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ABSTRACT

Traditional diagnostic methods in medical parasitology rely heavily on manual
microscopic examination, which is labor-intensive and prone to human error and
subjectivity. This study introduced a novel approach for automating the detection of
Enterobius vermicularis (pinworm) eggs using cumulative transfer learning
algorithms. The proposed framework effectively captures subtle egg morphology by
employing a sequential knowledge transfer paradigm, thereby enhancing diagnostic
accuracy, efficiency, and reproducibility, even when data are limited. This study used
E. vermicularis egg images from a publicly available dataset. The training image
dataset comprised 1,000 images of artifacts and 1,000 images of pinworm eggs.
Comparisons were made against established deep learning (DL) models, including
conventional convolutional neural network (CNN), ResNet50, DenseNet121,
Xception, and InceptionV3. Results demonstrated that the cumulative transfer
learning strategy consistently outperformed both the conventional CNN method and
DL baselines in terms of classification accuracy, F1-score, and computational
efficiency, while also reducing computational overhead. Performance comparison
with a conventional CNN model demonstrates that the proposed cumulative transfer
learning CNN reduces training time from 2 h to 50 min. Moreover, it achieves
optimal performance, with accuracy, precision, recall, and F1-score all reaching 1.0.
The model’s detection accuracy was quantitatively assessed by comparing predicted
bounding boxes to expert annotations across 103 microscopic images. The proposed
cumulative transfer learning CNN achieved higher average precision (AP) @
intersection over union (IoU) 0.5 (0.530) and perfect sensitivity (1.00), but exhibited
97 false positives and lower mean average precision (mAP) @IoU0.5:0.05:0.95
(0.027). In contrast, the You Only Look Once version 8 (YOLOv8) model
demonstrated lower sensitivity (0.72) but superior multi-threshold performance
(mAP@I0oU0.5:0.05:0.95 = 0.057). These results highlight a trade-off between
detection sensitivity and generalization performance across varying IoU thresholds.
These findings affirm the viability of cumulative transfer learning as a scalable,
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accurate, and efficient approach for automated parasitological diagnostics,
particularly in resource-limited settings.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Neural
Networks

Keywords Enterobius vermicularis, Cumulative transfer learning, Deep learning, Machine learning,
Computer vision, Object detection

INTRODUCTION

Enterobius vermicularis (pinworm) represents a ubiquitous nematode parasite with
significant global prevalence, demonstrating particular pediatric populations in the tropics
via fecal-oral transmission and ova inhalation. Although clinical manifestations are
frequently subclinical, characteristic perianal pruritis predominates, with potential
progression to appendicular and genitourinary complications (Taghipour et al., 2020;
Lashaki et al., 2023; Naqvi, Atarere ¢» Parungao, 2023). Emerging evidence also indicates
that E. vermicularis infection can impact gut microbiota, increasing its diversity while
lowering intestinal secretory immunoglobulin A (IgA) levels, thereby influencing immune
responses (Yang et al., 2017). The global epidemiology of enterobiasis (pinworm infection)
demonstrates marked geographical heterogeneity, with a pooled prevalence of 12.9%
among pediatric populations. Regional surveillance studies reveal substantial variation
across continents: Asian prevalence rates range from 4.4% in the Republic of Korea to 55%
in China, with intermediate rates reported in Thailand (8.8%), Kyrgyzstan (19.3%), and
Myanmar (47.2%). African studies document prevalences of 26.3%, 11.7%, and 1.7% in
Tanzania, Nigeria, and Angola, respectively. In South America, Chile reports 35%
prevalence, while Argentina shows 19%. European data, as exemplified by Germany,
indicates a prevalence of 17.4% (Lashaki et al., 2023). Socioeconomic and environmental
factors, including sanitation and personal hygiene, remain the key determinants of
pinworm transmission dynamics in different regions (Wang, Hwang ¢ Chen, 2010).
Management of E. vermicularis infestation encompasses anthelmintic pharmacotherapy,
predominantly utilizing mebendazole, pyrantel pamoate, or albendazole (CDC, 2024). To
ensure optimal treatment efficacy, laboratory-confirmed diagnosis through microscopic
examination is essential before therapeutic intervention. The high transmissibility of
enterobiasis in communal environments necessitates expeditious and precise diagnostic
protocols to interrupt transmission cycles and effectively minimize population-level health
implications. The gold standard diagnostic strategy involves perianal swabs, with the
scotch tape technique recognized for its simplicity, cost-effectiveness, and high diagnostic
yield (Wendt et al., 2019).

Contemporary molecular diagnostic methodologies, specifically polymerase chain
reaction, demonstrate enhanced analytical sensitivity and specificity. However, their
widespread implementation is constrained by substantial financial requirements and
specialized infrastructure needs, particularly in resource-limited settings. The scotch tape
technique maintains its practical significance and diagnostic efficacy, especially in
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large-scale surveillance programs within low-resource environments (Bharadwaj et al.,
2021; Deroco, Junior ¢ Kubota, 2021; Jayakody et al., 2022). Nevertheless, this approach
exhibits inherent limitations. Diagnostic precision depends on multiple variables including
microscopist expertise, workload, non-standardized practices, and human error from
exhaustion. To mitigate these constraints, integrating traditional scotch tape technique
with advanced computer vision technologies presents a synergistic diagnostic paradigm.
This approach, particularly through artificial intelligence (AI)-driven analytical models,
potentially enhances diagnostic accuracy and facilitates result validation in
high-throughput clinical microscopy services and resource-constrained settings. Recent
advances in computer vision technologies have demonstrated promising applications in
parasitological diagnosis. Several studies have explored machine learning (ML) approaches
for parasite detection and classification. Liang et al. (2016) demonstrated a novel
convolutional neural network (CNN) model designed to automatically classify
malaria-infected red blood cells in blood smear images, achieving an impressive accuracy
of 97.4%. Holmstrom et al. (2017) compared the results of digital image analysis using a
mobile microscope and commercially available image analysis software
WebMicroscope-deep learning (DL)-based algorithms software to the manual labeling of
soil-transmitted helminth (STH) eggs in the images by the researchers. The detection
sensitivity of Ascaris lumbricoides was 100%, that of Trichuris trichiura was 83.3%, and that
of hookworm eggs was 93.8%. Lundin et al. (2024) demonstrated that deep learning
systems (DLS) analyzing whole-slide images (WSIs) of Kato-Katz thick smears achieved
robust diagnostic performance for STHs, with a sensitivity of 76.4-91.9% and specificity of
89.7-98.2% compared to manual microscopy. Notably, DLS-enabled digital microscopy
detected light-intensity infections that were overlooked by conventional manual
examination. Thanchomnang et al. (2024) proposed a CNN for classifying and
automatically detecting Opisthorchis viverrini, carcinogenic liver fluke eggs from digitized
images. The model trained with augmented data remarkably reached the pinnacle of
accuracy, scoring 1.00. An average intersection over a union (IoU) score exceeding 0.5
yielded 69.47%. In a recent study, Chaibutr et al. (2024) employed a conventional CNN
architecture for automated E. vermicularis egg detection in microscopic images, achieving
90.0% accuracy. However, advanced architectures such as Xception and Resnet50 models
demonstrated superior performance, achieving 99.0% accuracy.

Transfer learning is a methodological framework where a model leverages prior
knowledge from one domain (source task) to improve performance on another, typically
data-scarce, domain (target task) (Pan, 2013; Hosna et al., 2022). This technique eliminates
the need for extensive labeled data and accelerates training on new tasks. It offers marked
advantages over traditional ML methods that rely heavily on large, domain-specific
datasets. Cumulative transfer learning extends this paradigm by sequentially transferring
knowledge across multiple tasks. Through iterative refinement of inductive biases, models
develop more robust internal representations and exhibit superior adaptability and
generalization (Székely et al., 2022). This iterative knowledge transfer reduces training time
and data requirements, making it particularly beneficial in specialized domains like fluid
dynamics (Inubushi ¢ Goto, 2020) and robotics, where systems must consistently adapt to
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Table 1 Summary of related studies on parasitic egg detection, highlighting each study’s main findings, research gaps, and methodological

limitations.

Study Conclusion

Research gap

Limitations

He et al. 'The You Only Look Once version 4
(2024) (YOLOV4) algorithm achieves high
accuracy in detecting parasitic helminth
eggs, including 100% for Clonorchis
sinensis and Schistosoma japonicum.

Xu et al.  The YOLOv5n + AFPN + C2f network
(2024) (YAC-Net) model improves detection
performance over YOLOv5n while
reducing complexity, enabling efficient
parasite egg detection in resource-limited

settings.
Wan Composite backbone network (C2BNet)
et al. improves parasitic egg detection with a

(2023)  two-path structure and multiscale weighted
box fusion, enhancing feature learning and
detection accuracy over existing methods.

Penpong The two-step approach improves out-of-
et al. domain parasite egg detection, boosting
(2023) Fl-score to 57.97% and enhancing

performance with threshold strategies,
achieving up to 77.30%.

Pho et al. The attention-driven RetinaNet improves
(2022)  parasitic egg detection, refining
segmentation with Guided- and self-
attention, achieving a mean average
precision (mAP) of 0.82 on the IEEE
dataset.

The need for further optimization of the

artificial intelligence model to enhance
detection consistency, particularly for
species with lower accuracy rates.

YAC-Net concerning its performance on

diverse parasitic eggs, variations in
microscopy image quality, and long-term
adaptability in real-world applications
requiring periodic updates and retraining.

An unexplored aspect of C2BNet’s

computational efficiency, scalability, and
generalizability, which limits its
applicability to diverse parasitic infections
and broader microscopic imaging tasks.

The limited evaluation of diverse unrelated

objects and the lack of exploration of
alternative optimization methods for out-
of-domain detection.

The limited segmentation annotation and

poor generalizability of attention-driven

RetinaNet due to reliance on small datasets.

The model is effective but varies in accuracy
across species and mixed infections,
requiring further optimization.

YAC-Net’s improvements but does not
address its real-world limitations, such as
image quality requirements and model
generalizability across parasite species.

A result shows imaging challenges but omits
C2BNet’s limitations.

The out-of-domain (OO-Do) problem
lowers accuracy, and despite the two-step
SoftMax improving detection (F1-score:
57.97%), it remains below the 77.30%
achieved without OO-Do.

Limited segmentation annotations may
reduce detection accuracy.

new scenarios (Jaquier et al., 2023). However, pivotal challenges remain. Negative transfer
can occur when source and target tasks are insufficiently related, causing degraded
performance in the target domain. Additionally, determining precisely what knowledge to
transfer remains a critical issue, as improperly aligned features can hinder rather than help
performance (Muller et al., 2019). Nevertheless, continued advancements in transfer and a
cumulative transfer learning strategies demonstrate their growing significance and
considerable potential for driving innovative solutions in various ML applications (Kowald
et al., 2022). While DL has advanced automated parasite detection, current methods for
identifying E. vermicularis eggs remain limited by require extensive data and
computational resources (Chaibutr et al., 2024). Most studies have not investigated
cumulative transfer learning, which could improve accuracy and adaptability in settings
with limited or artifact-rich data (Liang et al., 2016; Holmstrom et al., 2017; Pho et al., 2022;
Penpong et al., 2023; Wan et al., 2023; Chaibutr et al., 2024; He et al., 2024; Lundin et al.,
2024; Thanchomnang et al., 2024; Xu et al., 2024). Thus, there remains a critical need for
robust, efficient Al-based frameworks specifically tailored to the automated detection of
E. vermicularis eggs in real-world, resource-constrained environments. This study
proposes an innovative cumulative transfer learning algorithm that revolutionizes object
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detection capabilities for E. vermicularis eggs, offering substantial improvements over
conventional approaches.

Related works

Table 1 provides a comprehensive comparison of related works with other studies,
specifically analyzing their conclusions, identified research gaps, and methodological
limitations. This comparison underscores the novelty of our research, which introduces an
innovative approach for the detection of E. vermicularis eggs utilizing the scotch tape
technique. By addressing the limitations of previous studies, our proposed method
enhances diagnostic accuracy and efficiency, contributing to advancements in
parasitological detection techniques.

MATERIALS AND METHODS

Data collection

This study used E. vermicularis egg images from a publicly available dataset accessible
through Figshare (https://doi.org/10.6084/m9.figshare.26266028.v2) (Chaibutr et al.,
2024). The E. vermicularis eggs were collected using the established scotch tape method. A
piece of transparent adhesive tape was gently pressed against the perianal region of
patients, typically first thing in the morning before bathing or defecation, to collect
nocturnal egg deposits. The tape was then affixed onto a glass slide and examined
microscopically to confirm the presence of characteristic E. vermicularis eggs. Confirmed
eggs were photographed using a digital microscope camera for subsequent image
processing and analysis. Each image was manually inspected and annotated by experienced
laboratory personnel. The annotated images were separated into two distinct classes:

(1) class 0 for negative samples or artifact structures with 1,000 images, and (2) class 1 for
positive samples of 1,000 images exhibiting the characteristic morphology of E.
vermicularis eggs (Figs. 1A, 1B). This manual curation process ensured that only high-
quality, correctly labeled samples were included in the training and testing sets. The dataset
comprised 2,000 high-resolution (2,448 x 1,920 pixels) Tagged Image File Format images
with balanced distribution between E. vermicularis eggs and artifacts. For the training and
validation, we utilized the Google Colab platform with robust computational resources: an
NVIDIA A100 GPU, Intel Xeon CPU operating at 2.3 GHz, 83.5 GB of RAM, and
235.7 GB of disk space.

The study protocol was approved by the Ethics Committee in Human Research,
Walailak University (protocol code WUEC-24-387-01, approved 8 November 2024) and
followed the Declaration of Helsinki. The dataset was distributed under the Creative
Commons Attribution (CC BY) license and contained only microscopic images of artifacts
and E. vermicularis eggs, with no personal identifiable information or sensitive data.

Dataset preparation

Generalizability and robustness of the trained model, the original dataset underwent
several advanced image augmentation procedures. Gaussian blur was introduced to
replicate variations in focus commonly observed in real-world microscopic imaging,
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Figure 1 Representative images from the training dataset. (A) Microscopic image of an artifact (class
0). (B) Microscopic image of an Enterobius vermicularis (pinworm) egg (class 1). Examples of image
augmentation techniques applied to (C) artifact images and (D) pinworm egg images: (a) Gaussian blur,
(b) Gaussian noise addition, (c) mean filtering, and (d) sharpening.

Full-size k&l DOTL: 10.7717/peerj-cs.3213/fig-1

thereby enabling the model to handle slightly out-of-focus samples. Mean filtering was
employed to smooth images and mitigate high-frequency noise, while Gaussian noise
addition mimicked the random intensity fluctuations frequently encountered in
microscopic observations. Finally, kernel sharpening was applied to emphasize edges and
subtle morphological details of the eggs, ensuring that essential diagnostic features
remained discernible (Figs. 1C, 1D). By integrating these augmentation techniques, the
dataset’s diversity was substantially increased, resulting in improved model performance
and enhanced resilience to image quality variations commonly encountered in clinical
applications. This approach enables the model to maintain robust detection capabilities
when processing unseen data with varying imaging conditions, such as differences in
microscope settings, illumination levels, and sample preparation protocols. The enhanced
dataset diversity ensures that the trained model can generalize effectively across different
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laboratory environments and imaging equipment configurations (Chaibutr et al., 2024;
Lundin et al., 2024; Thanchomnang et al., 2024).

Model construction and learning

In this study, a five-fold cross-validation protocol was employed to rigorously evaluate
model performance, ensuring that each subset of the dataset served as both training and
validation data in the separate runs for a more reliable measure of generalizability. The
network was trained for a maximum of 200 epochs unless the mean-squared-error (MSE)
loss fell below 0.001, which acted as an early stopping criterion (Tuite et al., 2011). The
model architecture comprised the three sequential blocks of convolutional layers of
decreasing dimension in terms of filter count. Each block contained three consecutive
Conv2D layers with ReLU activation initially 64 filters in the first block, then 32 filters in
the second, and finally 8 filters in the third block, followed by a MaxPooling2D operation
to reduce spatial dimensionality. The feature maps were then flattened and passed through
four fully connected (Dense) layers, sized 256, 64, 16, and two neurons, respectively. Each
layer employed the sigmoid activation function to progressively distill the essential features
and ultimately output the classification results. The network was compiled using a
stochastic gradient descent (SGD) as the optimizer and the MSE loss function, with
accuracy tracked as the primary performance metric. This configuration aimed to balance
computational efficiency with sufficient modeling capacity, leveraging progressive feature
extraction in the convolutional layers and feature refinement in the dense layers for robust
egg detection.

Conventional training (Fig. 2A) in a supervised learning context typically began with
importing the dataset from a designated source, such as an image repository or a curated
collection of labeled samples. Once imported, data augmentation is performed to
artificially expand and diversify the dataset by applying transformations such as rotation,
flipping, or slight color modifications, while preserving the essential features necessary for
accurate classification or detection. This augmented dataset was then fed into a selected
model architecture, where training was conducted to optimize the model’s parameters
through iterative updates driven by a chosen loss function and optimization algorithm.
Finally, the validation phase was performed using a portion of the data that was held out,
enabling the assessment of the model’s performance and generalization capabilities. This
conventional pipeline seeks to balance the model’s ability to learn robust representations
with the need to avoid overfitting, ultimately aiming to achieve high accuracy on unseen
data (Miseta, Fodor & Vathy-Fogarassy, 2024).

Cumulative transfer learning (Fig. 2B) refines the conventional supervised learning
pipeline encompassing data collection, labeling, augmentation, and model training by
integrating a sequential, knowledge-preserving methodology (Yang et al., 2019). The
process begins with the assembly of an annotated dataset, which is then augmented to
enhance the breadth of feature patterns and mitigates overfitting. Rather than instantiating
model weights from scratch, training commences by importing those from a previously
optimized model, thereby exploiting established feature representations (Liu et al., 2020).
Crucially, the incoming augmented dataset was divided into smaller subsets, each
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Figure 2 Comparative workflow between conventional learning and cumulative transfer learning
approaches. (A) Conventional convolutional neural network (CNN) that trains a model using a
single-pass or one-step transfer approach, and (B) proposed cumulative transfer learning CNN, where
knowledge is progressively integrated across multiple phases.

Full-size K&l DOT: 10.7717/peerj-cs.3213/fig-2

introduced to the model incrementally, allowing the network to acquire new insights while
preserving earlier learned parameters. Between each incremental phase, we performance
the evaluations via metrics such as accuracy, precision, or recall to ensure the newly
assimilated data enhances rather than overwrites existing knowledge (i.e., mitigating the
issue of “catastrophic forgetting”). Over successive phases, this adaptive inheritance of
learned representations yielded robust performance, improved generalization, and
accelerated convergence relative to conventional single-stage training. Such a tiered
approach is especially advantageous for domains afflicted by limited or imbalanced
datasets, as it maximizes the utility of previously gleaned insights, fostering more nuanced
feature extraction and heightened classification accuracy in dynamic or evolving tasks
(Zoric et al., 2024). By incorporating knowledge transfer at multiple stages, this method
allows the model to capture nuanced morphological features of E. vermicularis eggs,
including elliptical structure, shell thickness, and internal granularity. These subtle
characteristics are often overlooked by traditional methods (Xu et al., 2016).

Cumulative transfer learning, step-by-step:

Assume we have three datasets

Dataset A: Dy = {(xg,yf;‘) }f\i‘l
Dataset B: Dy = { (xp, ) }ﬁ\fl (1)
Nc

Dataset C: D¢c = {(xicy)’ic)}izl

where x' represents an input sample, y' is the corresponding label, N is the number of
samples in each dataset.
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Step 1: Pre-training on Dataset A
The first model is trained to minimize a loss function {,

0, = argmin E(xy)op, [Ca(f(x;0),p)] 2)
Using gradient descent algorithm (Eq. (3)):
* aéA
0, =04 — 30 (3)

where 0, represent the optimal parameters for dataset A, 1 is learning rate, aa% is the
gradient loss function.

Step 2: Fine-tuning on Dataset B

We initialize the model for Dataset B with 0}, instead of random initialization

Op = argmin E.y)p,[C5(f (x; 0), )] (4)
Using gradient descent algorithm on 2™ transfer learning iteration (Eq. (5)):
o _ e 0L
0% =07, — na—;. (5)

Step 3: Fine-tuning on Dataset C
We initialize the model for Dataset B with 92, instead of random initialization

0¢ = argmin E . ) p.[(c(f(x:0), y)]. (6)
Using gradient descent algorithm on 3™ transfer learning iteration (Eq. (7)):
0lc
O, =05 —n—=. 7
C B 1 00 ( )

The algorithms, codes, and README file are available at the following GitHub
repository: https://github.com/Pongphan/ctransferlearning ev (accessed on 22 March
2025).

Evaluation metrics

A comprehensive set of evaluation metrics was employed to assess model performance.
Accuracy measured the proportion of correctly classified images relative to the total
number of samples. Precision quantified the proportion of positive identifications that
were truly positive, indicating the reliability of positive predictions. Recall measured the
model’s ability to identify all relevant instances, ensuring minimal misses true positives
(TPs). The F1-score, as the harmonic mean of precision and recall, provided a balanced
performance measure particularly useful for class imbalance scenarios. Sensitivity and
specificity were included for their clinical significance. Sensitivity measured the ability to
detect TPs, while specificity evaluated the capacity to correctly identify true negatives.
These metrics provided a multi-dimensional understanding of model performance, with
particular emphasis on minimizing false negatives (FNs) due to their critical importance in
clinical diagnostics.
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Comparison to baseline models

To assess the efficacy and robustness of our proposed cumulative transfer learning
framework, we conducted a comprehensive comparative analysis against several widely
recognized deep neural network architectures that commonly employ in medical image
classifications. Specifically, we selected conventional CNN (Chaibutr et al., 2024),
ResNet50, InceptionV3, DenseNet121, and Xception as benchmark models due to their
established track records in handling complex visual patterns, their proven capability to
achieve high accuracy on large-scale image recognition tasks, and their broad adoption
within the medical imaging community (Gunturu et al., 2024). Conventional CNN, the
architecture begins with a sequence of convolutional layers, each utilizing 64 filters with a
3 x 3 kernel size. After every two convolutional layers, max pooling is applied to
downsample the spatial dimensions of the feature maps, thereby reducing computational
complexity and emphasizing the most critical features. To further prevent overfitting,
dropout is introduced following the max-pooling layers, randomly omitting units during
training. The model then progresses from convolutional operations to fully connected
layers, comprising three dense layers with 128, 64, and eight units, respectively. Each dense
layer is also followed by batch normalization and dropout to maintain regularization. The
final dense layer contains two units, making it appropriate for binary classification tasks.
This architecture, characterized by its depth and the integration of multiple regularization
techniques, is designed to effectively manage complex data while minimizing the risk of
overfitting (Chaibutr et al., 2024). ResNet50, with its residual connections, mitigates the
issues related to the vanishing gradients and has been shown to excel in extracting detailed
hierarchical features (Rahmati, Shirani ¢ Keshavarz-Motamed, 2024). InceptionV3’s
inception modules promote an efficient parallel feature extraction across multiple scales,
while DenseNet121’s densely connected layers facilitate feature reuse, ultimately reducing
model parameters without compromising performance (Hu et al., 2021). Similarly,
Xception’s depthwise separable convolutions are enable a more efficient factorization of
convolutional operations, potentially improving both accuracy and computational
efficiency (Peng ¢» Wang, 2021). By comparing our approach against these influential and
architecturally distinct networks, we aimed to establish a robust benchmark and discerned
the relative advantages were conferred by our cumulative transfer learning strategy in
enhancing the sensitivity, specificity, and overall diagnostic reliability of E. vermicularis egg
detection. To compare the performance of object detection models, IoU is commonly used
as a standard metric. IoU quantifies the spatial overlap between a predicted bounding box
and the corresponding ground truth annotation, calculated as the area of intersection
divided by the area of union between the two boxes. This provides an objective measure of
localization accuracy.

For comparative analysis, we also implemented the You Only Look Once version 8
(YOLOVS8) object detection framework as a baseline. YOLOVS is a state-of-the-art,
single-stage object detection model renowned for its speed and accuracy in diverse
computer vision tasks (Ko ¢ Lee, 2025). The model was trained on the same annotated
dataset comprising images of E. vermicularis eggs and artifacts, following identical
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preprocessing and augmentation protocols as used for the cumulative transfer learning
approach. Training parameters including input image size, learning rate, and batch size
were optimized to ensure fair comparison. Detection performance was quantitatively
evaluated using IoU metrics, with predicted bounding boxes compared against
expert-annotated ground truth on the test set. This benchmarking enabled direct
assessment of the relative strengths and limitations of the YOLOv8 model in the context of
automated parasitological diagnostics.

RESULTS

Dataset

All images used for training were standardized by resizing them to 128 x 128 pixels to
ensure uniformity across the dataset. Initially, 1,000 images were collected for each of the
two classes namely, artifacts (class 0) and E. vermicularis eggs (class 1) resulting in a
balanced starting dataset of 2,000 images. To enhance the diversity and robustness of the
training data, a multi-step augmentation procedure was implemented, beginning with
random rotations followed by sequential application of a mean filter, Gaussian blur,
Gaussian noise, and sharpening. Each of these transformations was systematically applied
to increase the dataset by a factor of four for each original image, ultimately yielding 4,000
augmented images per class and contributing to improved model generalization. For
evaluation, an independent testing set comprising 100 images of artifacts (class 0) and 100
images of E. vermicularis eggs (class 1) was curated under the same resolution constraints.
This clearly separated test set enabled an unbiased assessment of the trained model’s
performance on previously unseen data.

Conventional learning

After completing the five-fold cross-validation procedure, in which the dataset is
partitioned into five equally sized subsets such that each subset serves as the validation set
exactly once, Fig. 3A showed line plots of classification accuracy for each fold. Error bars
were included to illustrate variability across partitions, thereby demonstrating the model’s
performance consistency under different data splits. In the same Fig. 3B, the receiver
operating characteristic (ROC) curve illustrated the trade-off between sensitivity (TP rate)
and 1—specificity (FP rate), with a diagonal reference line indicating a random
classification. The area under the ROC curve (ROC-AUC) quantified the model’s
discriminative power, where values approaching 1.0 signify high diagnostic efficacy. Taken
together, the fold-specific accuracy trends and ROC analysis provided a comprehensive
assessment of the model’s robustness and predictive capability under varying training
validation configurations.

Cumulative transfer learning

In our cumulative transfer learning paradigm, the training process was subdivided into five
consecutive rounds, each determined by the augmented data generated at each stage.
Within each round, we applied a five-fold cross-validation, partitioning the dataset into
five unique subsets to evaluate model performance and enhance generalization ability.
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Figure 3 Performance evaluation of the model using five-fold cross-validation. The dataset was
partitioned into five equally sized subsets following a five-fold cross-validation scheme. Each subset
served as the validation set in turn, while the remaining subsets were used for model training. (A) Line
plots depict the classification accuracy across each fold. (B) Receiver operating characteristic (ROC) curve

illustrating the model’s classification performance.
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Figure 4 Five-fold cross-validation accuracy across rounds. Five-fold cross-validation results from round 0 to round 4, showing model accuracy
for each fold. Each line represents the classification accuracy of a specific fold, demonstrating the model’s consistency and generalizability across
different data subsets. Full-size k&l DOL: 10.7717/peerj-cs.3213/fig-4

Figures 4 and 5 presented the outcomes of this iterative five-fold cross-validation from
round 0 to round 5, encompassing the entire progression of the cumulative transfer
learning approach. Each point reflects the model’s average performance across the five
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Figure 5 Five-fold cross-validation accuracy and receiver operating characteristic (ROC) curve for
round 5. (A) Five-fold cross-validation accuracy for round 5, illustrating each fold’s classification
performance and providing an overview of the model’s consistency across the dataset. The accuracy per
fold highlights the system’s reliability and potential for generalization. (B) ROC curve for round 5,
demonstrating the model’s performance in distinguishing between classes.
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validation folds, providing robust estimates of classification accuracy, loss, and other
relevant metrics. The figures are organized into three key sections: (1) cross-validation loss
for each fold, (2) accuracy per fold, and (3) the ROC curves. This framework illustrates the
model’s learning trajectory in each round and demonstrates improvements in both
classification performance and generalizability. The cross-validation loss plots highlight
how the model’s error evolved across progressive rounds. Lower loss values in later rounds
indicated enhanced ability to detect E. vermicularis eggs, reflecting successful knowledge
transfer in cumulative learning. The middle section presents the accuracy achieved in each
of the five folds, showing how classification performance improves from round 0 to round
5. Rising accuracy from one round to the next underscores the positive impact of
incremental transfer learning on the feature extraction and classification tasks. The
rightmost section in Fig. 5 shows ROC curves, providing an in-depth view of the TP rate
against the FP rate for each fold. By comparing curve shapes and their corresponding area
under the curve (AUC) values, researchers can evaluate both the sensitivity and specificity
gains throughout the cumulative transfer learning process. Collectively, these panels offer
comprehensive performance evaluation. Figure 5 underscores the robustness of the
proposed cumulative transfer learning approach. Moreover, the five-fold cross-validation
design to ensure that the reported performance is not overly dependent on any particular
data partition, thereby reinforcing the reliability of these findings for clinical applications.
As illustrated in Table 2, a detailed comparison between conventional CNN and
cumulative transfer learning revealed a modest, yet appreciable improvement in model
performance, as evidenced by a slight increase in overall accuracy when employing the
cumulative transfer strategy. Beyond the accuracy gain, a significant reduction in training
time was observed: the cumulative transfer learning model required only 0:51:44 h for
completion, compared to the 2:07:32 h needed by the conventional approach. This
acceleration largely contributed to more efficient parameter initialization and the
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Table 2 Comparison of training time, accuracy, and RAM usage between conventional
convolutional neural network (CNN) and the proposed cumulative transfer learning CNN approach.

Learning method Iteration Time (h) Accuracy RAM usage (GB)
Conventional CNN None 2:07:32 0.94 56.7
Proposed cumulative transfer learning CNN 0 0:14:09 0.57

1 0:34:03 0.95

2 0:00:34 0.95

3 0:00:50 0.96

4 0:01:02 0.95

5 0:01:03 0.87 19.4

Table 3 Performance metrics (accuracy, precision, recall, F1-score) of various deep learning models
for Enterobius vermicularis egg classification.

Model Accuracy Precision Recall F1-score
Conventional convolutional neural network (CNN) 0.94 0.94 0.94 0.94
Proposed cumulative transfer learning CNN 1.00 1.00 1.00 1.00
ResNet50 0.99 0.99 0.99 0.98
InceptionV3 1.00 1.00 1.00 1.00
DenseNet121 0.96 0.96 0.96 0.96
Xception 0.97 0.97 0.97 0.97

progressive reuse of knowledge across training phases, thereby minimizing redundancy in
feature extraction.

In addition to these time savings, the cumulative transfer learning also demonstrated a
marked decrease in resource consumption, where the peak memory usage dropped from
56.7 to 19.4 GB. Such a substantial reduction was not only lowers computational costs but
can also expanded the feasibility of deploying advanced DL models in
resource-constrained settings. Collectively, these findings underscored the potential value
of cumulative transfer learning in both enhancing diagnostic accuracy and optimizing
computational efficiency for E. vermicularis egg detection.

In this study, we conducted a comparative evaluation of four DL architectures
ResNet50, InceptionV3, DenseNet121, and Xception as summarized in Table 3. The goal
was to assess each model’s performance in classifying E. vermicularis eggs acquired from
scotch tape samples. Of the tested architectures, two models emerged with superior
metrics: our proposed the cumulative transfer learning CNN and the InceptionV3
network. Notably, both systems achieved a perfect classification performance,
demonstrated by an accuracy, precision, recall, and F1-score of 1.0. These results
underscored the effectiveness of cumulative transfer learning, which enabled iterative
refinement across multiple training phases, thereby leveraging knowledge from prior
training steps to enhance final predictive capabilities. Furthermore, the notable success of
InceptionV3 recognized for its multi-branch convolution modules and dimensional
reduction techniques reinforced that the advanced DL methodologies can outperform
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Figure 6 Comparison of object detection outcomes: expert annotation vs model predictions. A
detailed comparison of object detection results in microscopic images, highlighting differences between
expert medical annotations and machine learning model predictions. (A) Red bounding box indicates
objects identified by expert personnel. (B) Green bounding box represents annotations generated by the
proposed cumulative transfer learning convolutional neural network (CNN) model. (C) Green bounding
box represents annotations generated by the you only look once version 8 (YOLOv8) model.

Full-size Ka] DOT: 10.7717/peerj-cs.3213/fig-6

traditional baselines in detecting parasitic eggs. Achieving perfect evaluation metrics in this
diagnostic setting highlights the promise of these approaches for reliable, high-throughput
laboratory implementation.

Object detection

A comprehensive comparative analysis of object detection outputs generated by the
high-precision ML models, compared against expert medical annotations on microscopic
images, is presented in Fig. 6. By juxtaposing these two sets of annotations, one can directly
evaluated the model’s detection accuracy, including its ability to localize and identify target
structures, as well as to identify any discrepancies that may inform further refinement of
the detection algorithm. In Fig. 6A, red bounding box represented the expert-verified
ground truth, enabling clear visualization of clinically relevant target. The automatically
generated bounding boxes are highlighted in green from the proposed model (Fig. 6B) and
YOLOV8 model (Fig. 6C).

An in-depth overview of the IoU thresholds obtained by the proposed model was
displayed in Table 4. Comparative analysis of the proposed cumulative transfer learning
CNN and YOLOVS reveals distinct performance characteristics. The proposed cumulative
transfer learning approach achieved perfect sensitivity (TP = 6, FN = 0) but exhibited a
high FP rate (FP = 97). Its average precision (AP) @IoU0.5 (0.530) substantially
outperformed YOLOV8 (0.245), indicating superior detection precision at the standard
IoU threshold. However, its mean average precision (mAP) @IoU0.5:0.05:0.95 (0.027) was
considerably lower than YOLOV8 (0.057), suggesting limited generalization across stricter
IoU thresholds. In contrast, YOLOv8 demonstrated higher detection capability (TP = 23)
with fewer FPs (FP = 71) but suffered from missed detections (FN = 9) and lower precision
at IoU0.5. The superior mAP of YOLOVS reflects greater robustness across varying overlap
criteria, likely attributable to its anchor-free architecture and optimized
localization-classification balance. These results indicate that the proposed cumulative
transfer learning model prioritizes sensitivity and single-threshold precision, while
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Table 4 Overview of the intersection over union (IoU) threshold ranges achieved by the proposed cumulative transfer learning convolutional
neural network (CNN) model and the you only look once version 8 (YOLOv8) model.

Object detection model True False False Average precision (AP) Mean average precision (mAP)
positive positive negative @IoU0.5 @I0U0.5:0.05:0.95
Proposed cumulative transfer 6 97 0 0.530 0.027
learning CNN
YOLOVS 23 71 9 0.245 0.057

YOLOV8 demonstrates superior overall localization stability. The findings suggest that
model selection should be guided by application-specific requirements regarding tolerance
for FNs vs localization accuracy demands.

DISCUSSION

The scotch tape technique has been widely used as the gold standard for diagnosing E.
vermicularis infections due to its simplicity and effectiveness in capturing eggs from the
perianal region (Garcia & Procop, 2016). This method provides a non-invasive and
cost-effective diagnostic approach, making it particularly valuable in resource-limited
settings and for large-scale epidemiological studies (Quistberg et al., 2024). However,
despite its widespread use, the technique has the drawbacks. The scotch tape often collects
a variety of artifacts, including debris, epithelial cells, and other non-parasitic structures,
which can obscure the microscopic visualization of E. vermicularis eggs (Reinhard, Aratijo
¢ Morrow, 2016). These artifacts introduce considerable variability and complexity to the
diagnostic process, increasing the reliance on specialized expertise for accurate
identification.

The subjective nature of manual microscopy further compounds this issue, as diagnostic
accuracy may vary depending on the skill and experience of the laboratory personnel. In
addition, the time-intensive nature of manual examination makes it impractical for
handling large volumes of samples in high-burden areas. These challenges underscore the
need for more automated and objective diagnostic methods to supplement or replace
traditional approaches, particularly in settings where trained personnel are scarce.
Emerging computational tools, such as ML-based object detection systems, hold significant
promise in overcoming these limitations by providing rapid, reproducible, and accurate
detection of E. vermicularis eggs (Litjens et al., 2017). Such innovations could greatly
enhance diagnostic workflows, reducing both human error and time-to-result, while
maintaining or even improving diagnostic precision.

Deep learning paradigms have consistently demonstrated significant potential in
improving diagnostic precision, efficiency, and reproducibility in medical image analysis
(Litjens et al., 2017). These advancements stem from their ability to extract complex
patterns and features from data, surpassing traditional methods that rely on handcrafted
features or shallow classifiers. Cumulative transfer learning extends this capability by
iteratively refining learned representations across multiple training stages. This approach
leverages prior knowledge to improve performance in data-scarce scenarios, which is
particularly advantageous in parasitological research where labeled datasets are often
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limited (Pan ¢ Yang, 2009; Wang & Deng, 2018; Raghu ¢ Schmidt, 2020). By
incorporating knowledge transfer at multiple stages, this method allows the model to
capture the nuanced morphological features of E. vermicularis eggs. These features include
elliptical structure, shell thickness, and internal granularity. Such subtle characteristics
might be overlooked by traditional or less sophisticated methods (Xu et al., 2016).

Cumulative transfer learning is particularly advantageous in domains where dataset
heterogeneity is constrained, yet achieving high diagnostic specificity is critical, such as in
clinical diagnostics and large-scale epidemiological monitoring. A notable gap in the
current literature is the absence of cumulative transfer learning frameworks specifically
designed for automated detection of E. vermicularis eggs, particularly in the context of
artifact-rich and data-scarce parasitological images (Liang et al., 2016; Holmstrom et al,
2017; Pho et al., 2022; Penpong et al., 2023; Wan et al., 2023; Chaibutr et al., 2024; He et al.,
2024; Lundin et al., 2024; Thanchomnang et al., 2024; Xu et al., 2024). In this study, we
introduce a novel framework designed for the automated detection of E. vermicularis eggs,
marking its first documented application in parasitological image analysis. Unlike
conventional transfer learning approaches that apply static feature reuse from pre-trained
convolutional networks, our method employs progressive model adaptation across
multiple training distributions. By leveraging iterative fine-tuning and domain-specific
feature distillation, our approach facilitates incremental parameter optimization, enabling
a more effective representation shift toward task-relevant morphological features. This
cumulative refinement process mitigates the risk of catastrophic forgetting while ensuring
improved feature generalization across microscopic imaging variations. Compared to
standard transfer learning strategies that rely on one-time adaptation from a base model
(Chaibutr et al., 2024), our multi-stage optimization paradigm demonstrates superior
performance. The empirical improvements highlight the efficacy of structured parameter
evolution, reinforcing the utility of cumulative transfer learning as a robust alternative for
DL applications in specialized medical image classification tasks.

By addressing the inherent challenges in parasitological diagnostics, our proposed
algorithm validates the efficacy of cumulative transfer learning in achieving high
diagnostic robustness and reproducibility, establishing a strong foundation for broader
deployment in related biomedical imaging tasks. The results emphasize the scalability of
our approach, demonstrating its potential to enhance routine diagnostic pipelines and
enable efficient, high-precision detection frameworks in resource-constrained
environments. To mitigate the risk of overfitting and ensure model generalization, we
adopted a dual-pronged evaluation strategy integrating stratified validation splitting with
five-fold cross-validation. This methodological framework ensured a statistically rigorous
assessment, minimizing estimation bias while controlling variance across training subsets
(Ying, 2019). The experimental analysis was conducted on a dataset comprising 103
high-resolution microscopic images, each containing one instance of E. vermicularis eggs.
This simulated real-world diagnostic conditions in clinical and laboratory settings. The
progressive knowledge refinement in cumulative transfer learning enabled the model to
systematically learn domain-invariant yet task-specific morphological features. This
approach reinforced adaptability to variations in staining, magnification, and sample
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preparation artifacts, which are key challenges in automated parasitology detection. Model
performance was quantitatively assessed using the IoU metric, a widely recognized
standard in object detection. This metric measures spatial congruence between predicted
bounding boxes and ground truth annotations. Instances with moderate IoU values were
primarily characterized by model-generated bounding boxes exceeding the expert
annotations in size. This tendency suggests an implicit regularization effect, where the
network adopts a conservative detection strategy by expanding the bounding box
perimeter. Such a bias toward larger bounding boxes may serve as an adaptive mechanism
to mitigate the risk of under-detection, particularly in cases where egg boundaries exhibit
high inter-sample variability or are partially occluded. While this phenomenon may
marginally affect precision scores, it aligns with a risk-averse diagnostic paradigm that
prioritizes sensitivity in clinical applications, reducing the likelihood of FNs, which is a
critical consideration in automated parasite detection workflows (Chaibutr et al., 2024).
The implementation of YOLOV8 as a benchmark revealed its ability to detect most test
images; however, these results demonstrate a trade-off between the two models. The
proposed cumulative transfer learning CNN achieves perfect sensitivity and high precision
at a single IoUO0.5, but its high FP rate and low mAP@I0oU0.5:0.05:0.95 indicate poor
localization consistency across thresholds. Conversely, YOLOvV8 provides better
generalization and fewer FPs but lower single-threshold precision. Thus, model selection
should depend on whether the application demands maximum sensitivity or broader
detection robustness. When implementing automated detection in clinical applications,
laboratory personnel must remain vigilant regarding potential FP and FN results. To
mitigate diagnostic errors, we recommend a two-tier verification approach: (1) manual
verification of all positive detections through examination of bounding boxes on digitized
images to confirm the presence of actual E. vermicularis eggs before reporting results, and
(2) systematic microscopic re-examination of negative cases for final confirmation. This
dual-verification protocol ensures clinical accuracy while maintaining the efficiency gains
of automated detection systems. Furthermore, real-time detection remains limited due to
the extended computational time required by the cumulative transfer learning algorithm.

CONCLUSIONS

This study highlights the potential of an innovative cumulative transfer learning algorithm
to enhance parasitological diagnostics by enabling accurate, scalable, and automated
detection of E. vermicularis eggs, even in artifact-laden scotch tape preparations. By
leveraging iterative model adaptation and domain-specific feature distillation, the
proposed framework mitigates catastrophic forgetting, improves feature generalization,
and outperforms conventional transfer learning methods. Empirical results validate its
robustness and scalability, particularly in resource-constrained settings, reinforcing its
applicability for routine clinical workflows and large-scale public health surveillance. The
proposed cumulative transfer learning approach achieved perfect sensitivity in detecting all
E. vermicularis eggs. However, the relatively low mAP indicates challenges in precise
localization and boundary delineation. While the model excels at identifying target objects,
bounding box precision requires further optimization. Further research is needed to
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expand dataset diversity, refine IoU performance, and integrate explainable Al frameworks
to enhance transparency and clinician trust.
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