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ABSTRACT
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading
cause of dementia worldwide. Although clinical examinations and neuroimaging are
considered the diagnostic gold standard, their high cost, lengthy acquisition times,
and limited accessibility underscore the need for alternative approaches. This study
presents a rigorous comparative analysis of traditional machine learning (ML)
algorithms and advanced deep learning (DL) architectures that that rely solely on
structured clinical data, enabling early, scalable AD detection. We propose a novel
hybrid model that integrates a convolutional neural networks (CNNs), DigitCapsule-
Net, and a Transformer encoder to classify four disease stages—cognitively normal
(CN), early mild cognitive impairment (EMCI), late mild cognitive impairment
(LMCI), and AD. Feature selection was carried out on the ADNI cohort with the
Boruta algorithm, Elastic Net regularization, and information-gain ranking. To
address class imbalance, we applied three oversampling techniques: synthetic
minority oversampling technique (SMOTE), oversample using adaptive synthetic
(ADASYN), and SMOTE-Tomek. In the three-class setting, the CNN +
DigitCapsule-Net hybrid attained 90.58% accuracy, outperforming state-of-the-art
baselines that rely only on clinical variables. A tuned gradient boosting (GB) model
achieved comparable performance with substantially lower computational
requirements. Model interpretability was assessed with SHAP and gradient-weighted
class activation map (Grad-CAM), which identified Clinical Dementia Rating-Sum
of Boxes (CRD-SB), Logical Memory-Delayed Recall Total Number of Story Units
Recalled (LDELTOTAL), and Modified Preclinical Alzheimer Cognitive Composite
with Trails B (mPACC-TrailsB) as the most informative clinical features. This
combination of predictive strength, computational efficiency, and transparent
interpretation positions the proposed approach as a promising open-source tool for
facilitating early AD diagnosis in clinical settings.
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INTRODUCTION
Alzheimer’s disease is a neurodegenerative disorder that initially affects the hippocampus
and adjacent cortical regions—particularly the frontal and temporal lobes—before
progressing to the neocortex. The rate of progression varies among individuals. AD is
characterized chiefly by the accumulation of insoluble b-amyloid peptides that form
extracellular plaques and vascular deposits (Masters et al., 2015). It remains the most
common form of dementia and predominantly affects individuals older than 65 years (Jo,
Nho & Saykin, 2019). Demographic projections indicate that adults aged �65 years will
constitute 17% of the global population by 2050, resulting in an estimated 152 million AD
cases and raising major public-health concerns in the absence of curative treatments
(Uwishema et al., 2022).

AD progresses through distinct and well-characterized clinical stages. According to the
Alzheimer’s Disease Neuroimaging Initiative (ADNI; https://adni.loni.usc.edu), the
clinical stages considered in this study are:

. Cognitively normal (CN): Individuals exhibit no measurable cognitive impairment and
serve as healthy controls.

. Early mild cognitive impairment (EMCI): Individuals remain socially engaged and
functionally independent yet begin to experience episodic memory lapses, word-finding
difficulties, or frequent misplacement of familiar objects.

. Late mild cognitive impairment (LMCI): Functional abilities decline further;
individuals may require assistance with daily tasks, experience communication
difficulties, and exhibit behavioural or personality changes, including fine-motor
impairment.

. Alzheimer’s disease (AD): Patients demonstrate severe cognitive and functional
impairment requiring full-time care. Common symptoms include profound
disorientation, significant behavioral disturbances such as aggression, and an inability to
recognize close family members.

AD remains difficult to diagnose, prompting the development of diverse investigative
strategies, including fluid-based and neuroimaging biomarkers (Dubois et al., 2021;
Muksimova et al., 2025). In recent years, deep learning (DL) methods have advanced
rapidly (Muksimova et al., 2024); convolutional neural network (CNN) and
transformer-based architectures trained on magnetic resonance imaging (MRI) data now
achieve high staging accuracy (Mora-Rubio et al., 2023). Notable models include
CapsuleNet, which replaces standard convolutional layers with hierarchical “capsules.”
When coupled with dynamic routing, these capsules preserve spatial hierarchies, detect
salient features, and limit capsule-vector magnitudes through a squashing nonlinearity
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(Liu, Li & Li, 2020). Transformers represent another advanced approach; self-attention
enables them to focus on diagnostically relevant MRI regions or characteristic temporal
patterns in electroencephalography (EEG) data, thereby improving AD-stage classification
accuracy (Miltiadous et al., 2023; Bravo-Ortiz et al., 2024b).

Nevertheless, structured clinical data—such as laboratory results, cognitive-test scores,
and family history—remain underutilized in AD research. Common assessments include
the AD Assessment Scale Cognitive Subscale (ADAS-Cog), the Rey Auditory Verbal
Learning Test (RAVLT), the Mini-Mental State Examination (MMSE), the Functional
Assessment Questionnaire (FAQ), and the Trail Making Test Part B (TMT-B) (Battista,
Salvatore & Castiglioni, 2017). The presence of the apolipoprotein E e4 (APOE e4)
allele, detected in more than 50% of patients and linked to early disease onset,
b-amyloid deposition, and tau neurofibrillary tangle formation, is a well-established
genetic risk factor yet remains comparatively underexplored (Michaelson, 2014; Tan et al.,
2021). The present work offers a comprehensive comparison of seven models—CNN +
DigitCapsule-Net, CNN + transformer encoder (CNN + TF), stand-alone CNN,
Extra-Trees Classifier (ETC), support vector classifier (SVC), Random Forest (RF), and
gradient boosting (GB)—to classify the AD, CN, EMCI, and LMCI cohorts using
exclusively clinical variables. Rigorous hyperparameter optimization and architectural
refinement were conducted to maximize classification accuracy. Model interpretability was
evaluated with gradient-weighted class activation mapping (Grad-CAM), Shapley additive
explanations (SHAP), and feature-importance analyses to elucidate the contributions of
individual clinical variables to model decisions. The main contributions of this article are
summarized as follows:

. This study presents structured clinical data, including laboratory values, biomarkers, and
family history for AD detection, providing a more accessible and cost-effective
alternative to imaging-based methods.

. A comprehensive evaluation of traditional ML algorithms and state-of-the-art DL
models reveals that well-optimized ML techniques can outperform advanced DL
architectures in accuracy and stability when applied to clinical variables.

. Novel hybrid architectures that integrate convolutional feature extractors with
DigitCapsule-Net or Transformer encoders are proposed and assessed. These models
significantly improve classification performance across CN, EMCI, LMCI, and AD
cohorts, highlighting the potential of clinical-data–driven diagnostics.

. Reproducibility is ensured by releasing all datasets and source code, enabling
independent validation and fostering continued innovation in artificial intelligence
(AI)-based AD diagnosis; the release also clarifies the strengths and limitations of
clinical-data-driven methodologies.

The remainder of the article is organized as follows. ‘Related Work’ reviews related
work; ‘Materials and Methods’ describes the materials and methods, including the clinical
dataset, preprocessing pipeline, class-balancing techniques, model architectures,
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evaluation metrics, interpretability tools, and computational setup. ‘Results’ presents the
experimental results, which are discussed in ‘Discussion’, and ‘Conclusion’ concludes.

RELATED WORK
Projections indicate that AD—already the leading cause of dementia—will become one of
the world’s most lethal disorders, with epidemiological models predicting that global
dementia prevalence will triple by 2050 (Scheltens et al., 2016). Historically, AD diagnosis
required the presence of dementia—a progressive syndrome of substantial cognitive
decline that severely impairs daily functioning. Early detection is therefore essential for
delaying progression to this debilitating stage. According to McKhann et al. (2011),
standardizing AD classification remains challenging because many diagnostic criteria are
overly broad. The diagnostic criteria are summarized below:

1. The histopathological features of Alzheimer’s disease manifest across a broad clinical
spectrum.

2. Distinctive characteristics that differentiate AD from other dementias in comparable
populations remain poorly defined.

3. Although memory impairment is often the earliest symptom, non-amnestic
presentations are also observed.

4. The age distribution of the population vulnerable to Alzheimer’s disease has shifted over
time.

5. Genetic determinants of Alzheimer’s disease are still not fully elucidated.

The National Institute on Aging classifies Alzheimer’s-related dementia into three
clinical subtypes:

1. Probable Alzheimer’s dementia

(a) Meets the National Institute on Aging diagnostic criteria for dementia
(McKhann et al., 2011).

(b) Exhibits cognitive deficits, including memory loss and impaired learning.

(c) Demonstrates difficulty with face and object recognition, word-finding, reasoning,
and judgment.

2. Possible Alzheimer’s dementia

(a) Meets the above criteria but presents with an abrupt onset of cognitive decline.

(b) Shows clinical or imaging evidence of cerebrovascular disease.

3. Probable Alzheimer’s dementia with evidence of pathophysiological processes

(a) Biomarkers indicate neuronal injury or degeneration.

Current diagnostic criteria integrate neuropsychological evaluations and standardized
cognitive assessments, whereas researchers typically investigate neuronal degeneration
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with biomarker-based MRI. Although clinical criteria provide valuable insights, limited
access to and high costs of biomarkers restrict their routine use in practice (McKhann
et al., 2011). This gap underscores the need for more efficient classification methods to
facilitate early intervention because clinicians must manually inspect numerous MRI
slices—a labor-intensive process prone to diagnostic error.

Recent advances in artificial intelligence (AI) have produced more accurate AD
classification techniques. Mora-Rubio et al. (2023) introduced a DL pipeline that assigned
structural MRI scans to five diagnostic categories: CN, EMCI, MCI, LMCI, and AD. The
authors analyzed 2,559 T1-weighted images from the ADNI and the Open Access Series of
Imaging Studies (OASIS). After FreeSurfer preprocessing and spatial data augmentation,
the study compared EfficientNet, DenseNet, a custom Siamese CNN, and a Vision
Transformer (ViT). The best-performing model achieved accuracies of 89% (AD vs CN),
80% (LMCI vs CN), 66% (MCI vs CN), and 67% (EMCI vs CN), demonstrating that DL
approaches can effectively discriminate between healthy and diseased brains across
multiple stages.

Basaia et al. (2019) developed a DL algorithm that predicts AD diagnosis and the
likelihood of MCI conversion to AD from a single cross-sectional structural MRI scan.
Their convolutional neural network distinguished AD, converting MCI (cMCI) and stable
MCI (sMCI) with high accuracy, achieving its best performance in differentiating AD from
healthy controls (HC): 99% using images from the ADNI database and 98% with a
combined ADNI + Milan dataset. The model also distinguished cMCI from sMCI with up
to 75% accuracy, showing no significant differences between ADNI and non-ADNI
images. These findings highlight the potential of CNN-based methods to discriminate AD
and MCI from HC and to predict conversion to AD within 36 months.

Given the limited availability of neuroimaging data, recent efforts have focused on
models trained exclusively on clinical variables. Yi et al. (2023) integrated clinical data,
neuropsychological scores, imaging-derived biomarkers, and genotypic information
from the ADNI and NACC cohorts into an enhanced GB framework (XGBoost). The
algorithm iteratively adds regression trees by minimizing the negative gradient of the loss
function. Shapley Additive Explanations (SHAP) quantified the direction and magnitude
of each feature’s contribution, enhancing interpretability. The framework achieved high
sensitivity (81.21%/74.85%), specificity (92.18%/89.86%), accuracy (87.57%/80.52%), the
area under the receiver-operating characteristic curve (0.91/0.88), and positive/negative
clinical utility indices (0.71/0.56 and 0.75/0.68) on the ADNI and NACC datasets,
respectively.

Rangegowda et al. (2023) proposed a clinical-data framework for predicting progression
from MCI to AD and for stage-wise classification. Using the ADNI dataset, they extracted
demographic variables (age, education), disease progression rates, and cognitive test scores,
partitioning the data into 70% for training and 30% for testing and reserving 10% of the
training set for validation. The researchers evaluated multi-layer perceptron (MLP), random
forest, support vector machine, and decision tree classifiers across binary and multiclass
tasks involving AD, LMCI, EMCI, and CN. The MLP exhibited the best performance,
achieving accuracies of 99.97% (AD vs LMCI), 99.57% (AD vs EMCI), 99.96% (AD vs CN),
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and 95.05% (EMCI vs CN and LMCI vs CN). In multiclass scenarios, the model attained
99.97% (AD—LMCI—CN), 91.20% (EMCI—LMCI— AD), 86.25% (CN—EMCI—LMCI),
91.94% (CN—LMCI—AD), 85.14% (CN—EMCI—AD), and 77.50% when all four
categories were jointly classified (AD—LMCI—EMCI—CN). These findings highlight the
potential of MLP-based approaches for accurate AD staging using exclusively clinical data.

Recent investigations suggest that clinical variables offer several advantages over MRI
for staging AD. While MRI scanners and biomarker assays remain inaccessible in many
settings, healthcare providers can acquire clinical data at substantially lower cost in nearly
all healthcare environments. Their broad availability and affordability enhance the
feasibility of early detection and stratification across diverse populations. Consequently,
this study designs DL and ML models to classify AD stages solely from clinical
information.

MATERIALS AND METHODS
Database
This study utilized data from ADNI. Launched in 2003 as a public-private partnership,
ADNI aims to determine whether MRI, positron emission tomography (PET), other
biomarkers, and clinical assessments can reliably measure cognitive impairment and
Alzheimer’s disease progression, thereby promoting collaborative research. The database
also includes comprehensive clinical data for all participants.

Data processing and feature selection
The dataset was acquired in August 2023 and contains 13,205 patient records. It
encompasses clinical variables, neuropsychological biomarkers derived from imaging, and
APOE-4 status. In total, 113 features were available for modelling.

Following the feature-selection scheme proposed by Yi et al. (2023), we first discarded
variables with >50% missing values. We then evaluated the surviving candidates using
three complementary selectors—Information Gain (filter), Boruta (wrapper), and Elastic
Net (embedded)—thereby covering all three feature-selection paradigms. (i) Information
Gain served as a fast entropy-based filter, removing variables with negligible relevance.
(ii) Boruta, a random-forest wrapper, retained all relevant features and captured nonlinear
interactions overlooked by univariate filters. (iii) An Elastic Net model (a = 0.5) introduced
joint L1/L2 regularisation, shrinking coefficients, and eliminating redundant, highly
correlated predictors. Features endorsed by at least two of these methods were kept,
yielding 27 clinically meaningful attributes (Table 1). The preprocessing step excluded
patients missing selected features, resulting in a final dataset of 1,846 patients: 583 with
CN, 122 with AD, 696 with EMCI, and 445 with LMCI. Figure 1 illustrates the class
distribution. Stratified sampling preserved this distribution when the data were split into
training (80%) and test (20%) sets.

Class-balancing techniques
All class-balancing techniques were restricted to the training partition to preserve the
integrity of the validation process. The original class distribution in the independent test
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sets was left intact, thereby preventing information leakage and ensuring that performance
estimates reflect the model’s ability to generalize to naturally imbalanced data.

Synthetic minority over sampling technique
Synthetic minority oversampling technique generates synthetic samples for minority
classes by interpolating between existing data points. It identifies the k-nearest neighbors
of a sample within the minority class and creates new instances along the line segments
connecting the original sample to its neighbors. This approach not only balances class
distribution but also introduces variability that enhances model generalization (Chawla
et al., 2002). As a preprocessing step, SMOTE significantly improved classification
performance, particularly for minority classes, by reducing overfitting to the majority
classes and enabling models to more effectively capture patterns associated with the early
and late stages of cognitive decline.

Table 1 Selected features to train the model. The first row indicates the feature type, the second row provides its abbreviation as found in the ADNI
database, and the third row presents its meaning. The numbers accompanying the data refer to the position of each datum within the vector.

Type of
feature

Genetic Demographic
information

Neuroimaging-extracted
biomarkers

Neuropsychological

Name of
feature

ADAS11 (Alzheimer’s Disease Assessment
Scale-Cognition 11 items) [5]

ADAS13 (Alzheimer’s Disease Assessment
Scale-Cognition 13 items) [6]

ADASQ4 (Score from Task 4 of the Alzheimer’s
Disease Assessment Scale) [7]

Ventricles (Volume of
ventricles) [20]

MMSE (Total Score of Mini-Mental State
Examination) [8]

Hippocampus (Volume of
hippocampus) [21]

FAQ (Total Score of Functional Activities
Questionnaire) [9]

AGE (Patient’s age) [0] WholeBrain (Volume of
Whole Brain) [22]

MOCA (Total Score of Montreal Cognitive
Assessment) [10]

PTMARRY (Patient’s
Marital stauts) [3]

Entorhinal (Volume of
entorhinal) [23]

CDRSB (Clinical Dementia Rating-Sum of Boxes
Score) [11]

APOE4 (Number of
APOE-e44 alleles) [4]

PTGENDER (Patient’s
sex) [1]

Fusiform (Volume of
fusiform) [24]

RAVLT_immediate (Rey’s Auditory Verbal
Learning Test_Immediate Recall) [12]

PTEDUCAT (Patient’s
time of education) [2]

MidTemp (Volume of middle
temporal gyrus) [25]

RAVLT_learning (Rey’s Auditory Verbal Learning
Test_Learning) [13]

ICV (Volume of intracranial)
[26]

RAVLT_forgetting (Rey’s Auditory Verbal Learning
Test_Forgetting) [14]

RAVLT_perc_forgetting (Rey’s Auditory Verbal
Learning Test_Percent Forgetting) [15]

LDELTOTAL (Delayed total recall) [16]

TRABSCOR (Trail Making Test Part B Time) [17]

mPACCdigit (Modified Preclinical Alzheimer
Cognitive Composite with Digit test) [18]

mPACCtrailsB (Modified Preclinical Alzheimer
Cognitive Composite with Trails test) [19]
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SMOTE-TOMEK
The SMOTE-Tomek method integrates two complementary techniques, SMOTE and
Tomek Links elimination, to address class imbalance in datasets. This hybrid method both
balances class distribution through synthetic sample generation and improves separability
by removing ambiguous instances. It has proven particularly effective in classification
tasks where decision boundaries are unclear and prone to overfitting. In the first stage,
SMOTE generates synthetic samples for the minority class by interpolating feature values
between selected minority instances and their nearest neighbors in the feature space. While
SMOTE significantly improves class balance, placing synthetic points in regions where
class overlap occurs may introduce noise near decision boundaries, potentially
compromising model generalization. To address this issue, the second stage applies the
Tomek Links technique. Tomek Links identifies pairs of instances from opposite classes
that are each other’s nearest neighbors, representing regions of class ambiguity. Removing
these pairs refines the dataset by eliminating overlapping and conflicting examples,
thereby reducing noise and enhancing the clarity of boundaries. As a result, the
SMOTE-Tomek method improves data quality by mitigating noise introduced during
oversampling and eliminating inherently problematic instances from the original dataset
(Batista, Bazzan & Monard, 2003).

Adaptive synthetic sampling
The adaptive synthetic sampling (ADASYN) algorithm addresses the challenge of class
imbalance in ML by generating synthetic data points for the minority class, particularly
targeting instances that are harder to classify (He et al., 2008). In imbalanced datasets, the

Figure 1 Distribution of the dataset used in this study across four diagnostic categories: Alzheimer’s
disease (AD), cognitively normal (CN), early mild cognitive impairment (EMCI), and late mild
cognitive impairment (LMCI). The donut chart shows the percentage of samples per class, with
LMCI representing the largest portion (24%), followed by CN (32%), EMCI (37%), and AD (7%). This
class imbalance was considered in the model evaluation process.

Full-size DOI: 10.7717/peerj-cs.3208/fig-1
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dominance of the majority class often leads to biased models and poor predictive
performance for the minority class. ADASYN mitigates this issue by adaptively focusing
on regions of the feature space where classification is most difficult for minority class
samples. The algorithm operates through the following key steps:

. ADASYN identifies minority class instances that are more challenging to classify based
on their proximity to majority class samples. Instances in more ambiguous regions
receive more synthetic samples, while those in the well-separated areas receive fewer or
none.

. It generates synthetic samples by interpolating between selected examples of the
minority class and their nearest neighbors. The quantity of synthetic data produced for
each instance is proportional to its classification difficulty.

. By adaptively generating samples, ADASYN improves classifier performance, reduces
bias toward the majority class, and enhances generalization, particularly for
underrepresented categories.

This strategy balances class distributions by generating synthetic samples tailored to
reinforce decision boundaries, thereby enhancing the model’s robustness and predictive
accuracy.

NearMiss

The NearMiss method is an under-sampling technique designed to address class
imbalance by selecting a subset of majority class (negative) examples that are closest to the
minority class (positive) instances, based on a predefined distance metric (Mani & Zhang,
2003). By focusing on these strategically chosen samples, NearMiss reduces
class-imbalance skew and enhances the model’s ability to learn the distinguishing features
of the minority class. The method comprises three primary variations:

. NearMiss-1: Selects majority class samples with the smallest average distances to the
three nearest minority class instances. This variation emphasizes boundary regions,
capturing the most relevant negative examples for positive class decision margins.

. NearMiss-2: Selects majority class samples with the smallest average distances to the
three farthest minority class instances. This approach ensures that the selected negatives
are generally close to the overall distribution of the minority class.

. NearMiss-3: For each minority class instance, the algorithm selects a fixed number of the
nearest majority class samples. This selection strategy ensures a balanced local
distribution by surrounding each positive instance with an equal number of nearby
negative examples.

Model architectures
Traditional ML models

. Extra-Trees Classifier (ETC)
The ETC, or Extremely Randomized Trees, is a variant of the Random Forest algorithm
that introduces a higher degree of randomness in the construction of individual decision
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trees. ETC’s additional randomness can enhance computational efficiency and increase
robustness against overfitting in specific scenarios (Géron, 2022). The following section
outlines the primary steps in building an ETC:

1. Feature selection: At each node, the algorithm randomly selects a subset of features
F � X, where X denotes the full set of d features in the dataset. While this step is
similar to that used in Random Forests, ETC increases stochasticity by enforcing a
fixed random subset.

2. Random split point: For each feature f 2 F, a split point t is randomly selected
from the range of values observed for f in the current node. ETC differs from
Random Forests, which determine the split point by optimizing a criterion to
minimize impurity.

3. Split criterion: Each candidate pair ðf ; tÞ is evaluated using a cost function, such as
entropy or the Gini index. Selecting the combination that minimizes node impurity
yields the optimal split.
Formally, the optimal splitting point at a node N is given by:

Optimal ¼ arg min
f2F;t2T

ImpurityðN; f ; tÞ

where T is the set of possible split points for feature f , and the impurity
ImpurityðN; f ; tÞ is commonly calculated using the Gini index:

Gini index ¼ 1�
XK
k¼1

p2k:

Here, K represents the number of classes, and pk denotes the proportion of samples
belonging to class k at node N.

. Random Forest (RF)
The RF is an ensemble learning method that constructs multiple decision trees, each
trained on a different subset of the data and features (Breiman, 2001):

1. Bootstrap aggregating (Bagging): Multiple bootstrap samples Bi are drawn with
replacement from the training set D, and each sample is used to train an individual
decision tree Ti.

2. Random feature selection: At each node of a decision tree, a random subset of
features F � X is selected from the total set of d available features.

3. Node splitting: From the subset F, the algorithm selects the optimal feature f and
split point t by minimizing an impurity measure, such as entropy or the Gini index.

The final prediction of the Random Forest is obtained by aggregating the predictions of all
individual trees using majority voting for classification tasks or averaging for regression:

ŷ ¼ 1
ntrees

Xntrees
i¼1

TiðxÞ

where TiðxÞ denotes the prediction of the i-th tree for the input instance x.
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. Support vector classifier
Support vector classifier (SVC) is a widely used class of ML algorithms designed to solve
both classification and regression tasks involving linear (flat) and nonlinear (curved)
decision boundaries. The primary objective of SVM is to maximize the margin between
classes, optimizing the separation as a broad “highway” rather than a narrow boundary
(Géron, 2022).
The decision function linearly combines the features of a data point using weights x and
a bias x0. The result is passed through a sign function to determine the predicted class:

f ðx; xÞ ¼ signðxTx þ x0Þ:
A positive result assigns the instance to class þ1; a negative result assigns it to class �1.
SVM employs the hinge loss function to penalize misclassified points and those within
the margin boundaries. Hinge loss is given by:

maxð0; 1� ytrueðxTx þ x0ÞÞ
where:

– If ytrue ¼ þ1 and xTx þ x0 < 0, misclassifying the sample incurs a high penalty.

– If ytrue ¼ þ1 and 0 <xTx þ x0 < 1, the classification is correct but within the margin,
leading to a lower penalty.

– If ytrue ¼ þ1 and xTx þ x0 > 1, no penalty is applied.
The same logic applies for ytrue ¼ �1.
A regularization term is included in the objective function to encourage a wider
margin. This regularization term governs the model’s complexity and is weighted by a
hyperparameter k. The following expression defines the complete loss function:

LðxÞ ¼ 1
m

Xm
i¼1

maxð0; 1�yitrueðxTxi þ x0ÞÞ þ kjjxjj22

where m is the number of training examples and k regulates the trade-off between
margin maximization and classification error.
The optimization objective involves determining the values of x that minimize the
loss function. This minimization results in a convex quadratic programming
problem, thereby ensuring the existence of a unique global minimum. The problem
can be reformulated in its dual form, particularly beneficial in high-dimensional
feature spaces. The dual optimization problem is given by:

max
a

Xm
j¼1

aj � 1
2

Xm
j¼1

Xm
k¼1

ajaky
j
truey

k
trueðxjÞTxk

subject to the constraints aj � 0 and
Pm

j¼1 ajy
j
true ¼ 0.

Once the optimal values aj are obtained, the weight vector x can be recovered using:

x ¼
Xm
j¼1

ajy
j
truex

j:
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With x computed, the trained decision function classifies new data points:

f ðxnewÞ ¼ signðxTxnew þ x0Þ ¼ sign
Xm
j¼1

ajy
j
trueðxjÞTxnew þ x0

 !
:

. Gradient boosting
GB is an ensemble technique that constructs a strong predictive model by sequentially
combining multiple weak learners (Friedman, 2002). The core idea is to build models
iteratively, correcting the residual errors of the previous models at each step. The model
achieves this by minimizing a specified loss function using a gradient descent approach
(Géron, 2022). The mathematical formulation is:

1. Initial model: The process begins with a constant base model F0ðxÞ, typically defined
as the value that minimizes the loss function over the training data—often the mean
of the target variable. The following presents the mathematical formulation:

F0ðxÞ ¼ argmin
c

Xn
i¼1

Lðyi; cÞ

where Lðy; FðxÞÞ is the loss function measuring the discrepancy between the true
value y and the model prediction FðxÞ.

2. Residual computation: At each iteration m, the algorithm computes the pseudo-
residuals, which correspond to the negative gradients of the loss function concerning
the current predictions Fm�1ðxÞ:

rim ¼ � qLðyi; FðxiÞÞ
qFðxiÞ

� �
FðxÞ¼Fm�1ðxÞ

:

These residuals indicate how the model should adjust to minimize the prediction
error.

3. Fitting the new model: A new weak learner hmðxÞ is fitted to the residuals using a
least squares approach:

hmðxÞ ¼ argmin
h

Xn
i¼1

rim � hðxiÞ½ �2:

Aligning the model hmðxÞ with the structure of the current residual errors

4. Model update: The ensemble model is updated by adding the newly fitted model
hmðxÞ, scaled by a learning rate m, to the previous model:

FmðxÞ ¼ Fm�1ðxÞ þ mhmðxÞ:
The learning rate m 2 ð0; 1� regulates the contribution of each newmodel, providing a
trade-off between training speed and performance.

5. Final prediction: After M iterations, the final prediction function is defined as:

FMðxÞ ¼ F0ðxÞ þ
XM
m¼1

mhmðxÞ:

Bravo-Ortíz et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3208 12/50

http://dx.doi.org/10.7717/peerj-cs.3208
https://peerj.com/computer-science/


This cumulative model integrates all weak learners constructed during training to
form a strong predictor.

DL models

. CNNs
CNNs extract meaningful features from input data, forming the foundation of their
functionality. Researchers have developed numerous CNN architectures in response to
advances in computational power and DL; however, most architectures share a standard
structure consisting of three main components: a feature extraction layer, a fully
connected layer, and an output layer.
The feature extraction layer consists of multiple convolutional kernels that map various
features from the input data. Kernels learn and capture low-level to high-level patterns,
followed by the application of an activation function. The fully connected layer connects
each neuron from the previous layer to every neuron in the current layer, transforming
spatial features into semantic representations. The output layer, commonly used for
classification tasks, typically includes an optimizer and a softmax activation function to
produce probabilistic outputs (Gu et al., 2018).

Ml ¼ pool f norm
Xn
i¼1

Ml�1
i � Kl

i

� �þ bl
 ! ! !

: (1)

In this equation, Ml denotes the output feature map at layer l, Ml�1
i is the input feature

map from the previous layer, Kl
i represents the convolutional kernel, b

l is the bias term,
and � indicates the convolution operation.

Figure 2 illustrates the feature-extraction block. The network first applies three
convolutional layers with 8, 16, and 32 filters, each employing the “selu” activation
function (scaled exponential linear unit, SELU). It then applies a max pooling layer and a
dropout layer with a rate of 0.5 to mitigate overfitting. Next, the network applies
additional convolutional layers with 64, 128, and 256 filters, each followed by a max
pooling layer and dropout to further refine the extracted features.
Figure 3 presents the fully connected architecture. The network includes Fully connected
layers with 1,024 to 16 neurons in descending order, respectively. The final output layer
adapts according to the number of target classes. Each layer utilizes the “selu” activation
function and incorporates batch normalization to stabilize training and accelerate
convergence.

. DigitCapsule-Net
The Capsule Network (Capsule-Net) architecture significantly advances modeling
spatial and hierarchical relationships within data. Unlike traditional CNNs, which
aggregate features via convolution and pooling operations, Capsule-Net employs
convolutional blocks to learn features and then routes these features through capsules.
This approach enhances classification accuracy by emphasizing critical activations and
maintaining a richer input representation. Capsule-Net demonstrates robustness to
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Feature extraction layers

Figure 2 Architecture of the 1D convolutional neural network (CNN) used for feature extraction and classification. The model receives a 1D
input vector and applies a sequence of Conv1D layers with increasing filter sizes (8 to 256), kernel size of 3, and scaled exponential linear unit (SELU)
activation. Dropout layers with a rate of 0.5 and MaxPooling1D layers are interleaved to reduce overfitting and dimensionality. The final repre-
sentation is passed to the output layer for classification. All convolutional layers use same padding to preserve input dimensions across layers.

Full-size DOI: 10.7717/peerj-cs.3208/fig-2
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Figure 3 Fully connected layers consisting of fully connected layers with 1,024 to 16 neurons in descending order. Each layer includes
hyperparameters such as activation functions and normalization. Full-size DOI: 10.7717/peerj-cs.3208/fig-3
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minor variations in input data, leading to more accurate and reliable image
interpretations.
The DigitCapsule-Net layer is a core component of the Capsule-Net architecture and
follows the primary (or central) capsules. This layer contains multiple capsules, each
functioning as a small neural network that generates an activation vector. Each capsule
actively represents a specific class, such as digits in image recognition tasks, and
produces a vector that captures detailed information about the input. This vector-based
representation enables the model to express and interpret the data more
comprehensively than traditional scalar outputs (Sabour, Frosst & Hinton, 2017).
A key innovation of the DigitCapsule-Net is its use of dynamic routing, a process that
determines the strength of the connections between the outputs of primary capsules and
the higher-level capsules in the DigitCapsule-Net layer. During dynamic routing, the
predictions from the lower-level capsules are iteratively refined based on their agreement
with the outputs of the higher-level capsules. This mechanism allows the network to
preserve more information than max-pooling, resulting in more precise data
representations.
DigitCapsule-Net derives class probabilities from the length of each output vector, which
reflects the likelihood of a particular class being present. Additionally, the orientation of
these vectors encodes detailed properties of the represented objects, such as their pose,
size, and deformation. This dual encoding enhances the interpretability and accuracy of
classification tasks, offering a more nuanced understanding of the input data. The
DigitCapsule-Net exhibits strong robustness to variations in object orientation,
illumination, and position, making it particularly suitable for complex recognition
scenarios (Sabour, Frosst & Hinton, 2017; Dombetzki, 2018; Holguin-Garcia et al., 2024).
In the proposed model, the DigitCapsule-Net layer is integrated following the
convolutional and pooling layers, as shown in Fig. 4. The dimensions are adjusted to
facilitate the efficient processing of capsule vectors. The model first normalizes and
compresses the output values using an activation function to ensure they remain within
an appropriate range. The model then passes this compressed output to DigitCapsule-
Net, which applies linear transformations and produces a multidimensional tensor
representing the learned class-specific features.

. Transformer encoder
The Transformer encoder captures and models contextual information by establishing
relationships among input vectors. Unlike recurrent language models such as long
short-term memory (LSTM) networks, it employs self-attention mechanisms that
effectively capture the contextual representation of features within a sequence of vectors.
Each encoder layer includes multiple attention heads, feed-forward layers, and positional
encoding, which retains information about the order of the input elements (Yan et al.,
2019).
Multiple attention heads apply self-attention in parallel; each head partitions the input
into a query (Q), key (K), and value (V) vectors, allowing the model to process different
representation subspaces simultaneously. The outputs of all attention heads are
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concatenated and passed through a learned linear transformation to form the final
output, a process known asmulti-head attention (Vaswani et al., 2017; Bravo-Ortiz et al.,
2024c, 2024a).
Figure 5 illustrates the Transformer encoder architecture used in this study. The
following equation defines the self-attention mechanism:

AttnðQ;K;VÞ ¼ softmax
QKTffiffiffiffiffi
dk

p
� �

V: (2)

In this equation, Q represents the query vector corresponding to the current token, K
denotes the key vector, and V is the value vector containing relevant contextual
information. The term

ffiffiffiffiffi
dk

p
serves as a normalization factor for scaling the dot product,

where dk is the dimensionality of the key vectors.

Conv Layer

Primary
Caps

Digital
Caps

DigitCapsule-Net

Hidden
Feature

layer

Feature
extraction block

Output

Figure 4 DigitCapsule-Net model. Processes information using dynamic routing (Sabour, Frosst &
Hinton, 2017). Full-size DOI: 10.7717/peerj-cs.3208/fig-4

Transformer Encoder

Norm

Q

K

V

Multi-Head

Attention
Input MLPNorm Output

Figure 5 Schematic representation of a Transformer encoder block. The input is first normalized and then processed through a multi-head
self-attention mechanism, which computes contextualized representations using query (Q), key (K), and value (V) vectors. The output of the
attention layer is added to the input via a residual connection and followed by layer normalization. This is passed through a feed-forward neural
network (MLP), again followed by residual addition and normalization, yielding the final encoder output. This architecture enables efficient
modeling of long-range dependencies in sequential data. Full-size DOI: 10.7717/peerj-cs.3208/fig-5
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Configuration of DL models
Convolutional neural network–fully connected

The CNN with a fully connected layer (Fig. 6) represents the most basic configuration and
comprises two main components: a feature extraction block and a classification block
implemented via a fully connected layer at the output.

The input to the model is a vector with dimensions (None, 27, 1). The convolutional
filters process the data into a shape of (None, 256), which is then reduced to (None, 16)
before it enters the classification layer. The term “None” denotes the variable batch size.

Convolutional neural network–DigitCapsule-Net

Convolutional neural network–DigitCapsule-Net (CNN+DigitCapsule-Net), illustrated in
Fig. 7, receives input vectors with dimensions (None, 27, 1). These inputs are first
processed through a feature extraction layer, resulting in a tensor of shape (None, 1, 256).
The model passes the output to the DigitCapsule-Net, which produces a final
representation of shape (None, 3, 16) for classification. As before, “None” indicates the
variable input batch size.

Convolutional neural network–Transformer encoder

The convolutional neural network–transformer encoder (CNN+TF) shown in Fig. 8, takes
input vectors of shape (None, 27, 1). These vectors are passed through feature extraction
layers, producing an output of shape (None, 1, 256). Within the Transformer block, the
data undergo processing through multiple attention heads while maintaining the same
dimensionality. A multilayer perceptron performs the classification in the final stage.

Convolutional neural network–Transformer encoder + DigitCapsule-Net (CNN
+TF+DigitCapsule-Net)
The hybrid model illustrated in Fig. 9 integrates several advanced components for data
processing. Input vectors of shape (None, 27, 1) are first passed through a shared feature
extraction block, resulting in an intermediate representation of shape (None, 1, 256). This

Feature
extraction layers

Fully
connected

CN

EMCI

LMCI

AD

CNN+Fully Connected

Shape
(None, 27,1)

Shape
(None, 256)

Figure 6 Architecture of the CNN model with a fully connected layer. The model receives input
feature vectors of shape (None, 27, 1), which are processed by feature extraction layers, resulting in a
representation of shape (None, 256). These vectors are then passed through a fully connected layer,
reducing the dimensionality to (None, 16), before being classified into one of four categories: CN, EMCI,
LMCI, and AD. The “None” dimension denotes the variable input batch size.

Full-size DOI: 10.7717/peerj-cs.3208/fig-6
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output passes through a Transformer encoder, which captures complex feature
relationships via attention mechanisms without altering dimensionality. Finally, the
DigitCapsule-Net receives the output and produces a final representation of shape (None,
3, 16) for classification. This architecture combines the efficiency of CNNs, the contextual
modeling capabilities of Transformers, and the hierarchical feature representation of
capsule networks, thereby leveraging the strengths of each.

Evaluation metrics and validation strategy
Metrics
By emphasizing the differences between false positives (FP), false negatives (FN), true
positives (TP), and true negatives (TN), Tabares-Soto et al. (2021) illustrate the importance
of metrics in the evaluation of a model. The following are the most crucial metrics:

. Accuracy
Accuracy evaluates a classification model’s predictive performance. To compute it, one
divides the total number of correct predictions by the total number of predictions.

Feature
extraction layers

Transformer
Encoder

CN

EMCI

LMCI

AD

CNN+Transformer Encoder

Shape
(None, 27,1)

Shape
(None,1, 256)

Shape
(None, 256)

Figure 8 Architecture of the CNN model with a Transformer encoder. The model receives input
vectors of shape (None, 27, 1), which are transformed by feature extraction layers into tensors of shape
(None, 1, 256). This output is processed through multiple attention heads within the Transformer
encoder, preserving the shape, before being classified into one of four categories: CN, EMCI, LMCI, and
AD. The “None” dimension denotes the variable input batch size.

Full-size DOI: 10.7717/peerj-cs.3208/fig-8
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Figure 7 Architecture of the CNNmodel with a DigitCapsule-Net. The model receives input vectors of
shape (None, 27, 1), which are processed by feature extraction layers to yield an output of shape (None, 1,
256). The tensor is then passed to the DigitCapsule-Net Block, producing a final representation of shape
(None, 3, 16) for classification into one of four categories: CN, EMCI, LMCI, and AD. The “None”
dimension denotes the variable input batch size. Full-size DOI: 10.7717/peerj-cs.3208/fig-7
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Accuracy is a value ranging from 0 to 1, representing the percentage of accurate
predictions.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

: (3)

. Precision
The precision metric gauges the ratio of correctly identified positive cases by a model to
the total cases identified as positive, encompassing both true and false positives.

Precision ¼ TP
TP þ FP

: (4)

. Recall
Also known as sensitivity, it shows the ability of the classifier to display correct
predictions.

Recall ¼ TP
TP þ FN

: (5)

. F1
F1 is a metric used to assess a model’s ability to precisely identify positive and negative
cases, particularly in scenarios where the data is imbalanced, and the positive class is
infrequent. It is determined as the harmonic mean of precision and recall, proving
especially valuable in situations with uneven class distribution.

F1 ¼ 2 � Precision � Recall
Precisionþ Recall

: (6)

. Confusion matrix
The confusion matrix is a tabular representation that encapsulates the correspondence
between a model’s predictions and the actual labels of the data. It incorporates true
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). This

Feature
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DigitCapsule-
Net
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LMCI

AD

CNN+TF+DigitCapsule-Net
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(None, 27,1)

Shape
(None,3, 256)
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(None, 3,16)
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(None, 1, 256)

Transformer
encoder

Figure 9 Architecture of the hybrid model combining CNN, Transformer encoder, and
DigitCapsule-Net. The model receives input vectors of shape (None, 27, 1), which are processed by
shared feature extraction layers to generate a representation of shape (None, 1, 256). The intermediate
output flows through a Transformer encoder, which captures contextual dependencies without altering
its shape. Subsequently, the output is processed by the DigitCapsule-Net, producing a final representation
of shape (None, 3, 16) for classification into one of four categories: CN, EMCI, LMCI, and AD. The
“None” dimension denotes the variable input batch size. Full-size DOI: 10.7717/peerj-cs.3208/fig-9
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matrix proves valuable for visually summarizing a model’s performance, highlighting
both its successes and errors. Each row in the matrix corresponds to the actual class, and
each column indicates the number of predictions made for each class. Additionally, it
helps identify instances where the model misclassifies one class as another.

Cross-validation
Cross-validation (CV) is a resampling technique used to evaluate a model’s performance
by partitioning the dataset into kmutually exclusive subsets (folds) of approximately equal
size. At each iteration, one fold serves as the validation set, while the remaining k� 1 folds
constitute the training set. The process continues until all folds have individually served as
the validation set. Averaging the k resulting performance scores provides a more reliable
estimate of the model’s generalization ability. To preserve the original class distribution
within every fold and avoid biased estimates in the presence of class imbalance, we adopt
stratified 10-fold cross-validation, as illustrated in Eq. (7).

M̂ ¼ 1
k

Xk
i¼1

Mi; (7)

where Mi denotes the performance metric computed on the i-th validation fold.

Statistical comparison of model performance
This study rigorously evaluated model performance differences using several
non-parametric statistical tests, as recommended by Rainio, Teuho & Klén (2024). These
methods are particularly appropriate in scenarios where the assumptions underlying
parametric tests—such as normality and homoscedasticity—are violated, which is often
the case with cross-validated performance metrics.

. Friedman test
The Friedman test serves as a non-parametric alternative to repeated-measures ANOVA,
designed to detect differences in treatments across multiple testing conditions. Within
the context of ML, it assesses whether statistically significant performance differences
exist among various models evaluated on the same datasets. The test ranks model
performance scores per dataset and analyzes these ranks to determine the significance of
observed differences. Its robustness to violations of normality makes it particularly
suitable for comparing more than two models simultaneously (Rainio, Teuho & Klén,
2024).

. Wilcoxon signed-rank test
This study applied the Wilcoxon signed-rank test for pairwise model comparisons. This
non-parametric method evaluates whether a significant difference exists between two
related samples, such as the performance scores of two models across the same
cross-validation folds. By accounting for both the magnitude and direction of the
differences, the test provides a more comprehensive assessment than the sign test. It is
especially well-suited for situations in which the assumption of normality is not upheld
(Rainio, Teuho & Klén, 2024).
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. Levene’s test for equality of variances
Analyzing performance variability is essential, as models with similar mean accuracies
may differ substantially in consistency. Levene’s test was employed to assess the
homogeneity of variances across model performance metrics. Unlike other variance
equality tests, Levene’s method is less sensitive to deviations from normality, making it
an appropriate choice for this analysis (Rainio, Teuho & Klén, 2024).

Hyperparameter tuning
ML hyperparameter tuning with grid search and pipelines
This study employed a combination of grid search and pipeline integration to enhance the
performance of traditional ML models. Grid search is a widely used methodology that
systematically explores a predefined subset of the hyperparameter space to identify the
optimal configuration. Although effective, grid search can be computationally expensive
due to the exponential growth in combinations as the number of hyperparameters
increases. Consequently, practitioners often restrict the search to carefully selected regions
of the parameter space, typically assuming mutual independence among the
hyperparameters (Liashchynskyi & Liashchynskyi, 2019).

We ensured reproducibility and efficiency by embedding all hyperparameter tuning
procedures within a pipeline architecture, consistent with the implementation described in
Pedregosa et al. (2011). Pipelines facilitate the seamless integration of preprocessing steps
(feature selection, scaling), model training, and evaluation. This approach minimizes the
risk of data leakage and promotes methodological consistency across experiments.

Each model underwent independent optimization for both balanced and imbalanced
datasets. The optimized hyperparameters for the three-class classification task are
presented in Table 2.

DL model tuning
The hyperparameters of DL models were carefully tuned to ensure optimal configuration
during the training process. The categorical cross-entropy loss function was employed in
conjunction with the Adam optimizer, configured with a learning rate of 0.001. All models
were trained with a batch size of 256 for a total of 500 epochs, incorporating early stopping
to prevent overfitting.

The following section provides a detailed description of the hyperparameters used.

. Batch normalization (BN)
The features in each data map are normalized using the BN to have a mean of 0 and a
variance of 1, enabling rescaling and retranslating the distribution. A faster rate of
learning is made possible by this training method (Ioffe & Szegedy, 2015). The following
equation denotes it:

BNðx; c; bÞ ¼ bþ c
x � E½X�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½X� þ e

p (8)
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where:
c = The re-scaling scalar.
b = re-translation scalar.
E[X] = expectation.
Var½X� = variance.

. Scaled exponential linear unit
This nonlinear activation function, proposed by Klambauer et al. (2017), behaves linearly
for positive input values and exhibits exponential behavior for negative ones. The
function incorporates two constants: k, approximately equal to 1.0507, and a, the
negative slope coefficient, with an approximate value of 1.67326. These parameters
enable effective scaling and propagation of signals across multiple neural network layers.
Furthermore, researchers consider the function self-normalizing because it maintains a
constant mean and variance during forward propagation, thereby enhancing model
stability (Rasamoelina, Adjailia & Sinčák, 2020).
The following equation gives it:

SELUðxÞ ¼ k
x if x > 0
a � ðexpðxÞ � 1Þ if x � 0

	
: (9)

. Dropout
The regularization technique known as Dropout is employed to prevent overfitting in
neural networks. This method randomly drops out selected nodes and their connections
during training, reducing the risk of co-adaptation among neurons and preventing the
network from relying excessively on specific pathways. As a result, the model is less likely
to memorize the training data and more capable of generalizing to unseen samples.

Table 2 Hyperparameter optimization for three class divided into each of the models, which in turn is divided into balanced data using
SMOTE and imbalanced data.

Models Hyperparameter CN-EMCI-LMCI AD-EMCI-LMCI AD-CN-LMCI AD-CN-EMCI

Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced

ETC min_samples_split 2 2 2 2 2 2 2 2

n_estimators 100 200 150 300 150 150 250 150

random_state 20 50 40 40 20 10 30 50

SVM C 10 10 10 10 10 10 10 10

gamma auto scale auto auto auto scale scale scale

Kernel rbf rbf rbf rbf rbf rbf rbf rbf

RFC min_samples_split 2 4 2 2 4 2 4 4

n_estimators 250 300 100 300 50 400 50 300

random_state 20 30 20 50 10 10 10 20

GB learning_rate 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.05

max_depth 7 7 3 7 7 3 5 7

n_estimators 200 200 200 200 200 200 200 200

random_state 10 50 50 50 20 10 40 20
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Beyond mitigating overfitting, Dropout contributes to the development of more robust
networks by forcing them to function under varying structural configurations during
training. This variability promotes model resilience and improves generalization.
Additionally, Dropout facilitates the averaging of predictions and helps reduce variance
at test time (Srivastava et al., 2014). Dropout is incorporated to prevent overfitting in this
study, as illustrated in Fig. 2.

Interpretability techniques
Feature importance
The importance of features is a fundamental technique in interpreting ML models. It helps
understand the model’s behavior and identify biases and critical features. This method is
crucial as artificial intelligence models have become increasingly complex and challenging
to interpret due to scientific advancements (Adler & Painsky, 2022).

Gradient-weighted class activation mapping
Gradient-weighted class activation mapping (Grad-CAM) is a widely adopted technique
for interpreting CNNs by visualizing input regions that most influence the model’s
predictions for making predictions based on the information provided by the gradient. It
computes the gradient of the predicted class score concerning the feature maps of the last
convolutional layer, averages these gradients to derive weights, and multiplies them by the
corresponding feature maps to produce a saliency map that highlights the essential input
regions (Selvaraju et al., 2016).

Shapley additive explanations values
Shapley additive explanations (SHAP) values constitute a widely adopted technique for
interpreting the output of ML models. They provide insight into how individual input
features contribute to a specific prediction. SHAP values is particularly valued for its
consistency and fairness, as it is grounded in principles from cooperative game theory
(Marcílio & Eler, 2020; Meng et al., 2020).

The theoretical foundation of SHAP lies in Shapley values, a concept from cooperative
game theory that defines a fair method for distributing the payoff of a task among its
participants. In the context of ML, the “participants” are the input features, and the
“payoff” corresponds to the model’s predicted output. SHAP values quantify each feature’s
contribution to the prediction by considering all possible combinations of features
(Marcílio & Eler, 2020; Meng et al., 2020).

Formally, SHAP values assigns a value to feature xi by averaging its marginal
contributions across all possible feature subsets.

Given a set of input features fx1; x2; . . . ; xng, the SHAP value fi is computed as:

fi ¼
X

S	Nnfig

jSj!ðjNj � jSj � 1Þ!
jNj! f ðS [ figÞ � f ðSÞð Þ
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where:

. fi is the SHAP value for feature xi.

. N denotes the full set of input features.

. S is any subset of features that does not include xi.

. f ðSÞ is the model’s prediction using only the features in subset S.

. f ðS [ figÞ is the model’s prediction when feature xi is added to subset S.

. jSj!ðjNj�jSj�1Þ!
jNj! is a weighting factor that ensures a fair distribution based on all possible

feature coalitions involving xi.

Hardware and computational resources
Google Colab was used for all experiments; in this case, using NVIDIA GP100GL (T4 PCIe
15 GB) with 250 W, CUDA Version 10.1, and RAM with 12 GB.

RESULTS
DL ablation
To assess the individual contribution of each architectural component—CNN,
DigitCapsule-Net, and TF—to the final model performance, we conducted an ablation
study. Each model was evaluated independently using the same data partition and
evaluation protocol as the proposed architecture (CNN + DigitCapsule-Net).

Table 3 summarizes the performance of each isolated module. The CNN-only model
achieved a precision of 86.48%, recall of 86.25%, and F1-score of 86.23%, while the
DigitCapsule-Net-only model slightly outperformed CNN with an F1-score of 87.81%. In
contrast, the Transformer-only model significantly underperformed, with a precision of
23.18% and an F1-score of 31.24%, which can be attributed to the relatively small dataset
size and the lack of positional bias modeling in isolation.

These results confirm that each component brings valuable features to the overall
architecture. The performance gains obtained by combining CNN and DigitCapsule-Net
(91.93% F1-score) or adding TF (in another experiment) suggest that the fusion of local
spatial features, hierarchical routing, and attention mechanisms is critical for robust
classification across AD, EMCI, and CN groups.

Table 3 Results from ablation study of individual model components. Each model was trained and
evaluated independently on the same three-class classification task (AD vs EMCI vs CN). Metrics are
averaged over cross-validation with standard deviation in parentheses.

Architecture Model Precision [%] Recall [%] F1-score [%] Accuracy [%]

Single Block CNN 86.48 86.25 86.23 86.25

TF 23.18 48.04 31.24 48.04

DigitCapsule-Net 88.03 87.86 87.81 87.86

Combined CNN + DigitCapsule-Net 90.97 92.91 91.93 90.58

CNN + TF 86.07 87.78 88.89 86.16
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Table 4 Results obtained from all models evaluated in two classes include precision, recall, F1-score, and the accuracy obtained in 10 k-fold
cross-validation. Additionally, each result is presented for both imbalanced and balanced data using SMOTE method.

Classes Models Precision [%] Recall [%] F1-score [%] Cross-validation [%]

Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced

CN vs EMCI CNN 87.90 84.11 93.16 92.03 90.46 87.89 88.17 ± 3.17 90.01 ± 2.83

CNN + DigitCapsule-Net 88.33 85.52 90.60 89.86 89.45 87.63 87.20 ± 3.42 89.85 ± 2.11

CNN + TF 88.70 83.12 87.18 92.75 87.93 87.67 87.30 ± 3.63 89.67 ± 1.55

CNN + TF + DigitCapsule-
Net

86.89 86.21 90.60 90.58 88.70 88.34 87.39 ± 3.18 90.09 ± 2.13

SVC 87.20 85.03 93.16 90.58 90.08 87.72 89.54 ± 2.49 90.66 ± 2.64

GB 92.44 88.65 94.02 90.58 93.22 89.61 90.42 ± 2.36 92.18 ± 1.83

CN vs LMCI CNN 92.44 88.00 94.02 97.35 93.22 92.44 89.54 ± 4.02 91.39 ± 3.02

CNN + DigitCapsule-Net 92.50 89.26 94.87 95.58 93.67 92.31 90.51 ± 3.26 90.77 ± 3.09

CNN + TF 91.19 91.19 91.85 91.85 91.45 91.45 89.54 ± 3.92 89.54 ± 3.92

CNN + TF + DigitCapsule-
Net

92.24 88.80 91.45 98.23 91.85 93.28 89.90 ± 3.50 91.97 ± 2.88

SVC 94.07 92.50 94.87 98.23 94.47 95.28 91.35 ± 1.85 92.59 ± 2.06

GB 95.50 93.97 90.60 96.46 92.98 95.20 91.84 ± 3.19 92.90 ± 1.59

LMCI vs
EMCI

CNN 80.00 81.88 58.43 84.14 67.53 82.99 80.05 ± 3.00 82.92 ± 4.50

CNN + DigitCapsule-Net 76.83 86.71 70.79 85.52 73.68 86.11 79.93 ± 3.68 84.37 ± 1.58

CNN + TF 74.19 85.42 51.69 84.83 60.93 85.12 77.63 ± 4.09 83.74 ± 1.75

CNN + TF + DigitCapsule-
Net

77.38 83.92 73.03 82.76 75.14 83.33 78.83 ± 3.51 84.09 ± 2.60

SVC 80.29 87.07 82.02 88.28 82.02 87.67 85.53 ± 2.69 87.60 ± 2.61

GB 88.73 91.49 70.79 88.97 78.75 90.21 83.23 ± 6.44 87.77 ± 3.22

AD vs LMCI CNN 40.00 85.85 40.00 100.0 40.00 92.39 83.65 ± 4.82 90.00 ± 3.29

CNN + DigitCapsule-Net 52.94 83.33 36.00 08.90 42.86 90.45 91.00 ± 2.70 85.00 ± 4.32

CNN + TF 59.26 83.33 64.00 83.33 61.54 89.00 83.21 ± 3.52 91.00 ± 2.70

CNN + TF + DigitCapsule-
Net

52.94 85.05 100.0 100.0 42.86 89.66 91.92 ± 3.52 91.01 ± 3.29

SVC 69.57 89.22 64.00 100.0 66.67 94.30 84.32 ± 3.76 93.53 ± 2.54

GB 58.82 84.62 40.00 96.70 47.62 90.26 82.34 ± 7.13 91.00 ± 3.41

AD vs EMCI CNN 86.36 95.71 79.17 100.0 82.61 97.81 95.72 ± 2.35 97.67 ± 1.07

CNN + DigitCapsule-Net 86.36 93.06 77.15 100.0 88.94 96.40 95.72 ± 1.35 98.38 ± 0.97

CNN + TF 90.00 96.40 75.00 100.0 96.40 98.17 98.38 ± 0.97 98.29 ± 1.02

CNN + TF + DigitCapsule-
Net

90.91 95.04 83.33 100.0 86.96 97.45 95.41 ± 2.05 98.11 ± 1.10

SVC 87.50 95.71 87.50 100.0 87.50 97.81 96.64 ± 1.49 98.38 ± 0.96

GB 88.89 94.85 66.67 96.27 76.19 95.56 92.36 ± 1.49 95.50 ± 2.12

AD vs CN CNN 92.00 100.0 95.83 99.19 93.88 99.59 98.58 ± 1.06 99.15 ± 1.15

CNN + DigitCapsule-Net 88.46 100.0 95.83 100.0 92.00 100.0 98.05 ± 1.68 98.82 ± 1.21

CNN + TF 88.46 100.0 95.83 100.0 92.00 100.0 98.23 ± 1.57 99.14 ± 0.93

CNN + TF + DigitCapsule-
Net

88.46 100.0 95.83 100.0 92.00 100.0 98.05 ± 1.23 99.15 ± 1.04

(Continued)
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Table 4 (continued)

Classes Models Precision [%] Recall [%] F1-score [%] Cross-validation [%]

Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced

SVC 100.0 100.0 95.83 100.0 97.87 100.0 98.75 ± 1.14 99.46 ± 0.72

GB 87.70 99.18 79.61 98.37 83.46 98.78 96.81 ± 1.90 99.13 ± 1.05

Table 5 Results obtained from all models evaluated in three classes include precision, recall, F1-score, and the accuracy obtained in 10k-fold
cross-validation. Additionally, each result is presented for imbalanced data.

Classes Models Precision [%] Recall [%] F1-score [%] Cross-validation [%]

CN vs EMCI vs LMCI CNN 79.61 79.61 79.61 76.15 ± 2.13

CNN + DigitCapsule-Net 77.62 79.13 78.37 76.51 ± 3.37

CNN + TF 81.15 75.24 78.09 76.65 ± 2.27

CNN + TF + DigitCapsule-Net 79.90 77.18 78.52 76.29 ± 2.47

ETC 87.57 75.24 80.94 80.85 ± 3.34

SVC 80.29 81.07 80.68 81.57 ± 3.46

RF 86.29 73.30 79.27 79.76 ± 2.41

GB 87.70 79.61 83.46 82.37 ± 2.86

AD vs EMCI vs LMCI CNN 70.73 50.88 59.18 71.39 ± 4.63

CNN + DigitCapsule-Net 65.38 59.65 62.39 74.36 ± 3.79

CNN + TF 64.95 55.26 59.72 71.68 ± 4.79

CNN + TF + DigitCapsule-Net 66.00 57.89 61.68 73.47 ± 4.42

ETC 73.33 57.89 64.71 75.74 ± 4.87

SVC 74.31 71.05 72.65 79.80 ± 3.65

RF 72.83 58.77 65.05 73.46 ± 3.85

GB 67.39 54.39 60.19 76.73 ± 3.71

AD vs CN vs LMCI CNN 90.51 87.94 89.21 81.74 ± 2.74

CNN + DigitCapsule-Net 86.43 85.82 86.12 81.74 ± 2.74

CNN + TF 87.68 85.82 86.74 81.20 ± 3.15

CNN + TF + DigitCapsule-Net 86.52 86.52 86.52 82.17 ± 3.08

ETC 81.13 76.11 78.54 84.67 ± 1.71

SVC 83.02 77.88 80.37 86.30 ± 2.75

RF 77.68 76.99 77.33 84.56 ± 3.18

GB 71.43 70.80 71.11 84.45 ± 2.99

AD vs CN vs EMCI CNN 86.21 88.65 87.41 85.09 ± 2.80

CNN + DigitCapsule-Net 90.97 92.91 91.93 90.58 ± 2.51

CNN + TF 86.07 87.78 88.89 86.16 ± 2.83

CNN + TF + DigitCapsule-Net 87.07 90.78 88.89 86.16 ± 2.97

ETC 92.48 87.23 89.78 88.57 ± 3.33

SVC 86.90 89.36 88.11 87.76 ± 2.61

RF 93.23 87.94 90.51 88.75 ± 1.55

GB 94.85 91.49 93.14 93.59 ± 3.13
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Overall results
DL models were evaluated over 500 epochs with a batch size of 256. The ML models were
assessed with the hyperparameters defined in ‘ML Hyperparameter Tuning with Grid
Search and Pipelines’. Table 4 reports the binary-classification results and compares DL
models with SVC and GB. The analysis covers precision, recall, F1-score, and 10-fold
cross-validated accuracy for balanced and imbalanced datasets.

Table 5 summarizes the three-class classification results obtained with DL models and
the ETC, SVC, RF, and GB. As in the binary case, performance metrics are reported for
both balanced and imbalanced datasets. For metric visualization, Figures 10, 11, 12, 13
visualise the main evaluation metrics for the CN–EMCI–LMCI, AD–CN–EMCI, AD–CN–
LMCI, and AD–EMCI–LMCI tasks, respectively. Each figure contrasts the two
best-performing models—CNN + DigitCapsule-Net and CNN + TF. Metrics plotted
comprise the classification report, confusion matrix, and receiver-operating-characteristic
(ROC) curve generated with early-stopping. Finally, Table 6 shows the results using data
balancing techniques.

Finally, Table 7 presents the four-class results obtained with the same ML models
evaluated in the three-class scenario. Figure 14 shows the ROC curve, confusion matrix,
and other metrics for the two top models—DigitCapsule-Net and the Transformer
encoder.

Alzheimer’s disease poses a significant global health challenge, and current projections
indicate it will become an even greater concern in the medium and long term due to
population aging. The growing body of research on this topic reflects its increasing
relevance. However, the sheer volume of published studies complicates the identification of
the most effective models and methodologies. This study evaluates and contrasts state-of-
the-art and traditional approaches for classifying Alzheimer’s disease, emphasizing the
utility of structured clinical data, an underexplored modality often overshadowed by MRI.
Advanced architectures—CNN + TF and CNN + DigitCapsule-Net—require substantially
more computation time. Our findings show that, for structured clinical data, well-tuned
traditional ML models can outperform complex DL models and offer superior efficiency
and interpretability. State-of-the-art models (the 1-D CNN + DigitCapsule-Net) achieve
competitive performance but at a substantially higher computational cost than traditional
ML approaches.

Rapid AI development hampers reproducibility when source code or datasets are not
publicly released. Such opacity hinders result verification and often leads to disputes over
which method is superior. Moreover, many state-of-the-art techniques achieve strong
headline metrics yet lack sufficient interpretability. Researchers routinely publish results
but often omit the underlying rationale for their model decisions. Interpretability must
therefore remain a fundamental pillar of artificial-intelligence research.

To address the class imbalance, particularly the overrepresentation of the LMCI class,
we report the performance metrics for each class individually. Table 8 presents the
precision, recall, and F1-score per class across all tested models without applying any
balancing techniques. The LMCI class (label 3) shows consistently lower recall and F1-

Bravo-Ortíz et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3208 27/50

http://dx.doi.org/10.7717/peerj-cs.3208
https://peerj.com/computer-science/


zz

A

B

C

D

Figure 10 Metrics for the two best ML and DL models on an unbalanced dataset; on the right, the confusion matrix for each class (CN, EMCI,
LMCI) is shown, and on the left, the ROC curve from the training of the models. (A) Gradient boosting, (B) Extra Tree, (C) CNN + DigitCapsule-
Net, (D) CNN + TF. Full-size DOI: 10.7717/peerj-cs.3208/fig-10
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Figure 11 Metrics for the two best ML and DL models on an unbalanced dataset; on the right, the confusion matrix for each class (AD, EMCI,
LMCI) is shown, and on the left, the ROC curve from the training of the models. (A) SVM, (B) Extra Tree, (C) CNN + DigitCapsule-Net, (D)
CNN + TF. Full-size DOI: 10.7717/peerj-cs.3208/fig-11
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Figure 12 Metrics for the two best ML and DL models on an unbalanced dataset; on the right, the confusion matrix for each class (CN, EMCI,
AD) is shown, and on the left, the ROC curve from the training of the models. (A) Gradient boosting, (B) Extra Tree, (C) CNN + DigitCapsule-
Net, (D) CNN + TF. Full-size DOI: 10.7717/peerj-cs.3208/fig-12
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Figure 13 Metrics for the two best ML and DL models on an unbalanced dataset; on the right, the confusion matrix for each class (CN, LMCI,
AD) is shown, and on the left, the ROC curve from the training of the models. (A) Gradient boosting, (B) Extra Tree, (C) CNN + DigitCapsule-
Net, (D) CNN + TF. Full-size DOI: 10.7717/peerj-cs.3208/fig-13
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score values compared to the CN and EMCI classes, indicating that the models are more
challenged when identifying LMCI cases. Despite this, all models demonstrate reasonably
balanced performance, and the macro-averaged metrics (also shown) help mitigate the
influence of class imbalance. Furthermore, this per-class analysis provides a clearer
understanding of how each architecture handles underrepresented classes, as
recommended by the reviewer.

Statistical tests
Statistical significance was assessed with non-parametric and variance-based tests
(Table 9), in line with best practices for ML model comparison.

A Friedman test compared multiple classifiers across cross-validation folds for
experiments that employed SMOTE-Tomek resampling. For the AD-CN-EMCI task, the
test produced a v2 ¼ 2:89 (p ¼ 0:23), indicating no statistically significant differences
among the models. Similarly, for the CN-EMCI-LMCI task, the Friedman test produced a
result of v2 ¼ 1:11, p ¼ 0:57, suggesting no significant differences. Levene’s test showed
p-values > 0.4 across SMOTE-Tomek tasks, indicating no statistically significant
difference. A pairwise Wilcoxon signed-rank test between ETC and GB for the second task
yielded a p-value of 0.98, reinforcing the absence of significant differences.

In ADASYN experiments, pairwiseWilcoxon tests compared each pair of classifiers. For
AD-EMCI-LMCI, CN-EMCI-LMCI, and AD-CN-EMCI tasks, all p-values exceeded 0.79,
again indicating no significant differences. Levene’s tests also confirmed homogeneity of
variance (all p > 0:5).

The NearMiss resampling experiment on the AD-CN-LMCI task included a Wilcoxon
signed-rank test comparing RF and GB, yielding a p-value of 1.0000. Levene’s test showed
no significant variance differences (p ¼ 0:51).

Table 7 Results obtained from all models evaluated in four classes include precision, recall, F1-score, and the accuracy obtained in 10k-fold
cross-validation. Additionally, each result is presented for both imbalanced and balanced data using SMOTE method.

Classes Models Precision [%] Recall [%] F1-score [%] Cross-validation [%]

Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced

AD vs CN vs EMCI
vs LMCI

CNN 73.89 84.94 72.61 85.95 73.25 85.44 72.70 ± 2.65 82.67 ± 1.48

CNN + DigitCapsule-
Net

71.19 82.60 73.04 84.76 72.10 83.67 73.91 ± 3.65 80.83 ± 0.95

CNN + TF 71.18 80.32 70.87 82.62 71.02 81.46 73.99 ± 3.66 81.77 ± 1.73

CNN + TF +
DigitCapsule-Net

71.98 81.53 72.61 86.19 72.29 83.80 73.58 ± 2.97 82.26 ± 2.18

ETC 81.25 86.97 73.48 87.38 77.17 87.17 75.87 ± 3.07 84.68 ± 1.83

SVC 75.11 86.01 76.09 89.29 75.59 87.62 77.36 ± 3.17 86.43 ± 2.57

RF 81.07 86.73 72.61 84.05 76.61 85.37 75.94 ± 2.70 83.79 ± 1.99

GB 79.17 88.89 74.35 87.62 76.68 88.25 77.97 ± 3.89 85.45 ± 1.53
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A

B

C

D

Figure 14 Metrics for the two best ML and DL models on an unbalanced dataset; on the right, the confusion matrix for each class (CN, MCI,
LMCI, AD) is shown, and on the left, the ROC curve from the training of the models. (A) Gradient boosting, (B) Extra Tree, (C) CNN +
DigitCapsule-Net, (D) CNN + TF. Full-size DOI: 10.7717/peerj-cs.3208/fig-14
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Interpretation
Correlations among feature extraction layers were analyzed to enhance model
interpretability. For each layer, filter outputs were summed and averaged. This procedure
was applied to data from five patients, grouped into two classes, to evaluate
cross-correlations and measure the similarity between the one-dimensional convolutional
signal sequences. The study analyzed layers containing eight, 64, and 256 filters and
applied the same averaging method to calculate the Euclidean distance between the
convolutional output signals, as shown in Table 10.

Table 8 Per-class performance metrics (Precision, Recall, F1-score) for all evaluated models without
applying class balancing. Labels: 0 = EMCI, 1 = CN, 2 = AD, 3 = LMCI.

Model Class Label Precision [%] Recall [%] F1-score [%] Accuracy [%]

CNN + DigitCapsule-Net 0 77.0 78.0 77.0 75.0

1 83.0 91.0 87.0

2 54.0 58.0 56.0

3 67.0 56.0 61.0

CNN + DigitCapsule-Net + TF 0 76.8 75.7 76.3 73.8

1 80.9 90.6 85.5

2 52.2 50.0 51.1

3 62.8 55.1 58.7

CNN 0 74.2 70.0 72.1 71.1

1 78.5 90.6 84.1

2 52.4 45.8 48.9

3 58.5 53.9 56.1

CNN + TF 0 77.0 80.0 78.0 75.0

1 82.0 89.0 85.0

2 52.0 46.0 49.0

3 67.0 57.0 62.0

ETC 0 77.0 89.0 82.0 79.2

1 90.0 91.0 90.0

2 73.0 33.0 46.0

3 70.0 62.0 65.0

SVC 0 79.0 77.0 78.0 76.5

1 81.0 89.0 85.0

2 69.0 46.0 55.0

3 67.0 67.0 67.0

RF 0 76.0 89.0 82.0 78.9

1 92.0 90.0 91.0

2 64.0 38.0 47.0

3 68.0 60.0 63.0

GB 0 78.0 86.0 82.0 78.6

1 92.0 90.0 91.0

2 53.0 42.0 47.0

3 67.0 63.0 65.0
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Table 9 Statistical comparison of model performances across different class-balancing techniques
and classification tasks.

Resampling Task Test Models compared Statistic p-value

SMOTE-Tomek AD vs CN vs EMCI Friedman ET, RF, GB 2.8889 0.2359

Levene (variance) ET, RF, GB 0.9076 0.4155

CN vs EMCI vs LMCI Friedman ET, SVM, GB 1.1176 0.5719

Levene (variance) ET, SVM, GB 0.2149 0.8080

Wilcoxon ET vs GB 17.5000 0.9844

ADASYN AD vs EMCI vs LMCI Wilcoxon SVM vs GB 24.5000 0.7949

Levene (variance) SVM, GB 0.3785 0.5461

CN vs EMCI vs LMCI Wilcoxon SVM vs GB 22.0000 1.0000

Levene (variance) SVM, GB 0.1761 0.6798

AD vs CN vs EMCI Wilcoxon ET vs GB 17.5000 0.9766

Levene (variance) ET, GB 0.2327 0.6354

NearMiss AD vs CN vs LMCI Wilcoxon RF vs GB 10.5000 1.0000

Levene (variance) RF, GB 0.4358 0.5175

Table 10 Correlation of the average obtained in each filter of the feature extraction layers in five
different patients, in the convolutions 8, 64, and 256, is achieved by calculating the cross-
correlation. The L1 column, referring to the Euclidean distance, is computed using the same procedure.

Classes ID Correlation L1

8 64 256 8 64 256

CN vs EMCI A 0.4030 0.3020 0.4907 2.8712 1.5299 0.3458

B 0.5443 0.5062 0.5268 2.6252 1.4302 0.4262

C −0.3037 −0.0385 0.1390 5.7895 2.4832 0.6328

D −0.0581 −0.1191 0.1707 4.0957 2.0928 0.6009

E 0.2618 0.0621 0.1969 2.9074 1.6487 0.4686

CN vs LMCI A −0.4301 0.0399 0.1868 5.5092 2.2016 0.5690

B −0.4655 −0.2083 −0.1937 4.9820 2.2796 0.7109

C −0.0819 −0.2042 −0.0378 5.6587 2.7651 0.7637

D 0.6961 0.6251 0.3842 2.4520 1.3135 0.4291

E −0.3286 −0.1685 −0.1337 4.5221 2.2976 0.6447

CN vs AD A −0.4928 −0.2573 0.1400 3.8448 1.8343 0.4198

B −0.6169 −0.1534 0.0003 6.5764 2.5505 0.7084

C 0.5925 0.5026 0.4523 4.3721 1.9843 0.6180

D −0.5753 −0.2602 −0.0024 6.7331 2.7062 0.6994

E −0.3856 0.0864 0.3709 5.4038 2.0716 0.5531

EMCI vs LMCI A −0.6768 −0.1865 0.0487 6.7987 2.5821 0.6434

B −0.3794 −0.1835 −0.0336 4.8073 2.3412 0.6770

C −0.0171 0.0921 0.0613 4.4338 2.0839 0.6297

D 0.1130 −0.0498 0.1910 3.4711 2.0071 0.5520

E −0.1798 0.0159 −0.0294 4.9595 2.3868 0.7019
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Feature importance was derived using a GB to examine the model’s behavior further,
which consistently yielded superior performance. This analysis was conducted for the
three-class classification tasks using imbalanced and balanced datasets, as illustrated in
Fig. 15.

To understand the underlying mechanisms of the proposed model, it is essential to
identify patterns that cluster similar classes and distinguish dissimilar ones. The Euclidean
distance and cross-correlation analyses reveal consistent patterns among data within the
same group, even when sourced from different patients. These observations support the
conclusion that the feature extraction component of the model performs effectively. As
emphasized earlier, elucidating the model’s decision-making process is crucial, as
reporting only performance metrics is insufficient.

Figure 15 hows that the most influential features vary with dementia subtype and
dataset balance. This variability implies that balancing techniques can bias feature
importance interpretations. Although balancing methods can stabilise models, they may
obscure the underlying data behaviour.

Nevertheless, feature 11 (CDRSB, Clinical Dementia Rating–Sum of Boxes Score) and
feature 19 (mPACCtrailsB, Modified Preclinical Alzheimer Cognitive Composite with
Trails Test) consistently emerged as the most critical variables across conditions. This
finding aligns with existing clinical research, highlighting the significance of these features
in the classification of dementia (Donohue et al., 2014, O’Bryant et al., 2008).

GradCam
Grad-CAM visualises which parts of the one-dimensional input most influence decisions
made by the CNN + DigitCapsule-Net. Figure 16 presents Grad-CAM visualizations for
various patient groups—CN, EMCI, LMCI, and AD—across multiple convolutional layers
(8, 16, 32, 64, 128, 256). These layers are integral to the feature extraction process, during
which the CNN+DigitCapsule-Net learns and identifies salient patterns within the 1D

Table 10 (continued)

Classes ID Correlation L1

8 64 256 8 64 256

EMCI vs AD A −0.5119 −0.0811 0.1106 4.7313 1.9380 2.5821

B −0.4125 −0.1681 0.0950 6.1726 2.7010 2.3412

C −0.1049 −0.0575 0.0162 6.4806 2.7911 2.0839

D −0.2733 −0.0876 0.1288 5.4382 2.4167 2.0071

E −0.6898 −0.1976 0.0605 6.5576 2.5529 2.3868

LMCI vs AD A 0.6467 0.5661 0.5399 3.3416 1.6508 0.4404

B 0.7448 0.6593 0.5924 3.1548 1.5380 0.4413

C 0.3217 0.2867 0.2637 5.1736 2.2227 0.6261

D −0.6751 −0.2321 0.1125 6.6840 2.7333 0.6366

E −0.0970 −0.0995 0.1337 5.9284 2.8743 0.7851
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input signals. Red regions in the visualizations highlight areas that are highly relevant to
the classification outcome, whereas blue regions denote areas of lower importance. The
earlier layers (8, 16) typically capture low-level features, the intermediate layers (32, 64)
detect more complex structures, and the deeper layers (128, 256) represent high-level,
abstract features that are more discriminative for classification. The Grad-CAM

Balanced Unbalanced

Figure 15 Feature importance plot obtained from the GB model for each class using balanced and
imbalanced data. The y-axis represents each of the 27 features, whose identifiers are specified in
Table 1. Full-size DOI: 10.7717/peerj-cs.3208/fig-15
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visualizations in Fig. 16 elucidate the internal representations learned at various stages of
the network and provide critical insight into how the CNN+DigitCapsule-Net
distinguishes between different stages of cognitive impairment and normal controls. This
interpretability is essential for optimizing the model’s performance and ensuring its
reliability in clinical applications.

DISCUSSION
AD is an increasingly pressing global health challenge driven by worldwide population
aging. Although MRI has long been the predominant modality in AI-based AD research,
its high cost and limited availability restrict widespread adoption. The study demonstrates
that a compact panel of 27 structured clinical, neuropsychological, and volumetric
variables can match—or even exceed—the performance of MRI-based models when
applied to both ML and DL methods.

In binary classification tasks, GB consistently outperformed all other models. For the
CN–EMCI comparison, GB achieved a mean accuracy of 92% under 10-fold
cross-validation when classes were balanced with SMOTE, and it retained similar margins
in the CN–LMCI and LMCI–EMCI tasks. However, generating synthetic instances caused
precision and recall to decline, indicating mild overfitting (Table 4). Conversely, the SVC
yielded more balanced metrics and lower standard deviations in highly imbalanced
settings, suggesting that artificial balancing can introduce artifacts—particularly in the CN
class. Discriminating LMCI from AD proved especially difficult because the two stages are
clinically similar. Although CNN + DigitCapsule-Net achieved the highest accuracy, every
model displayed some degree of overfitting, reflecting the scarcity of authentic LMCI and
AD examples in this comparison.

These trends persisted in the multiclass experiments. In three-class scenarios such as
AD–CN–LMCI or AD–CN–EMCI, the addition of synthetic data via SMOTE stabilized
performance and outperformed other resampling techniques (Tables 5 and 6);

8
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128

256

CN EMCI LMCI AD

Figure 16 GradCam visualization for each patient type in the database used in this study (CN, EMCI, LMCI, AD) at each of the feature
extraction convolution layers (8, 16, 32, 64, 128, 256) of CNN+DigitCapsule-Net. Full-size DOI: 10.7717/peerj-cs.3208/fig-16
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nevertheless, SVC remained the algorithm least prone to overfitting under extreme
imbalance. For AD–CN–LMCI, the CNN + DigitCapsule-Net yielded high accuracy with
low variance, whereas in AD–CN–EMCI, GB once again delivered the best performance.
In the four-class task (AD–CN–EMCI–LMCI), the CNN + DigitCapsule-Net again
demonstrated robustness (Table 7), with SVC showing comparable stability. Nevertheless,

ADvsCNvsEMCI ADvsCNvsLMCI

ADvsEMCIvsLMCI CNvsEMCIvsLMCI

Figure 17 Shap values plot obtained from the GB model for each class with imbalanced data. The
y-axis represents each of the 27 features, each number of which is specified in the Table 1.

Full-size DOI: 10.7717/peerj-cs.3208/fig-17
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layer-wise correlation analysis of the CNN revealed diminishing signal similarity with
increasing depth, which hampered differentiation between EMCI and LMCI. Grad-CAM
visualizations (Fig. 15) confirmed this convergence of deep-layer activations and
elucidated the bottlenecks observed in those classifications.

SHAP values interpretability analysis (Fig. 17) consistently ranked CDRSB,
LDELTOTAL, mPACCtrailsB, AGE, and WholeBrain as the most influential variables.
Higher CDRSB scores and advanced age increased the likelihood of AD, while greater
brain volume, especially WholeBrain, reduced it. These insights are readily interpretable
for clinicians, whereas CNN activation maps—although visually informative—lack explicit
decision rules, complicating clinical validation.

The practical advantages of ML over DL emerge across several dimensions. First, the
sample-to-parameter ratio is more favorable for ensemble methods. With 1,846 patients
and 27 features, GB trains only tens of thousands of parameters, whereas CNN + TF or
CNN + DigitCapsule-Net exceed one million, leading to chronic underfitting and higher
fold-to-fold variance. Second, variable relationships—among screening scores, cognitive
thresholds, and volumetric markers—are largely linear or threshold-based; ensemble
methods capture these patterns effectively without requiring hierarchical representations.

Table 11 Comparison of classification accuracy between the state-of-the-art XGBoost-SHAP model
and the proposed CNN+DigitCapsule-Net architecture for the three-class classification task (AD vs
EMCI vs CN).

Model Classes Accuracy [%]

XGBoost-SHAP [14] AD vs EMCI vs CN 87.00

Proposed (CNN+DigitCapsule-Net) AD vs EMCI vs CN 90.58

Figure 18 Training and test accuracy curves for the CNN + DigitCapsule-Net model during the
classification of AD,EMCI, and CN subjects. The model converges steadily with no signs of over-
fitting, achieving a final test accuracy of 90.58%. Full-size DOI: 10.7717/peerj-cs.3208/fig-18
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Third, implicit regularization—pruning and shrinkage in GB act as natural complexity
controls, whereas DL requires additional mechanisms, such as dropout, batch
normalization, and early stopping, which still fail to prevent overfitting, particularly with
synthetic data. Fourth, computational cost—GB converges within minutes on a central
processing unit (CPU), whereas CNN+DigitCapsule-Net requires several graphic
processing unit (GPU) hours for 500 epochs, posing a substantial logistical barrier in
resource-limited clinical environments. Finally, interpretability—whereas tree-based
decision paths can be visualized and validated with SHAP, DL activations remain opaque
and less conducive to regulatory compliance and clinical scrutiny.

However, using clinical data alone introduces notable limitations. First, anatomical
granularity is compromised; although volumetric biomarkers like WholeBrain and
Hippocampus are preserved, the detailed spatial information inherent to MRI is no longer
available. Second, single-source bias—clinical measurements vary across evaluators and
are influenced by psychosocial factors; incorporating longitudinal data or digital
biomarkers (e.g., wearable devices) could help mitigate intra-subject noise. Third, expert
dependency—extensive neuropsychological testing requires trained personnel and may be
more time-consuming than a single MRI acquisition in advanced clinical settings. Fourth,
demographic generalizability—variables such as APOE4 status or educational level may
behave differently across cohorts, and the lack of imaging data limits the ability to adjust
for these biases. Consequently, future studies should pursue multimodal integration
strategies that combine clinical, MRI, PET, or EEG data while upholding principles of
transparency, reproducibility, and explainability.

Regarding resampling techniques such as SMOTE and ADASYN, while they improved
average accuracy and reduced variance, they also increased sensitivity to noise and
promoted overfitting, particularly in classes with overlapping boundaries, such as EMCI
and LMCI. By focusing on borderline regions, ADASYN exacerbated sensitivity to noise.
Nonparametric statistical tests subsequently confirmed that no significant differences
existed among models or class-balancing techniques. Friedman’s test yielded v2 ¼ 2:89
(p = 0.23) for AD–CN–EMCI and v2 ¼ 1:12 (p = 0.57) for CN–EMCI–LMCI. Wilcoxon
pairwise comparisons showed (p > 0.79) for GB vs ETC and GB vs RF in several tasks.
Levene’s test indicated homogeneous variances (p > 0:4) across conditions, except
ADASYN experiments, which exhibited additional variability. These results emphasize
that the net benefit depends more on the quality of the synthetic data than on the specific
resampling method, highlighting the need for rigorous validation procedures when
altering original distributions.

This study addresses two critical gaps in the literature. First, it provides the first systematic
and reproducible comparison between ML and DL applied to structured clinical data with
open-source code and datasets. Second, it quantitatively assesses the statistical impact of
multiple resampling strategies in AD multiclass scenarios. The findings challenge the
widespread assumption of DL’s automatic superiority and demonstrate that, under certain
conditions of dimensionality and sample size, ML models not only match but surpass DL
counterparts, with clear advantages in interpretability and computational efficiency.
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Furthermore, the impact of this study is underscored by the limited number of related
works in the field. While the referenced comparative study carried out several experiments,
it reported only one set of results, which our proposed DigitCapsule-Net model
outperformed, as shown in Table 11. The DigitCapsule-Net training and testing curve is
shown in Fig. 18.

Finally, for AD stratification based exclusively on structured clinical data, ensemble
methods (GB, RF, ETC) and margin-based models (SVC) offer the most favorable balance
of accuracy, transparency, and computational efficiency. DL architectures may add value
to tasks that involve complex hierarchical patterns or multimodal inputs (e.g., MRI).
However, their deployment must remain context-sensitive, balancing accuracy,
interpretability, and resource constraints. In future work, integrating multimodal
approaches and systematically applying robust statistical tests will be essential for
validating apparent performance gains and advancing explainable-AI solutions in
neurological contexts.

CONCLUSION
This study presents a rigorous comparative analysis of traditional ML techniques and
state-of-the-art DL architectures for AD, using exclusively structured clinical data from the
ADNI dataset. A curated set of 27 features was selected through a hybrid feature-selection
process that combined Boruta, Elastic Net, and information gain. The investigation
showed that carefully optimized ML models—such as GB and SVC—combined with
data-resampling techniques (e.g., SMOTE) can outperform or match the accuracy of more
complex DL architectures. These include a CNN + TF and a CNN + DigitCapsule-Net, yet
require substantially lower computational resources.

Among DL models, the hybrid CNN + DigitCapsule-Net obtained the highest accuracy
in several multi-class scenarios—particularly the AD–EMCI–CN task—achieving 90.58%
and surpassing previously reported clinical-data models. However, these performance
gains came at the cost of longer training times and reduced interpretability. SHAP values
and Grad-CAM analyses showed thatCDRSB, LDELTOTAL, and mPACCtrailsB were
consistently the most influential across models, reinforcing their clinical relevance.

From a methodological standpoint, statistical testing indicated that performance
differences between models were not statistically significant in several comparisons.
Nonparametric tests (Friedman and Wilcoxon) together with Levene’s variance test
confirmed the consistency and robustness of ML approaches across sampling and
classification settings. The public availability of source code and curated datasets further
strengthens the transparency and reproducibility of the results.

In summary, the evidence supports optimized ML models as practical, interpretable,
and efficient alternatives for AD stratification when imaging modalities are unavailable or
cost-prohibitive. This balance of accuracy, explainability, and computational feasibility
renders these models well-suited for deployment in primary-care or remote clinical
environments.
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FUTURE WORK
. Multimodal integration: Incorporate additional data modalities—such as MRI, PET, and
EEG—alongside clinical features to exploit complementary patterns and enhance
diagnostic accuracy. Explore multimodal-fusion strategies (early, late, or hybrid) within
both ML and DL frameworks.

. Longitudinal modeling: Extend the analysis to longitudinal data to capture
disease-progression dynamics. Apply recurrent neural architectures (e.g., LSTM) or
temporal Transformers to sequences of clinical measurements.

. Explainability enhancement: Integrate interpretability techniques beyond SHAP and
Grad-CAM—including counterfactual analysis and concept-based explanations—to
better support clinical decision-making and regulatory compliance.

. Generalizability assessment: Validate model performance on external datasets drawn
from diverse demographic and clinical populations to assess robustness, especially in
underserved or non-Western cohorts.

. Edge deployment and optimization: Investigate lightweight model variants or
compression techniques (e.g., pruning or quantization) to enable real-time inference in
resource-constrained settings such as rural clinics or mobile-health platforms.

. Integration with EHR Systems: Integrate the developed models into electronic
health-record (EHR) platforms to support automated screening and triage in
routine-care workflows.

. Ethical and regulatory considerations: Conduct studies on algorithmic fairness, bias
mitigation, and regulatory compliance to ensure equitable deployment and foster trust in
AI-powered diagnostic tools.

. Explore alternative data processing methodologies to identify relevant features and
analyze broader datasets.
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