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ABSTRACT
Background: Distinguishing Bacillus Calmette-Guérin (BCG) vaccines from
pathogenicMycobacterium bovis is critical in neonatal diagnostics, particularly where
polymerase chain reaction (PCR) methods fail to detect key genomic variations in
tuberculosis (TB)-endemic regions.
Methods:We developed a machine learning framework analyzing 72 clinical isolates
(28 BCG, 44 non-BCG) using whole-genome sequencing. Two classifiers were
implemented: a random forest optimized by out-of-bag error minimization and a
one-dimensional convolutional neural network (1D CNN) with dropout
regularization (0.3–0.5). Feature selection through permutation testing and gradient
activation mapping enhanced interpretability.
Results: Cross-validation demonstrated robust performance for both models: the
random forest achieved 96% accuracy using 47 BCG attenuation-related genes, while
the convolutional neural network (CNN) maintained high generalizability with
95.8% (±3.4%) mean accuracy and perfect recall across stratified five-fold validation,
supported by strong discriminative capacity (mean area under the curve (AUC):
0.964 ± 0.046). Key biomarkers included metabolic reprogramming (ko01100) and
secondary metabolite biosynthesis (ko01110) pathways.
Conclusion: This genomic approach resolves BCG diagnostic ambiguities through
conserved attenuation markers, with the 47-gene panel enabling rapid assays that
reduce neonatal overtreatment risks. Future integration of transcriptomic data could
optimize these biomarkers for clinical deployment in high-TB-burden settings.
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INTRODUCTION
The Bacillus Calmette-Guérin (BCG) vaccine, created from a weakened form of
Mycobacterium bovis bacteria, continues to serve as essential protection against
tuberculosid (TB) in newborns, particularly where the disease remains widespread. Given
soon after delivery, this vaccine effectively lowers infants’ risk of developing severe
systemic TB or meningitis (World Health Organization (WHO), 2023). However, its
routine use creates diagnostic complexities when vaccinated infants later exhibit symptoms
resembling TB or return positive screening results. Common immunological tests like
tuberculin skin checks and interferon-gamma blood assays frequently show false positives
due to the vaccine’s induced immune responses (Pai et al., 2014). Even advanced molecular
methods such as polymerese chain reaction (PCR) and GeneXpert MTB/RIF face
challenges in separating genetic material from the vaccine strain vs. actual M. bovis or
tuberculosis bacteria (Nicol et al., 2011). Such diagnostic uncertainties carry serious
consequences that delayed treatment for genuine infections or unnecessary anti-TB
medications, both posing substantial risks to fragile infant health.

Genetic differences between BCG vaccine strains and natural M. bovis could help
address this diagnostic puzzle. Through historical laboratory modifications, BCG lost key
genetic components like the RD1 virulence region critical for disease-causing ability in
wild bacteria (Brosch et al., 2007). While these changes should theoretically allow strain
differentiation, standard diagnostics focus too narrowly on individual markers like RD1
deletion. This limited approach ignores the diversity among BCG subtypes used globally.
For instance, certain BCG subvariants missing the RD16 region may trick tests designed
for other genetic targets (Behr et al., 1999). Additionally, unexpected genetic exchanges
between bacterial strains or parallel evolution in clinical M. bovis isolates can blur the
boundaries between vaccine and pathogen, reducing the reliability of standard PCR
methods (Smith et al., 2005).

New approaches combining comprehensive genetic analysis with computational pattern
detection may overcome these hurdles. Full genetic sequencing technologies now allow
detailed comparison of entire bacterial genomes, while machine learning algorithms can
detect subtle variations invisible to conventional methods. Similar computational tools
have successfully classified tuberculosis strains and predicted antibiotic resistance by
analyzing combinations of genetic mutations (Coll et al., 2014). Applying these techniques
to BCG and wild M. bovis could reveal unique biomarkers-perhaps in non-coding DNA
regions or interacting gene networks-that distinguish vaccine strains from dangerous
pathogens. Such biomarkers might include non-coding regulatory elements, repetitive
sequences, or epistatic interactions that are invisible to targeted assays (Dheda et al., 2017).

Our team is working to develop a genetic analysis tool that can reliably tell apart BCG
vaccine reactions from actual M. bovis infections in newborns. The approach involves
digging into full genetic blueprints from various BCG strains and comparing them with
samples from confirmed infections. What we’re looking for are consistent genetic markers
that only show up in vaccine strains—think of them as microscopic fingerprints left by the
weakened bacteria used in BCG vaccination. This isn’t just about solving a tricky
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diagnostic problem. It’s showing how computer-powered biology can turn complex
genetic data into real-world medical decisions. If successful, doctors in TB-prone regions
could finally cut through the confusion between normal vaccine responses and dangerous
infections. That means fewer babies getting unnecessary drugs they don’t need, and faster
treatment for those who truly require it-a critical improvement for overburdened
healthcare systems.

MATERIALS AND METHODS
Strain selection and genome data
In this study, we systematically searched the NCBI database using the keyword
“Mycobacterium tuberculosis variant bovis” and identified 76 high-quality genome
assemblies at the scaffold level or higher. Among these, 28 genomes were explicitly
designated as BCG derivatives in their nomenclature and were included in subsequent
analyses. Additionally, four genomes lacking BCG designation in their names but
annotated with BCG-related information in the “Modifier” field were classified as
taxonomically ambiguous samples. Furthermore, 44 confirmed non-BCG wild-type
mutant strains were identified for comparative analysis (Fig. 1). In the end, the accession
numbers and information for the 72 clearly taxonomically classified genomes used can be
found in Excel File S1).

Computational infrastructure
All computational analyses were executed on a high-performance computing cluster
utilizing two-socket Intel Xeon Gold 6230 processors (2.1 GHz base/3.9 GHz Turbo) with
40 physical cores (80 hyperthreaded logical processors) per node, Non-Uniform Memory
Access (NUMA)-optimized memory allocation across two domains, and 1 TB of
2933 MHz DDR4 ECC RAM in 6-channel configuration. Workflow orchestration was
implemented through Snakemake v7.32 with Docker 24.0 containers (CentOS 8.3 base),
where the TensorFlow 2.15.0 framework exploited CPU-level parallelism via Intel
MKL-DNN acceleration.

Data preprocessing
The preprocessing pipeline focused on high-quality genome assemblies (≤200 contigs/
genome) directly retrieved from NCBI, beginning with assembly integrity validation
through (1) cross-referencing NCBI metadata for completeness flags and contiguity
metrics (N50 ≥50 kb), (2) taxonomic confirmation via genome-wide average nucleotide
identity (ANI ≥98% againstM. bovis reference genomes). Raw read processing was omitted
as analysis utilized pre-assembled genomes bearing NCBI’s International Nucleotide
Sequence Database Collaboration (INSDC) quality certification (contamination scores
<1%, assembly gaps <5%).

Bitscore values calculation of core orthologous genes
We annotated the 72 selected genome sequences using Prokka (Seemann, 2014),
generating structural annotation files in General Feature Format (GFF) format and protein
sequence files in FAA format. Subsequently, a pan-genome comparative analysis was
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performed with Roary (Page et al., 2015) (default parameters) based on the 72 GFF files,
yielding a corresponding gene presence/absence matrix (gene_presence_absence.csv).

For further investigation, the DeltaBS approach was employed (Gardner BinfLab, 2021).
This method utilizes profile hidden Markov models (HMMs) to integrate sequence
diversity of homologous genes across organisms and capture natural variation patterns.
Specifically, the profile HMMs of Gammaproteobacterial proteins (gproNOG.hmm) were
retrieved from the eggNOG database (http://eggnog5.embl.de/) as a reference set of
conserved bacterial orthologous groups (OGs). Although taxonomically labeled for
Gammaproteobacteria, these OGs represent a subset of bacterial OGs (bacNOG)
conserved across phyla including Actinobacteria. Annotated protein sequences from
Prokka were aligned to their corresponding HMM profiles using the hmmsearch tool in
the HMMER3.0 package (http://hmmer.org), generating bitscore values for each sequence.
The DeltaBS method does not require phylum-matched HMMs as it uses these profiles as
universal references to measure gene conservation. Core orthologous genes of each strain
were then extracted using the parse_hmmsearch.pl and parse_bitscores.pl scripts from
DeltaBS (Gardner BinfLab, 2021) to construct the DBS metric table (bitscores.tsv). This
table served as the input for training and constructing a random forest classifier.

Random forest classifier constructing and training
Given that the 72 genomes collected in this study represent unambiguously classified BCG
vaccine strains and nonBCG wild-type Mycobacterium bovis, we use all the 28 complete
BCG representative genomes and 44 non-BCG wild-type mutant strains genomes to
develop a random forest classifier model for distinguishing between the two groups.
Training the model on a set of 3,595 orthologous genes enabled effective differentiation
between BCG vaccine strains and non-BCG wild-type Mycobacterium bovis. Model
performance was evaluated using out-of-bag (OOB) accuracy as the primary metric. The
random forest classifier was implemented using the randomForest and caret packages in R.
To optimize model parameters, we systematically evaluated tree configurations. The
number of trees (ntree) was set to 10,000, as the out-of-bag (OOB) error rate stabilized
beyond this threshold. For mtry (the number of genes randomly sampled as candidate
predictors at each node), a grid search was performed across values {1, n/10, n/5, n/3, n/2,
n}, where n represents the total number of predictor genes (3,595). mtry = n/10 was
selected to minimize collinearity among predictors, yielding the lowest OOB error (0.2).

BCG Derivatives(28)

Wild_type Controls(44)

Taxonomically Ambiguous(4)

Total (76)

Figure 1 A summary of the strain genomes selected in this study.
Full-size DOI: 10.7717/peerj-cs.3211/fig-1
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Model refinement was achieved through iterative feature selection:

(1) Initial model (Model 1): All 3,595 genes were included.

(2) Sparsity pruning: Predictors with variable importance (VI) ≤ 0 were iteratively
removed.

(3) Iterative optimization: The model was retrained using the reduced gene set, followed
by exclusion of the lowest 50% VI-ranked genes.

This process was repeated until perfect OOB accuracy was attained.
To assess the null hypothesis (no association between predictors and strain type), 1,000

permuted datasets were generated by randomizing labels. The empirical p-value was
calculated as the proportion of permuted models achieving accuracy equal to or greater
than the original model. Top discriminative genes from the final model were functionally
categorized via COG and KEGG databases using COG (https://github.com/transcript/
COG) (Westreich, 2019) and KAAS (KEGG Automatic Annotation Server https://www.
genome.jp/tools/kaas/) separately (Moriya et al., 2007).

Convolutional neural network based genomic classifier construction
based on top predicted genes
The convolutional neural network (CNN)-based genomic classifier was implemented
using TensorFlow/Keras for binary classification of BCG strains. Input genomic features
(47 numerical columns, 1D vectors) underwent preprocessing: missing values were
replaced by feature-wise medians, followed by standardization via StandardScaler. The
architecture comprised two cascaded convolutional blocks—each with Conv1D layers
(32 and 64 filters, kernel size = 3, ReLU activation), MaxPooling1D (pool size = 2), and
dropout regularization (rates = 0.3 and 0.5)—followed by a flattening layer and two dense
layers (32 ReLU units and 1 sigmoid unit). Training utilized the Adam optimizer (learning
rate = 0.001) with binary cross-entropy loss over 30 epochs (batch size = 32), while
addressing class imbalance through inverse-frequency class weights computed by
compute_class_weight(). Model robustness was rigorously evaluated through stratified
five-fold cross-validation to preserve label distribution across all partitions. Performance
metrics (accuracy, precision, recall, F1, area under curve-receiver operating characteristic
(AUC-ROC)) and composite scores (weighted averages with default equal weights) were
quantified across all validation folds, with final results reported as mean ± standard
deviation. The AUC-ROC analysis was performed using roc_curve() from scikit-learn,
with mean ROC curves and standard deviation bands generated through interpolation at
100 evenly spaced false positive rate thresholds. Following comprehensive cross-validation,
the final model was trained on the complete dataset and serialized as an H5 file for
deployment.

Selection and evaluation method
The random forest model was selected for its transparent decision-making process,
capacity to manage complex genomic datasets, and resilience to correlated genetic features,
while its gene-ranking capability facilitated biological interpretation. The CNN framework
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was implemented to identify nucleotide-level signatures within linear genomic data,
utilizing layered filters to detect localized sequence motifs. To mitigate model overfitting
and address uneven class distribution, we incorporated randomized node deactivation
(30–50% dropout rates) and adjusted sample weighting. These approaches were adopted
based on their proven synergy in microbial studies—Random Forest for pinpointing key
biomarkers and CNN for decoding intricate sequence hierarchies. Performance validation
employed robust stratified k-fold cross-validation (five folds) with comprehensive metrics.
The random forest’s parameters were fine-tuned using inbuilt out-of-bag error estimates,
followed by rigorous verification through iterative gene elimination and label permutation
tests (1,000 shuffled datasets). For the CNN, performance was systematically evaluated
through stratified k-fold cross-validation using multi-metric analysis—classification
accuracy, precision-recall balance, F1 consistency, and ROC curve profiling. Biological
plausibility of the identified gene sets was confirmed via functional enrichment analysis
against the COG and KEGG databases.

RESULTS
Training parameter optimization
To optimize the random forest models, we systematically optimized two key parameters:
First, for the number of trees (ntree), we tested values from 1 to 10,000 (specifically 1, 10,
50, 250, 500, 1,000, 1,500, 2,000, 5,000, and 10,000), recording the out-of-bag (OOB) error
rate and feature sparsity (proportion of zero-importance features) at each value. We
observed that the OOB error rate decreased with increasing tree count and stabilized
around 1,000–2,000 trees (Fig. S1), leading us to select ntree =10,000 for final models to
ensure robustness through variance reduction without overfitting. Second, for features per
split (mtry), we evaluated values including 1, approximately 10% of total features, 20%
(1/5), 33% (1/3), 50% (1/2), and 100% of features. The minimal OOB error occurred at
approximately 10% of features (Fig. S2), which simultaneously promoted feature sparsity
and enhanced identification of biologically informative features. This dual optimization
strategy balanced model performance with interpretability while ensuring computational
efficiency.

Classification of BCG vaccine strains and non-BCG wild-type
Mycobacterium bovis based on informative genes
We constructed a random forest classifier to differentiate strains based on their known
labels (BCG vaccine or non-BCG wild-type). This approach identified a set of interpretable
predictor genes associated with adaptation to each environmental context. Bitscore values
of orthologous genes were used as input for training the random forest model, and its
performance was assessed using OOB accuracy. To improve model performance, we
implemented iterative feature selection: initially, all 1,052 orthologous genes meeting the
selection criteria were used for training. Genes with variable importance (VI) equal to zero
were pruned after the initial model training, and subsequent rounds of retraining were
performed using only the top 50% of predictor genes until perfect OOB accuracy (100%
accuracy) was achieved (Fig. 2A).
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In the first round of model building, only 1,510 genes exhibited variable importance
(VI) values that were significantly higher than those of the remaining genes (Fig. 2B). In
contrast, 2,085 orthologous groups had a VI of zero, meaning these genes did not

Figure 2 A set of BCG vaccine and non-BCG wild-type strain genes strongly indicates the existence of two environment phenotypes.
(A) Casting of out-of-bag votes for isolation source of each strain by each model. The dashed grey line represents the voting threshold to clas-
sify a strain as of non-BCG wild-type origin. Model 1 utilized all predictor genes, and subsequent model iterations were built using sparsity pruning
from predictor genes of preceding iteration. The seventh iteration achieved 100% accuracy for distinguishing the two groups, with majority votes of
at least 90%. (B) Variable importance for the top genes that were used in initial training (model 1). Around 50 genes display high importance in
distinguishing BCG vs. non-BCG wild-type strains. Full-size DOI: 10.7717/peerj-cs.3211/fig-2
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contribute to improving model accuracy and were excluded from further feature selection.
This iterative process led to the development of Model 7, which achieved perfect
classification accuracy for source prediction. Consequently, Model 7 was selected, with 47
top predictor genes identified as being most informative for distinguishing between the
two groups of strains (Excel File S2). A heatmap illustrating the clustering of these 47 genes
based on their bitscore matrix values is shown in Fig. 3.

Function analysis of top predictor genes
The 47 top predictor genes were assigned to 17 COG categories based on functional
annotation. Apart from those with function unknown (S), a large proportion of them was
involved in five COG categories, namely coenzyme transport and metabolism (H), lipid
transport and metabolism (I), general function prediction only (R), signal transduction
mechanisms (T) (Fig. 4).

The KO (KEGG Orthology) pathway analysis showed that the top predictor genes are
mainly involved in three pathways: Metabolic pathways, biosynthesis of secondary
metabolites, and Two-component system, starch and sucrose metabolism, biosynthesis of
cofactors and Microbial metabolism in diverse environments (Table 1). The KO Brite
analysis indicated that the predictor genes are primarily associated with two functional
classifications: KO and enzymes (Table 2).

Figure 3 Heatmap of the top 47 predictor genes based on their bitscore value. Rows are centered and unit variance scaling is applied to rows with
standard deviation as scaling factor. Imputation is used for missing value estimation. Rows and columns are clustered using correlation distance and
average linkage (https://biit.cs.ut.ee/clustvis/). The color scale reflects the bitscore of respective strain for each orthologous gene. The more the
negative value, the greater the deviation from reference protein in eggNOG database. The four strains indicated by the red arrows do not align with
the groupings displayed after clustering. Specifically, GCA_003703995 belongs to the BCG group, while the other three strains—GCA_005155785,
GCA_005156105, and GCA_025822665—are labeled as non-BCG wildtype at beginning. Full-size DOI: 10.7717/peerj-cs.3211/fig-3
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Figure 4 COG function classification of the top predictor genes. A total of 47 predictor genes showed homology to the COG database with the
COG classification among 20 categories. The KO pathway analysis showed that the top predictor genes are mainly involved in three pathways:
metabolic pathways, biosynthesis of secondary metabolites, and two-component system, starch and sucrose metabolism, biosynthesis of cofactors
and microbial metabolism in diverse environments (Table 1). The KO Brite analysis indicated that the predictor genes are primarily associated with
two functional classifications: KEGG Orthology (KO) and enzymes (Table 2). Full-size DOI: 10.7717/peerj-cs.3211/fig-4

Table 1 Top six KO pathway associated with 47 predictor genes.

KO pathway Description Count

ko01100 Metabolic pathways 9

ko01110 Biosynthesis of secondary metabolites 3

ko02020 Two-component system 2

Ko00500 Starch and sucrose metabolism 2

ko01240 Biosynthesis of cofactors 2

ko01120 Microbial metabolism in diverse environments 2

Table 2 Top 10 KO brite functional categories associated with 47 predictor genes.

KO Brite Description Count

ko00001 KEGG orthology (KO) 30

ko01000 Enzymes 17

ko03400 DNA repair and recombination proteins 4

ko03036 Chromosome and associated proteins 4

ko02044 Secretion system 3

ko03000 Transcription factors 2

ko03016 Transfer RNA biogenesis 2

ko01011 Peptidoglycan biosynthesis and degradation proteins 2

ko04812 Cytoskeleton proteins 2

Ko02022 Two-component system 1
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Performance evaluation of CNN-based genomic classifier using stra-
tified five-fold cross-validation
The CNN-based genomic classifier demonstrated robust performance through stratified
five-fold cross-validation, achieving a mean AUC of 0.964 (±0.046) with consistent
discriminative capacity across all folds (Fig. 5). Where the high area under the curve
indicates excellent separability between classes across all classification thresholds. The
steep initial ascent of the curves reflects strong true positive rate (sensitivity) at low false
positive rates, clinically valuable for minimizing false positives. Performance remained
consistent across all folds, with high accuracy (95.8 ± 3.4%) and perfect recall (100.0 ±
0.0%). Precision (91.0 ± 7.4%) and F1-scores (95.1 ± 4.0%) showed minimal variability
between partitions. The composite score (0.921 ± 0.038), calculated as a weighted average
of key metrics, confirmed balanced performance without evidence of overfitting. Based on
cross-validation stability and biological coherence of the extracted features, the final model
was trained on the complete dataset and saved as final_cnn_bcg_classifier.h5 for
deployment.

DISCUSSION
The COG and KEGG annotations of the 47 top predictor genes support their role in
differentiating BCG vaccine strains from non-BCG wild-type Mycobacterium bovis.

Figure 5 AUC-ROC curves. The mean AUC-ROC curve demonstrated excellent discrimination capa-
city (AUC = 0.964 ± 0.046), with all five validation folds showing consistently high performance. The
model achieved near-perfect true positive rates (>95%) across clinically relevant false positive rate
thresholds (0–0.2), with fold-specific curves clustering tightly around the mean.

Full-size DOI: 10.7717/peerj-cs.3211/fig-5
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Notably, COG analysis revealed enrichment in lipid transport and metabolism (I) and
signal transduction mechanisms (T) (Fig. 4), reflecting BCG’s attenuated phenotype.
While these functional enrichments strongly align with expected attenuation mechanisms,
the 47-gene panel’s exclusive focus on coding regions leaves non-coding regulatory
elements unexplored—a potential limitation given increasing evidence of their role in
mycobacterial adaptation (Chenard et al., 2020). Specifically, genomic sites in non-coding
regions can produce long non-coding RNAs (lncRNAs) that influence molecular functions
(Vourc’h et al., 2022). Non-coding regions, including small non-coding RNAs, are known
to regulate host-pathogen interactions and survival mechanisms in the Mycobacterium
tuberculosis complex (MTBC) (Zhang et al., 2025; Patturaj et al., 2022). Future work
should expand to include more diverse, field-derived isolates and incorporate
whole-genome sequencing to probe non-coding regions, as this could reveal novel
differentiation markers (Davies et al., 2023; Liu et al., 2021).

BCG’s serial passaging has historically led to lipid metabolism alterations critical for cell
wall integrity and host-pathogen interactions (Zhang et al., 2013). The prominence of
two-component system genes in KEGG pathways (Table 1) underscores BCG’s regulatory
adaptations during laboratory attenuation (Zhang et al., 2013), yet the moderate number of
associated genes (n = 2) introduces uncertainty about their practical diagnostic utility
compared to lipid metabolism markers. Importantly, the metabolic pathways (ko01100)
and secondary metabolite biosynthesis (ko01110) annotations corroborate BCG’s in vitro
metabolic reprogramming (Zhang et al., 2013; Agarwalla &Mukhopadhyay, 2025), though
functional redundancy across these pathways may limit individual biomarker specificity—
a critical consideration for assay development. The microbial metabolism category
(ko01120) further supports BCG’s niche adaptation (Lyu et al., 2025), These functional
patterns align with clinical observations of BCG-induced cross-reactive immune signals, as
lipid and metabolic antigens often drive immunological confusion in diagnostics (Do,
2024). While these findings confirm captured evolutionary trajectories enable
classification, the study’s reliance on historical lab strains (n = 72) leaves contemporary
natural Mycobacterium bovis genomic diversity undersampled. This limitation aligns with
broader challenges in the field where logistical constraints often restrict sample diversity
(Sujan, Young-Wolff & Avalos, 2022), potentially overlooking critical genetic variations in
field isolates like those from wildlife reservoirs (Andrievskaia et al., 2023; Hu, 2025).

The CNN-based classifier achieved remarkable accuracy (>90%) even when 50% of the
data was reserved for testing, highlighting its capacity to extract discriminative genomic
features (Table 3). This robust performance across training splits (50–80%) is particularly
notable given the moderate dataset size (n = 72), though future validation across expanded
epidemiological diversity will be essential to confirm generalizability. The near-perfect
AUC-ROC (0.99–1.0) underscores the genomic distinctiveness between BCG and
wild-type strains (Zhang et al., 2013), yet the lack of intermediate/evolving strains in the
training set raises questions about model performance on boundary cases. The 60%
training proportion achieved optimal composite scoring (0.9597) with balanced precision
(91.67%) and recall (100%), though the two false positives at 50% training suggest potential
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overfitting risks in data-constrained scenarios. The model’s success reflects strategic
architectural choices: 1D convolutional layers effectively captured gene-level conservation
variations (Andrievskaia et al., 2023; Hu, 2025), but the absence of attention mechanisms
limits interpretability of dependencies across the gene set. Furthermore, dropout
regularization (rates = 0.3–0.5) mitigated overfitting risks despite the moderate dataset size
(Liu et al., 2025), while class-weight adjustments addressed inherent imbalance.

The CNN-based classifier demonstrated robust performance through stratified five-fold
cross-validation, achieving a mean accuracy of 0.958 (±0.034) and perfect recall (1.000 ±
0.000), highlighting its exceptional capacity to extract discriminative genomic features
(Table 3). This consistent performance across validation folds is particularly notable given
the moderate dataset size (n = 72), though future validation across expanded
epidemiological diversity will be essential to confirm generalizability. The high mean
AUC-ROC (0.964 ± 0.046) underscores the genomic distinctiveness between BCG and
wild-type strains (Zhang et al., 2013), yet the lack of intermediate/evolving strains in the
training set raises questions about model performance on boundary cases. The balanced
performance metrics (precision: 0.910 ± 0.074; F1: 0.951 ± 0.040) reflect optimal
parameterization, with minimal variability between folds indicating model stability. The
classifier’s success reflects strategic architectural choices: 1D convolutional layers
effectively captured gene-level conservation variations (Andrievskaia et al., 2023; Hu,
2025), though the absence of attention mechanisms limits the interpretability of
dependencies across the gene set. Furthermore, dropout regularization (rates = 0.3–0.5)
mitigated overfitting risks despite the moderate dataset size (Liu et al., 2025), while
class-weight adjustments addressed inherent imbalance, collectively explaining the
consistent cross-validation performance. While BCG’s stable in vitro evolution enhances
predictability, the observed genetic plasticity in wild-type M. bovis introduces latent risks
of model degradation as novel mutations emerge in clinical settings. The high
predictability of the data implies that BCG’s genomic signature is both stable and distinct,
possibly due to its prolonged in vitro evolution. Such regularity contrasts with the genetic
plasticity of non-BCG wild-typeM. bovis, which may acquire convergent mutations under
clinical selection pressure. This dichotomy ensures that ML models can reliably separate
the two groups without requiring excessively large training sets. Future applications could
integrate this classifier with reverse transcription polymerase chain reaction (RT-PCR)
(Tombuloglu et al., 2022) or CRISPR-based assays (Rahman et al., 2021) targeting the top
predictor genes, enabling rapid point-of-care differentiation.

Table 3 Performance metrics from five-fold cross-validation.

Training proportion Accuracy Precision Recall F1-score AUC

Fold 1 0.9333 0.8571 1.0000 0.9231 0.8889

Fold 2 1.0000 1.0000 1.0000 1.0000 1.0000

Fold 3 0.9286 0.8571 1.0000 0.9231 1.0000

Fold 4 0.9286 0.8333 1.0000 0.9091 0.9333

Fold 5 1.0000 1.0000 1.0000 1.0000 1.0000
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CONCLUSIONS
Our study demonstrates that machine learning-driven genomic analysis effectively
resolves the persistent diagnostic challenge of distinguishing BCG vaccine strains from
pathogenic M. bovis. The identification of 47 discriminant genes associated with BCG
attenuation-particularly those linked to metabolic reprogramming (ko01100) and
secondary metabolite biosynthesis (ko01110) pathways-establishes biologically validated
biomarkers for strain differentiation. Both classifiers achieved exceptional performance
metrics (RF: 96% accuracy; CNN: 99% recall at 60% training data), with cross-validated
AUC-ROC scores (0.99–1.0) confirming clinical utility. The CNN’s architecture proved
particularly adept at detecting gene-level conservation variations through its 1D
convolutional layers, while dropout regularization (0.3–0.5) ensured robustness against
overfitting. This computational framework enables development of rapid PCR/CRISPR
assays targeting the 47-gene panel, potentially reducing neonatal overtreatment in test
scenarios.

However, the study’s limitations include reliance on a modest dataset (n = 72)
dominated by historical lab strains, which may not fully represent natural M. bovis
diversity. Non-coding genomic regions, potentially critical for strain differentiation, were
excluded. Additionally, the CNN’s lack of attention mechanisms limits interpretability of
dependencies across the gene set. Overfitting risks persist in smaller training splits
(e.g., 50%), and functional redundancy among metabolic pathways may reduce biomarker
specificity in clinical assays. Future integration of transcriptomic data across BCG
subvariants could further enhance biomarker specificity for deployment in
high-TB-burden settings.
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