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ABSTRACT
Background: Federated learning (FL) enhances network traffic classification (NTC)
with significant benefits in privacy, performance, and efficiency. However, the
distributed nature of FL exposes NTC models to critical adversarial attacks from
byzantine clients. These attacks, such as label flipping (LF) and model poisoning, can
severely degrade overall model performance, while backdoor and generative
adversarial network (GAN) based attacks can force the model to misclassify specific
traffic classes. Securing FL-based NTC is paramount, as these vulnerabilities pose
substantial threats to its vital role in network management, quality of service, and
threat identification.
Methods: While various defensive measures for FL exist, they are often ineffective
against multiple types of adversarial attacks, and their effectiveness diminishes as the
number of attackers increases. To address this gap, this study proposed SHeRAA-FL,
a secure framework for FL-based NTC. The framework secures the training process
by combining remote attestation scoring, hierarchical training, and adaptive
aggregation mechanisms, reinforced with hardware-level security and encrypted
communication. We developed and evaluated SHeRAA-FL on public datasets, such
as ISCX-VPN 2016 and N-BaIoT, benchmarking it against existing approaches,
including weighted averaging, median-mean, trim-mean, Krum, and Multi-Krum.
Results: The evaluation results show that SHeRAA-FL effectively mitigates the
impact of multiple types of adversarial attacks, even in scenarios with multiple
attackers. For example, in the LF attack, other approaches recorded a 99.6% accuracy
reduction, while SHeRAA-FL only recorded a 5.33% reduction. Moreover, in a
normal scenario, the framework produces a model with the highest accuracy of
0.9130, indicating minimal disruption to the FL process.
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INTRODUCTION
Network traffic classification (NTC) categorizes network data into predefined classes (e.g.,
Facebook, YouTube, Productivity/Gaming, Malicious/Benign). NTC enables effective
network management by leveraging on the increased visibility to perform tasks, such as
quality of service (QoS) provisioning, device fingerprinting, and threat identification (Zaki
et al., 2021). Applying federated learning (FL) to NTC provides numerous benefits. This
machine learning approach enables multiple clients to collaboratively train a model by
sharing only model updates, thus keeping their raw data private. Primarily, FL applications
enhance data privacy when training NTC models on large volumes of traffic data,
especially with deep learning algorithms (Guo & Wang, 2023). This enhanced privacy
encourages organizations to share model parameters as a form of collaborative intelligence.
This intelligence sharing helps the NTC model generalize across various network
environments and achieve higher classification performance (de Carvalho Bertoli et al.,
2023; Sarhan et al., 2022). Furthermore, FL enables model training on edge devices, which
reduces latency and bandwidth utilization (Kukreja et al., 2019). This deployment
proximity to user endpoints improves the classifier’s overall responsiveness.

However, the distributed nature of FL training makes FL-based NTC vulnerable to
various adversarial attacks, including label flipping (LF), model poisoning (MP), backdoor,
and generative adversarial network (GAN) based attacks. This vulnerability exists because
any participating FL client can become a Byzantine node and sabotage the training process,
either intentionally or unintentionally. A malicious Byzantine node can sabotage FL
training by conducting attacks that either degrade the NTC model’s performance (Rey
et al., 2022) or make the model produce specific outcomes that favour the attacker
(Holodnak et al., 2022). This poses significant security implications, as NTC plays a vital
role in network management, QoS, and threat identification. For example, the average cost
of a security breach reached USD 4.88 million in 2024, placing a significant financial
burden on organizations (IBM, 2024). Moreover, these security issues erode trust in
FL-based NTC, discouraging organizations from participating in the collaborative training
needed to improve model generalization.

To address these security issues, researchers have introduced various defensive
strategies for FL training, including value-based (Cao & Gong, 2022), distance-based (Cao
et al., 2024), and weighted-averaging approaches (Zhou et al., 2022). However, several
limitations in these approaches reduce their effectiveness at mitigating multiple types of
adversarial attacks.

For example, the effectiveness of value-based approaches like trimmed-mean decreases
as the number of attackers increases, and these methods only work against certain types of
attacks (Rey et al., 2022). Similarly, distance-based approaches such as Krum work under
the assumption that malicious clients constitute less than 33% of the total clients
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(Blanchard et al., 2017). Finally, the effectiveness of the weighted-averaging approach
depends on its ability to assign weights to benign clients correctly; this method only
reduces an attack’s influence rather than preventing it entirely (Xie et al., 2020).

In addition, the effectiveness of approaches using anomaly detection or reference
models depends on the availability of public datasets (Raza et al., 2022). Furthermore,
sign-based approaches may fail to detect subtle attacks where the poisoned data does not
alter the update’s direction (Guo, Xu & Zhu, 2023). Analysis of previous works reveals that
most existing defensive approaches are effective only against specific types of attacks,
rather than multiple types. The effectiveness of these measures also diminishes as the
number of attackers increases, potentially overwhelming the FL training process. Lastly,
many existing measures lack crucial security features, including hardware-level security,
encrypted communication, and identity verification. This absence of features exposes FL
training to external tampering, privacy leakage, and identity-based exploits like Sybil
attacks (Xiao et al., 2022).

To address this gap, this study proposes and develops a secure, hierarchical remote
attestation with an adaptive aggregation federated learning framework named SHeRAA-
FL. The framework contains three primary mechanisms: remote attestation scoring,
hierarchical training, and adaptive aggregation. The remote attestation scoring mechanism
verifies client trustworthiness, while the hierarchical training mechanism minimizes
security risks by clustering clients into similar domains. The adaptive aggregation
mechanism provides a dynamic method to filter and minimize the influence of multiple
poisonous updates.

In addition, the framework leverages hardware-level security to prevent tampering and
transport layer security (TLS) to ensure private communication between hosts. We
developed the framework in Python 3 and made the source code available via GitHub. To
evaluate the framework’s effectiveness, this study simulates various adversarial attacks with
multiple attackers using the ISCX-VPN 2016, Fashion-MNIST, N-BaIoT, and CIFAR-10
datasets. In summary, this article makes the following contributions:

(a) We propose SHeRAA-FL, a secure, hierarchical remote attestation with an adaptive
aggregation federated learning framework that mitigates the impact of multiple
adversarial attacks when training an FL-based NTC model.

(b) We developed the framework and federated learning testbed using Python3 and
software libraries related to deep learning, federated learning, networking,
cryptography, and the trusted platform module.

(c) We evaluate the framework against four types of adversarial attacks: LF, MP, Backdoor,
and GAN-based attacks, using ISCX-VPN 2016, Fashion-MNIST, N-BaIoT and
CIFAR-10 datasets. We also benchmark the results with existing defensive measures
such as trim-mean, median-mean, weighted averaging, Krum, and multi-Krum.

The evaluation results demonstrate that SHeRAA-FL is highly effective at mitigating
multiple types of adversarial attacks, even from multiple attackers, while introducing
minimal disruption in normal scenarios. It maintains high model accuracy with only slight
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reductions, such as 5.33% in LF, 1.13% in model cancelling, and 0.08% in gradient factor
attacks, significantly outperforming other measures like Krum, which saw a 99.6%
accuracy drop. The framework can mitigate backdoor attacks, achieving a zero success rate
where other defenses allowed over 40%, and effectively defends against GAN-based and
class-LF attacks by maintaining high F1-scores. Besides that, in a non-adversarial
environment, SHeRAA-FL achieves the highest accuracy (0.9131) compared to other
aggregation algorithms, proving its robustness and efficiency.

This study organizes the remainder of this article as follows: The second section
discusses related works on FL-based NTC, adversarial attacks, and defensive measures in
FL. The third section discusses the FL-based NTC architecture and training process. The
fourth section describes this study’s methodology, including the design of the proposed
framework. The fifth section presents and discusses experimental results that evaluate the
framework. Finally, the last section concludes the article and discusses future work. Table 1
lists the abbreviations, and Table 2 provides details on notations that we use in this article.

RELATED WORKS
This section provides background on related topics, including FL-based NTC applications,
adversarial attacks, and defensive approaches.

NTC classifies network traffic by analyzing patterns in protocol headers, payloads,
session flows, and other network packet information. Accurate network traffic
classification enables various network management applications, such as threat detection,
QoS provisioning, and device fingerprinting (Ariffin et al., 2025). Applying FL to train deep
learning (DL)-based NTC models shifts the training paradigm from centralized to
distributed. This paradigm shift addresses several issues in traditional DL-based NTC
training.

First, distributed training enhances data privacy because clients train the NTC model
locally on their own devices using their private data (Guo & Wang, 2023). In FL, clients
only need to send their model weight parameters to an aggregator to form a global model.
Second, performing distributed training without exposing local data encourages
organizations to collaborate on building more generalized NTC models (de Carvalho
Bertoli et al., 2023; Sarhan et al., 2022). For example, two universities with different
internet usage behaviors could share their local NTC model weights, creating a form of
shared intelligence to improve their respective IDS or content filtering capabilities.

Third, a more generalized NTC model achieves higher accuracy in classifying various
network services and threats (Popoola et al., 2022). Moreover, because FL does not require
transferring large training datasets to a central entity, its distributed training approach
optimizes resource utilization and reduces both latency and bandwidth consumption
(Ariffin, Zaki & Anuar, 2023). FL’s features also enable the training of DL-based NTC
models on resource-constrained edge devices, such as routers, firewalls, or switches, that
are closer to the user’s endpoint (Kukreja et al., 2019). Training the NTC model closer to
the user enhances the network administrator’s ability to filter content effectively and
protects the user from security threats. However, despite these benefits, applying FL in the
NTC domain introduces security vulnerabilities that researchers must address.
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Distributing training tasks across various clients makes the FL process vulnerable to
adversarial attacks, as any participating client can become a Byzantine node and sabotage
the training. Clients can become Byzantine nodes if an external party or a malicious insider
compromises the edge host. Additionally, insider attacks can occur due to client-side
software malfunctions or errors. The following subsections describe common adversarial
attacks against FL-based NTC:

(a) Label flipping. Malicious clients purposely tamper with the labels of their dataset and
then train their local models using this manipulated data. When a client sends a
parameter update for aggregation, it sends erroneous weights that degrade the global
model’s performance. In the context of traffic classification, flipping all class labels can
degrade the model’s overall accuracy to zero, while flipping only specific class labels
primarily increases the false positive rate (Rey et al., 2022). Colluding clients or an
attacker using a Sybil attack can further enhance the attack’s impact (Xiao et al., 2022).
In general, this attack is not subtle, as an administrator will likely notice severe drops in
overall performance. Thus, Nowroozi et al. (2024) proposed a more subtle attack
variation that degrades target class accuracy while only slightly degrading overall
performance.

(b) Model poisoning. This attack poisons the parameter updates sent to the aggregator
server by tampering with the model’s weights or gradients. Consequently, when the

Table 1 Abbreviations used in this article.

Abbreviation Description

ASR Attack success rate

DL Deep learning

1D/2D-CNN 1/2-Dimensional convolutional neural network

FB Facebook

FedAvg Federated averaging

GAN Generative adversarial network

IDS Intrusion detection system

LF Label flipping

MLP Multilayer perceptron

MM Median mean

MP Model poisoning

NTC Network traffic classification

PBM Packet byte matrix

PBV Packet byte vector

TCP/IP Transmission control protocol/Internet protocol

TEE Trusted execution environment

TLS Transport layer security

TM Trim mean

TPM Trusted platform module

WA Weighted averaging
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Table 2 Table of notations.

Variable Description Type Constraints/Range

FL-based NTC architecture, secure framework design & federated learning testbed setup

k FL clients Integer k > 1

Dk Clients’ domain no Integer 1 � Dk � k

N Total number of samples in the dataset Integer N > 1

xi The feature vector for the i-th sample Vector xi 2 Rd

Xk Clients’ local dataset Set Xk ¼ xi; yið Þf gNk
i¼1; where Nk � 1

XT Test or evaluation dataset Set XT ¼ xi; yið Þf gNk
i¼1; where Nk � 1

W The weight matrix of the model. Matrix W 2 Rk�d

Ak Local aggregator no Integer Ak = Dk

GS Global server ID Integer GS � 1

C ¼ C1;C2; . . . ;Ckf g Pre-defined clients list object Set of
objects

|C| = k

IDi Client’s ID no Integer IDi > 1

IPi IP Address String Must be in a valid IPv4 or IPv6 format

PCi Public certificate String Must conform to a standard format (e.g., X.509)

CP Client program code File object Must be a script file

HCP Pre-defined FL client program hash String Valid cryptographic hash format (e.g., SHA-128)

HACP Pre-defined client’s attestation program hash String Valid cryptographic hash format (e.g., SHA-128)

r FL training round Integer r � 1

Wr¼0 Initial model weight Matrix Dimensions must match model architecture, often
initialized to zeros.

Wk
r Client’s model weight at round Matrix Dimensions must match model architecture

E The total number of training epochs. Integer E � 1

g Learning rate Real 0 < g < 1

b Batch size Integer 1 � b � N

Pt Backdoor pattern threshold Integer 1 � Pt <Xk

APij Client’s attestation parameters Set of
objects

Contains attestation parameters (e.g., VCk, HCP)

~fTest :ð Þ Test model Object TensorFlow/PyTorch saved model

~fDomain :ð Þ Domain-level model Object TensorFlow/PyTorch saved model

~fGlobal :ð Þ Global model Object TensorFlow/PyTorch saved model

~fEval :ð Þ Evaluation model Object TensorFlow/PyTorch saved model

HPCk Client’s public certificate hash String Valid cryptographic hash format (e.g., SHA-128)

HCDk Clients’ local dataset hash String Valid cryptographic hash format (e.g., SHA-128)

VCk Client’s verification list Set of
objects

Contains PS, OP & BS

HVCk Verification list hash String Valid cryptographic hash format (e.g., SHA-128)

HCPk FL client program hash String Valid cryptographic hash format (e.g., SHA-128)

HACPk Client’s attestation program hash String Valid cryptographic hash format (e.g., SHA-128)

PS List of running processes List of
strings

–
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server aggregates these poisoned updates, the global model’s performance degrades.
Model-canceling attacks aim to neutralize the global model during aggregation by
setting the local model weights to zero (Rey et al., 2022). Another variant poisons the
parameter updates with Gaussian noise (Cao & Gong, 2022). Meanwhile, a gradient

Table 2 (continued)

Variable Description Type Constraints/Range

OP List of open port List of
integers

Each element must be within 1 � Port � 65;535

BS Client’s backdoor status Boolean True or False

F1k Client’s test model F1-score Real 0:0 � F1k � 100:0

Tk Client’s trust score Integer Tk � 0

sDi List of client’s trust score in domain List of
integers

–

HATDk Local aggregator token for each domain String Must be valid token with SHA-128 format

HTDk Client node verification token String Must be valid token with SHA-128 format

UCk Untrusted client list List of IDi Must be valid client ID

UR Dataset upload request Boolean True or False

HDTUCk Delegation token for untrusted client String Must be valid token with SHA-128 format

Gt GAN attack class threshold Integer Gt � 1

CWk Client’s weightage list List of
integers

Typically, all elements sum to 1
P

CWk ¼ 1

h Suspected GAN client list List of Each element must be a valid client ID

AGGBestðÞ Selected best aggregation algorithm Object Aggregation algorithm’s function (e.g., FedAvg, MM, Krum,
FedYogi)

Datasets and preprocessing & attack scenarios

xi The packet byte feature for the i-th sample Vector xi 2 Rd

Ci Traffic class Integer 1 � Ci � C, where C is the total number of classes.

yi The true label for the i-th sample Integer yi 2 0; 1 . . .Cf g
Xi The packet byte vector Vector xi 2 Rd

X Packet byte matrix containing feature and label
(Dataset)

Matrix xi; yið Þf gNk
i¼1; where Nk � 1

Xk Dataset shard for local client Set Xk ¼ xi; yið Þf gNk
i¼1; where Nk � 1

f Function Object –

DWm Model weight Matrix W 2 Rk�d

a Gradient negative factor Real a < 0:0

YTarget Target class no (e.g., 1 email, 2 FB Audio) Integer YTarget � 0

MMalicious Malicious class no Integer MMalicious � 0

m Poison sample no Integer m � 0

XB Backdoor pattern Vector 0 � XB � Xi

c Current features iteration Integer 0 � c � xi

YRandom Randomly selected of rows of label Vector Each element is a valid label yi

Prate Poison sample rate Real 0:0 � Prate � 100:0

xSynth Synthetic packet byte Matrix Dimensions match feature space xSynth 2 Rm�d
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factor attack multiplies the local model gradient with a negative value to neutralize its
training contribution (Blanchard et al., 2017). The MP attack typically has a broad and
overt impact, as it tends to degrade the overall model accuracy significantly.

(c) Backdoor attack. This attack aims to cause the global model to misclassify specific
traffic classes by implanting backdoor patterns during local model training (Holodnak
et al., 2022). When the server aggregates the model parameters, it incorporates the
backdoor pattern into the global model. During inference, the attacker can use a trigger
pattern to make the model classify traffic to a specific outcome. For example, in an IDS
setup, an attacker can use a backdoor to cause the IDS to classify malicious traffic as
benign (Nguyen et al., 2021). Compared with LF and MP attacks, the backdoor attack is
targeted and subtle because a successful attack should not noticeably degrade overall
model accuracy.

(d) GAN-Based attack. This attack leverages a generative adversarial network (GAN) to
generate synthetic traffic data, introducing classification bias into the global model.
The attacker trains the GAN on traffic data similar to that of legitimate FL clients. The
attacker then injects synthetic data with artificially incorrect labels into their training
dataset (Zhang et al., 2019). This causes the model to become biased toward certain
classes while maintaining overall accuracy. Furthermore, an attacker can also use
GANs to generate a backdoor pattern and poison the FL model (Zhang et al., 2021a).

To mitigate and recover from the impact of adversarial attacks during FL training,
various defensive measures have been proposed. The value-based approach examines the
values of the parameters updated to filter extreme values or outliers during aggregation.
For example, the median-mean (MM) method calculates the median for each parameter
before averaging to exclude extreme values of the poison data. Another example is the
trim-mean (TM) method, which removes a percentage of the lowest and highest values of
the parameters before averaging to filter extreme values. In Rey et al. (2022), both methods
have been used to mitigate adversarial attacks during FL training. While the norm clipping
method clips the gradient if it exceeds the threshold value set by the administrator (Cao &
Gong, 2022). However, the effectiveness of the value-based approach diminishes with
multiple numbers of attackers and may only work for specific types of attacks, as
demonstrated in Rey et al. (2022).

The distance-based approach calculates distances between updates to identify and
exclude those that deviate significantly from the majority, which could indicate malicious
intent. One example of a distance-based approach is Krum (Blanchard et al., 2017), where
it works by selecting the most reliable update for aggregation by calculating pairwise
Euclidean distances between updates. Multi-Krum extends it by selecting several of the
least distant updates. However, Krum assumes that malicious participants constitute less
than 33% of total clients, which makes it less effective with a large number of attackers. Shi
et al. (2023) and Fung, Yoon & Beschastnikh (2018) calculates the Euclidean distance
between models and considered scenarios such as benign vs benign and malicious vs
benign. The detection of malicious updates occurred by analyzing the historical updates
between the models.
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In LFGurad (Sameera et al., 2024), the method employed Multi-Class SVM (MCSVM)
for detecting malicious updates, a process that involved calculating the distance from each
sample point to various class-specific hyperplanes. SRFL proposed by Cao et al. (2024)
further enhances distance-based approaches by utilizing a trusted execution environment
(TEE) and aggregation method, which clusters client updates based on the calculated
distance between shared representations and membership degree. However, the
distance-based approach is sensitive to parameters with high variance, which leads to
higher false positives. Moreover, there is a lack of evidence that the approach can mitigate
model poisoning and GAN-based attacks.

Researchers increasingly use hardware-based security approaches, such as trusted
platform modules (TPM) and TEE, to secure the FL process. This trend occurs because
most attacks involve tampering with either the datasets or the FL code. Thus,
hardware-based approaches provide foundational trust for FL systems by protecting the
integrity and confidentiality of FL components on individual client devices. Clients can use
a TPM to securely store their unique cryptographic keys, sign parameter updates, or ensure
they run untampered code.

For example, Huang et al. (2022) used a TPM for remote verification of data integrity
and for storing results. However, a TPM only protects data-at-rest, while the system
processes data in the main host memory or CPU. In contrast, a TEE offers more
comprehensive protection by creating an isolated enclave where the system can execute the
FL process. Following this approach, Cao et al. (2024) leverage a TEE to safeguard sensitive
FL components from tampering, and Muhr & Zhang (2022) use TEE to shield local client
updates. However, TEE requires a specialized CPU with features that are typically only
found in enterprise-grade hardware. A TPM, on the other hand, is more readily available,
and operating systems like Windows 11 now make it a default installation requirement.

Meanwhile, the weighted averaging (WA) approach aims to limit the influence of
malicious updates by assigning different weights to clients and often use in tandem with
other approaches such as distance-based detect malicious updates. In the pFL-IDS (Thein,
Shiraishi & Morii, 2024), clients were reweighed based on a normalized similarity score,
where the malicious client had a larger deviation from the global model value. However,
the effectiveness of theWA scheme relies on the server’s ability to identify malicious clients
and assign the correct weight values accurately. There are several methods to identify
malicious clients, such as calculating model distances of the neighbour (Shi et al., 2023) or
outlier detection (Xu et al., 2022). However, its effectiveness is limited to specific types of
attacks and datasets, as shown in Zhou et al. (2022). Moreover, the approach only reduces
the effectiveness of a backdoor attack for specific datasets instead of preventing it
altogether, especially if it involves multiple attackers (Xie et al., 2020).

Raza et al. (2022) proposed another defensive approach that uses anomaly detection,
creating a reference model trained on a public dataset. If the discrepancy between the
reference and auditor models exceeds a threshold, the framework flags the update as
malicious and removes it from aggregation. However, this framework cannot detect small,
colluding poisoning attacks or more advanced threats like backdoor or GAN-based
attacks. Furthermore, this detection method may fail when a relevant public dataset is
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unavailable. In another work, Guo, Xu & Zhu (2023) introduced a sign-based approach to
detect poisoning attacks in parameter updates. The sign of a gradient indicates its direction
of change (i.e., whether it is positive or negative). However, the sign-based approach might
fail to detect subtle yet harmful manipulations that do not alter an update’s direction.
Moreover, the authors did not evaluate its effectiveness against GAN-based attacks.

Table 3 summarizes related works by mapping each work’s approaches, methods,
applications, datasets, attack evaluations, security features, strengths, and weaknesses. The
table also lists the adversarial attacks that the original authors used for evaluation and
demonstrates the reported effectiveness of each approach. In summary, most existing
defenses effectively counter only specific, rather than multiple, types of attacks. The
effectiveness of these approaches also diminishes as the number of attackers increases,
especially when malicious clients collude. Additionally, current approaches have several
other limitations, including a high risk of false positives, a dependency on public datasets,
and the potential for sign-based methods to miss subtle attacks. Furthermore, researchers
did not explicitly design most proposed defenses for the FL-based NTC workflow;
consequently, these defenses lack features such as hardware-based security,
communication privacy safeguards, and client identity verification. Therefore, future work
should focus on enhancing defensive effectiveness against multiple adversarial attack types
in FL-based NTC.

FL-BASED NTC ARCHITECTURE
This section describes the architecture and training process for our FL-based NTC model.
Using FL for training a deep learning (DL) based NTC model shifts the paradigm from
centralized to distributed training. Figure 1 shows a typical FL-based NTC training
architecture, which this study adapts from the work of Ariffin, Zaki & Anuar (2023), Guo
& Wang (2023), Popoola et al. (2022) and Wang et al. (2018).

FL-based NTC training uses a centralized topology that connects multiple edge devices
(FL clients) to a central aggregation server. In this architecture, all FL clients send their
parameter updates directly to the server. Each edge device, such as a firewall or gateway
router, operates within an organization’s boundary to provide network services. Because
these devices forward traffic, they can collect and preprocess data from local endpoints like
workstations, laptops, and Internet of Things (IoT) devices.

The edge devices use this local data and various DL algorithms to train their own NTC
models. After local training, each device uploads its model parameters to the central server.
The server then aggregates the parameters from all clients to build and refine a global
model. Finally, the server distributes the updated global model parameters back to the edge
devices. This collaborative approach allows different organizations to build a robust,
shared model without exchanging sensitive local data. The entire FL-based NTC training
process, which Fig. 1 depicts, consists of the following steps:

(1) Traffic data collection and preprocessing (Client). Before training begins, the FL
clients need to collect traffic data by capturing the raw packet bytes from the network
interface responsible for forwarding traffic to the local endpoint devices. After that, the
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raw packet bytes need to be saved into packet capture (PCAP) files for easier
processing. These raw packet bytes undergo preprocessing before being used in local
model training. The preprocessing method used by this study is discussed in the
methodology section.

(2) Negotiate feature space (Server-Client). The server and clients negotiate a common
feature space, X ¼ x1; x2; . . . ; xnð Þ, using a horizontal FL setup where different edge
nodes share the same feature space but possess distinct traffic samples. Each feature, xi,
represents the value of the i-th packet bytes. Therefore, agreeing on the same feature
space is crucial before collaborative training begins between the server and FL clients.

(3) Initiate model parameters (Server). The server initiates the process by creating an
initial model based on various types of DL algorithms. This study uses a multilayer
perceptron (MLP) and, in the initialization steps, sets the model with an empty weight
vectorW ¼ 0. It then sets the hyperparameters required for FL training, including the
number of rounds r, epochs E, learning rate g, and batch size b.

(4) Download initial model parameters (Client). The edge clients download the initial
model along with the hyperparameters and feature space set by the server.

(5) Train local model (Client). Using the downloaded initial model Wk
r ¼ 0 and

hyperparameters, each edge client trains the local model with its local dataset Xk. The
local model training is conducted based on DL algorithm chosen by the server when
initiating the model parameters. During this local training step, a malicious client can
manipulate its training data or model weights to poison the local model. The server

Figure 1 Typical FL-based NTC training architecture. Full-size DOI: 10.7717/peerj-cs.3215/fig-1
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cannot control this process because each client performs its training locally and
independently.

(6) Upload local model parameters (Client). The edge clients upload the weightsWk
rþ1, of

their trained local models to the server for aggregation with parameters from other
local models. During this step, a malicious client will send a poisonous weight update to
the server, intending to corrupt the aggregation process and the resulting global model.

(7) Aggregate model parameters (Server). The server aggregates the local model weights

using the Federated Averaging algorithm Wavg¼
Pk

i¼1
ni
N
Wi where W1;W2; . . .;Wk

represent the weights of the models from edge clients k, each with the local dataset X
size nk and N is the total dataset size N ¼ n1;n2; . . .; nk. The server then distributes the
aggregated model weight back to all clients as Wk

rþ1 ! all k. The typical federated
averaging (FedAvg) algorithm provides good aggregation performance, however it
doesn’t provide protection against adversarial attacks. Thus, robust aggregation
algorithm such trim-mean or Krum are needed to mitigate the impact of adversarial
attacks during model aggregation.

(8) Update local model (Client). Each client updates its local model with the new
aggregated weights from the server. The clients repeat this training and updating cycle
(steps 4–8) for a predetermined number of communication rounds r. This iterative
process allows each client to indirectly learn from the traffic patterns of other
organizations, which enhances the model’s overall accuracy and generalization. Once
the process completes the maximum number of rounds, the FL training concludes. The
server then distributes the final global NTC model to all edge clients for inference.
However, without effective defensive measures, the server will inadvertently distribute
a poisoned global model to all participating clients, compromising the entire network.

METHODOLOGY
This section details the design of our proposed framework, which secures the FL-based
NTC training process against various adversarial attacks. The framework uses three core
mechanisms to detect and mitigate these threats: remote attestation scoring, hierarchical
training and adaptive aggregation mechanism.

Additionally, this section discusses the methodology for evaluating the effectiveness of
the proposed SHeRAA-FL framework in mitigating multiple types of adversarial attacks.
The discussion includes the federated learning testbed setup, network traffic datasets, data
preprocessing, and attack scenarios. Figure 2 shows this study’s research flowchart. The
research starts with a literature review to identify the problems and limitations of existing
adversarial defenses for FL-based NTC. Based on these limitations, this study designs a
framework to provide enhanced defense against multiple types of adversarial attacks. After
designing the framework, we implemented it using Python and related libraries on a
TPM-enabled host.

To evaluate the framework’s effectiveness, this study set up a federated learning testbed
for NTC training, which we explain in the following subsection. We must pre-process the

Ariffin et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3215 14/43

http://dx.doi.org/10.7717/peerj-cs.3215
https://peerj.com/computer-science/


raw packets in the datasets before we can begin the evaluation. We explain these
pre-processing steps in the next subsection. For the evaluation, this study conducted four
main experiments, one for each adversarial attack type: label flipping, model poisoning,
backdoor, and GAN-based attacks. Each experiment uses a similar setup with five
scenarios: a normal (control) scenario, and scenarios with one, two, three, and four
attackers.

In each of the attack scenarios, this study used several defensive aggregation algorithms
as benchmarks. These algorithms represent different defensive approaches against
adversarial attacks in FL. The algorithms include:

(a) FedAvg. This is the standard “vanilla” FL aggregation approach.

(b) Weighted averaging (WA). This approach limits the influence of malicious updates. In
this study experiment, we assumed the server had already identified the malicious
clients and assigned a lower weight (20%) to their parameter updates. Previous studies
by Zhou et al. (2022) and Shi et al. (2023) used similar variants to mitigate adversarial
attacks.

(c) Median (MM) and trimmed mean (TM). These value-based approaches defend the FL
training by excluding extreme (outlier) values from the client updates during
aggregation.

(d) Krum and Multi-Krum. These distance-based approaches filter outlier updates by
calculating the distance between various client updates and excluding those that are too
far from the main cluster.

Many studies use MM, TM, Krum, and Multi-Krum as standard benchmarks for
evaluating FL defenses (Cao et al., 2024; Fung, Yoon & Beschastnikh, 2018; Sameera et al.,
2024; Rey et al., 2022; Thein, Shiraishi & Morii, 2024). This study also benchmarked the
framework with other approaches such as LFGurad (Sameera et al., 2024), FoolsGold
(Fung, Yoon & Beschastnikh, 2018), pFL-IDS (Thein, Shiraishi & Morii, 2024) and SRFL

Figure 2 Research flowchart of this study. Full-size DOI: 10.7717/peerj-cs.3215/fig-2
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(Cao et al., 2024). After collecting the experimental results, we evaluated and discussed the
framework’s effectiveness. The evaluation also discusses the computational overhead of the
framework.

Secure framework design
This study proposes the SHeRAA-FL framework to enhance the defensive measures
against multiple adversarial attacks for FL-based NTC. The framework consists of three
main mechanisms: remote attestation scoring, hierarchical training, and adaptive
aggregation. Figure 3 shows a diagram of a high-level overview of SHeRAA-FL.

The proposed framework clusters the FL clients based on domain in a hierarchical
topology to enhance data privacy. Each edge client belongs to a domain, and multiple
domains Dk can join the FL training. Each client within the domain belongs to the same
organizational or administrative boundary. For example, a university campus network has
two edge devices participating in FL, where each edge device serves as a gateway router for
different faculty. Thus, both edge devices are clustered in the same domain. Besides that,
the framework organizes the hosts in a hierarchical topology, which has global, domain,
and edge tiers. The edge is the lowest tier, which contains FL edge clients such as firewalls,
switches, or routers that filter and forward endpoint traffic. The client captures a sample of
the endpoint packets and uses it as a local dataset Xk for training. The clients have a TPM
and data store module for storing attestation-related data. They also have a program

Figure 3 High-level overview of SHeRAA-FL framework. Full-size DOI: 10.7717/peerj-cs.3215/fig-3
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containing instructions on training local models and participating in the attestation and FL
process.

Meanwhile, the domain tier contains a local aggregator Ak which verifies and aggregates
the parameters {APkj; Wk

r } of FL clients within the domain Dk. The local aggregator has all
the modules of normal clients with the addition of a domain verifier and an adaptive
aggregation module. Besides that, local aggregators also perform the training tasks of
normal clients. The local aggregator produces a domain-level model ~fDomain :ð Þ by
aggregating the weight parameters of clients within its domain. Lastly, the global tier
contains a global aggregator server with TPM, a global verifier, and an aggregator module.
The global aggregator produces a global model ~fGlobal :ð Þ by aggregating the parameters of
the domain model sent by the local aggregator of each domain.

Figure 4 outlines the flow of the FL training process within the SHeRAA-FL framework.
The process begins with an initialization stage where the clients perform data
preprocessing on their local datasets. Next, the global server and the clients generate public
and private keys to create digital certificates. The framework requires these certificates to
establish encrypted TLS communication and verify host identities. After that, the clients
train an evaluation model and create a verification list, both of which are necessary for the
remote attestation process. The server and clients then engage in a remote attestation
scoring process. Then, the framework starts with the hierarchical training and adaptive
aggregation process, which continues until the process reaches the maximum training
round. Once training is complete, the server distributes the global NTC model to the
clients for inference.

The following are details on remote attestation scoring, hierarchical training, and
adaptive aggregation mechanisms.

(a) Remote attestation scoring. Before FL training began, the framework’s first step was
establishing trust among the FL server and clients via the remote attestation scoring
process. Algorithm 1 shows the framework’s remote attestation scoring process. The
proposed framework leverages hardware-level security, such as TPM, to store server

Figure 4 SHeRAA-FL training process. Full-size DOI: 10.7717/peerj-cs.3215/fig-4
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Algorithm 1 Remote attestation scoring process.

Require: Pre-defined clients list C ¼ C1;C2; . . . ;Ckf g containing clients’ identification number IDi, domain ID Di, IP address IPi, and public
certificate PCi for the client i ¼ 1; 2; . . . ; k. Pre-defined FL client program hash HCP, client attestation program hash HACP, initial model weight
Wr¼0, hyperparameters {training round r; epochs E, learning rate g, batch size b}, Backdoor pattern threshold Pt ¼ 5;000;

1. Client Initialization: Each client k prepare attestation parameters APij which contains a test model ~fTest :ð Þ,
2. FL program hash HCPk, attestation program hash HACPk, public certificate hash HPCk,

3. local dataset hash HCDk, verification list VCk and verification list hash HVCk.

4. Each client k train ~fTest :ð Þ using Xk, and calculating the hashes HCPk, HACPk, HPCk, and HCDk.

5. Each client k Generate VCk ¼ PS;OP;BSð Þ verification list and check potential backdoor in local dataset.

6. PS containing number of running processes, OP number of open ports and BS client’s backdoor status.

7. Client Attestation Program Check for Backdoor Pattern:

8. For each row in Xk do:

9. If bytes in row not in recurring_pattern: recurring_pattern.append(row);

10. Else: PatternCount++;

11. End For

12. If PatternCount >= Pt: backdoorStatus BS = True and remove pattern;

13. After client k finished with VCk, then generate HVCk.

14. all clients k establish TLS connection to the global server using server PCGS and upload all APij

15. Global Server GS Verify Uploaded Parameters:

16. If client k fIDk Dkj j IPi jHACPkj HPCkg 6¼ Ck stored by the server:

17. Drops client APk and remove client k from FL network;

18. Else store APkj in TPM:

19. HCPIDi ;HACPIDi ;HCDIDi ;HVCIDi ;HPCIDif g ! TPM GSð Þ for IDi ¼ 1; 2; . . . ; k

20. Attestation Scoring Process:

21. For each domain Dk:

22. finds PSmin ¼ min PS1; PS2; . . . ; PSkð Þ; OPmin ¼ min OP1;OP2; . . . ;OPkð Þ from
23. all VCk in domain Dk, then evaluate ~fTest :ð Þk using XT test dataset and finds

24. F1max ¼ max F11; F12; ::; F1kð Þ the model with the highest accuracy;

25. For each client k in domain Dk :

26. If client HCPk ¼ HCP: add client k score Tk ¼ Tk þ 15;

27. Else: Tk ¼ Tk þ 0; Client k become UCk untrusted client.

28. If PSk= PSmin Or OPk= OPmin: add client k score Tk ¼ Tk þ 5;

29. Else: Tk ¼ Tk þ 0.

30. If client BS ¼ False: add client k score Tk ¼ Tk þ 5;

31. Else: Tk ¼ Tk þ 0.

32. If F1k = F1max : add client k score Tk ¼ Tk þ 10;

33. Else If F1k >= 60%: add client k score Tk ¼ Tk þ 5;

34. Else: Tk ¼ Tk þ 0;

35. End For
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and client FL program and verification parameters in a secure enclave to minimize the
risk of tampering during the attestation and training process. This study selected the
TPM for this study due to its wide availability in commodity computing hardware. In
contrast, a TEE requires specialized processors that include features like Intel SGX or
ARM TrustZone.

The process starts with the initialization stage, where each client k generate and
prepares attestation parameters APij which are needed by the global server GS to
calculate client k trust score Tk. The attestation parameters APij contains test model
~fTest :ð Þ which are trained using client k local dataset Xk, local dataset hash HCDk,
verification list VCk, a hash of the client’s FL program HCPk, attestation program
HACPk, public certificate HPCk, and verification list HVCk. The training of the test
model only involves several epochs to shorten the training time, as it is only used by GS
to evaluate the dataset quality. Meanwhile, for the VCk, the clients’ attestation program
provides the number of running processes PS and open port OP on the host. Besides
that, the clients’ attestation program also checks Xk from potential backdoor patterns.
If the recurring pattern exceeds the threshold Pt value, the attestation program sets the
backdoor status BS as True, remove the identified pattern and include the information
in VCk. The threshold value is hardcoded in the remote attestation program, and
tampering with it causes the program’s hash value to differ from the global server
reference value.

After initialization, clients k send the APij to GS via TLS to ensure communication is
kept private and the client communicates with the verifiable global server to avoid

Algorithm 1 (continued)

36. End For

37. Local Aggregator Selection Process:

38. For each domain Dk:

39. Finds highest trust score Tk from all sDi in domain Dk; Tmax ¼ max Tkð Þ;
40. For each client k in domain Dk:

41. If Tk = Tmax : select k! Ak as an aggregator for domain Dk; Server generates

42. HATDk aggregator token, store in TPM, and send the token to client k;

43. The server also send attestation parameters HATDk; sDi ;HCP;HACP;HTDk;APDk;UCDkf g ! Ak

44. along with Wr¼0, hyperparameters, trust score and untrusted client list. Then Ak store in TPM.

45. Else: The Global Server generates HTDk node verification token, store in TPM and

46. If client k in untrusted client UCk list:

47. send the token to client k along with dataset upload request UR and HTDk; IPAD ; PCADf g ! k;

48. Else:

49. send the token to client k along with HTDk; IPAD ; PCADf g ! k;

50. client k store the parameters in TPM HTDk;HCDkf g ! TPM kð Þ;
51. End For

52. End For
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spoofing. When GS receives the client k APij, first, it verifies the information by
comparing it with the pre-defined client list C ¼ C1;C2; . . . ;Ckf g. If there is a
discrepancy with the client’s IDk, domain number Dk, IP Address IPk, public certificate
HPCk, or the attestation program hash HACPk the server removes the suspected client
data from training. Tampering with the APij indicates an attempt to bypass the
attestation process or initiate a Sybil attack, which involves creating multiple fake
identities (Xiao et al., 2022).

Once verified, the valid clients’ hash values are stored in the server’s TPM to avoid
tampering during the ongoing attestation process. The attestation scoring process is
conducted per domain based on information in the attestation parameters APij. First,
client k with verified FL client programs HCPk are given fifteen trust score Tk, while
clients with tampered FL client programs are given zero points and added to untrusted
client UCk list. Clients with tampered programs have a higher risk of being malicious,
and attackers can manipulate the structure of the model and update parameters by
tampering with the FL program. The proposed algorithm will take further action on
clients with tampered datasets without resorting to simply discarding the potentially
clean dataset. Second, clients with minimum PS or OP are given five points Tk each, as
clients with lower values have a lower risk of being compromised. Third, clients with no
suspected backdoor pattern are given five trust points Tk.

The fourth criterion is the clients’ test model ~fTest :ð Þ performance. The client with the
highest F1-score is given 10 points, while clients with an F1-score of more than 60% are
given five points Tk. Higher test model performance is a good indicator that the client
datasets have a lower risk of being poisoned, while models with more than 60% F1-
score indicate the client has a reliable dataset for training the NTC model (Jenefa &
Edward Naveen, 2023). The trust score assigned to each evaluation criterion is based on
the severity of potential security risks. For example, tampering with the FL program has
the highest severity; thus, a potentially malicious client is penalized fifteen points as
tampering with the FL program enables attackers to modify the model structure,
update parameters, and bypass security protocols. Meanwhile, clients with low test
model accuracy are penalized with 10 to 5 points as it is a good indicator that the
dataset has been poisoned. Moreover, the trust score value is also derived by
experimentation during the design stage to ensure less risky clients are chosen as local
aggregator Ak and risky clients’ trust score Tk are penalized to reduce their influence
during the adaptive aggregation mechanism.

After GS calculates the trust score Tk for each client k in the domain, the client with
the highest Tk in the domain is selected as the local aggregator Ak for the domain Dk.
To uniquely identify the Ak, GS generates an aggregator token HATDk and stores the
token in TPM. The GS sends the token to Ak along with other information, such as
trust score Tk, FL Client program hash HCP, local dataset hash HCDk, APDk,
verification tokenHATDk and untrusted client listUCDk of all clients k in its domainDk,
which are needed during the hierarchical training process. Meanwhile, for other clients
k, if the client is untrusted UCk, GS send verification tokenHTDk, local aggregator IPAD ,
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local aggregator public certificates PCAD , along with a dataset upload request UR which
will be used for the training delegation process during hierarchical training. For other
client k not in untrusted client UCk, GS only send a verification token HTDk, local
aggregator IPAD , and local aggregator public certificates PCAD . Both local aggregators Ak

and clients store the information they receive in TPM to prevent tampering.

(b) Hierarchical training. After selecting local aggregator Ak and assigning trust score Tk,
the framework begins with the hierarchical FL training. Algorithm 2 shows the
hierarchical training process of the framework. Client k; which received aggregator
token HATDk assume the role of Ak and listens for client requests via TLS. Meanwhile,
others become local clients and establish communication with local aggregators via
TLS using local aggregator IP address IPAD and public certificate PCAD received from
global server GS earlier. If clients k received dataset upload request UR from GS during
remote attestation process, the client requires them to upload their local dataset Xk to
the selected Ak of domain Dk using its IDk and HTIDk as identification.

Meanwhile, clients k which doesn’t receive UR are only require to send the hash of
their local dataset HCDk and their FL client program CP to the selected Ak of domain
Dk using its IDk and HTIDk as identification. At this stage, only the suspected untrusted

clients UCk are given a choice either to upload their local dataset Xk to the selected Ak

of domain Dk or being removed from the FL training. To ensure data privacy, the local
dataset Xk is uploaded only to Ak in Dk, thus the local dataset Xk is not exposed to the
host such as GS, Ak or client k outside the organizational boundary. Moreover, to avoid
unnecessary usage of bandwidth, only untrusted clients UCk requires uploading local
dataset Xk to Ak which nearest to UCk. This is to avoid simply discarding a good
dataset although the client’s FL program has been compromised.

After that, the selected Ak perform verification process for clients k in its domain Dk.
The verification process is crucial to ensure the clients k do not alter any data after the
remote attestation process with GS. The initial steps involve the Ak verifying the FL
program CP and local dataset hash HCDk. The verification is done differently for
untrusted and normal clients. If the client k in untrusted client UCk list, first Ak check
the verification token HTIDk and the uploaded Xk. If the token mismatch from
information received from GS or clients k refuse to upload the Xk, Ak removes the
client from FL training along with its data. On the other hand, if the client k upload Xk

to Ak secure storage, Ak delegates the client’s training task to other trusted clients.
The delegation process involves generating a delegation token HDTUCk and new

IDUCk , then sending the untrusted client’s dataset XUCk to the selected trusted client.

The new IDUCk instance will inherit the trust score Tk of the untrusted client UCk. If
there is no suitable, trusted client to delegate, the training task will be delegated to the
local aggregator Ak. This will ensure the UCk local dataset Xk is not simply discarded
and trained using a verified FL training program. Although there is a risk to the dataset
Xk is poisoned by the malicious client, the risk will be minimized by an adaptive
aggregation mechanism. Meanwhile for normal clients k, Ak check the verification
token HTIDk , local dataset hash HCDk and FL client program hash HCP. If any of the
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Algorithm 2 Hierarchical training process.

Require: Aggregator HATDk token, node verification token HTDk, client trust score sDi , client attestation parameters APij, local aggregator IP IPAD ,
public certificate PCAD , Wr¼0, hyperparameters, untrusted client UCk list;

1. If client k received HATDk: k! Ak become a local aggregator in the domain Dk and start running

2. aggregator and client program, listen to client requests via TLS

3. using IPAD and PCAD ;

4. Else If client k received HTDk: Become a local client in the domain Dk and start

6. client program and use IPAD and PCAD to initiate a TLS connection with Ak domain Dk,

7. If client k received dataset upload request UR:

8. upload local dataset Xk to local aggregator Ak with its IDk and HTIDk ;

9. Else:

10. upload only local dataset hash HCDk and FL client program CP to

11. local aggregator Ak with its IDk and HTIDk ;

12. Client Verification: Ak verify client k FL program and local dataset hash HCDk

13. For each client k:

14. If client k in untrusted client UCk list:

15. If client k HTIDk mismatch

16. Ak remove client k from FL training; Break;

17. If client k upload Xk to Ak:

18. Generate HDTUCk delegation token, and new client IDUCk for UCk then

19. delegate the training process to other trusted client k;

20. Ak remove client k from FL training;

21. For valid client k:

22. If client k sk � 15 And not been delegated, excluding aggregator:

23. Send UCk with XUCk , HDTUCk and New IDk. Then client k start another

24. client instance using XUCk as dataset, HDTUCk as token and IDUCk . Break;

25. End For

26. If no trusted client is available: Ak perform the training for UCk;

27. Else: Ak remove client k from FL training;

28. Elif client k Not in untrusted client UCk list:

29. If client k HTIDk Or HCDk Or HCP mismatch with information received from GS:

30. Ak remove client k from FL training;

31. Ak update TPM latest sDi , HDTUCk and other hashes;

32. HATDk; sDi ;HCP;HACP;HTIDi ;HCDIDi ;HDTUCkf g ! TPM Akð Þ for IDi;

33. End For

34. Domain-Level Aggregation: Send all client k Wr¼0 and hyperparameters;

35. For each round r do:

36. For each client k do:

37. Send updated weight to the client k: Wk
r ¼W; Client k trains the model on
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values mismatch with information received from GS, Ak Remove the client from FL
training and its data as it indicates the client has malicious intentions. Before
completing the verification process, Ak once again updates its TPM to include changes
related to token and trust score.

Once the domain-level verification is done, FL training starts when the local
aggregator Ak sends the clients in domain Dk with the initial NTC model weightWr¼0
and training hyperparameters. This is to ensure all local clients are training using the
same model structure and parameters, such as r training round, E epochs, g learning
rate, and b batch size. The clients train the NTC model using its local dataset and then
send its weight parameters along with a verification token. If the token is valid, the local
aggregator aggregates the local model’s weight parameters via the adaptive aggregation
mechanism. At the end of the training round, the local aggregator produces a domain
model ~fDomain :ð Þ based on parameter updates from the local clients. The adaptive
aggregation process will be discussed in the following subsection.

After training the domain model, the local aggregator in each domain sends the
weight of the domain model to the global aggregator server along with the aggregator
token HATDk for verification. If the token is valid, the global server aggregates the
domain model’s weights using averaging methods and distributes back the weighted
average to all local aggregators. After that, the local aggregator updates the weight of
the domain model to form a global NTC model ~fGlobal :ð Þ which is then distributed to all
clients for inferences and classifying traffic.

(c) Adaptive aggregation. During hierarchical training, the framework aggregates the
weight parameters of the clients via an adaptive aggregation process, as detailed in

Algorithm 2 (continued)

38. its dataset Xk using Wk
r and generate local model parameters;

39. Wk
rþ1¼ argminðWk

r ; loss functionðWk
r ÞÞ; Client k send Wk

rþ1 with HTDk;

40. End For

41. Ak aggregates client k weight Wk
r with Adaptive Aggregation(Wk

r ),

42. ~fDomain :ð Þ ¼ Adaptive Aggregation(Wk
r );

43. End For

44. Global-Level Aggregation:

45. For each Ak for all Dk do:

46. Send HATDk and ~fDomain :ð Þ weight WD
rþ1 to global aggregator server;

47. If HATDk valid: Accept WD
rþ1; Else: Drop WD

rþ1;

48. End For

49. The global server aggregates the domain model WD
rþ1and compute weighted average,

50. then distributes the weighted average to all Ak; Wk
rþ1 ! all Ak. After that Ak

51. updates the weight of ~fDomain :ð Þ to form a global model ~fGlobal :ð Þ. Then Ak

52. distribute updated ~fGlobal :ð Þ to all client k in Dk: ~fGlobal :ð Þ ! all k;
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Algorithm 3 Adaptive aggregation process.

Require: sDi for Dk,Wr¼0, r training round, E epochs, g learning rate, b batch size, Gt ¼ 2 GAN threshold.

1. Check for GAN Attack:

2. If round r ¼ 1:

3. For each client k do:

4. Evaluates client k parameter update as ~fEval :ð Þ. class_index = 0;

5. For class_F1_Score in ~fEval :ð Þ do:
6. If client IDk == IDAk : eval_bench[class_index] = class_F1_score;

7. Else:

8. If eval_bench[class_index] >= 0.1:

9. If class_F1_Score < 0.1: gan_count++; gan_client.append(IDk);

10. class_index ++;

11. End For

12. End For. If gan_count >= Gt: ganStatus = True;

13. Calculate Client Weightage: Find sMedian median value of client trust score.

14. If ganStatus == True: count(gan_client) as h and k – count(gan_client) as K;

15. For each client k do:

16. If client k in gan client: Assign client weight CWk ¼ 10
h
; Else: CWk ¼ 90

K
;

17. End For

18. Else If all client k sDi � sMedian: all client k weight CWk ¼ 100
k
;

19. Else: Find number of clients k where sk � sMedian as K and sk < sMedian as h;

20. For each client k do:

21. If client k sk � sMedian: Assign client weight CWk ¼ 80
K
; Else CWk ¼ 20

h
;

22. End For

23. Model Aggregation:

24. For each round r do:

25. If round r ¼ 1: AGGBestðÞ ¼ FedAvg Wk
rþ1

� �
;

26. Else If round r ¼ 2:

27. Ak aggregates client k local model weight Wk
rþ1 via multiple algorithms to

28. form multiple test models ~f Testi :ð Þ; e.g., Median Mean, Krum;

29. Ak evaluate all ~f Testi :ð Þ using XT and find the highest value;

30. F1i ¼ Evaluate ~f Testi :ð Þ;XT

� �
where i ¼ MM;TM10; . . . ; k algorithm;

31. F1max ¼ max F11; F12; ::; F1kð Þ;
32. ~f Testk :ð Þ with the highest accuracy selected as the best algorithm AGGBestðÞ;
33. Else: AGGBestðÞ ¼ AGGBest Wk

rþ1
� �

;

34. Ak aggregates client k local model weight Wk
rþ1with AGGBestðÞ and set weight

35. of each client k based on CWk; Return Wk
rþ1 ¼ AGGBest Wk

r

� � � CWk;

36. End For
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Algorithm 3. It starts with checking the parameters update for a potential GAN attack.
During the initial training round, the local aggregator Ak forms an evaluation model
~fEval :ð Þ for each client k including the local aggregator from the parameter update. The
F1-score for each class in the local aggregator evaluation model becomes a benchmark
for evaluating the possibility of a GAN attack in the clients’ parameter update. When
evaluating the clients’ update, if it causes the number of classes with F1-scores less than
0.1 or 10% to exceed the threshold, it indicates that the client is attempting a GAN
attack. In this study, the GAN attack threshold is set to two classes.

After checking for GAN attack, the local aggregator calculates the clients’ weightage
CWk based on three scenarios. First, if there is an attempt to send a poisonous GAN
attack via an update, 10% of the weightage is divided among the suspected clients, while
90% is divided among the trusted clients. This limits the influences of the GAN attack
while ensuring a portion of information from the malicious clients is learned. The
second scenario is when there is no suspected GAN attack and the trust score sk of all
clients equal to or more than the median value. This indicates an acceptable trust level
among all clients and thus the weightage is divided equally among the clients so that
each update has equal influence in the domain model ~fDomain :ð Þ. The third scenario is
when there is no suspected GAN attack; however, some of the clients’ trust scores are
below the median level. Thus, 20% of the weightage is divided among the risky clients,
while 80% of the weightage is divided among the trusted clients to limit the influence of
the risky clients.

After calculating and assigning weight to each client, the local aggregator begins
aggregating the clients’ parameter updates. For the first round, aggregation is done via
the standard FedAvg algorithm because, in the first round, the local model has not
incorporated the weight Wk

rþ1 learned from other clients within the domain Dk.
However, in the second round, the local aggregator aggregates the clients’ parameters
using multiple algorithms to formmultiple test model ~f Testi :ð Þ. The algorithm includes
FedAvg, Weighted averaging, Krum, Multi-Krum, Median, and Trim Mean. The local
aggregator evaluates the performance of each test model and algorithm with the highest
accuracy is selected as the best aggregation algorithm AGGBestðÞ. This is because some
algorithms are more effective in certain conditions or attacks. For example, FedAvg
provides the best performance in normal conditions, while a distance-based approach
such as Krum is more effective for LF attacks.

Moreover, during aggregation, the local aggregator also set the weight for each
client’s parameters based on the assigned weight CWk calculated earlier to increase or
decrease the clients’ influences. For the following training round, the local aggregator
uses the selected best algorithms for aggregation. At the end of each training round, the
local aggregator returns the updated weight Wk

rþ1 back to the clients.

Federated learning testbed setup
The FL testbed consists of a single aggregation server and six edge clients; each of the hosts
was assigned a different TCP/IP port number. Each of the edge clients trains a local model
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using its local dataset Xk and sends the model parameters Wk
r to the aggregation server to

form a global model ~fGlobal :ð Þ. The client trains a DL-based NTC model, which involves
processing the raw network packet byes into labeled packet byte matrix (PBM) (Wang
et al., 2018). This study uses MLP with two fully connected hidden layers, each with six
nodes, and the rectified linear unit (ReLU) activation function. The input layers accept
input with 740 packet bytes as features and use ReLU as the activation function.
Meanwhile, the output layer classifies traffic into ten classes and uses Softmax as the
activation function.

Besides MLP, we also used 1D-CNN and 2D-CNN architectures to train the local
models. This ensures a fair benchmark against existing work by Sameera et al. (2024) and
Thein, Shiraishi & Morii (2024). This study CNN architecture begins with a convolutional
layer containing 64 filters, followed by a max-pooling layer, and then a second
convolutional layer with 128 filters. Both convolutional layers use a kernel size of 3 and the
ReLU activation function. After the convolutions, we apply a flatten layer before a fully
connected layer of 128 nodes, which also uses ReLU activation. To prevent overfitting, we
include a dropout layer with a rate of 0.5 just before the final output. Since CNNs require
input data in a specific pixel-like format, we reshaped the datasets accordingly. For
example, we reshaped the Fashion-MNIST dataset into 28 × 28 × 1 arrays and the CIFAR-
10 dataset into 32 × 32 × 3 arrays.

The model uses categorical cross-entropy as the loss function and ADAM as the
training optimizer. The training learning rate is set to g ¼ 0:001, batch size is b = 64, with
FL training round r = 3 and each round epoch E ¼ 36: During the experiment, several
aggregation algorithms were used as a benchmark for the defensive effectiveness of the
proposed framework. The FedAvg is the default FL algorithm and does not have any
defense against adversarial attacks. Meanwhile, other robust aggregation algorithms
include weighted averaging (WA), median mean (MM), trimmed mean (TM) with a 10%
trim rate, Krum, and Multi-Krum.

For the implementation of the framework and experiment, this study uses Python 3.8,
including libraries such as scikit-learn 1.5.1, PyShark 0.3.6, TensorFlow 2.12.1, CUDNN
8.9, Twisted 18.9.0, Flower 1.6.0 (Beutel et al., 2020) and WandB. The source code is made
available on the GitHub (Ariffin, 2025). The experiment was conducted on a host with an
AMD Ryzen 7 7840HS 8-core CPU, 16 GB DDR5Memory, and an Nvidia RTX 4070 GPU.
The host runs Ubuntu 20.04 LTS for its OS and other programs such as CUDA 12.6, IBM
TPM 2.0 simulator, and TPM 2.0 libraries such as TSS 3.1.0, ABRMD 2.3.1, TSS-engine
1.1.0, Tools 4.3.2, and OpenSSL 1.1.2.

Datasets and preprocessing
This study uses the ISCX-VPN 2016 network traffic dataset (Draper-Gil et al., 2016) which
contains packet capture of popular network protocols or services, including encrypted SSL/
TLS traffic. This study selected ten traffic classes, which are: (0) AIM Chat, (1) Email, (2)
Facebook Audio, (3) Facebook Chat, (4) Gmail Chat, (5) Hangouts Chat, (6) ICQ Chat, (7)
Netflix, (8) Spotify, (9) YouTube. The total number of traffic packet instances selected is
671,326, and after randomly splitting training and evaluation datasets at a ratio of 70:30,
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the training instance becomes 469,928, and the evaluation instance becomes 201,398.
Table 4 provides details about the ISCX-VPN 2016 dataset, including a breakdown of class
instances and descriptions of the traffic data. This breakdown indicates an imbalanced
distribution of traffic classes, a characteristic that researchers often find in network
traffic data (Abdelkhalek & Mashaly, 2023). This study maintains this imbalanced
distribution in the training datasets to simulate non-IID (non-independently and
identically distributed) conditions when evaluating the FL solutions (Zhang et al., 2021b).
Researchers often refer to this specific type of statistical heterogeneity as label distribution
skew or class imbalance. It is a primary attribute of non-IID data, especially in FL
environments where clients collect data from different network environments
(Jimenez G et al., 2024).

The raw packet data in the ISCX-VPN 2016 dataset must undergo preprocessing before
it can be used for FL training. The first step of the preprocessing is parsing the packet data
to remove the data link layer or Ethernet header, as it only contains significant local
information. Moreover, we also remove the source and destination IP address as the
information is constantly changing and only significant for specific network environments.
After that, the raw packet bytes undergo a padding or truncating process to limit or make
the size of each instance within 740 bytes or half the size of the maximum transmission
unit (MTU).

Then the raw bytes are transformed into packet byte vectors (PBV)

Xi ¼ xi1; xi2 . . . xij
� �

, where i represents the dataset and j represents the j-th byte in Xi.

Each PBV needs to be associated with a traffic label y (e.g., Email, Facebook, YouTube),
with each byte in the PBV serving as an input feature. After that, we aggregate all PBV
together with its labels to the form ofX ¼ fXT

1 ;X
T
2 . . .XT

i gT , where i is the number of PBV

Table 4 Details on the ISCX-VPN 2016 dataset.

Class
No

Protocol/
Services

Number of
instances

Description

0 AIM chat 4,946 Popular instant messengers developed by AOL allow users to send messages and files to each other.

1 Email 47,568 It is generated via Thunderbird client utilising SMTP/S, POP3/SSL, and IMAP/SSL protocol.

2 Facebook
audio

275,156 Voice over IP service provided by Facebook.

3 Facebook
chat

16,104 Instant messaging features are provided by Facebook.

4 Gmail chat 24,172 Formerly known as Google Talk, it is an Instant messaging feature integrated within Google’s email service.

5 Hangouts
chat

20,016 Google’s unified communication services integrate services like Google Talk, Google+ Messenger, and the
original Hangouts video chat service.

6 ICQ chat 4,662 It was one of the earliest instant messaging platforms on the Internet, and it allowed users to send messages,
files, voice messages, and video chats in real time.

7 Netflix 207,442 A popular streaming service that offers a wide variety of TV shows and movies on thousands of
internet-connected devices. Use SSL/TLS to secure streaming traffic.

8 Spotify 30,034 Popular digital music streaming service. Use HTTPS/SSL to secure traffic.

9 YouTube 41,226 Popular video sharing and social media platform that allows users to upload and share videos. Use HTTPS/
SSL to secure traffic.
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datasets. Then we combine all processed PBV into a packet bytes matrix (PBM), where
each row represents packet instances, and each column represents byte features along with

its label; as such X ¼
X1

…
Xi

2
4

3
5 

y1
…
yi

2
4

3
5, where yi is the traffic label. The label is then

converted into a one-hot encoding format. After converting to PBM format, we normalize
the values via the L2 normalization method along the y-axis as the DL model achieved
faster convergence and higher performance with normalized value. The last steps of
pre-processing involve dividing both training and evaluation datasets into six data shards,
X1;X2 . . .Xk which are used by the edge clients as their local datasets. Each of the clients’
data shards maintains a skewed distribution of traffic classes to create non-IID
characteristics. In addition to ISCX-VPN 2016, this study uses other public datasets, such
as N-BaIoT, Fashion-MNIST, and CIFAR-10. The N-BaIoT dataset (Meidan et al., 2018)
contains real network traffic data that researchers collected from multiple commercial IoT
devices infected with popular botnet malware. Table 5 provides details regarding the data
instances of the N-BaIoT datasets. This study uses the N-BaIoT dataset to provide a fair
comparison with the reported value in the work of Thein, Shiraishi & Morii (2024);
therefore, we preprocessed the data following the methodology they described in their
work. Meanwhile, the Fashion-MNIST dataset (Xiao, Rasul & Vollgraf, 2017) contains
70,000 instances of grayscale (single-channel) images, and each image is a 28 × 28 matrix
of pixel intensities. The dataset has 10 classes that represent different types of clothing and
fashion accessories, such as T-shirts/tops, Trousers, and Sneakers. This study uses this
dataset to provide a fair comparison with the reported value in the work of Sameera et al.
(2024).

Lastly, the CIFAR-10 dataset (Krizhevsky, 2009) contains 60,000 instances of RGB (3-
channel) color images. Each image is a 32 × 32 matrix with pixel values that range from 0
to 255. The dataset has 10 classes that represent common objects from various categories,
including animals, vehicles, and transportation. This study uses this dataset to provide a
fair comparison with reported value in the work of Cao et al. (2024). For our experiments,

Table 5 Details on the N-BaIoT dataset.

Traffic type Attack class Number of instances

Mirai Scan 7,000

UDP 7,000

UDP plain 7,000

Syn 7,000

Ack 7,000

BashLite Scan 9,000

Junk 9,000

UDP 9,000

TCP 9,000

Combo 9,000

Benign – 90,000
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we divide the N-BaIoT, Fashion-MNIST, and CIFAR-10 datasets into six training and
evaluation data shards for the clients.

Attack scenarios
During the evaluation, this study simulates different adversarial attacks while training the
NTC model via FL. This study conducts multiple experiments for each attack type. The
experiment starts with a normal scenario with no attacker, which serves as a control or
baseline. Then, we repeat the experiment with one, two, and up to four attackers to
simulate a collusive environment. This study simulates the following four types of
adversarial attacks:

(a) Label flipping attack. This study simulates two variants, which are all and class label
flipping (LF) attacks. Both attacks involve tampering with the local datasets of
participating FL clients. The all-LF involves flipping the label of all classes. Where Xi

has a true label yi for class Ci; yi 2 fC1;C2; . . . ;Cn and flipping function as f : yi ! y0i.
The attack aims to degrade overall classifier performance. Meanwhile, the class-LF
involves flipping only the label of FB-audio (class no 2) traffic to degrade the class
performance. Where in Xi if it’s CFBAudio flips to a random label Ci, otherwise, the label
remains unchanged f yið Þ ¼ Ci if yi ¼ CFBAudio

yi otherwise

n
.

(b) Model poisoning attack. The attacks involve tampering with clients’ FL programs to
manipulate the model structure and the values in the parameters update. This study
simulates two variants of the attack: model cancelling and gradient factor attack. To
conduct the model cancelling attack, the malicious client sets the model’s weight to
zero, DWm ¼ 0 (Rey et al., 2022). Meanwhile, for the gradient factor attack, we
multiply the client gradient with a negative factor a, where a < 0 (Blanchard et al.,
2017). Both attacks severely degrade the overall performance of the global model.

(c) Backdoor attack. The attack is based on the work of Bagdasaryan et al. (2018) which
involves injecting backdoor patterns during FL training with the aim of poisoning and
causing the global model to misclassify network traffic during inference without
affecting the overall accuracy; thus, it is a more targeted attack. For example, when
using the ISCX-VPN 2016 datasets, Email traffic (Class No. 1) is selected as the target
class YTarget ¼ 1, and FB audio (Class No. 2) as the malicious classMMalicious = Xk :; 2½ �.
Then, this study sets the poison sample numberm = 20,000 which is used by malicious
clients. After that, the backdoor script creates a backdoor pattern XB for 740 features
based onm values, values = c=m where c is the current feature iteration, which starts at
zero and increments until it reaches 740.

The script will produce a pattern XB with 740 columns. Then, during training, the
malicious clients randomly selectm data instances from their dataset shard and replace
the values of the selected instances with the generated backdoor pattern. The malicious
clients also assign the backdoor data instances’ label as target class label,
Yk[YRandom;YTarget] = 1. During the evaluation, this study injects the same backdoor

pattern XB into the FB Audio instance to make the model misclassify the traffic as
Email traffic. The attack poison rate is calculated as Prate ¼ m

TotalðXkÞ � 100, where
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TotalðXkÞ is the total number of instances in the training dataset. Therefore, in a

scenario with one attacker, the rate is calculated as Prate ¼ 20;000
469;928

� 100 ¼ 4:25%.

The poisoning rate doubles as the number of attackers increases, since each attacker
uses the same poison sample value of m ¼ 20;000.

(d) GAN-based attack. This targeted attack involves generating synthetic data using a
generative adversarial network (GAN) model for specific traffic classes and injecting it
during FL training to cause a bias during classification (Zhang et al., 2019). Before
conducting a GAN attack, it is necessary to train both the generator and discriminator
models. The generator’s input layer takes random noise with a shape of 200, while the
output layer synthesizes 740 features mirroring real traffic data and uses the sigmoid
activation function. Meanwhile, the discriminator’s input layer accepts synthetic data
from the generator and real data samples with a shape set to 740. The discriminator
model aims to distinguish between real and synthetic data and then calculate the losses
for both the generator and discriminator, guiding the improvement of their gradients
during training. In this study, we use the trained generator model to synthesize FB
Audio traffic and inject the synthetic data into Netflix as target class during training to
make the global model bias to classify Netflix (Class no 7) as FB Audio (Class no 2)
traffic. The malicious edge client replaces the dataset Xk target class data in local
dataset with the generated synthetic data, Xk[YTarget] = xSynth. Similar to backdoor
attacks, for the GAN-based attack, each malicious client sets the poison sample
number m ¼ 20;000. The GAN poison rate increases as the number of attackers

increases, Prate ¼ m
TotalðXkÞ � 100, where TotalðXkÞ represents the total number of

training datasets from all malicious clients.

RESULTS AND DISCUSSION
This section discusses the evaluation metrics and results from the FL-based NTC training,
which used the SHeRAA-FL framework under various adversarial attacks like LF, MP,
backdoor, and GAN-based attacks. We benchmark the framework’s effectiveness against
existing defensive measures, including WA, MM, TM, Krum, and Multi-Krum. For
specific datasets, we include additional comparisons with other defenses: FoolsGold and
LFGuard for Fashion-MNIST, pFL-IDS for N-BaIoT, and SRFL for CIFAR-10. Finally, this
section discusses the computational overhead of implementing the proposed secure
framework.

Evaluation metrics
This study uses overall accuracy, F1-score, and attack success rate (ASR) metrics to
evaluate the performance of the NTC model and the effectiveness of the SHeRAA-FL
framework in mitigating adversarial attacks. Both accuracy and F1-score metrics provide
statistical validation for evaluating model performance in classifying multi-class network
traffic, including imbalanced data scenarios. For LF, model cancelling, gradient factor,
backdoor, and GAN-based attacks, we used the overall accuracy metric to measure the
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attack’s impact on overall model performance. We evaluate the defensive approach’s
effectiveness by measuring its ability to maintain overall accuracy even when it receives
poisonous updates frommultiple attackers. Flipped labels, modified gradients, or backdoor
patterns cause the client update to become poisonous by misleading its weight.

Meanwhile, for class-LF and GAN-based attacks, we also used the F1-score to assess the
attack’s impact on specific traffic classes, as that is the attack’s aim. An effective defensive
approach must prevent a reduction in a specific class’s F1-score that results from
misleading labels or synthetic data injection. Previous studies have used both overall
accuracy and F1-score metrics as common benchmarks to evaluate the effectiveness of
defensive measures (Cao et al., 2024; Sameera et al., 2024; Rey et al., 2022; Thein, Shiraishi
& Morii, 2024; Zhang et al., 2019).

Lastly, for the backdoor attack evaluation, this study uses the ASR in addition to overall
accuracy. We calculate the ASR based on the number of successful backdoor attacks out of
five attempts during inference. We record a backdoor attack as successful when the
attacker misclassifies a target class (e.g., FB Audio to email) by injecting the backdoor
pattern during inference. In each attempt, the model completes three FL training rounds r
= 3. An effective defensive approach must prevent the FL model frommisclassifying a class
when an attacker injects a backdoor pattern during FL training. A previous study also used
the attack success rate metric to evaluate defenses against backdoor attacks (Cao et al.,
2024). This study also measures the FL training time, maximum CPU, and memory
utilization as metrics for evaluating the proposed framework’s computational overhead.

Label flipping experiment
For the LF attack experiment, this study conducted two variations: all-LF and class-LF
attacks. Table 6 presents the overall global model accuracy for the all-LF experiment using
the ISCX-VPN 2016, Fashion-MNIST, and N-BaIoT datasets. Table 7 presents the F1-
score of the target class (FB Audio) for the class-LF experiment using the ISCX-VPN 2016
dataset.

The all-LF experiment results in Table 6 show that under normal circumstances with
the ISCX-VPN 2016 dataset, SHeRAA-FL produces the NTC model with the highest
accuracy (0.9131). This indicates that the framework’s defensive measures cause minimal
disruption to the training process. In adversarial scenarios, the framework consistently
produces a model with the highest accuracy, even as the number of attackers increases,
which shows its effectiveness in mitigating the impact of multiple adversaries. In a scenario
with four attackers, the framework achieves a 0.8644 overall accuracy, representing only a
5.33% reduction from the normal scenario. In contrast, other defensive measures recorded
severe accuracy reductions; for example, Krum’s accuracy fell by 99.6%.

The evaluation using Fashion-MNIST, shown in Table 6, reveals that SHeRAA-FL
provided better protection against the all-LF attack by maintaining a model with higher
accuracy. For example, in the all-label LF scenario with three attackers, SHeRAA-FL
achieved an accuracy of 0.9287. This accuracy was 2.91% higher than LFGuard, 4.48%
higher than FoolsGold, 4.73% higher than Krum, and 4.77% higher than Multi-Krum. The
evaluation using N-BaIoT involved a 30% attack ratio in which two clients became
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Table 6 All label flipping attack experiment results.

Defensive measures Overall accuracy

ISCX-VPN 2016 dataset

Number of attackers/Scenario

Normal 1 2 3 4

FedAvg 0.9042 0.7227 0.4651 0.2618 0.0472

WA 0.9035 0.7929 0.7726 0.7868 0.8236

MM 0.9054 0.8934 0.8865 0.8326 0.0406

TM 0.8701 0.8455 0.8377 0.1486 0.0336

Krum 0.9079 0.8971 0.8866 0.8006 0.0036

Multi-Krum 0.8795 0.9143 0.8984 0.8905 0.0037

SHeRAA-FL 0.9131 0.9145 0.9100 0.8937 0.8644

Fashion-MNIST dataset

1 2 3

Krum 0.8892 0.8872 0.8848

Multi-Krum 0.8860 0.8857 0.8844

FoolsGold 0.8900 0.8885 0.8871

LFGurad 0.9054 0.9041 0.9017

SHeRAA-FL 0.9279 0.9267 0.9287

N-BaIoT dataset

Normal All-label flipping (30% Attack ratio)

0.9794 0.4706

MM 0.9859 0.9723

TM 0.9885 0.4706

Multi-Krum 0.9822 0.9598

pFL-IDS 0.9964 0.9951

SHeRAA-FL 0.9794 0.4706

Table 7 Class label flipping attack experiment results using the ISCX-VPN 2016 dataset.

Defensive measures Target class F1-score (FB-audio)

Number of attackers

Normal 1 2 3 4

FedAvg 0.9809 0.0000 0.0000 0.0000 0.0000

WA 0.9839 0.0000 0.0000 0.0000 0.0000

MM 0.9773 0.9423 0.9132 0.0000 0.0213

TM 0.9713 0.0285 0.0000 0.0000 0.0000

Krum 0.9793 0.9785 0.9794 0.9639 0.2686

Multi-Krum 0.9773 0.9762 0.9731 0.9696 0.3217

SHeRAA-FL 0.9826 0.9701 0.9709 0.8639 0.9550
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malicious. The results showed a similar trend where SHeRAA-FL provided better
protection. Under normal conditions, SHeRAA-FL produced a model with the highest
accuracy of 0.9964. Under adversarial conditions, SHeRAA-FL maintained the highest
accuracy of 0.9951, a reduction of only 0.13%. In contrast, pFL-IDS reported a 2.28%
reduction, while Multi-Krum experienced a 52.39% reduction.

On the other hand, the class-LF experiment results in Table 7 show that in normal
circumstances, the SHeRAA-FL framework achieved a 0.9826 F1-score for the FB Audio
class, slightly behind WA (0.9839). In the class-LF attack scenario with one and two
attackers, Krum produced the model with the highest F1-score (0.9785 and 0.9794,
respectively), while our framework achieved 0.9701 and 0.9709. With three attackers,
Multi-Krum had the highest F1-score (0.9696), while our framework obtained 0.8639.
However, with four attackers, both Krum’s and Multi-Krum’s performance started to
degrade. At the same time, our framework obtained the highest F1-score of 0.9550, a
reduction of only 2.8% compared to the normal scenario.

These results demonstrate that SHeRAA-FL consistently mitigates the impact of the LF
attack, even in collusive scenarios. In contrast, some defensive measures, such as WA and
TM, produce models with a zero F1-score for the FB Audio class. The results from both LF
attack variants show that the mechanisms in SHeRAA-FL effectively mitigate and recover
from the attack’s impact during training. The remote attestation scoring mechanism
correctly identifies clients’ datasets with flipped labels and assigns the trust score
accordingly. The hierarchical training then limits the poisonous update within the domain
model, and the adaptive aggregation adjusts the weight contribution to minimize the
update’s impact on the global model.

Model poisoning experiment
For the MP attack experiment, this study conducted two variations: model canceling and
gradient factor attacks. Table 8 presents the overall model accuracy under a model
canceling attack using the ISCX-VPN 2016 Dataset. Table 9 presents the results for the
gradient factor attack using the ISCX-VPN 2016 and N-BaIoT datasets.

Table 8 Model cancelling attack experiment results using the ISCX-VPN 2016 dataset.

Defensive measures Overall accuracy

Number of attackers

Normal 1 2 3 4

FedAvg 0.9042 0.7790 0.4015 0.3602 0.4623

WA 0.9035 0.8632 0.8662 0.6931 0.8528

MM 0.9054 0.9047 0.8927 0.7360 0.4082

TM 0.8701 0.8748 0.4411 0.5304 0.3801

Krum 0.9079 0.9131 0.9065 0.4082 0.4082

Multi-Krum 0.8795 0.8997 0.8655 0.4082 0.4082

SHeRAA-FL 0.9131 0.9028 0.9098 0.9069 0.9028
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The results of the model canceling attack in Table 8 show that the SHeRAA-FL
framework produces a model with the highest accuracy in normal and most adversarial
scenarios. The exception is the one-attacker scenario, where Krum obtained an accuracy of
0.9131, while our framework obtained 0.9028. In a scenario with four attackers, the
framework achieves an overall accuracy of 0.9028, a reduction of only 1.13% from the
normal scenario. In contrast, the second-most effective measure is WA, with an accuracy
of 0.8528, a 5.61% reduction. Other defensive measures recorded a severe reduction in
accuracy; for example, the TM measure recorded a 56.32% reduction.

Table 9 presents the gradient factor attack results. In the evaluation using the
ISCX-VPN 2016 dataset, the Multi-Krum and Krum measures obtained the highest
accuracy in the one-attacker (0.9118) and two-attacker (0.8877) scenarios, while our
framework achieved 0.8993 and 0.8488 accuracy, respectively. However, in the normal,
three-, and four-attacker scenarios, SHeRAA-FL obtained the highest model accuracy
compared to other measures. For instance, with four attackers, the framework produces a
model with 0.9133 accuracy, only a 0.08% reduction from the normal scenario. The second
most effective measure is Krum, with an accuracy of 0.9072.

For the evaluation using the N-BaIoT dataset involved a 30% attack ratio where two
clients became malicious. The results showed that SHeRAA-FL provided better protection
against the gradient-factor attack compared to existing approaches. Under normal
conditions, SHeRAA-FL produced a model with the highest accuracy of 0.9964. Under
adversarial conditions, it maintained the highest accuracy of 0.9942, a reduction of only

Table 9 Gradient factor attack experiment results.

Defensive measures Overall accuracy

ISCX-VPN 2016 dataset

Number of attackers/Scenario

Normal 1 2 3 4

FedAvg 0.9042 0.0713 0.0713 0.4082 0.3097

WA 0.9035 0.0713 0.4082 0.4082 0.3097

MM 0.9054 0.8474 0.7713 0.3097 0.4082

TM 0.8701 0.0616 0.0713 0.3097 0.4082

Krum 0.9079 0.9084 0.8877 0.8859 0.9072

Multi-Krum 0.8795 0.9118 0.8818 0.8515 0.4082

SHeRAA-FL 0.9131 0.8993 0.8488 0.9063 0.9123

N-BaIoT dataset

Normal Gradient factor (30% Attack ratio)

MM 0.9794 0.4706

TM 0.9859 0.4706

Multi-Krum 0.9885 0.4706

pFL-IDS 0.9822 0.9642

SHeRAA-FL 0.9964 0.9942
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0.22%. In contrast, pFL-IDS reported a 1.83% reduction, while Multi-Krum showed a
52.39% reduction.

The results from Tables 8 and 9 show that SHeRAA-FL consistently and effectively
mitigates the effects of model poisoning attacks, even in collusive scenarios. The results
indicate that the framework’s mechanisms, when working in tandem, effectively mitigate
the impact of these attacks. During remote attestation, the framework correctly identifies
clients with tampered FL programs or model structures. Then, during hierarchical
training, the framework delegates the training of malicious clients to other clients to
minimize the attack’s impact. Finally, the adaptive aggregation mechanism adjusts the
weight for each client to cater to the delegation process and chooses the best aggregation
algorithm.

Backdoor attack experiment
This section discusses the backdoor attack experiment. Table 10 presents the backdoor
experiment results, showing the NTC model’s overall accuracy and the attack success rate
(ASR) using the ISCX-VPN 2016 and CIFAR-10 datasets.

The evaluation using the ISCX-VPN 2016 dataset shows that a single attacker cannot
influence misclassification on the global model. However, with two or three attackers, the
backdoor attack achieved a 20–40% success rate when using FedAvg, MM, Krum, or
Multi-Krum for aggregation. With four attackers, the attack achieved a success rate of up
to 80% for most aggregation approaches, except for SHeRAA-FL. The framework
consistently mitigates the backdoor attack and prevents traffic class misclassification.
Meanwhile, Table 10 also shows that the backdoor attack did not degrade the overall
model accuracy even with multiple attackers, which demonstrates the attack’s subtle,
class-specific nature. For example, in a scenario with four attackers using Krum, although
the attack achieves an 80% success rate, the overall accuracy remains at 0.9002.

The evaluation using the CIFAR-10 dataset involved a 20% poison rate, in which four
clients became malicious. The results showed that under normal conditions, SHeRAA-FL
obtained a slightly lower overall accuracy (0.7957) than the value SRFL reported (0.8071).
We expected this lower performance, as the SRFL study used a more complex 2DCNN
neural network structure with multiple 64-node 2DCNN layers and 128-node fully
connected layers. However, in adversarial conditions, the results showed that SHeRAA-FL
more effectively mitigated backdoor attacks. SHeRAA-FL consistently maintained a 0%
attack success rate. In contrast, the SRFL approach recorded a 20% attack success rate,
although SHeRAA-FL’s overall accuracy was 4% lower. Other defensive approaches
performed worse; for instance, MM, TM, and Krum each recorded an 80% ASR.

The backdoor attack experiment results show that SHeRAA-FL effectively mitigates and
recovers from the attack. During the attestation process, the mechanism successfully
identifies and removes recurring patterns from the poisoned dataset, verifies the data, and
minimizes the backdoor’s impact on the domain model. Meanwhile, the adaptive
aggregation mechanism ensures that the assigned weight for each client reflects its trust
score.
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GAN-based attack experiment
This section discusses the GAN-based attack experiment. Table 11 shows the F1-score for
Netflix as the target class and FB Audio as the destination class. The results show that in a
two-attacker scenario, the WA and TM measures fail to prevent classification bias, as the
F1-score of the Netflix class decreases significantly. In a three-attacker scenario, FedAvg,
MM, and TM failed to mitigate the attack. In a four-attacker scenario, almost all
aggregation measures failed to mitigate the attack except for SHeRAA-FL and WA. For
example, with four attackers, our framework maintains an F1-score of 0.9799 for the
Netflix target class, a reduction of only 0.44% from the normal scenario. The second most
effective measure is WA, with a 0.9059 F1-score, representing a 7.9% reduction.
Meanwhile, the F1-score for the Netflix class in other aggregationmeasures reduces to zero.

Table 10 Backdoor attack experiment results.

Defensive measures ISCX-VPN 2016 dataset

Number of attackers

Normal 1 2 3 4

Overall accuracy

FedAvg 0.9042 0.9060 0.9035 0.9101 0.9087

WA 0.9035 0.9182 0.9082 0.8805 0.9112

MM 0.9054 0.8801 0.8960 0.9017 0.9099

TM 0.8701 0.8976 0.9090 0.9114 0.9148

Krum 0.9079 0.9086 0.9036 0.8963 0.9002

Multi-Krum 0.8795 0.8910 0.8739 0.8582 0.9016

SHeRAA-FL 0.9131 0.9053 0.9171 0.9110 0.9078

Attack success rate (%)

FedAvg – 0 20 20 60

WA – 0 0 0 40

MM – 0 20 40 60

TM – 0 0 0 40

Krum – 0 0 40 80

Multi-Krum – 0 0 20 80

SHeRAA-FL – 0 0 0 0

CIFAR-10 dataset

Model accuracy

Normal Backdoor attack (20% poison rate)

Overall accuracy Attack success rate (%) Overall accuracy Attack success rate
(%)

MM – – 0.7856 80%

TM – – 0.7867 80%

Krum – – 0.7844 80%

SRFL (MMRA-MD) 0.8071 – 0.7985 20%

SHeRAA-FL 0.7957 – 0.7661 0%
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The F1-score for the FB Audio class remained stable, only slightly increasing or
decreasing during the attack. This outcome occurs because the GAN-based attack targets
only the Netflix class and therefore only slightly impacts other classes. The results indicate
that the framework effectively mitigates the GAN-based attack regardless of the number of
attackers. The remote attestation process successfully detected the GAN-based attack
pattern and assigned a correct trust score to the malicious client. Finally, the adaptive
aggregation mechanism minimizes the poisonous update’s influence when aggregating the
global model.

Computational overhead
This section discusses the computational overhead of the proposed SHeRAA-FL
framework. During the LF attack experiment, this study measures the training time and
maximum CPU and memory utilization in normal and multiple-attacker scenarios. We
measured these metrics during FL training from one of the local aggregators using the
WandB tools. We compare the measured metrics with existing approaches such as
FedAvg, WA, MM, TM, Krum, and Multi-Krum.

Figure 5 shows a comparison of training time. In a normal scenario, the comparison
shows that SHeRAA-FL incurs an additional 25.28% in training time on average compared
to the other approaches. In adversarial scenarios with four attackers, SHeRAA-FL incurs
an additional 27.72% in training time on average. We expected this additional overhead
because the framework consists of three complex, multi-step mechanisms that work
together to mitigate various adversarial attacks.

Table 11 GAN-based attack experiment results using ISCX-VPN 2016 dataset.

Defensive measures Number of attackers

Normal 1 2 3 4

Target class F1-score (Netflix)

FedAvg 0.9853 0.9686 0.9412 0.6477 0.0000

WA 0.9837 0.9768 0.5488 0.9000 0.9059

MM 0.9848 0.9827 0.9811 0.0519 0.0000

TM 0.9815 0.9553 0.3173 0.6358 0.0000

Krum 0.9832 0.9808 0.9837 0.9795 0.0000

Multi-Krum 0.9812 0.9791 0.9775 0.9777 0.0000

SHeRAA-FL 0.9843 0.9831 0.9829 0.9770 0.9799

Destination class F1-score (FB audio)

FedAvg 0.9809 0.9786 0.9768 0.9819 0.9372

WA 0.9839 0.9754 0.9796 0.9731 0.9724

MM 0.9773 0.9696 0.9778 0.9814 0.9770

TM 0.9713 0.9775 0.9763 0.9712 0.9784

Krum 0.9793 0.9765 0.9764 0.9709 0.9774

Multi-Krum 0.9773 0.9736 0.9695 0.9730 0.9818

SHeRAA-FL 0.9826 0.9759 0.9799 0.9818 0.9758
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Meanwhile, Fig. 6 compares maximum CPU utilization. The comparison shows that
SHeRAA-FL utilizes the same level of CPU time as other approaches. For example, in
normal scenarios, the framework and other approaches utilize an average of 32% of CPU
time. In adversarial scenarios, the framework utilizes an average of 31–32% of CPU time,
which is at the same level as other approaches. The framework consumes the same average
CPU time because it processes tasks sequentially and offloads neural network processing to
the GPU.

Figure 5 Comparison of training time. Full-size DOI: 10.7717/peerj-cs.3215/fig-5

Figure 6 Comparison of maximum CPU utilization. Full-size DOI: 10.7717/peerj-cs.3215/fig-6
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Lastly, Fig. 7 compares maximum memory utilization. In a normal scenario,
SHeRAA-FL uses 19.32% more memory on average compared to the other methods. In
adversarial scenarios, it uses 35.41% more memory on average. This increase occurs
because the framework operates the server and clients in a stateful manner, in which the
host needs to store additional data such as trust scores and tokens for the verification
process. However, despite incurring additional overhead in training time and memory, the
framework offers better protection against multiple types of attacks and varying numbers
of attackers, as we presented in the previous section. For example, in an all-LF attack
scenario with four attackers, SHeRAA-FL maintains a model with 0.8644 overall accuracy,
a reduction of only 5.33% from the normal scenario.

CONCLUSIONS
In conclusion, the distributed nature of FL-based NTC model training makes the model
vulnerable to multiple types of adversarial attacks. However, most existing defensive
approaches are only effective for certain types of attacks, and their effectiveness diminishes
as the number of attackers increases. Moreover, existing defensive measures also lack other
security features such as hardware-level security, communication privacy, and identity
verification. The lack of such features puts the FL training at risk of tampering and
identity-based attacks like Sybil attacks. Therefore, to enhance defenses against multiple
types of adversarial attacks, this work proposed the SHeRAA-FL framework. The
framework consists of three mechanisms—remote attestation scoring, hierarchical
training, and adaptive aggregation—to establish trust among clients and mitigate
adversarial impacts during aggregation.

The evaluation results show that the SHeRAA-FL framework effectively mitigates the
impact of multiple types of adversarial attacks, such as LF, MP, backdoor, and GAN-based
attacks, in a distributed FL environment. Moreover, the framework remains effective even

Figure 7 Comparison of maximum memory utilization. Full-size DOI: 10.7717/peerj-cs.3215/fig-7

Ariffin et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3215 39/43

http://dx.doi.org/10.7717/peerj-cs.3215/fig-7
http://dx.doi.org/10.7717/peerj-cs.3215
https://peerj.com/computer-science/


as the number of attackers increases to four, while other defensive measures fail. The
framework also produces a model with the best performance during normal scenarios
compared to other aggregation algorithms. This demonstrates that the proposed
framework has a minimal impact on the FL-based NTC training process.

For future work, we consider creating a lightweight implementation of the SHeRAA-FL
framework to ensure it has a minimal processing impact on resource-constrained edge
devices. We also plan to expand the evaluation to other application areas and with a larger
number of edge clients. Moreover, we plan to integrate mechanisms that properly handle
non-IID and imbalanced datasets from FL clients to enhance the global NTC model’s
performance. Lastly, we plan to leverage explainable AI techniques to better understand
the decisions the global NTC model makes and the contribution of each client’s local
model to the overall performance.
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