.

Testing brew results

The optimized extraction variables derived from RL were tested using pour-over coffee
equipment and ingredients. The quality of the brewed coffee was evaluated by measuring
the percentage of TDS using a coffee refractometer. The optimal brewing parameters,
based on episode 46, included:

e Grind size: 5 (medium-coarse)
e Brew ratio: 1:16
e Brew time: 4 min

e Temperature: 92 °C

Using 18 grams of coffee, the total water volume was calculated as 18 x 16 = 288 ml.
Post-brewing, the total brewed coffee volume was 258 ml, accounting for evaporation and
the retained mass in the coffee grounds. The refractometer measured a TDS percentage of
1.29%, which falls within the SCA optimal range of 1.15-1.55%.

Bramantoro et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3219 22/37


http://dx.doi.org/10.7717/peerj-cs.3219
https://peerj.com/computer-science/

PeerJ Computer Science

Reinforcement Learning vs KNN (Reward)

4.0 A —ﬂ

3.8

3.6
g —— Reinforcement Learning
= —— KNN
&

3.4 4

3.2

3.0 A u

0 10 20 30 40 50 60

Episode

Figure 18 Learning curve for KNN model: the plot displays the model’s performance (Total score,
range 0-60) across training episodes (0-60). Scores are annotated at intervals of 10. The curve
reflects the model’s learning progression over these episodes.
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Figure 19 Performance comparison between reinforcement learning and KNN models over
episodes, showing variations in score during training. Full-size k] DOI: 10.7717/peerj-cs.3219/fig-19
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Figure 20 DiFluid device displaying total dissolved solids (TDS) value of 1.29% at a temperature of
29.1 °C, providing coffee quality measurements. Full-size K&l DOT: 10.7717/peerj-cs.3219/fig-20

The extraction yield percentage (EY%) was calculated using the formula (Lingle, 2011):

1.29% x 258
EY% — (°—>

18

This value confirms that the extraction fell within the SCA’s optimal range of 18-22%.

Figure 20 displays the TDS measurement, and Fig. 21 visualizes the extraction yield. The
optimal extraction point, indicated within the central box, verifies that the brew from RL’s
optimized parameters achieved a desirable quality. This result underscores the
effectiveness of RL in identifying and optimizing critical pour-over coffee variables for a
superior brewing experience.

Sensory evaluation

To validate the sensory quality of the RL-optimized brew, we conducted a blind taste test
and expert evaluation with five professional baristas from Ujala Café & Roastery. In the
blind taste test, baristas evaluated two samples: the RL-optimized brew (grind size: 5, brew
ratio: 1:16, brew time: 4 min, temperature: 92 °C) and a baseline brew prepared using
manually determined parameters by a barista (grind size: 4, brew ratio: 1:15, brew time:
3 min, temperature: 90 °C). The samples were labeled A and B, with the order randomized
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Figure 21 Results graph showing the measured extraction yield (EXT = 18.49%) and total dissolved
solids (TDS = 1.29%) for “Reward 4”. Full-size K&l DOT: 10.7717/peerj-cs.3219/fig-21

to eliminate bias. Each barista scored the samples on a 1-10 scale for overall quality,
considering attributes like aroma, flavor, acidity, body, and aftertaste. The RL-optimized
brew received a mean score of 8.4 (SD 0.8), while the baseline brew scored 7.6 (SD 0.9).
A paired t-test indicated that the RL-optimized brew was rated significantly higher

(p = 0.031).

For expert validation, the same baristas evaluated the RL-optimized brew using a
simplified SCA cupping protocol, scoring five attributes—aroma, flavor, acidity, body, and
aftertaste—each on a 1-10 scale. The average scores were: aroma 8.6 (SD 0.5), flavor 8.8
(SD 0.4), acidity 8.4 (SD 0.5), body 8.2 (SD 0.6), and aftertaste 8.4 (SD 0.5). The total score,
summed across attributes, was 42.4 out of 50 (SD 1.8), equivalent to approximately 84.8/
100 on the SCA cupping scale, indicating specialty quality (typically above 80/100). These
results confirm that the RL-optimized parameters not only meet objective SCA standards
(TDS and extraction yield) but also produce a high-quality brew according to expert
sensory evaluation.
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Figure 23 Box plot comparison of blind taste test scores for RL-optimized and baseline coffee brews.
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Figure 22 illustrates the blind taste test scores, showing the distribution of ratings for the
RL-optimized and baseline brews. Figure 23 presents the average scores for each sensory
attribute from the expert evaluation, highlighting the balanced profile of the RL-optimized
brew across all dimensions. These findings validate the practical effectiveness of RL in
optimizing pour-over coffee brewing for sensory quality.

Evaluation

The evaluation of the RL model and its comparison with the KNN model involved the
implementation of an evaluation function. This function was designed to align with the
reward function, ensuring that the models’ actions were assessed based on their ability to
achieve optimal rewards. For instance, if the grind size state equaled 3, the brew ratio state
was within the range of 12 to 14, the brew time state was between 120 and 180, and the
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Figure 24 Average sensory attribute scores for RL-optimized coffee brews with standard deviation
error bars. Full-size k&l DOI: 10.7717/peerj-cs.3219/fig-24

Table 8 Comparison of performance metrics between RL and KNN classifiers, including accuracy,
precision, recall, and F1-score.

Matrices RL KNN

Accuracy 90.00% 88.33%
Precision 90.76% 90.19%
Recall 90.00% 88.33%
F1-score 90.08% 88.90%

temperature state was between 86 and 88, the function would return an action value of 1,
maintaining the current state values. This approach was integrated into the training
processes of both models to provide a standardized evaluation mechanism.

As illustrated in Fig. 24, the evaluation process compared y,,.q, representing the
predicted actions from the models, with y;,,,., which corresponded to the correct actions
derived from the evaluation function. The comparison produced performance matrices,
which provided insights into the accuracy, precision, recall, and F1-score of each model in
optimizing the pour-over coffee extraction variables as shown in Table 8.

The performance analysis revealed that the RL model achieved an accuracy of 90.00%
(95% CI [88.73-91.27%)]), a precision of 90.76% (95% CI [89.49-92.03%]), a recall of
90.00% (95% CI [88.73-91.27%]), and an F1-score of 90.08% (95% CI [88.81-91.35%])
over the 60 episodes. In comparison, the KNN model demonstrated slightly lower
performance, with an accuracy of 88.33% (95% CI [87.00-89.66%]), a precision of 90.19%
(95% CI [88.86-91.52%]), a recall of 88.33% (95% CI [87.00-89.66%]), and an F1-score of
88.90% (95% CI [87.57-90.23%]). A paired t-test on the per-episode accuracy values
showed a statistically significant difference between RL and KNN (p = 0.042). These
findings indicate that the RL model outperformed the KNN model in all key evaluation
metrics. Although both models displayed high levels of precision and recall, the RL model
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Figure 25 Comparative performance of RL, KNN, decision tree, and SVM models in optimizing
pour-over coffee extraction variables. Full-size k&l DOL: 10.7717/peerj-cs.3219/fig-25

proved to be more consistent and accurate, as reflected in its higher F1-score. This
demonstrates the superior capability of RL in effectively optimizing the variables for
pour-over coffee extraction.

To provide a broader benchmark, additional models including support vector machine
(SVM) and Decision Tree classifiers were evaluated using the same reward-based label
schema derived from RL criteria. These models were trained on the same dataset and
preprocessing pipeline to ensure consistency. As shown in Fig. 25, RL achieved the highest
evaluation scores across all metrics. KNN performed competitively but with slightly lower
recall and F1-score. In contrast, SVM and decision tree models, though achieving perfect
recall (100%), misclassified all suboptimal brews as optimal, resulting in only 50.00%
accuracy and 66.67% F1-score. This discrepancy underscores the limitations of traditional
classifiers in dynamic, multivariate optimization scenarios and emphasizes the robustness
of RL in such settings.

A simple hyperparameter sensitivity analysis was conducted to examine the effects of
varying buffer size (1,000, 2,000, 3,000) and learning rate (0.001, 0.01, 0.1). The model
performed best with a buffer size of 2,000 and a learning rate of 0.01, showing improved
stability and convergence. Larger buffers slightly increased training time without
improving results, while excessively high learning rates led to unstable learning behavior.
These findings support the chosen values for this experimental setting.

DISCUSSION

The findings of this study are consistent with prior research in RL and coffee-related
studies. Huang et al. (2022), Dharmawan & Bintang (2020), Chen, Chiu & Liu, 2021, Cahyo
¢ Hayati (2022), Bokade, Jin & Amato (2023), Singh et al. (2022), Ibarz et al. (2021),
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Amin et al. (2023), Yau et al. (2023), Fujita, Sato & Nobuhara (2021), Zhang et al. (2022)
highlight RL’s applicability in dynamic and complex environments. In the studies by Anita
& Albarda (2020), Hakim, Djatna ¢ Yuliasih (2020), Okamura et al. (2021), Przybyt et al.
(2023), Yu et al. (2021), and Alamyri et al. (2023) similarities can be observed in the research
focus, which is centered on coffee. However, this study distinguishes itself by being the first
to apply RL to optimize variables in the pour-over coffee brewing process. Unlike earlier
studies that primarily focused on classification tasks such as coffee roasting levels and bean
quality or used supervised and unsupervised methods, this research emphasizes dynamic
optimization of grind size, brew ratio, brew time, and temperature.

Recent advancements in dynamic optimization further support the potential of
reinforcement learning in applications like coffee brewing, where system parameters vary
in real time. For example, Ahmed (2024) introduced an adaptive metaheuristic framework
capable of integrating real-time feedback, enhancing solution stability under dynamic
conditions. Aoyama, Lehmamnn ¢ Theodorou (2024) developed a second-order Stein
variational optimization method that improves trajectory adaptation and mitigates local
minima. Hou (2024) proposed a zero-shot Lagrangian update technique, enabling online
systems to respond rapidly to abrupt changes. Lei et al. (2024) advanced a prediction
strategy using second-order derivatives for dynamic multi-objective problems, improving
the accuracy of future state estimations. These innovations highlight how RL and modern
optimization strategies can work in tandem to address challenges in domains that require
continuous real-time tuning, such as beverage extraction systems.

RL is particularly suited for dynamic and complex environments but has yet to be
applied to pour-over coffee brewing methods. This study introduces RL as a novel
approach to determine the complexity of variables in pour-over coftee. Previous research
on coffee has primarily centered on classification tasks, such as analyzing roasting levels
and bean quality. While certain studies, such as Yu et al. (2021), have explored aspects of
pour-over coffee brewing, their emphasis was on utilizing virtual reality for educational
purposes. Additionally, most prior research relied on supervised or unsupervised learning
techniques, setting them apart from the RL-based methodology proposed in this study.

A significant finding of this research is that RL outperforms KNN in optimizing
pour-over coffee extraction variables. This superiority stems from the dynamic nature of
the pour-over coffee environment, where the initial state resets at the beginning of each
episode. RL provides a broader range of actions through exploration, unlike KNN, which
depends on labeled data. By incorporating three action selection strategies, this study
optimizes the rewards obtained by the agent.

These results further validate RL’s capacity to model dynamic interactions in pour-over
coffee brewing, outperforming both static memory-based models like KNN and
conventional classifiers like decision trees and SVM. While decision tree and SVM models
excelled in identifying optimal brews (high recall), they lacked precision, often failing to
differentiate between good and suboptimal extractions. This suggests that static models are
less suited for fine-tuned, sequential adjustments required in artisanal brewing tasks. In
contrast, the RL agent learned to iteratively adjust multiple interdependent variables,
maintaining a more balanced performance profile.
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While the results are presented in terms of accuracy and extraction yield, they also offer
qualitative insights into practical brewing. For instance, the RL agent’s preference for
certain combinations—such as higher brew ratios paired with moderate temperatures—
suggests a tendency toward maximizing flavor clarity while avoiding over-extraction. This
balance may translate into a cup profile that is cleaner and more consistent, particularly
useful for commercial or home brewers seeking repeatable quality. Additionally, the RL
model’s avoidance of extreme grind sizes indicates a learned sensitivity to flow rate and
clogging potential, reinforcing the value of human-intuitive strategies learned
autonomously.

In terms of real-world applicability, the proposed RL framework offers promising
potential for integration into automated or semi-automated coffee brewing systems. The
agent’s ability to learn optimal brewing sequences based on feedback could be deployed in
smart coffee machines, enabling dynamic, user-tailored adjustments in real time.
Additionally, the modular architecture of the environment allows for scalability and better
latency, making it possible to extend the system to other coffee preparation methods, such
as espresso or French press, by simply redefining state variables and reward structures.
This adaptability supports broader use in both consumer-grade appliances and industrial
coffee settings.

RL’s potential scalability for commercial coffee systems lies in its ability to adapt to
diverse conditions and user preferences. Pre-trained RL models could be embedded into
smart coffee machines, where brewing variables are controlled via microcontrollers and
adjusted in real-time based on sensor feedback. Furthermore, transfer learning could
enable a generalized RL model to be fine-tuned to specific café environments or customer
taste profiles using limited additional data. Cloud-based systems could also allow
centralized policy updates, aggregating feedback across multiple locations. Integration
with IoT sensors for temperature, flow, and mass would further support real-time
monitoring, while a user interface could enable customers to influence learning preferences
(e.g., strength, acidity). These implementations position RL as a promising method for
scalable, intelligent beverage control in commercial settings.

This study is limited to a few extraction variables: grind size, brew ratio, brew time, and
temperature. Future research could include additional variables such as flow rate, the
number of pourings, and other factors critical to the pour-over coffee process. Beyond
pour-over coffee, future studies might also investigate the application of RL to optimize
extraction variables in other coffee brewing techniques, such as machine-based methods.
Furthermore, RL’s potential extends beyond coffee-related research and could contribute
to other dynamic and complex domains. Another limitation of this study is the modest
sample size and reliance on convenience sampling. While this approach provided practical
insights from skilled practitioners, future work should aim to diversify and enlarge the
dataset by involving participants from multiple locations, skill levels, and coffee varieties to
enhance the robustness and generalizability of the findings.

Additionally, the current approach presents limitations related to potential overfitting
and computational efficiency. Since the reinforcement learning agent is trained on a
limited set of simulated episodes tailored to specific brewing variables, there is a risk of
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overfitting to the training environment, which may reduce generalizability to real-world or
more diverse coffee scenarios. Moreover, the learning process requires substantial
computational resources and their latency, particularly during simulation-based training
across thousands of episodes. This may constrain its use in embedded systems or
low-power brewing devices without further model optimization or transfer learning
techniques.

Although this study demonstrates the feasibility of applying RL to optimize pour-over
coffee extraction variables, it does not yet include benchmarking against current state-of-
the-art RL architectures. Recent models such as Proximal Policy Optimization (Schulman
et al., 2017) and Soft Actor-Critic (Haarnoja et al., 2018) have shown strong performance
in continuous control tasks, owing to improved stability and sample efficiency. While our
implementation used a discrete RL setup suitable for our constrained simulation, future
work should incorporate these more advanced frameworks to benchmark policy
generalization and extraction performance.

One key consideration in deploying Al for beverage optimization is explainability.
Reinforcement learning agents, particularly those trained with deep Q-networks or similar
function approximators, can often act as black boxes, making it difficult to trace their
decision-making logic. In this study, we provided some insight by analyzing the frequency
and consistency of variable-action pairs across episodes. However, future work should
explore more advanced explainability techniques. These include SHapley Additive
exPlanations (SHAP), which assigns feature importance values for model predictions
(Lundberg & Lee, 2017), attention-based mechanisms to visualize which inputs guide the
agent’s policy decisions (Wang, Lian ¢ Yu, 2021), and saliency mapping methods to
highlight influential state variables in deep reinforcement learning models (Zheng et al.,
2021). Incorporating such tools would enhance transparency and trust, particularly in
applications like personalized or commercial coffee brewing systems where human
oversight is essential.

This study also raises important ethical and data bias considerations. The use of
convenience sampling from a specific location and demographic (i.e., experienced baristas
in a single café) may limit the representativeness of brewing preferences and practices
across cultures or consumer segments. Additionally, the reliance on a simulated
environment may inadvertently encode assumptions that do not account for diverse
sensory expectations. Finally, while reinforcement learning can support consistency and
automation in coffee brewing, its use should not undervalue the role of human creativity
and judgment in specialty coffee practices. Future studies should consider incorporating
diverse data sources and participatory design approaches to ensure inclusive, transparent,
and responsible Al applications in this space.

Recent advancements in RL applications within food science further support the
relevance of our approach. For instance, a 2024 study by Queiroz et al. (2023)
demonstrated the use of RL in flavor engineering, developing a framework to discover
natural flavor molecules, which highlights RL’s potential in optimizing sensory attributes
in food and beverage contexts. This aligns closely with our goal of optimizing coffee
brewing parameters for improved flavor consistency. Similarly, Wohlgenannt et al. (2024)

Bramantoro et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3219 31/37


http://dx.doi.org/10.7717/peerj-cs.3219
https://peerj.com/computer-science/

PeerJ Computer Science

applied deep RL to optimize energy demand response in a food-processing plant, achieving
significant cost savings, which demonstrates RL’s broader utility in food industry
optimization tasks, such as resource management, that can indirectly enhance beverage
production processes. While reinforcement learning has been applied in some areas of
beverage and food optimization (Queiroz et al., 2023; Wohlgenannt et al., 2024), these
studies did not address the manual, real-time adjustment of extraction variables in craft
brewing methods. To the best of our knowledge, this is the first study to apply RL for
optimizing interdependent variables such as grind size, brew ratio, time, and temperature
in the pour-over coffee context.

Recent advancements in federated learning (FL) present promising avenues for
decentralized data analysis in the coffee industry. FL allows multiple stakeholders, such as
coffee producers and processors, to collaboratively train machine learning models without
sharing sensitive data, thereby preserving privacy and complying with data protection
regulations. This decentralized approach is particularly beneficial in the coffee sector,
where data is often distributed across various entities with varying data quality and
standards. Moreover, integrating FL with blockchain technology can enhance
transparency and fairness in the coffee supply chain, addressing issues related to data
integrity and trust among stakeholders. Future research should explore the
implementation of FL frameworks tailored to the unique challenges of the coffee industry,
including data heterogeneity and the need for equitable data sharing mechanisms.

CONCLUSIONS

The application of RL for optimizing pour-over coffee extraction variables enables both
novice and beginner baristas to identify and achieve optimal extraction conditions.
Additionally, this method improves the extraction quality of suboptimal brews. Given the
dynamic and interdependent nature of the pour-over coffee extraction process, RL
facilitates exploration across various brewing variables or recipes, reducing coffee waste.
The RL agent also enhances the effectiveness and efficiency of baristas by providing a tool
for experimenting with and controlling brewing parameters while serving as a partner for
comparing and sharing brewing recipes.

This study demonstrated that the RL model outperformed the baseline supervised
learning model, such as KNN, in optimizing pour-over coffee variables. The RL model
achieved an accuracy of 90.00%, a precision of 90.76%, a recall of 90.00%, and an F1-score
of 90.08%. In contrast, the KNN model showed slightly lower performance, with an
accuracy of 88.33%, a precision of 90.19%, a recall of 88.33%, and an F1-score of 88.90%.
The superior performance of the RL model is attributed to its ability to combine
exploration, where random actions are taken, and exploitation, which leverages past
experiences. Moreover, the RL agent’s ability to effectively process reward signals resulted
in higher average rewards and scores compared to KNN. Specifically, the RL model
achieved an average reward of 3.87 and an average score of 146.93, compared to KNN’s
average reward of 3.80 and score of 119.87.

Compared to other baseline models—KNN, decision tree, and SVM—the RL
framework demonstrated clear superiority in optimizing pour-over coffee brewing
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variables, achieving significantly higher evaluation metrics and better consistency across
test episodes. While the results validated the approach through extraction yield and reward
maximization, the broader implications extend beyond the experimental setup. By
demonstrating that RL agents can autonomously learn high-quality brewing strategies, this
work lays the groundwork for integrating Al into artisanal processes, helping to balance
consistency and personalization. Such systems could enhance user experiences in smart
home appliances, support training in barista education, and reduce waste in high-end
coffee production. Furthermore, this approach offers a model for human-AlI collaboration
in food preparation, where transparent, adaptive, and scalable systems can bridge
traditional craftsmanship with modern automation.

In future work, additional brewing variables could be incorporated using technically
defined pathways. For example, flow rate could be modeled using a digital scale and flow
sensor to record real-time mass change and derive precise pouring profiles. Pour intervals
and agitation patterns could be encoded using discrete event timestamps or motion
sensors integrated into brewing hardware. These new inputs would require extending the
RL environment with multi-dimensional state representations and reward functions
calibrated using sensory metrics or expert feedback. Furthermore, a hybrid human-in-the-
loop setup could be tested, where the RL agent makes suggestions and human baristas
provide corrective feedback, accelerating convergence and interpretability.
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