
Optimization of big data transfers among
data center networks using deep
reinforcement learning with graph neural
networks
Imen Filali1, Ridha Ejbali2, Sarah A. Alzakari1 and Amel Ali Alhussan1

1 Department of Computer Sciences, College of Computer and Information Sciences, Princess
Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

2 Research Team on Intelligent Machines, National School of Engineers of Gabès, University of
Gabès, Gabes, Tunisia

ABSTRACT
The big data era is an emerging paradigm that has gained a lot of interest in the last
few years from industry, academia, and governments around the world. Cloud
computing infrastructure often operates over multiple distributed data centers
around the globe, following a pay-as-you-go pricing model. Enabling fast data
transfer across these data centers, with low monetary cost and without link
congestion, is not a trivial task. Efficient protocols and tools are necessary to transfer
a huge amount of data while taking into account the user’s quality of service (QoS)
requirements. With the recent widespread use of artificial intelligence (AI) and its
application in network optimization scenarios, deep reinforcement learning (DRL),
which combines reinforcement learning with deep learning, has emerged as a
prominent approach for big data transfers among data center networks. In this
article, we introduce a novel approach that integrates DRL with graph neural
networks (GNN) to come up with an efficient strategy for big data transfer. Our
approach generates continuous control actions to optimize data transfer. It can learn
from past actions and successfully generalize to different incoming scenarios. Results
show that our method consistently optimizes big data centers among data centers.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Networks and
Communications, Data Science, Neural Networks
Keywords Big data, Data transfer, Artificial intelligence,Deep reinforcement learning, Graph neural
networks

INTRODUCTION
With the pervasiveness of the distributed applications and services, data center network
(DCN) is becoming an increasingly significant cloud infrastructure. Cloud service
providers such as Microsoft, Amazon and Google deploy several data centers (DCs) across
distributed locations to provide users with faster and more efficient services in terms of
response time, availability that matches their requirements. These data centers are
connected through high speed wide area network (WAN) providing access to storage and
computing resources. Data centers nodes are typically wired together to form well defined
networking topology (e.g., DCell, BCube, Fat-Tree) (Lebiednik, Mangal & Tiwari, 2016).
With the big data applications, the volume of generated data exceeds a single site or single

How to cite this article Filali I, Ejbali R, A. Alzakari S, Alhussan AA. 2025. Optimization of big data transfers among data center networks
using deep reinforcement learning with graph neural networks. PeerJ Comput. Sci. 11:e3212 DOI 10.7717/peerj-cs.3212

Submitted 27 February 2025
Accepted 21 August 2025
Published 26 September 2025

Corresponding author
Ridha Ejbali, ridha_ejbali@ieee.org

Academic editor
Siddhartha Bhattacharyya

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.3212

Copyright
2025 Filali et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.3212
mailto:ridha_ejbali@�ieee.�org
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3212
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

institution capacity to store or process this data, requiring therefore an infrastructure that
spans over multiple sites. Inter-data center traffic is typically charged by internet service
providers (ISP) relying on a percentile-based charging model where cloud providers pay
based on the q-th percentile of traffic volumes measured in a short time interval, over a
number of such intervals in a charging period. The 95th percentile charging model is
adopted by most ISPs, where the bandwidth cost is charged based on the 95th percentile
value in all traffic, volumes recorded in every 5-min interval generated within a charging
period (e.g., a month). The problem that we are interested in this work can be formulated
as follows: at a given time, when a set of source-destination traffic pairs have to be
transferred among data centers, what is the optimal big data transfer plan that take into
account the user quality of service (QoS) requirements? These requirements can vary from
reducing completion time and transmission cost to increase the network throughput.

To maximize network utilization and ensure a high data transfer rate (Xie et al., 2020;
Ferriol-Galmés et al., 2023), it is compulsory to follow a traffic management strategy based
on an optimal routing strategy allowing efficient load balancing (Shin et al., 2023; Li, Sun &
Hu, 2020; Rusek et al., 2019) between data centers. The work in Sharma et al. (2023) shows
that 100% network utilization can be achieved by distributing application flows across
multiple paths to balance capacity against application priorities/requests. Data transfer
optimization relies on elaborating heuristics tailored to different traffic routing scenarios.
However, applying these heuristics to big data transfer scenarios presents scaling
challenges as its performance might degrade because of a mismatch with real traffic
(Ferriol-Galmés et al., 2023; Li et al., 2022).

Recent advances in the field of artificial intelligence (AI) have led to a significant impact
across several research domains (Chen et al., 2018; Salman et al., 2018). In particular, AI
techniques such as machine learning, deep learning, and evolutionary algorithms have
demonstrated the ability to deliver more precise, faster, and scalable outcomes in network
modeling and big data transfer optimization. For instance, in Chen et al. (2018), the
Deep-Q algorithm (Xiao, He & Gong, 2018) employs a deep generative network to learn
the quality of service (QoS) model from traffic data, achieving an inference accuracy that is,
on average, three times higher than that of a theory-based approach to queuing files.
Additionally, the work presented in Streiffer et al. (2017) illustrates how DeepConf
automates the management of data center network topology through machine learning
and its performance is on par with that of the optimal solution.

This innovative combination leverages the power of deep reinforcement learning for
decision-making and the capabilities of graph neural networks for modeling complex
relationships within the network. By integrating these advanced techniques, substantial
enhancement in the optimization of big data transfers can be realized, resulting in
improving data processing capabilities and decreased transfer times. The application of
deep reinforcement learning with graph neural networks offers a novel solution to the
challenges of optimizing big data transfers within data center networks. This approach
enables the system to learn and adapt its decision-making processes based on the dynamic
and complex nature of data transfers. By leveraging the capabilities of graph neural
networks, the system can effectively capture the intricate relationships and dependencies

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 2/24

http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

within the network, leading to more informed and intelligent decision-making.
Furthermore, the combination of deep reinforcement learning and graph neural networks
provides a scalable and adaptable framework for big data transfer optimization across data
centers effectively addressing the evolving and expanding requirements of data center
networks. This approach is a prominent solution to address not only the growing demands
for efficient data processing and transfer among modern data centers. Ultimately, it
enables to improve the performance and reduce the generated overhead in data transfer
operations.

The main contributions of this study can be summarized as follows:

. We propose a novel intelligent flow scheduling approach that combines reinforcement
learning with dynamic path selection to optimize performance in cloud data center
networks (CDNs).

. Unlike traditional methods, our approach adapts in real time to traffic variations and
link conditions, improving throughput and reducing latency.

. We develop a scalable simulation environment to evaluate the proposed method under
realistic data center topologies and workloads.

. Comparative analysis with state-of-the-art algorithms demonstrates significant
improvements in terms of flow completion time, load balancing, and packet loss.

. This work provides new insights into the integration of AI-based decision-making
within the context of software-defined networking in CDNs.

The remainder of the article is organized as follows: In ‘Related Work’, we give an
overview of the related work big data transfer approaches in data center networks. In
‘Proposed Approach’, we introduce our approach of big data transfer that combine Deep
reinforcement Learning with Graph Neural networks. In ‘Performance Evaluation’, we
focus on the performance evaluation of our approach. Finally, ‘Conclusion’ concludes the
article and point out future work.

RELATED WORK
Several efforts have been made to address the problem of big data transfer among data
centers networks. Deep learning based algorithms have recently achieved successful results
in this research. Hereafter, we expose several schemes of data transfer in a geographically
distributed environment. Chen et al. (2018) have proposed Auto, a two level deep
reinforcement learning (DRL) framework that relies on deep reinforcement learning
approach for automatic traffic optimization and inspired from the peripheral and central
nervous systems in animals, to deal scalability issues at data center scale. In this approach,
several peripheral systems are deployed on allend-hosts in order to manage decisions
locally for short traffic flows, whereas the central system is further used for traffic
optimization with long traffic flows. Real experiments indicate that the proposed design
reduces the traffic optimization turn-around time and flow completion time. The approach
proposed in Almasan et al. (2022) combines deep reinforcement learning (DRL) and graph
neural networks (GNNs) in the context of routing optimization. This involves leveraging

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 3/24

http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

DRL for learning optimal routing policies and GNNs for representing and processing
graph-structured data. The work investigates various routing optimization scenarios can
lead to improved performance and scalability in routing tasks. In Sun et al. (2021), a
scalable deep reinforcement learning approach for traffic engineering in software-defined
networks (SDNs) with pinning control (ScaleDRL) has been proposed. ScaleDRL
combines control theory and deep reinforcement learning for traffic engineering in
software-defined networks (SDNs). The proposed ScaleDRL can dynamically change flow
forwarding paths. It improves network performance by using pinning control to identify
critical links and dynamically adjusting their weights using DRL algorithms. This method
addresses the limitations of traditional routing schemes by providing dynamic traffic
analysis and policy generation. Furthermore, the proposed ScaleDRL scheme showed
significant improvements in reducing end-to-end transmission delays compared to
existing solutions, demonstrating its effectiveness in optimizing routing configurations and
improving network performance.

Evaluating the performance of communications networks and network protocols often
relies on in-depth knowledge of the network components, their configuration, and the
overall architecture and topology. The integration of machine learning methods is often
considered as a solution to model these complex systems efficiently. However, the
exclusive use of high-level features can limit the scope of these approaches, considering
only a specific network topology and requiring prior understanding of network protocols.
In Geyer (2019), DeepComNet approach aims to overcome these limitations by focusing
on lower-level features, such as the network connectivity structure. The main contribution
lies in the use of a deep learning model based on convolutional neural networks to analyze
network connectivity graphs. This approach allows precise modeling of network
performance based solely on a graphical representation of their topology. He et al. (2015)
introduced a method called Presto, designed to balance the load by focusing on the edges of
networks. This approach was specifically developed for high-speed data center
environments, with the aim of overcoming the limitations of existing systems such as
Equal-Cost Multi-Path Routing (ECMP) and centralized traffic engineering. The Presto
approach was able to achieve near-optimal load balancing without requiring changes to
transport layers or the use of specialized hardware. This achievement was made possible by
moving load balancing functionality to the software edges of the network and leveraging
flow cells with fine granularity.

The optimization approach proposed in Shetty, Sarojadevi & Prabhu (2021) delegates
the incoming data transfer request to the machine learning module to choose the suitable
parameters and the appropriate scheduling algorithms (e.g., First Come, First Served
(FCFS), Round Robin, Job Scheduling Framework (JSF)) to perform transfers. It uses the
most recent transfers to model the real time load and tune the parameters respectively.
According to authors, the unsupervised learning method such as logistic regression and
decision tree can be applied to the proposed framework, the configuration parameters can
be tuned to match the task request. Note that no evaluation study has been provided so
that the performance of this proposed scheme remains unclear. CLoudMPcast is suggested

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 4/24

http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

in García-Dorado & Rao (2019) to optimize bulk transfers from a source to multi
geo-distributed destinations through overlay distribution trees that minimize costs without
affecting transfer times, while considering full mesh connections and store-and-forward
routing. The charging models used by public cloud service providers, which are
characterized by flat cost depending on location and discounts for transfers exceeding a
threshold in the range of TBytes, were utilized. Results indicated improved utilization and
savings for customers by 10% and 60% for Azure and Elastic Compute Cloud (EC2),
respectively, compared to direct transfers. In Wang et al. (2014), proposed Multiple bulk
data transfers scheduling among data centers. Their aim was reducing the network
congestion due to bulk data transfer. The multiple bulk data transfers scheduling
(MBDTS) problem is modeled as a linear program (LP) problem after applying an elastic
time-expanded network technique to represent the time varying network status as a static
one with a reasonable expansion cost. In Liu et al. (2020), Yun et al. (2021) the authors
proposed a performance predictor of big data transfer for high-performance networks. The
support vector regression (SVR) is applied to demonstrate the effectiveness of the
proposed approach in terms of throughput metric. The optimization approach proposed
in Shetty & Sarojadevi (2020) delegates the incoming data transfer request to the machine
learning module to choose the suitable parameters to perform the transfers. It uses the
most recent transfers to model the real time load and tune the parameters respectively.

To better illustrate and compare existing literature, Table 1 summarizes key
characteristics of selected studies in terms of optimization techniques, reinforcement
learning usage, graph neural network integration, as well as their strengths and
weaknesses.

PROPOSED APPROACH
As it has been explained, machine learning techniques are recognized to provide a
paramount support to big data transfer problems in a cloud environment. The problem
that we are interested in this work can be formulated as follows: at a given time, when a set
of source-destination traffic pairs have to be transferred among data centers, what is the
optimal big data transfer plan that takes into account the user QoS requirements? For
better understanding, we follow the same terminology in inter-data centers networks and

Table 1 Summary of related works in network optimization using RL and GNNs.

Study Optimization
technique

Reinforcement
learning

Graph neural
networks

Strengths Weaknesses

Wang et al. (2014) Heuristic scheduling No No Easy to implement Low scalability

Chen et al. (2018) DRL (AuTO
framework)

Yes No Adaptive and scalable Requires large data

Li, Sun & Hu (2020) DDPG optimization Yes Yes Context-aware routing Complex training

Hope (2020) Deep RL + GNN Yes Yes Generalizable routing Network-specific tuning

Ferriol-Galmés et al.
(2023)

Supervised learning No Yes Accurate network
modeling

No RL, limited
adaptability

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 5/24

http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

we expose hereafter the network model and the data model that generally adopted, while
transferring big data in a such distributed environment.

Network and data models
A decentralized cloud computing infrastructure consists ofN networked data centers. We
model the network as a directed graphG ¼ ðV;EÞ whereV and E denote respectively the
data centers (N :¼ Vj jÞ and the edges sets. Each edge e ¼ ðx; yÞ 2 E refers to an
inter-data center link between x and y. 8fx; yg 2 E, Bx;yðtÞ denotes the available
bandwidth between x and y at time slot t such as i 2 V and j 2 V, x 6¼ y. We denote by
CxðtÞ the available storage capacity at time slot t at data center x.

We denote by d the amount of data to be transferred from a data center x to y. We
suppose that d is partitioned approximate data units called chunks at the source data center
before being transmitted. The corresponding chunk set is denoted by Cd. The data has the
time transfer deadline, that is the maximum tolerable transfer time before being received
by its final destination. Each data transfer request is specified as a five-tuple:
ðSd;Dd; Sized; td;TdÞ, where Sd;Dd denote the source and the destination data centers of
the data d that which is being transmitted. Sized denotes the size of the d, and td;Td

indicate respectively the earliest and the end time for which the data transfer should be
started and completed, that is, if the transfer of the of d starts at td, it should end before

td þ Tdc
f
ðx;yÞ, w 2 Cd indicates the cost of transferring chunk f is transmitted from data

center x to y.
Figure 1 depicts a simple scenario for big data transfer. Circles present the data center

Data centers. Suppose that dc1 will transfer a file to data center dc4. The selection of the
appropriate path is contingent upon the data transfer algorithms being employed.
Consider the topology depicted by Fig. 1, dc1 needs to transfer a file to data center dc2,
which is interconnected to two data centers. To do so, multiple paths are possible to
disseminate the data from dc1 to dc2. For instance, dc1 may send the file directly to dc2
based on end to end data transfer strategy, or the file can be transferred to dc2 through the
data center dc3 or dc4. Transferring the data along the first path or the second one depends
not only on the user’s application requirements, e.g., transfer completion time,
transmission cost, but also on the network congestion. This becomes a more challenging

Figure 1 Example of data center network with four data centers.Data center dc1 initiates data transfer.
Possible paths are dc1 � > dc2; dc1 > dc3 � > dc2; dc1 � > dc4 � > dc2 for transferring data from dc1 to
dc2. Full-size DOI: 10.7717/peerj-cs.3212/fig-1

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 6/24

http://dx.doi.org/10.7717/peerj-cs.3212/fig-1
http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

issue, especially when considering multiple source–destination pairs and different data
transfer time requirements.

Enhancing traffic efficiency through the GNN model
The main challenge that we consider in this article can be expressed as follows: assume that
at a given time, a big data traffic must be transferred between two data centers. What would
be the optimal data transfer plan to disseminate the data from the source data center to the
destination data center under several constraints (e.g., networking resources, bandwidth,
cost, transfer completion time). Machine learning techniques are prominent to provide an
optimal scheduling for the data transfers, ensuring a good compromise between cloud
provider benefit and tenants satisfactions. In our approach, we consider that the cloud
provider offers heterogeneous types of resources hosted by several data centers
(e.g., Central Processing Unit (CPU), memory, disk capacity, network bandwidth, etc.).

Taking into account the objectives, the constraints associated, as well as the available
resources at a given time, the objective is to optimally and dynamically schedule these
requests with different priorities by fully exploiting the available bandwidth while
considering the user QoS requirements. Figure 2 depicts an overview of the proposed
architecture. A user issues a data transfer request together with his QoS requirements such
monetary cost, transfer deadline, i.e., the time period that the data transfer needs to be
completed. The broker dispatches the incoming requests from the cloud users to the
machine learning (ML) layer. Based on historical data transfer logs (cf. data set),
optimization metrics and a set of constraints (e.g., time, cost), supervised machine learning
techniques will be applied to generate a predictive model able to efficiently predict the
optimal data transfer plan for the incoming transfer requests. Afterwards, the task
scheduler will assign the request to the appropriate resources.

More specifically, the proposed architecture (cf. Fig. 2) leverages a GNN-based model to
optimize traffic routing and resource allocation across data centers. It consists of three
main modules: a formatter, a trainer, and an optimizer.

Figure 2 GNN based approach for big data transfer. Full-size DOI: 10.7717/peerj-cs.3212/fig-2

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 7/24

http://dx.doi.org/10.7717/peerj-cs.3212/fig-2
http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

The formatter transforms raw network telemetry into a structured graph representation,
where nodes represent data centers, edges denote connectivity (including bandwidth
constraints), and node/edge features encode real-time traffic metrics and infrastructure
configurations.

The trainer incrementally updates the GNN model using streaming data collected from
the network, enabling the model to generalize to evolving traffic patterns. The trained
GNN predicts key performance indicators (e.g., latency, throughput, congestion levels)
under different routing and load distribution scenarios.

Based on these predictions, the optimizer searches for configurations that meet
predefined objectives (e.g., minimizing end-to-end latency or balancing load across paths).
This process guides administrators in making informed decisions that enhance network
efficiency.

Two practical applications of this architecture include:

. Resilience-oriented routing: selecting paths with historically higher reliability to
mitigate the risk of failures or bottlenecks.

. Latency-aware traffic engineering: identifying routes that reduce propagation and
queuing delays for time-sensitive applications such as video conferencing or real-time
analytics.

The modeling system continuously acquires operational data from the network to refine
the GNN model. This model is then used to predict network performance under various
configurations. The optimizer explores different network configurations to determine the
optimal setup based on the administrator’s objectives and the current network state. In the
context of data transfer among data centers, this GNN-based architecture (cf. Fig. 3) can be
applied in the following scenarios: Enhanced reliability: GNNs can identify the most
reliable inter-data center paths, minimizing the risk of disruptions and reducing the
likelihood of network outages during critical data transfers. Latency reduction: GNNs can
optimize inter-data center data transfers by identifying the shortest or fastest routes, which
is essential for improving the latency-sensitive applications that rely on fast data exchange.

Within data center networks, the orchestration of flow scheduling stands as a pivotal
technique for upholding quality of service (QoS). The essence of flow planning lies in the
sequential organization of traffic based on its significance, ensuring that critical flows
consistently receive priority treatment, even amid network congestion.

Within data center networks, the orchestration of flow scheduling stands as a pivotal
technique for upholding quality of service (QoS). The essence of flow planning lies in the
sequential organization of traffic based on its significance, ensuring that critical flows
consistently receive priority treatment, even amid network congestion.

In this context, the following key terms are central to our study:

– QoS refers to measurable performance indicators of the network, including throughput,
latency, jitter, and packet loss, which collectively reflect the efficiency and reliability of
data transfers.

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 8/24

http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

– Cost denotes the overall resource consumption involved in routing and scheduling data
flows, particularly in terms of bandwidth usage and energy consumption.

– Flow scheduling is the process of dynamically selecting and prioritizing which data
flows are to be transmitted, when, and over which paths, in order to optimize QoS and
cost.

In the context of data center environments, the deployment of the flow scheduling
module typically resides on the aggregation switch—a Layer 3 switch interconnecting
various Layer 2 switches. Employing the weighted round-robin (WRR) technique, the flow
scheduling module allocates flows to distinct priority queues, with each flow assigned a
unique weight. Flows bearing higher weights are processed with elevated priority, ensuring
a differentiated treatment based on their importance.

The GNN model depicted in Fig. 4 is employed to analyze network flows, enabling the
assignment of a class of service (CoS) to each flow. These classes—high priority, medium
priority, and low priority—reflect the relative importance of the flows. By assigning distinct
priority levels, the model ensures that critical flows receive preferential treatment,
optimizing network performance for essential services.

Flow scheduling holds potential enhancing to reliability, latency and overall capacity of
data center networks. It serves as a supportive mechanism for QoS-sensitive applications
like video conferencing and live streaming. Acknowledging its complexity, flow planning
emerges as a sophisticated technique that may pose implementation challenges.

Figure 3 GNN-based traffic optimizer. Full-size DOI: 10.7717/peerj-cs.3212/fig-3

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 9/24

http://dx.doi.org/10.7717/peerj-cs.3212/fig-3
http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

In traditional networks, administrators tend to determine the Differentiated
Services Code Point (DSCP) of flows based on real experiences or heuristic
algorithms. However, these methods can be both subjective and inefficient. On the other
hand, the GNN-based optimizer offers a more objective and efficient approach. This
optimizer takes into consideration a fixed network state as well as any possible
combination of DSCP. It then uses a neural graph model to predict the Flow Completion
Time (FCT) under this configuration. Depending on the administrator’s specific goals,
whether to improve reliability, latency, or capacity, the optimizer can then select the
optimal configuration. Compared with conventional methods, the GNN-based optimizer
has several advantages:

. Objectivity: it is based on a mathematical model rather than on experience or intuition. It
ensures a more impartial approach.

. Efficiency: it is capable of quickly exploring a wide range of configurations. It offers
better time management

. Flexibility: it is adapted to various objectives. It turns out to be a flexible solution.

The GNN-based optimizer is thus positioned as a promising technology, offering
network administrators a way to significantly optimize the performance of their
infrastructures.

Figure 4 GNN-assign services. Full-size DOI: 10.7717/peerj-cs.3212/fig-4

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 10/24

http://dx.doi.org/10.7717/peerj-cs.3212/fig-4
http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

Advanced flow routing strategies for optimal network management
Redundant switches are proving to be a crucial method for increasing reliability and
balancing load within data center networks. They offer the ability to construct multiple
equal cost paths (ECMP) for transport flows, providing essential flexibility (Kosar et al.,
2013). The integration of ECMP results in a significant improvement in reliability. By
providing alternative paths in the event of a link failure, this approach helps maintain
stable connectivity even in the presence of disruptions. Additionally, using ECMP for load
balancing helps distribute traffic more evenly, avoiding potential bottlenecks and thus
optimizing the use of network resources. The GNN-based optimizer represents a
significant step forward to further refine the performance of ECMPs. It excels at inferring
transit time (FCT) for each ECMP option, providing in-depth insight into potential
impacts. By meticulously exploring the different ECMP configurations, this optimizer
manages to identify the optimal configuration, allowing fine adaptation to the specific
needs of the network (Nine & Kosar, 2021). Compared to traditional ECMP optimization
methods, the GNN-based approach stands out for its intrinsic objectivity and efficiency. It
provides network administrators with increased capability to improve reliability, reduce
latency, and increase capacity of data center networks (Noormohammadpour et al., 2018).
The GNN-based optimizer, due to its versatility, can be used for various purposes, whether
it is improving reliability against failures, reducing latency for faster transmissions, or
optimizing the capacity to meet growing demands. In short, this promising technology is
emerging as an essential tool to enable network administrators to sculpt high-performance
data center networks tailored to their specific needs.

Topology optimization in networks: dynamic approaches
Topology management in data center networks represents a complex task, aiming to adjust
the network configuration according to traffic variations. Administrators have various
approaches such as adding optical switches, improving link capacity, or migrating virtual
machines. Each of these methods has advantages and disadvantages: adding optical
switches and improving link capacity can boost load capacity, but at cost or with potential
disruption. Virtual machine migration improves traffic distribution but requires careful
planning (Feng, Li & Li, 2012). An innovative approach for topology management
proposes a GNN-based optimizer. This optimizer establishes relationships between
topology management approaches and the GNN model. For example, adding optical
switches corresponds to a modification of the GNN graph structure, improving capacity to
a modification of the edge characteristic and migrating virtual machines to an alteration of
the flow matrix. The GNN-based optimizer also infers the transit time (FCT) for each
topology configuration and forwards the optimal configuration to the administrator. Its
advantages lie in its objectivity, its ability to quickly explore various configurations, and its
flexibility to achieve different objectives (Fukuda, Shibata & Tsuru, 2023). In sum,
GNN-based optimizer emerges as a promising technology, providing administrators with
the ability to optimize the performance of their networks in an efficient and adaptable
manner.

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 11/24

http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

Formal problem formulation
Let G ¼ ðV;EÞ be a directed graph representing the data center network, whereV is the
set of nodes (servers, switches, or links) and E is the set of edges representing
communication links. Each node vi 2 V has a feature vector xi 2 Rd encoding traffic
characteristics and resource status.

Objective: the aim is to assign and schedule services across the data center infrastructure to
minimize the average end-to-end delay and resource consumption while maintaining
service quality.

Let ph be a policy parameterized by h, mapping a state st to an action at . The goal is to
learn an optimal policy p� that maximizes the expected cumulative reward:

p� ¼ argmax
ph

E
XT
t¼0

ctRðst; atÞ
" #

where c 2 ½0; 1� is the discount factor and Rðst; atÞ is the immediate reward obtained after
taking action at in state st .

Graph Neural Network Module: a graph convolutional encoder is used to capture the
topology and traffic-aware features of the graph G. At each layer l, the node representation
is updated as:

hðlþ1Þ
i ¼ r

X
j2NðiÞ

aijW
ðlÞhðlÞj

0
@

1
A

where NðiÞ denotes the neighbors of node i, aij is the attention coefficient, and r is a
non-linear activation function.

Optimization: we use a deep reinforcement learning framework based on proximal policy
optimization (PPO) to train the policy network. The optimization objective of PPO is:

LPPOðhÞ ¼ Et min rtðhÞÂt; clipðrtðhÞ; 1� e; 1þ eÞÂt
� �� �

where rtðhÞ ¼ phðat jstÞ
phold ðat jstÞ

is the probability ratio and Ât is the advantage estimate.

Algorithm: the following pseudo-code summarizes the key steps of our framework:

Algorithm 1 Graph-based deep reinforcement learning for service assignment.

1: Initialize GNN parameters hg , policy ph, and value network Vf

2: for each episode do
3: Observe current graph state st
4: Compute node embeddings H ¼ GNNhðGÞ
5: Select action at � phðatjstÞ
6: Apply action, receive reward rt and next state stþ1

7: Store transition ðst; at; rt; stþ1Þ

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 12/24

http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

PERFORMANCE EVALUATION
At its core, our approach enhances data transfer efficiency by dynamically adapting to
changing network conditions and workload demands. Unlike traditional methods that
depend on fixed routing algorithms or simple heuristics, which may not account for
real-time variability, our method leverages advanced machine learning models to predict
optimal data transfer strategies. These predictions are based on historical data and
real-time network measurements, ensuring a highly adaptive system. Our approach can
intelligently optimize data transfer routes, minimize latency, maximize throughput, and
reduce resource consumption by continuously learning from past behaviours and
adjusting to current network states. This adaptive, data-driven framework addresses the
limitations of static routing techniques, making it particularly suited for complex and
fluctuating network environments.

. Dataset Creation: we start by creating a dataset that captures historical data transfer
patterns, network conditions, and performance metrics across geographically distributed
data centers. This dataset serves as the foundation for training and evaluating our
machine learning models.

. Model Selection: we explore various machine learning techniques, including graph
neural networks (GNNs) and recurrent neural networks (RNNs), to develop predictive
models for data transfer optimization. Specifically, we consider GNNs with long
short-term memory (LSTM) layers to capture spatial and temporal dependencies in the
data.

. Training and Evaluation: we train the selected models using the prepared dataset and
evaluate their performance through extensive experiments. To assess the effectiveness of
the approach, we consider several performance metrics, including latency, throughput,
loss rate, jitter, availability, and energy consumption.

Developed model
GNN

The architecture adopted by the GNN model is illustrated in Fig. 5. It represents a
simulated network composed of five geographically distributed data centers, modeled as an
undirected graph where nodes denote data centers and edges represent interconnections
(cf. Fig. 6). This topology was constructed using the NetworkX library, with dynamic

Algorithm 1 (continued)

8: if update condition met then
9: Estimate advantage Ât

10: Update θ using PPO loss LPPO

11: Update f using value loss Lv ¼ ðVfðstÞ � RtÞ2
12: end if
13: end for

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 13/24

http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

network attributes (e.g., CPU load, memory usage, storage capacity, latency, and energy
consumption) generated through stochastic simulation across 50 time steps. While the
GNN does not include recurrent units such as LSTMs and therefore does not explicitly
capture temporal dependencies, it effectively exploits the spatial structure of the network.
By focusing on graph topology and inter-node interactions, the model enables robust
analysis of network behavior under varying traffic and resource conditions. This
architecture strikes a balance between modeling realism and computational tractability,
offering a reliable foundation for evaluating the proposed approach.

GNN-LSTM
The GNN-LSTM model combines the strengths of graph neural networks (GNNs) and
long short-term memory (LSTM) units, enabling it to capture both spatial and temporal
dependencies in data effectively. By leveraging the sequential nature of network traffic
patterns, the GNN-LSTM model can adapt dynamically to evolving network conditions,
enabling precise predictions of future data transfer routes. The integration of LSTM units
within this framework allows the model to retain information across multiple time steps,
facilitating the learning of long-term dependencies and complex patterns. Doing so, it
surely enhances its ability to predict and adapt seamlessly to changes in network behavior.

GNN-CNN
There are significant design and application differences between GNN-LSTM and
GNN-CNN models. By integrating LSTM units, GNN-LSTM makes it possible to record
long-term temporal dependencies, which is very helpful for forecasting network traffic and
sequential data. GNN-CNN, on the other hand, uses CNNs’ ability to extract spatial

Figure 5 Data center networks architecture. Full-size DOI: 10.7717/peerj-cs.3212/fig-5

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 14/24

http://dx.doi.org/10.7717/peerj-cs.3212/fig-5
http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

patterns and local features, which makes it perfect for tasks like pattern identification and
anomaly detection in networks that call for a thorough examination of local structures.
Because it manages temporal relationships, GNN-LSTM is more sophisticated and
requires more resources, whereas GNN-CNN can be less complicated and uses fewer
resources for structural analysis. Hence, the selection between these two models—GNN-
LSTM for temporal data and GNN-CNN for spatial analyses—depends on the type of data
and the particular requirements of the application.

Experimental results
Training loss
Figure 7 illustrates the evolution of the training loss for the three evaluated models. It can
be observed that the GNN-CNN model achieves a more significant and consistent
reduction in training loss compared to the standard GNN model, indicating a better
learning capacity and faster convergence. This improvement highlights the effectiveness of
the hybrid architecture in capturing complex data center traffic patterns during the
training process.

Figure 6 Traffic between Data center. Full-size DOI: 10.7717/peerj-cs.3212/fig-6

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 15/24

http://dx.doi.org/10.7717/peerj-cs.3212/fig-6
http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

Validation loss
During the first 20–30 epochs, the validation loss of the GNN-CNNmodel (cf. Fig. 8), as it
is shown 8 in decreases more sharply than that of the GNN-LSTM and basic GNN model,
which starts with a significantly higher validation loss. The validation loss of the
GNN-CNN model gradually drops after this first phase, but more slowly than that of the
GNN-LSTM and simple GNN model. Eventually, it reaches a lower validation loss than
the latter. On the other hand, the validation loss of the basic GNN model reduces more
gradually over training, but it does not reach the same low validation loss as the
GNN-CNN model.

Figure 7 Training loss over epoch. Full-size DOI: 10.7717/peerj-cs.3212/fig-7

Figure 8 Validation loss over epoch. Full-size DOI: 10.7717/peerj-cs.3212/fig-8

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 16/24

http://dx.doi.org/10.7717/peerj-cs.3212/fig-7
http://dx.doi.org/10.7717/peerj-cs.3212/fig-8
http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

Evaluation metrics

• Latency
In comparison to the GNN-LSTM and simple GNN model, the GNN-CNN model has
less latency at first, but as it learns, its latency spikes and dips become more noticeable
(cf. Fig. 9). Compared to the two others models, the latency of the GNN-LSTM model
appears to be more erratic, reaching higher peaks on many occasions. The basic GNN
model, on the other hand, has a usually larger latency but is more stable, exhibiting fewer
significant variations in latency over the epochs. Overall, the plot illustrates how well
these three models perform in terms of latency, with the GNN-CNN model exhibiting
greater fluctuation in latency as opposed to the GNN-LSTM and simple GNN model’s
more consistent yet higher latency.

• Throughput
The proposed GNNmodel starts with a higher throughput compared to the GNN-LSTM
and GNN-CNN models, but it experiences more pronounced spikes and dips in
throughput throughout the training process. The throughput of the GNN-CNN model
appears to be more volatile, with several instances where it reaches higher peaks
compared to the GNN-LSTM and GNN models (cf. Fig. 10). In contrast, our GNN
model throughput is generally lower but more stable, with fewer dramatic changes in
throughput over the epochs. However, there are still periods where the basic GNN
model’s throughput fluctuates considerably.

• Loss Rate
In contrast to the basic GNN and GNN-LSTM models, the GNN-CNN model has a
larger initial loss rate, but as it trains, it shows more noticeable spikes and dips. There are
multiple instances where the GNN-CNN model’s loss rate hits higher peaks than the
GNN-LSTM and basic GNN model, suggesting that it is more volatile than the latter (cf.

Figure 9 Latency loss over epoch. Full-size DOI: 10.7717/peerj-cs.3212/fig-9

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 17/24

http://dx.doi.org/10.7717/peerj-cs.3212/fig-9
http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

Fig. 11). The loss rate of the GNN-LSTM model, on the other hand, varies less
dramatically over the epochs and is often lower and more stable. Nonetheless, there are
still times when the loss rate of the basic GNN model varies a lot.

• Availability
The GNN-CNN model, for its part, shows availability very similar to that of the
GNN-LSTM, with a stable curve and regular fluctuations, slightly less marked than those
of the simple GNN. By combining the capabilities of GNN and CNN, GNN-CNN excels
in capturing spatial patterns and local features, thereby improving its robustness to
network structural changes. In summary, although all models exhibit high availability,

Figure 10 Throughput loss over epoch. Full-size DOI: 10.7717/peerj-cs.3212/fig-10

Figure 11 Loss rate over epoch. Full-size DOI: 10.7717/peerj-cs.3212/fig-11

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 18/24

http://dx.doi.org/10.7717/peerj-cs.3212/fig-10
http://dx.doi.org/10.7717/peerj-cs.3212/fig-11
http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

GNN-LSTM and GNN-CNN stand out for their stability and ability to adapt to dynamic
network conditions, while the basic GNN model shows slightly higher volatility and less
adaptability (cf. Fig. 12). In contrast, the availability of the GNN-CNN model is quite

Figure 12 Availability over epoch. Full-size DOI: 10.7717/peerj-cs.3212/fig-12

Figure 13 Jitter performance. Full-size DOI: 10.7717/peerj-cs.3212/fig-13

Table 2 Comparative performance of the three GNN-based models across key metrics.

Model Throughput Loss rate Jitter Energy consumption Stability

GNN Low, stable Low, stable Low, stable High, consistent High

GNN-LSTM High, variable High, oscillating High, volatile Low, with spikes Low

GNN-CNN High, stable Low, smooth Moderate Moderate, efficient Balanced

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 19/24

http://dx.doi.org/10.7717/peerj-cs.3212/fig-12
http://dx.doi.org/10.7717/peerj-cs.3212/fig-13
http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

similar to that of the GNN-LSTM, with a stable curve and regular oscillations that are
marginally less pronounced than those of the basic GNN. GNN-CNN enhances the
robustness of the network to structural changes by combining the strengths of GNN and
CNN to capture spatial patterns and local features. In conclusion, while all models
demonstrate excellent availability, GNN-LSTM and GNN-CNN are particularly notable
for their stability and flexibility in response to changing network conditions, whereas the
basic GNN model exhibits marginally greater volatility and less flexibility.

• Jitter
Jitter, a measure of packet delay variability, is crucial to understanding network
performance. Jitter values frequently peak higher than the other models, suggesting
increased variability. The GNN, GNN-LSTM, and GNN-CNN models’ jitter
performance is contrasted over 100 epochs as it is shown in Fig. 13. The GNN-LSTM
model exhibits a wide range of fluctuations. The model’s sensitivity to temporal
dependencies causes this volatility, which both captures dynamic changes and reduces
stability. The basic GNN model, on the other hand, shows comparatively steady jitter
values, retaining smaller peaks and more consistent performance throughout time. This
stability comes at the expense of being less able to react quickly to abrupt changes in
network conditions since it does not completely capture temporal variations. The
GNN-CNN model exhibits minor jitter fluctuations, striking a balance between the two.
Although not as reliable as the basicGNN model, it makes use of CNNs’ spatial pattern
recognition capabilities to assist maintain relatively low and steady jitter levels. All things
considered, the GNN-LSTM model has greater jitter variability even though it is quite
good at adapting to dynamic changes. The GNN-CNNmodel offers a balanced approach
with modest stability and adaptability, while the basic GNNmodel gives stability but less
flexibility.

Synthesis
To provide a concise overview of the experimental findings, Table 2 summarizes the
comparative performance of the three evaluated GNN-based models across five key
metrics: throughput, loss rate, jitter, energy consumption, and overall stability.

The GNN-LSTMmodel delivers higher throughput but at the cost of increased volatility
and energy usage spikes. In contrast, the basic GNN model exhibits more stable behavior,
though it falls short in terms of raw throughput efficiency. The GNN-CNN model
effectively balances these trade-offs, offering strong throughput with improved stability
and energy efficiency. This synthesis supports the selection of GNN-CNN as a robust
compromise between performance and reliability, as further discussed in the next section.

Discussion
The comparative evaluation of the three GNN-based models—basic GNN, GNN-LSTM,
and GNN-CNN—highlights the trade-offs between stability, temporal awareness, and
spatial feature extraction in the context of data center network performance optimization.

The basic GNNmodel, by design, captures spatial relationships in the network topology
without modeling temporal dependencies. This limitation leads to more conservative

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 20/24

http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

predictions and behaviors, resulting in stable but lower throughput and energy
consumption patterns. The model’s loss rate and jitter are also steady, reflecting its
tendency to avoid overfitting to short-term fluctuations in the data. These characteristics
make the basic GNN a suitable choice for environments where predictability and
robustness are preferred over peak performance.

In contrast, the GNN-LSTM model integrates temporal dynamics through
recurrent units, enabling it to adapt more quickly to time-varying network conditions. This
explains its higher throughput peaks and improved reactivity. However, the added
temporal sensitivity comes at the cost of greater volatility: both jitter and loss rate
exhibit significant oscillations, and energy consumption shows frequent spikes. These
fluctuations are likely due to the recurrent architecture’s sensitivity to noise and sudden
changes in input patterns, which can propagate through time and destabilize the learning
process.

The GNN-CNN model combines the spatial reasoning capabilities of GNNs with the
local pattern detection strength of CNNs. This hybrid design leads to a balanced
performance profile. It achieves high throughput, close to that of the GNN-LSTM, but with
significantly improved stability. The loss rate is lower and exhibits fewer oscillations, likely
because CNN layers help capture consistent structural features that generalize well across
time steps. In terms of jitter and energy consumption, the GNN-CNN shows moderate and
controlled behavior, outperforming the GNN-LSTM in stability while being more adaptive
than the basic GNN.

These observations suggest that the GNN-CNN model offers the best compromise
between adaptability and stability. Its ability to leverage both spatial and local patterns
makes it particularly well-suited for real-world data center environments, where traffic
patterns may evolve dynamically but require predictable and energy-efficient responses.
While the GNN-LSTM can provide higher peak performance, its instability may hinder
deployment in latency-sensitive or energy-constrained scenarios.

CONCLUSION
The ability of graph neural networks (GNNs) to analyze data correlations and apply them
to new scenarios is crucial for artificial intelligence applications, especially in network
domains. Due to the intricate and dynamic characteristics of networks, implementing
intelligent algorithms demands a focus on generalization.

The goal of this work is to develop a GNN-LSTMmodel for estimating data center flow
completion times. By leveraging GNNs to capture spatial relationships and LSTMs to
manage temporal dependencies, our model demonstrates the capability to generate
accurate estimates for previously unseen network states. Additionally, we have introduced
an optimizer based on the GNN-LSTM framework, which can be used for flow scheduling,
routing, and topology management. Our results show that the GNN-LSTMmodel achieves
high inference accuracy. Furthermore, the GNN-LSTM-based optimizer effectively
reduces both flow completion times and average flow completion time.

In summary, the GNN-LSTM model shows significant potential for network modeling
and optimization, with applications ranging from resource allocation and traffic

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 21/24

http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

management to security and beyond. In future work, we plan to explore more complex
optimization strategies using GNN-LSTMs.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2025R716), Princess Nourah bint Abdulrahman University, Riyadh, Saudi
Arabia. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Princess Nourah bint Abdulrahman University Researchers Supporting Project:
PNURSP2025R716.
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Imen Filali conceived and designed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

. Ridha Ejbali performed the experiments, analyzed the data, performed the computation
work, prepared figures and/or tables, and approved the final draft.

. Sarah A. Alzakari performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Amel Ali Alhussan performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.3212#supplemental-information.

REFERENCES
Almasan P, Suárez-Varela J, Rusek K, Barlet-Ros P, Cabellos-Aparicio A. 2022. Deep

reinforcement learning meets graph neural networks: exploring a routing optimization use case.
Computer Communications 196(4):184–194 DOI 10.1016/j.comcom.2022.09.029.

Chen L, Lingys J, Chen K, Liu F. 2018. Auto: scaling deep reinforcement learning for data
center-scale automatic traffic optimization. In: Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication. New York: ACM, 191–205.

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 22/24

http://dx.doi.org/10.7717/peerj-cs.3212#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3212#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3212#supplemental-information
http://dx.doi.org/10.1016/j.comcom.2022.09.029
http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

Feng Y, Li B, Li B. 2012. Postcard: minimizing costs on inter-data center traffic with store-and-
forward. In: 2012 32nd International Conference on Distributed Computing Systems Workshops.
Macau, China, 43–50.

Ferriol-Galmés M, Paillisse J, Suárez-Varela J, Rusek K, Xiao S, Shi X, Cheng X, Barlet-Ros P,
Cabellos-Aparicio A. 2023. RouteNet-Fermi: network modeling with graph neural networks.
IEEE/ACM Transactions on Networking 31(6):3080–3095 DOI 10.1109/tnet.2023.3269983.

Fukuda R, Shibata M, Tsuru M. 2023.Optimal scheduling of multipath multicast with in-network
cache for one-to-many transfer. In: 2023 33rd International Telecommunication Networks and
Applications Conference. Piscataway: IEEE, 84–91 DOI 10.1109/ITNAC59571.2023.10368542.

García-Dorado JL, Rao SG. 2019. Cost-aware multi data-center bulk transfers in the cloud from a
customer-side perspective. IEEE Transactions on Cloud Computing 7(1):34–47
DOI 10.1109/tcc.2015.2469666.

Geyer F. 2019. DeepComNet: performance evaluation of network topologies using graph-based
deep learning. Performance Evaluation 130(4):1–16 DOI 10.1016/j.peva.2018.12.003.

He K, Rozner E, Agarwal K, Felter W, Carter J, Akella A. 2015. Presto: edge-based load balancing
for fast data center networks. ACM SIGCOMM Computer Communication Review
45(4):465–478 DOI 10.1145/2829988.2787507.

Hope OD. 2020. Generalisable data-driven routing using Deep RL with GNNs. University of
Cambridge.

Kosar T, Arslan E, Ross B, Zhang B. 2013. StorkCloud: data transfer scheduling and optimization
as a service. In: ScienceCloud 2013—Proceedings of the 4th ACM Workshop on Scientific Cloud
Computing. New York: ACM, 29–36 DOI 10.1145/2465848.2465855.

Lebiednik B, Mangal A, Tiwari N. 2016. A survey and evaluation of data center network
topologies. CoRR DOI 10.48550/arXiv.1605.01701.

Li J, Sun P, Hu Y. 2020. Traffic modeling and optimization in data centers with graph neural
network. Computer Networks 181(4):107528 DOI 10.1016/j.comnet.2020.107528.

Li B, Wang T, Yang P, Chen M, Yu S, Hamdi M. 2022. Machine learning empowered intelligent
data center networking: a survey. ArXiv DOI 10.48550/arXiv.2202.13549.

Liu W, Yun D, Wu CQ, Rao NS, Hou A, Shen W. 2020. On performance prediction of big data
transfer in high-performance networks. In: ICC 2020—2020 IEEE International Conference on
Communications (ICC). Piscataway: IEEE, 1–6 DOI 10.1109/ICC40277.2020.9149386.

Nine M, Kosar T. 2021. A two-phase dynamic throughput optimization model for big data
transfers. IEEE Transactions on Parallel & Distributed Systems 32(2):269–280
DOI 10.1109/TPDS.2020.3012929.

Noormohammadpour M, Raghavendra CS, Kandula S, Rao S. 2018.QuickCast: fast and efficient
inter-data center transfers using forwarding tree cohorts. In: IEEE INFOCOM 2018—IEEE
Conference on Computer Communications. Honolulu, HI, USA, 225–233.

Rusek K, Suírez-Varela J, Mestres A, Barlet-Ros P, Cabellos-Aparicio A. 2019. Unveiling the
potential of graph neural networks for network modeling and optimization in SDN. ArXiv
DOI 10.48550/arXiv.1901.08113.

Salman S, Streiffer C, Chen H, Benson T, Kadav A. 2018. DeepConf: automating data center
network topologies management with machine learning. In: Proceedings of the 2018 Workshop
on Network Meets AI & ML. New York: Association for Computing Machinery, 8–14
DOI 10.1145/3229543.3229554.

Sharma A, Sharma A, Nikashina P, Gavrilenko V, Tselykh A, Bozhenyuk A, Masud M, Meshref
H. 2023. A graph neural network (GNN)-based approach for real-time estimation of traffic
speed in sustainable smart cities. Sustainability 15(15):11893 DOI 10.3390/su151511893.

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 23/24

http://dx.doi.org/10.1109/tnet.2023.3269983
http://dx.doi.org/10.1109/ITNAC59571.2023.10368542
http://dx.doi.org/10.1109/tcc.2015.2469666
http://dx.doi.org/10.1016/j.peva.2018.12.003
http://dx.doi.org/10.1145/2829988.2787507
http://dx.doi.org/10.1145/2465848.2465855
http://dx.doi.org/10.48550/arXiv.1605.01701
http://dx.doi.org/10.1016/j.comnet.2020.107528
http://dx.doi.org/10.48550/arXiv.2202.13549
http://dx.doi.org/10.1109/ICC40277.2020.9149386
http://dx.doi.org/10.1109/TPDS.2020.3012929
http://dx.doi.org/10.48550/arXiv.1901.08113
http://dx.doi.org/10.1145/3229543.3229554
http://dx.doi.org/10.3390/su151511893
http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

Shetty C, Sarojadevi H. 2020. Framework for task scheduling in cloud using machine learning
techniques. In: 2020 Fourth International Conference on Inventive Systems and Control (ICISC).
Piscataway: IEEE, 727–731 DOI 10.1109/ICISC47916.2020.9171141.

Shetty C, Sarojadevi H, Prabhu S. 2021. Machine learning approach to select optimal task
scheduling algorithm in the cloud. Turkish Journal of Computer and Mathematics Education
(TURCOMAT) 12(6):2565–2580.

Shin H, Oh S, Isah A, Aliyu I, Park J, Kim J. 2023. Network traffic prediction model in a
data-driven digital twin network architecture. Electronics 12(18):3957
DOI 10.3390/electronics12183957.

Streiffer C, Chen H, Benson T, Kadav A. 2017. DeepConf: automating data center network
topologies management with machine learning. CoRR DOI 10.48550/arXiv.1712.03890.

Sun P, Guo Z, Lan J, Li J, Hu Y, Baker T. 2021. ScaleDRL: a scalable deep reinforcement learning
approach for traffic engineering in SDN with pinning control. Computer Networks
190(4):107891 DOI 10.1016/j.comnet.2021.107891.

Wang Y, Su S, Liu AX, Zhang Z. 2014. Multiple bulk data transfers scheduling among data
centers. Computer Networks 68:123–137 Communications and Networking in the Cloud
DOI 10.1016/j.comnet.2014.02.017.

Xiao S, He D, Gong Z. 2018. Deep-Q: traffic-driven QoS inference using deep generative network.
In: Proceedings of the 2018 Workshop on Network Meets AI & ML.

Xie Z, Lv W, Huang S, Lu Z, Du B, Huang R. 2020. Sequential graph neural network for urban
road traffic speed prediction. IEEE Access 8:63349–63358 DOI 10.1109/access.2019.2915364.

Yun D, Liu W, Wu CQ, Rao NS, Kettimuthu R. 2021. Exploratory analysis and performance
prediction of big data transfer in high-performance networks. Engineering Applications of
Artificial Intelligence 102(4):104285 DOI 10.1016/j.engappai.2021.104285.

Filali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3212 24/24

http://dx.doi.org/10.1109/ICISC47916.2020.9171141
http://dx.doi.org/10.3390/electronics12183957
http://dx.doi.org/10.48550/arXiv.1712.03890
http://dx.doi.org/10.1016/j.comnet.2021.107891
http://dx.doi.org/10.1016/j.comnet.2014.02.017
http://dx.doi.org/10.1109/access.2019.2915364
http://dx.doi.org/10.1016/j.engappai.2021.104285
http://dx.doi.org/10.7717/peerj-cs.3212
https://peerj.com/computer-science/

	Optimization of big data transfers among data center networks using deep reinforcement learning with graph neural networks
	Introduction
	Related work
	Proposed approach
	Performance evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

