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ABSTRACT

Diabetes represents a significant metabolic disorder marked by elevated glucose
levels due to suboptimal insulin production or function. Early diagnosis and effective
diabetes management are crucial to reducing related health complications. This study
introduces a robust approach for predicting diabetes through advanced machine
learning methods. Utilizing the diabetes dataset from the University of California
Irvine (UCI) machine learning repository, we performed extensive preprocessing to
guarantee data quality and integrity. To counteract class imbalance, we employed the
synthetic minority over-sampling technique, which improved the representation of
minority classes. We explored several machine learning (ML) models, including
Random Forest (RF), logistic regression (LR), and K-nearest neighbors (KNN), while
optimizing hyperparameters through grid search and randomized search techniques.
Additionally, we introduced a stacking ensemble method paired with a tab
transformer model, effectively harnessing the advantages of both techniques for
efficient handling of tabular data. The outcomes from the stacking and tab
transformer models were later aggregated using a meta learner, specifically extreme
gradient boosting (XGBoost), to create a robust ensemble model. Our comprehensive
methodology yielded an impressive accuracy rate of 99%, significantly outperforming
individual models. Unlike previous studies that rely solely on individual models, our
approach fills the gap by combining deep learning with ensemble methods to
enhance generalization and interpretability in diabetes prediction. We have validated
the model’s performance using ablation studies and paired statistical significance
tests. These results highlight the efficacy of integrating diverse ML strategies to
enhance both the accuracy and reliability of diabetes prediction.
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INTRODUCTION

Diabetes mellitus encompasses a spectrum of metabolic disorders that are defined by
significantly elevated blood glucose concentrations. This condition results from either
insufficient insulin production or inadequate cellular responses to insulin (Sneha & Gangil,
2019). The research methodology involves the analysis of extensive patient datasets
utilizing data-driven techniques. Key variables incorporated into the analysis include age,
body mass index (BMI), blood pressure, glucose levels, number of pregnancies, skinfold
thickness, insulin concentrations, and diabetes pedigree function. Through the application
of machine learning (ML) algorithms, patterns and correlations within the data are
discerned, enabling the prediction of diabetes likelihood in the individuals assessed.
Evidence suggests that the prevalence of diabetes among adults aged 18 years and older has
increased from 4.7% in 1980 to 8.5% in 2014, demonstrating a pronounced upward trend
in both developing and developed nations (Collaboration, 2010).

Diabetes is primarily categorized into two types: Type 1 and Type 2. Type 1 diabetes
typically affects individuals under the age of 30. The clinical manifestations of diabetes
include increased thirst and elevated blood sugar levels (Shah et al., 2020). Individuals over
the age of 30 are increasingly susceptible to Type 2 diabetes, which is associated with
clinical indicators such as overweight, hypertension, dyslipidemia, atherosclerosis, and
various other health complications. The management of Type 2 diabetes often requires
insulin injections in conjunction with other medications (Halpern et al., 2010; Chaudhury
et al., 2017). There are nearly 40 identified forms of diabetes mellitus, and public awareness
concerning diabetes remains low due to insufficient resources within the healthcare system
(Aguirre et al., 2013). Type 1 is a prevalent form of diabetes that depends on insulin and
other medications. It typically manifests during childhood (Kaur ¢ Sharma, 2018). In
contrast, Type 2 diabetes can affect individuals of all ages and is not reliant on insulin;
instead, it is significantly influenced by lifestyle factors, making it a common type of
diabetes (Ganie ¢ Malik, 2022). In diabetes, there is an elevation in blood sugar levels.
Insulin, a hormone secreted by the pancreas, regulates the utilization of glucose from
ingested food, facilitating its entry into the bloodstream. A deficiency in insulin contributes
to the development of diabetes (Pandeeswari, Rajeswari ¢ Phill, 2015).

The prevalence of diabetes affects over half a billion individuals and continues to
increase daily. Approximately 175 million cases remain undiagnosed. Furthermore,

21 million women experience elevated glucose levels during pregnancy (Sarwar et al.,
2020). When the human body ingests carbohydrates, starchy foods, sugary foods, fruits,
milk, and certain dairy products, these substances are digested in the stomach and
converted into simple sugars, which are essential for the body’s energy production.
Although the human body can detect increases in blood glucose levels, excessive
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carbohydrate intake leads to a heightened release of insulin, which provides energy to the
body. However, individuals suffering from diabetes may not produce sufficient insulin to
meet their needs (Olokoba, Obateru ¢ Olokoba, 2012).

Hyperglycemia is a significant medical condition for which prompt diagnosis and
accurate treatment are essential. Various ML techniques, including transformer models,
have been employed to enhance diabetes prediction and address these needs. Recent
research has explored the potential of ML in improving both the effectiveness and accuracy
of diabetes prediction, thereby supporting early diagnosis and efficient treatment planning.
In recent years, numerous methods have been developed and published for diabetes
prediction. One such approach is detailed by Dogru, Buyrukoglu ¢» Ari (2023), where a
super learner was implemented, incorporating four fundamental algorithms: logistic
regression (LR), decision tree (DT), Random Forest (RF), and gradient boosting.
Additionally, a support vector machine was utilized as the meta-learner, employing diverse
dimensions and cross-validation strategies. This ML model underwent thorough
evaluation for optimal feature selection utilizing the chi-square method across five distinct
techniques. Hyperparameter tuning was conducted through grid search to achieve optimal
results in the detection of hyperglycemia. The model has demonstrated effectiveness in
identifying the early stages of diabetes mellitus. Nevertheless, the application of this ML
model to the detection of diabetes mellitus presents several considerable challenges. Key
limitations include restricted data access, missing data, and the presence of irrelevant data.
These complications detrimentally affect the model’s performance and hinder our capacity
to devise innovative techniques (Abnoosian, Farnoosh ¢ Behzadi, 2023).

While progress in machine learning has improved diabetes prediction, most existing
methods rely on limited model diversity and fail to exploit deep learning architectures
tailored for tabular data. Prior studies predominantly use shallow or conventional models,
lacking hybrid frameworks capable of capturing both linear and non-linear dependencies
effectively. In this study, we propose a novel hybrid ensemble that integrates a tab
transformer based model with a classical stacking ensemble, optimized to capture complex
feature interdependencies in tabular datasets. The probabilistic outputs from these models
are fused and passed to a meta-level extreme gradient boosting (XGBoost) learner. This
architecture not only enhances generalization and interpretability but also delivers
superior predictive performance and robustness, addressing a critical gap in high-fidelity
diabetes prediction systems.

This research advances the field of diabetes prediction by integrating multiple ML
methods to enhance model performance and accuracy. We implemented rigorous data
preprocessing techniques and utilized the Synthetic Minority Over-sampling Technique
(SMOTE) to address the class imbalance, thereby creating a dataset that facilitates
improved learning outcomes. We conducted a comparative analysis of various models,
including RF, logistic regression (LR) and K-nearest neighbor (KNN), while performing
hyperparameter tuning. Additionally, we employed stacking and innovatively applied a tab
transformer, which significantly enhanced the predictive capabilities of the ensemble
model. Ultimately, our approach demonstrates the effectiveness of combining diverse
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methodologies and provides a comprehensive framework for improving the accuracy of
diabetes prediction.

Research questions and objectives

This work aims to address the research questions derived from its objectives:

e How do various ML algorithms, including LR, RF, and KNN, perform in predicting
diabetes when refined through hyperparameter tuning techniques such as Grid Search
and Randomized Search?

 In what ways does the application of advanced hyperparameter tuning impact the
prediction accuracy of different ML models for diabetes?

o How does the performance of the tab transformer model compare with that of manually
tuned models?

e Which ML model, evaluated using metrics such as recall, F1-score, accuracy, precision,
and receiver operating characteristic area under the curve (ROC-AUC), demonstrates
the highest accuracy and optimal performance for diabetes prediction, taking into
account the preprocessing methods and optimization strategies employed?

Research contributions

The key contributions of our research are summarized as follows:

e We developed a comprehensive prediction pipeline that includes preprocessing steps
such as calculating summary statistics, normalizing data, and utilizing a Standard Scaler.

» We compared various ML classifiers with ensemble learning techniques, specifically
KNN, RF, and LR, to predict diabetes.

» We employed grid search and randomized search methods to improve hyperparameter
tuning, thereby enhancing the performance of the majority of algorithms.

e The application of the tab transformer has significantly improved the accuracy of
diabetes predictions by effectively capturing complex feature interactions in tabular data
through self-attention mechanisms.

» We introduced a novel integration of the tab transformer and stacking with the ensemble
meta-learner XGBoost, which resulted in improved performance for identifying top
performers and increased accuracy in diabetes prediction.

The study is structured as follows: First, it presents a comprehensive overview of
diabetes, followed by an analysis of the pertinent literature. Then, the methodology section
details the proposed methodology. In the Results and Discussions section, the findings are
articulated along with a critical discussion. Finally, the Conclusion and Future Directions
section summarizes the conclusions drawn from the research and outlines potential
avenues for future research.
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RELATED WORK

A comprehensive review of diabetes mellitus highlights it as a significant global health
issue affecting millions of individuals worldwide. The onset of diabetes is influenced by
various factors, including lifestyle, genetic predispositions, and a lack of awareness
(Abnoosian, Farnoosh ¢ Behzadi, 2023). Research utilizing the Iraqi Patient Dataset for
Diabetes (IPDD) has demonstrated the effectiveness of ensemble learning techniques
combined with thorough data preprocessing and approaches to managing missing values
for diabetes prediction. Additionally, another study (Yadav ¢ Pal, 2021) employed
ensemble methods alongside rule-based classification algorithms, such as OneR, JRIP, and
Decision Table, to examine a dataset sourced from the UCI repository. Banfield et al.
(2006) compare various ensemble methods for DT creation, including RF, bagging,
boosting, and random subspaces. Through statistical testing on 57 datasets, the findings
indicated that while some methods achieve marginally higher accuracy than bagging,
bagging remains a strong contender in the accuracy domain.

Gupta & Goel (2023) demonstrated that preprocessing techniques enhance ML
prediction performance in diabetic classification. The results of the RF classifier achieved
the highest accuracy at 88.61%, accompanied by an F1-score of 75.68%. Their findings
underscore the importance of addressing the missing value problem in datasets to ensure
model fidelity. This research lays the groundwork for utilizing larger datasets and
improved algorithms to enhance diagnostic accuracy in diabetes prediction. Additionally,
the study by Aguilera-Venegas (2023) compares various ML algorithms for modeling type
2 diabetes mellitus (T2DM). The results were awe-inspiring, especially for the RF
algorithm, which achieved an accuracy of 92.91%, followed by decision tree at 89.74%,
neural networks at 85.40%, and KNN, which demonstrated lower performance. Another
promising case-based method utilizes expert-generated rules in a tiered model
abstraction, preceded by a preprocessing loop to ascertain which attributes are relevant to
predictive modeling based on historical diagnostic data. However, several critical issues
remain unaddressed, including the generalizability of findings derived from a single
Spanish cohort, insufficient detail regarding 18 variables and the selection criteria
employed, and a notable absence of discussion concerning model interpretability,
particularly pertinent for advanced algorithms such as neural networks. These factors
could significantly impact the generalizability and applicability of the results in diverse
clinical settings.

The study’s findings (Ulutas, Giinay ¢ Sahin, 2024) indicate that the application of
ensemble learning significantly enhances the accuracy of diabetes diagnosis. The highest
reported accuracy was 98.10% using an RF classifier. The hybrid particle swarm
optimization and gray wolf optimization (PSO-GWO) method employed for
hyperparameter tuning ensured optimal performance of the models, addressing the
limitations identified in previous research that developed suboptimal models due to
inadequate optimization and overdependence on specific classifiers. The current study
integrates multiple classifiers and ensemble methods, improving individuals’ accuracy,
precision, recall, and F1-scores. This signifies a robust model for the early detection of
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diabetes. Furthermore, this article (Hasan et al., 2020) concentrates on constructing an ML
model for diabetes prediction based on the Pima Indian Diabetes Dataset. Various
classifiers, including KNN, DT, and ensemble methods, were evaluated to achieve the
highest area under the curve (AUC) of 0.950, demonstrating an effective capability to
distinguish between diabetic and non-diabetic patients. This advancement provides a
reliable model for future predictions based on new datasets regarding the diabetic status of
patients. These findings underscore that the proposed approach enhances prediction
performance, suggesting a promising direction for the early detection of diabetes.

The findings of two studies (Olisah, Smith & Smith, 2022; Abnoosian, Farnoosh ¢
Behzadi, 2023) reaffirm the significance of employing ML models for diabetes prediction.
The research demonstrates the implementation of techniques such as feature selection and
missing value imputation, utilizing advanced deep neural network (DNN) architectures to
enhance predictive performance. Notable metrics, including precision, recall, and
F1-scores, have been achieved, with models exhibiting accuracies of up to 98.6% for
multi-layer perceptron (MLP) and approximately 93% for the two-layer generalized
decision directed neural network (2GDNN). This underscores the necessity of data
preprocessing and further studies to validate this methodology, particularly due to its
limitations in diabetes diagnosis predictability. Zhou, Myrzashova & Zheng (2020)
introduce a deep learning model for diabetes prediction, which achieves accuracies of
94.02% on the diabetic type dataset and 99.41% on the Pima Indians dataset during the
training phase. Furthermore, it improves performance by employing dropout in hidden
layers and utilizing binary cross-entropy as the loss function. However, the model does
face potential drawbacks, including the risk of overfitting due to hyperparameter tuning,
along with a need for enhanced predictions regarding diabetes complications and the
management of diverse data types.

Two studies (Prasanth, Banujan & Btgs, 2021; Jenitta, Swetha Rani & Manasa, 2023)
were employed for predicting diabetes mellitus utilizing various ML algorithms. The first
study implemented artificial neural network (ANN), RF, and K-Means clustering,
achieving accuracies of 75.7%, 74.7%, and 73.6%, respectively. However, it indicated that
the application of ensemble methods would yield superior results. The second study
utilized hyperparameter tuning with algorithms such as LR, DT, XGBoost, support vector
machine (SVM), and KNN, discovering that KNN with random search produced the
highest accuracy, surpassing other measures in both precision and recall. Overall, both
studies demonstrate that ensemble methods and hyperparameter optimization are of
considerable importance in enhancing the accuracy of diabetes prediction.

In a recent study (Tran, Choi & Byeon, 2024), the application of stacking ensemble to
predict diabetes in a men group with the utilization of a Feature Tokenizer Transformer
(FT-Transformer) and standard machine learning models such as Random Forest and
XGBoost is studied in this article. The model suggested above showed the best
performance measures, such as an accuracy level of 0.8786 and an AUC of 0.8618, which
implies that the idea of applying deep learning and ensemble methods can be successful.
Maniruzzaman et al. (2020) systematize current knowledge on the impact of psychological
interventions on glycemic control in middle-aged and older patients with type 2 diabetes
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using an extensive and specific search of the literature in different databases and rigorous
selection of randomized controlled studies. The independent evaluators involved in data
extraction and quality assessment found that their results with RevMan 5.4 software
showed that the benefit of such interventions to glycosylated haemoglobin (HbA1c) values
was significant despite moderate overall study quality.

A recent study (Zou et al., 2018) investigates the application of ML techniques for
predicting diabetes mellitus. The study utilized DT, RF, and neural network algorithms on
data collected from physical examinations at hospitals in Luzhou, China. The results
indicated that the random forest algorithm achieved the highest accuracy, reaching 80%.
Another investigation (Singh ¢ Singh, 2020) introduces a stacking-based multi-objective
evolutionary ensemble model for predicting diabetes mellitus. The NSGA-II-Stacking
model highlighted in this research demonstrated improved accuracy and sensitivity
compared to conventional models, suggesting its potential to enhance the scientific
diagnosis of diabetes. Additionally, Kumari, Kumar ¢» Mittal (2021) proposed a soft voting
classifier that integrates LR, naive Bayes, and Random Forest ML techniques using the
Pima Indian Diabetes dataset. This ensemble method outperformed other ML approaches
in terms of accuracy, precision, recall, and F1-score. This alternative model may surpass
newer methods in effectiveness for disease prediction.

In contrast, the work cited in Sarwar et al. (2020) presents a diabetes diagnosis system
that utilizes an ensemble approach for the identification of type-II diabetes. This robust
system facilitates the initial screening of individuals affected by this condition, and the
results demonstrate that the ensemble technique achieves an accuracy rate of 97.34%.
Furthermore, the study introduces a hybrid ensemble technique that surpasses the
performance of individual models, proving effective in the primary-level screening of
diabetes.

Conversely, the research referenced in Wang et al. (2019) employs various ML
techniques for the diagnosis and categorization of diabetes. The accuracy of these methods
ranges from 75.9% to 84.7%, utilizing diverse combinations of techniques, including
attribute-weighted artificial immune systems, ANN, SVM, and KNN. This investigation
addresses critical challenges such as missing data and class imbalances within medical
datasets, highlighting the essential role of securing an accurate early diagnosis of diabetes
(Althobaiti, Althobaiti & Selim, 2024). Successful treatment significantly relies on this.

The proposed model is demonstrated to outperform existing models based on metrics
such as the area under the receiver operating characteristic curve (AUC-ROC), sensitivity,
specificity, and overall accuracy, which play a vital role in clinical decision-making.
Additionally, it serves as an informative resource, enhancing understanding of
diabetes-related disorders. A detailed analysis of the performance of state-of-the-art
approaches from the literature is provided in Table 1.

MATERIALS AND METHODS

This research highlights the utilization of ML techniques for the early detection and
diagnosis of chronic diseases, with a specific emphasis on diabetes. The objective of this
approach is to improve disease management and treatment strategies, which may help
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Table 1 Literature analysis.

Ref Year Dataset Methods used
Hasan et al. (2020) 2020 Pima Indian Diabetes Dataset k-NN, DT, Ensemble Methods
Abnoosian, Farnoosh ¢ Behzadi 2023 Iraqi Patient Dataset for Diabetes Ensemble Learning, Data Preprocessing, Missing Value Handling
(2023) (IPDD)
Yadav & Pal (2021) 2021 UCI Repository Ensemble Methods, Rule-Based Classification (OneR, JRIP,
Decision Table)
Kumari, Kumar ¢ Mittal (2021) 2021 PIMA Indian Diabetes Dataset Soft Voting (LR, Naive Bayes, RF)

Zou et al. (2018) 2018

Hospital Physical Inspections (Luzhou, Decision Tree, Random Tree, Neural Network
China)

reduce the severe complications frequently associated with these conditions. The
methodological framework for the proposed research is illustrated in Fig. 1.

Diabetes dataset

In this research, we utilized the dataset from the UCI ML Repository and collaborated with
Kaggle (Smith et al., 2024). The dataset comprises data on 768 diabetic patients, aged above
21 years, of eight medical variables that are pertinent in the diagnosis of diabetes. We
selected the diabetes dataset as our primary source due to its comprehensive and
well-structured nature. Each data point encompasses eight attributes, detailed as follows:

 Pregnancies: Number of times the patient has been pregnant.

* Glucose: Plasma glucose concentration after 2 h in an oral glucose tolerance test.

* Blood Pressure: Diastolic blood pressure (mm Hg).

o Skin Thickness: Triceps skinfold thickness (mm), used as a proxy for subcutaneous fat.

e Insulin: 2-h serum insulin (mu U/ml).

e BMI: Body mass index, calculated as weight in kg divided by height in m?.

 Diabetes Pedigree Function: A function that scores the likelihood of diabetes based on
family history.

e Age: Patient age in years.

e Outcome: A binary variable (0 = Non-diabetic, 1 = Diabetic).

The ninth attribute of each data point is the outcome variable, which may take on one of
two values: “Normal” or “Diabetes.” This dataset provides a robust foundation for the
development and evaluation of an ML model, enhancing predictive capabilities and
yielding valuable insights into the disease. The specifics of the attributes are detailed in
Table 2. The histogram of features is depicted in Fig. 2.

Ethical considerations

Since this data is publicly available, anonymized and does not require any special
permissions to view, there is also no need to seek ethical approval or special permissive to
use it in the academic setting. There is no personally identifiable information on it, and it is
in line with the ethical requirements of the use of secondary information.

Khalid et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3206 8/32


http://dx.doi.org/10.7717/peerj-cs.3206
https://peerj.com/computer-science/

PeerJ Computer Science

Diabetes
Dataset

l

Preprocessing - SMOTE -

Tab
Transformer _

Random \
Forest

isti With
Models Logistic
Regression Hyper
Parameter
Training Set Tuning

-

Testing Set LI

l

Ensemble with
Stacking ,Tab
Transformer With Meta
Learner XGBoost

Figure 1 Methodology workflow diagram analysis for targeted research. Full-size K&] DOT: 10.7717/peerj-cs.3206/fig-1

Table 2 Details of attributes.

No Attribute Representation

1 Age Numeric (integer)
2 BMI Numeric (float)

3 Blood pressure Numeric (integer)
4 Glucose Numeric (integer)
5 Pregnancies Numeric (integer)
6 Skin thickness Numeric (integer)
7 Diabetes pedigree function Numeric (float)

8 Insulin level Numeric (integer)
9 Output Numeric (integer)

Data preprocessing

Data preprocessing, which encompasses data cleansing, the management of missing
values, feature scaling, and class balancing, is a crucial phase in ensuring both the quality
and reliability of a dataset, ultimately enhancing model performance. The dataset
employed in this study is devoid of missing values, thus permitting direct data
standardization and ensuring that all features are weighted equally during the model
training process. Standardization serves to prevent any individual feature from exerting an
undue influence on the results, which could otherwise compromise model performance.
These preprocessing procedures are fundamental in preparing the data for subsequent
modeling and analysis. Feature scaling is specifically implemented for numerical attributes
such as age, BMI, and blood pressure to guarantee that all features contribute equally
during the model training. This study employed standardization techniques to normalize

the values of these features.
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Data standardization and feature scaling

During preprocessing, no outlier removal was found in the dataset. Standardization was
used to normalize all features before training the model to make every numerical aspect
help the model. One of them is the following. In this process, features are transformed to a
normal statistical distribution with a mean of 0 and standard deviation of 1,
computationally achieved by the Z-score normalization formula. Standardization helps
avoid bias in learning due to varying feature scales, particularly for models sensitive to
distance metrics such as KNN and SVM. Features such as age, BMI, and blood pressure
were normalized using this approach with the scikit-learn standard scale. This step ensures
uniform feature weighting, stabilizes gradient descent during training, and contributes to
faster model convergence.

Handling imbalanced data with SMOTE

A prevalent challenge in ML is managing imbalanced datasets in which certain classes are
significantly underrepresented. Such an imbalance can result in biased models that exhibit
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suboptimal performance in minority classes. To mitigate this issue, we employed the
SMOTE to generate synthetic samples for the less represented categories. This
enhancement improved the balance of the dataset, thereby facilitating more effective
model training. The resultant dataset following the application of SMOTE is illustrated
in Fig. 3.

Exploratory data analysis

Correlation attribute

The correlation analysis of the diabetes dataset, presented in Fig. 4, indicates that the
majority of attributes exhibit relatively weak linear relationships with one another, as
evidenced by correlation coefficients that approach zero. Notable attributes such as Age,
BM]I, blood pressure, and glucose display slight linear relationships with the Outcome
variable. Among these, glucose demonstrates the highest correlation with the target
feature, followed by age and BMI, although these correlations remain moderate in
strength. This observation suggests that no individual feature significantly determines the
target outcome, implying that diabetes prediction is likely dependent on a combination of
multiple attributes rather than a singular dominant factor. Furthermore, the low
correlation observed between the independent variables signifies minimal
multicollinearity, which can enhance model performance by mitigating the influence of
redundant information.

Feature importance

Following the correlation matrix, analyzing the Feature Importance graph is advisable.
This will allow us to examine the various causes and correlations present in modeling. In
certain models, the behaviors of individual predictors are not static. Rather, they fluctuate
as other variables take on different values. LR is particularly well-suited for these scenarios,
where specific predictions may hold greater significance for a boosted regression

model than its average predictions. The significance of each feature’s importance is
illustrated in Fig. 5.
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Applied ML algorithms
This article discusses and utilizes ML algorithms, specifically LR, KNN, and RF, in the
proposed methodology in the subsequent subsections.

LR

LR is a supervised ML model primarily utilized to address classification problems. It
investigates the correlation between input features and the probabilities of specific
outcomes. The output of LR is a probability value that ranges from 0 to 1, reflecting the
likelihood of occurrence for various classes. This model incorporates a regularization
mechanism, where the regularization strength is governed by the hyperparameter C;
higher values of C denote weaker regularization. It is important to note that while LR
shares fundamental similarities with linear regression, their applications differ significantly
in practice.
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KNN

KNN is among the most widely utilized algorithms in supervised ML, primarily employed
for classification tasks, though it can also be adapted for regression problems. As a
non-parametric method, KNN does not impose any assumptions regarding the underlying
distribution of the data. It is often referred to as a “lazy learner” because it retains the entire
training dataset for reference during the prediction process. KNN classifies new data points
by calculating the distance between the input and all points in the training dataset. The
algorithm’s performance is significantly affected by the selection of the parameter K,
highlighting the importance of effective hyperparameter tuning to achieve optimal results.

RF

RF is an ML algorithm used for regression and classification tasks. It employs an ensemble
technique that integrates multiple DTs to tackle complex problems and improve the
model’s performance. Each split within the DT is based on a random subset of the dataset
and a random selection of features. This methodology effectively manages intricate data
structures, mitigates the risk of overfitting, and delivers reliable predictions under diverse

conditions.

Novel proposed hybrid approach

Ensemble methods

Ensemble learning is a technique that integrates multiple ML algorithms to achieve
optimal predictive performance. This approach generally enhances accuracy compared to
using a single model. Common methods of ensembling include bagging, boosting, adaptive
boosting (AdaBoost), stacking, and averaging.
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The primary database for hyperglycemia classification is divided into two segments: the
training dataset and the testing dataset, adhering to an 80:20 ratio. Three algorithms
demonstrating high levels of accuracy are trained using the training dataset, while the
performance of these algorithms is evaluated using the testing dataset. Instances within the
dataset are assessed against algorithms’ unseen data. Each of the three algorithms generates
predictions for new cases, and the results from all algorithms are compiled. This process
occurs after the results are calculated and ensembled through the technique, which
incorporates inputs from the classifiers to classify the test instance into the class with the
most accurate output prediction.

Stacking is a specific ensemble technique that leverages the performance of leading ML
models to function collaboratively. This method entails fitting several base learners on the
same training set, subsequently using their predictions to inform a higher-level model
known as a meta-model. The meta-model learns to produce final predictions based on the
outputs provided by the base models. This technique synergizes the strengths of individual
models, often resulting in improved accuracy and generalization. In our study, we apply a
stacking-based ensemble classifier that integrates various classifiers, such as KNN, RF, and
LR, to enhance classification outcomes and improve output predictions.

Tab transformer

To enhance the accuracy of diabetes prediction, the tab transformer model functions as a
specialized deep learning technique designed for tabular data analysis. This model employs
a self-attention mechanism, distinct from conventional ML approaches, to effectively
capture complex interactions among features. This capability is particularly advantageous
for datasets wherein attributes may exhibit intricate correlations. The tab transformer
integrates tabular features, thereby enabling the attention mechanism to identify and
weigh the most significant relationships among these features. This methodological
framework not only improves the model’s interpretability but also aids in uncovering
critical feature dependencies that traditional models may overlook. To assess its
contribution to overall predictions within an ensemble context, the Tab Transformer was
first utilized as an isolated model before being incorporated into an ensemble with other
models. This strategy leverages the strengths of both transformer-based and traditional
models, resulting in a more nuanced and comprehensive analysis of diabetes risk factors.
The architecture has the following structure:

o Input features: The model analyzes eight numerical features of dataset. There do not
exist any categorical features, there is no need to tokenize the data, and the numerical
input is used.

« Embedding layer: An embedding layer that is fully connected serves to map each of the
scalar features to a dense feature space of 256 dimensions, the feature representation thus
can be considered to have shape (8, 256) per sample.

 Dropout layer: A dropout layer with a rate of 0.3 is placed in between the embedded
representation in order to reduce overfitting.
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Figure 6 Architecture of the tab transformer model.
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« Transformer encoder blocks: The embeddings obtained are the input of six
Transformer encoder pairs stacked on top of each other. In each layer, there is:

— Multi self-attention, eight heads,
— Feed-forward neural networks position wise,
- Remaining, links, and

— Pre-layer normalization (norm_first = True) in order to enhance training stability.

« Aggregation: The outputs of the final encoders are then aggregated by averaging them
along the feature dimension (pp. Aggregation: The outputs of the last encoders are all
pooled together via mean along the feature dimension (i.e., along the eight features).

« Output layer: A fully connected classification layer is used to which the pooled vector is
passed and this will print the probabilities of the classes in the binary classification
problem (diabetic vs. non-diabetic).

The architecture, including the embedding, attention layers, pooling operation, and
classification head, is depicted in Fig. 6.

Meta learner XGBoost

XGBoost serves as the meta-learner within our ensemble methodology, effectively
integrating the predictive capabilities of Tab Transformers with stacking ensembles. This
stacking model is designed to capture a variety of patterns present in the diabetes dataset
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by incorporating multiple ML techniques, including RF, LR, and KNN. Each of these
models is trained independently to ensure optimal performance. The tab transformer
model utilizes attention mechanisms to identify complex, non-linear relationships among
features trained on the same dataset utilized by the stacking ensemble. The tab transformer
distinctly focuses on high-order feature correlations, which traditional models may
overlook, thus enhancing the stacking model’s efficacy in handling tabular data. Upon
completion of the training phase, outputs from both models are combined, followed by the
application of the meta-learner XGBoost to these collective predictions. As a prominent
final estimator, XGBoost, renowned for its efficiency and effectiveness in gradient-boosted
DT, capitalizes on the strengths offered by both the Tab Transformer and stacking models.
By amalgamating the various advantages inherent in traditional ensemble methodologies
with the transformational capabilities of attention-based models, this ensemble approach
aspires to enhance predictive accuracy, thereby establishing a robust and comprehensive
framework for diabetes prediction.

This hybrid meta-ensemble design allows XGBoost to leverage the strengths of both
shallow and deep learners. It captures linear, non-linear, and global feature interactions
across learners, resulting in a robust architecture particularly well-suited for medical
prediction tasks such as diabetes classification. Figure 7 shows a schematic overview of the
proposed hybrid architecture, including the flow of information from preprocessing to
final prediction. This figure depicts the system’s dual-branch structure, with one
employing traditional ensemble learning through stacking and the other using a
TabTransformer for deep feature learning.

Hyperparameter tuning strategy
Eighty percent (80%) of the samples were allocated for training the model, while 20% of the
dataset was reserved for testing each version. We employed both grid search and
randomized search techniques on KNN, RF, and LR. Following parameter tuning, the ML
algorithms produced accurate predictions and improved overall accuracy. Table 3 presents
a comprehensive list of the tuned parameters considered in our research (Elgeldawi et al.,
2021). The results demonstrate a significant matrix score, enhancing the accuracy of our
ML models. All tuning was conducted within the training data using a stratified 5-fold
stratified validation to avoid data leakage.

Hyperparameter tuning enables each model to reach optimal performance by
fine-tuning the parameters that govern the learning process. We employed two primary
strategies:

e Grid search: This method comprehensively examines all possible combinations of
specified hyperparameters; however, it is computationally intensive. Grid search is
utilized for LR and KNN due to their reduced parameter counts and lower
computational complexity. The search space was exhaustive and validation strategy was
cross-validation.
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e Randomized search: This approach samples a predetermined number of
hyperparameter combinations from a designated distribution, thereby enhancing
efficiency, particularly with complex models such as RF, which possess an extensive
parameter space. The search space was random sampling and validation strategy was

cross-validation.

The tuning process was designed to improve accuracy, precision, recall, and F1-score, as
these evaluation metrics are critical for assessing the robustness of models in accurately

identifying true diabetes cases.
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Table 3 The best-performing ML model with tuned hyperparameters.

ML models Hyperparameters
LR C: 0.01
Penalty: L2
Solver: saga
KNN Algorithm: auto

n_neighbors: 10
weights: distance

RF n_estimators: 200
Min_samples spilt: 10
Min_samples_leaf: 1
Max_depth: 40
Bootstrap: false

Evaluation metrics

In this study, we compared the performance of various ML models by evaluating their
F1-score, recall, precision, accuracy, and additional metrics. These evaluation metrics were
computed for each classifier, including RF, KNN, and LR, each of which underwent
hyperparameter tuning. Furthermore, we employed an ensemble technique known as
Stacking, which integrated the tab transformer with a meta learner, XGBoost. This
approach ultimately surpassed the performance of the individual classifiers. The
comparative analysis reveals that all classifiers exhibited efficient performance in terms of
accuracy, Fl-score, precision, and recall.

Accuracy

A specific metric is used to assess the model’s overall performance. In the context of
classification models, performance is defined as the proportion of accurate predictions
relative to the total number of predictions made and is calculated as follows:

No. of Correct Prediction
No. of Total Predictions

A TN + TP
ccuracy = .
) TN+ TP+ FN & FP

Accuracy =

Precision

Precision, or positive predictive value, measures how accurately a model predicts positive
outcomes. It represents the ratio of true positive predictions to the total number of positive
predictions and is calculated as follows:

No. of Positive Prediction
Total Positive Predictions

Precision =
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TP

Precision = ———.
TP + FP

Recall

Recall, often referred to as Sensitivity or True Positive Rate, quantifies a model’s efficacy in
accurately identifying all positive instances. It is defined as the ratio of true positive
predictions to the total number of actual positive instances and is calculated as follows:

TP

Recall = ———.
TP+ FN

F1-score

The F1-score is the harmonic mean of Recall and Precision. This metric provides a singular
measure that effectively balances precision and recall, making it especially valuable for
addressing imbalanced class distributions. Additionally, the F1-score offers critical insights
into the accuracy and reliability of the classifier model under evaluation and is calculated as
follows:

2 X (Precision x Recall)
Precision + Recall

Fl-score =

Computing infrastructure

ML models have been employed to evaluate the performance of an algorithm. We
constructed the ML classifier utilizing the Python programming language in conjunction
with the scikit-learn library. All experiments were conducted in a cloud-based
environment via Google Colab, utilizing a Linux 6.1.123+ system with 12.67 GB RAM and
CPU-only processing (x86_64 architecture). To promote transparency and reproducibility,
we recorded the average training time for each machine learning model as follows:

e RF: 81.27 s

e LR: 1.52s

e KNN: 1.38 s

o Stacking Ensemble: 166.47 s
o TabTransformer: 50.42 s

These runtime values reflect the average time required to train each model using the
default or tuned hyperparameters, as outlined in the previous section. All experiments
were performed using CPU processing to simulate low-resource environments and ensure
the broad applicability of the proposed method. We used stratified 5-fold cross-validation
during hyperparameter tuning, and stratified 10-fold cross-validation for final robustness

evaluation.
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RESULTS AND DISCUSSIONS

This section presents the findings from the application of various ML and ensemble
models to the diabetes dataset. We systematically evaluated the performance of individual
classifiers, their enhancements achieved through hyperparameter tuning, and the
effectiveness of ensemble techniques, specifically stacking with TabTransformer and
XGBoost. The performance of each model was assessed using several key metrics,
including accuracy, precision, recall, and F1-score, thereby providing a comprehensive
evaluation of their capabilities in the context of diabetes prediction.

ML models with hyperparameter tuning

This section provides an analysis of the performance improvements achieved through
hyperparameter tuning applied to the ML models, specifically KNN, RF, and LR, utilized in
our research. Hyperparameter tuning is performed using randomized search and grid
search techniques, aiming to enhance each model’s predictive capabilities by identifying
the optimal combination of parameters. This tuning process is particularly critical in
medical classification tasks, such as diabetes prediction, as even minor adjustments can
significantly improve the model’s proficiency in accurately identifying both positive and
negative cases.

Tuned hyperparameters and model performance

The results of hyperparameter tuning for each model are presented in Table 4. By
optimizing the hyperparameters, each model demonstrated significant performance
enhancements. Notably, the RF classifier achieved the highest accuracy and recall metrics,
establishing it as a formidable contender for diabetes prediction.

Analysis of model improvements
Each optimized model demonstrated significant enhancements in its capacity to classify
both diabetic and non-diabetic cases, as detailed below:

e LR: The hyperparameter tuning for LR concentrated on adjusting the regularization
parameter C and the penalty type. The optimized LR model attained a balanced accuracy
of 96% with a high precision of 0.97 for both classes. The class-specific results indicate
that Class 0 (non-diabetic) achieved a precision of 0.95 and a recall of 0.98, while Class 1
(diabetic) attained a precision of 0.98 and a recall of 0.95. This equilibrium illustrates the
model’s robustness in predicting both classes without bias.

o RF: The tuning process for RF involved adjusting the number of estimators, the
maximum tree depth, as well as the minimum samples required for splitting and leaf
nodes. The optimized RF model achieved the highest overall accuracy of 98% with a
precision of 0.99 and an F1-score of 0.98. Notably, Class 1 (diabetic) recorded a precision
of 0.97 and a perfect recall of 1.00, underscoring RF’s capability in accurately identifying
all positive cases. The elevated F1-score for both classes confirms the model’s strong
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Table 4 Model performance comparison.

Model Accuracy Precision Recall F1-score
LR (Tuned) 0.96 0.97 0.97 0.96
- Class 0 - 0.95 0.98 0.96
- Class 1 - 0.98 0.95 0.97
RF (Tuned) 0.98 0.99 0.98 0.98
- Class 0 - 1.00 0.97 0.98
- Class 1 - 0.97 1.00 0.99
KNN (Tuned) 0.97 0.98 0.97 0.97
- Class 0 - 0.98 0.97 0.97
- Class 1 - 0.97 0.98 0.98

balance between precision and recall, which is crucial for minimizing false negatives in
healthcare applications.

KNN: The tuning for KNN primarily centered on selecting the optimal number of

neighbors (n_neighbors) and adjusting the distance weights. Following the tuning, KNN
achieved an accuracy of 97% with a balanced precision of 0.98 across both classes. The
class-specific results reflect a precision of 0.98 for Class 0 and 0.97 for Class 1, resulting
in a consistent F1-score. This indicates that KNN performed well with minimal variance
in class performance, thereby establishing it as a reliable option for balanced predictions.

Discussion of results with hyperparameter tuning

The enhancements achieved through hyperparameter tuning highlight the significance of
parameter optimization in ML models, especially in healthcare applications where the
costs associated with misclassification are substantial. Among the tuned models:

o RF demonstrated superior performance, achieving the highest accuracy and recall,
which are critical in healthcare environments as they reduce the likelihood of
overlooking diabetes cases.

* LR exhibited a balanced performance across both classes, suggesting its effectiveness in
managing linear relationships within the dataset.

o KNN attained competitive accuracy, indicating that non-parametric methods can be
potent when appropriately tuned.

These results imply that hyperparameter tuning improves overall accuracy and
significantly contributes to achieving a balanced performance across classes, thereby
enhancing the reliability of model outputs for clinical applications.

Study results discussion with stacking

In this section, we perform a detailed analysis of the results obtained from the stacking

classifier, which amalgamates the strengths of multiple ML models to enhance prediction
accuracy. This ensemble method consolidates the predictions of three base learners: RF,
LR, and KNN, employing LR as the meta-learner. By aggregating diverse models, the

Khalid et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3206 21/32


http://dx.doi.org/10.7717/peerj-cs.3206
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 Comparison with stacking classifier performance metrics.

Model Accuracy Precision Recall F1-score
LR (Tuned) 0.96 0.97 0.97 0.96
- Class 0 - 0.95 0.98 0.96
- Class 1 - 0.98 0.95 0.97
RF (Tuned) 0.98 0.99 0.98 0.98
- Class 0 - 1.00 0.97 0.98
- Class 1 - 0.97 1.00 0.99
KNN (Tuned) 0.97 0.98 0.97 0.97
- Class 0 - 0.98 0.97 0.97
- Class 1 - 0.97 0.98 0.98
Stacking 0.98 0.99 0.98 0.99
- Class 0 - 1.00 0.97 0.98
- Class 1 - 0.97 1.00 0.99

stacking classifier leverages the distinct advantages of each base learner, resulting in a more
balanced and robust predictive model, which effectively mitigates the limitations
associated with individual classifiers.

Construction and function of the stacking model

The stacking classifier integrates the outputs of the base models, namely RF, LR, and KNN,
each of which generates predictions for the dataset. These predictions are subsequently
input into the LR meta-learner, which determines the final classification by evaluating the
outputs of the base models. This architecture enables the stacking classifier to leverage the
strengths inherent in each base model while utilizing the meta-learner’s capacity to detect
patterns within the predictions made by the base models. As a result, this approach yields
improved overall accuracy and robustness.

Performance metrics of individual models and stacking classifier
Table 5 presents a comparative analysis of the performance metrics for each individual
model, including the optimized versions of LR, RF, and KNN, alongside the stacking
classifier. The stacking classifier demonstrates superior performance metrics, achieving an
accuracy of 98%, which closely aligns with or exceeds those of the individual base models.

Overall comparative analysis with graphical insights

The results presented in the comparison graph (see Fig. 8) offer a clear visual
representation of the performance disparities among the models. The graph delineates the
performance of each metric across the individual models and the stacking classifier,
emphasizing the advantages the stacking classifier gains from the synergistic strengths of
its base learners.
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Analysis of tab transformer performance in diabetes prediction

The tab transformer model, designed to effectively capture complex feature interactions
via self-attention mechanisms, was applied to a diabetes dataset, achieving a test accuracy
of 72.7% after 100 epochs. Although this accuracy is lower than that of both the stacking
ensemble and traditional models, the attention-based approach of the tab transformer
provides unique insights into the dependencies among features, such as glucose levels and
BMI, which are critical for diabetes prediction. The model exhibited a gradual reduction in
loss, decreasing from 0.934 at the initial epoch to 0.324 by epoch 90, indicating stable
convergence. While the standalone performance of the model is considered moderate, the
tab transformer’s capability to prioritize feature relationships suggests potential for
integration into ensemble frameworks, where its strengths in capturing non-linear patterns
could complement traditional models, ultimately enhancing overall predictive accuracy in
healthcare applications.

Hybrid ensemble using XGBoost (Stacking + Tab transformer)

To enhance the predictive capabilities of diabetes models, we implemented a hybrid
approach that integrates Transformer-based architectures with ensemble learning
techniques. This section details the combination of the tab transformer model and a
meta-learning approach utilizing XGBoost, an effective gradient-boosting algorithm. The
hybrid model capitalizes on the attention mechanism of the tab transformer for modeling
feature relationships, while XGBoost acts as a meta-learner to amalgamate predictions
from multiple models, thereby resulting in a more robust classifier.

To address the challenge of storing complex relationships among tabular data features,
the tab transformer model is employed. In medical datasets, where interactions between
variables such as age, BMI, and glucose levels may be intricate, the tab transformer adopts a
Transformer-based architecture coupled with self-attention mechanisms to prioritize and
evaluate significant feature correlations.

Although the tab transformer achieved a test accuracy of 72%, which is lower than that
of the stacking ensemble models, it provided valuable structural insights. The model
exhibited stable convergence during the training process, with the loss decreasing from
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Table 6 Proposed model results and performance.

Model Accuracy Precision Recall F1-score ROC-AUC
Stacking classifier 0.98 0.99 0.98 0.99 0.99
Tab transformer 0.72 0.75 0.70 0.72 0.78
Hybrid ensemble using XGBoost (Stacking + Tab transformer) 0.99 0.99 0.99 0.99 0.99

0.934 in the first epoch to 0.324 by epoch 90. This suggests that despite moderate
standalone performance, the model successfully learns the underlying patterns within the
data, particularly regarding feature dependencies.

Ensemble approach: stacking classifier with tab transformer
integration

To leverage the complementary strengths of both models, we integrated the predictions
from the stacking classifier and the tab transformer. The stacking classifier comprises RF,
LR, and KNN as base models, with an LR meta-learner serving as a robust foundation for
our ensemble approach. By incorporating the tab transformer into the ensemble, our
objective was to enhance the overall accuracy and robustness of the system.

The predictions from both the stacking classifier and the tab transformer were
subsequently input into an XGBoost meta-learner. XGBoost, recognized for its efficiency
and scalability, was employed to amalgamate the predictions from the ensemble models
alongside the tab transformer. This hybrid methodology enables the capture of both linear
and non-linear patterns within the data, thereby improving overall predictive
performance.

Meta-learning with XGBoost

XGBoost is selected as the meta-learner due to its capability to effectively manage
imbalanced datasets and its strength in integrating weak learners to enhance
generalization. The XGBoost model is trained on the outputs of the stacking classifier and
the tab transformer, which offer a comprehensive set of features for the final meta-model.
This combination improves the predictive model by leveraging the distinct strengths of
each component: the feature interaction modeling provided by the tab transformer and the
ensemble aggregation facilitated by the stacking classifier.

The final ensemble model, which integrates the tab transformer and stacking classifier
with XGBoost, has demonstrated superior performance relative to each individual model.
Table 6 displays the performance metrics associated with the final hybrid model,
highlighting significant improvements in accuracy, precision, recall, F1-score, and
ROC-AUC compared to traditional models.

The hybrid model outperformed both the individual classifiers and the tab transformer
across all evaluation metrics. The incorporation of the tab transformer alongside XGBoost
as a meta-learner culminated in a highly effective model adept at capturing complex
feature interactions while minimizing prediction errors, especially in challenging cases.
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Figure 9 depicts the comparative performance of the individual models, the tab
transformer, and the final hybrid ensemble. The hybrid model consistently exhibits
enhancements across all evaluation metrics, particularly in recall and precision. This
makes it a valuable asset for healthcare applications where the identification of true
positives (e.g., diabetic cases) and the reduction of false negatives are paramount.

The integration of transformer-based attention mechanisms with gradient boosting
capabilities, particularly through XGBoost, underscores the effectiveness of hybrid
methodologies in enhancing predictive accuracy. This is especially pertinent in intricate
medical prediction tasks, such as the detection of diabetes.

Statistical validation

To statistically validate the performance difference, a paired t-test is conducted on the
F1-scores of the stacking classifier and the hybrid ensemble across 10-fold cross-validation.
The results show a t-statistic value of 17.0807 and a p-value of 0.0000. Since the p-value <
0.05, we conclude that the improvement achieved by the hybrid model is statistically
significant. This confirms that integrating tabtransformer with the stacking classifier using
XGBoost yields meaningful and consistent gains in predictive performance. A visual
comparison is presented in Fig. 10, where the hybrid model surpasses individual models.
In this analysis, we have analyzed F1-scores across 10-fold cross-validation.

Ablation study

To validate the contribution of each component in the proposed hybrid architecture, we
conducted an ablation study by incrementally removing or isolating modules such as the
TabTransformer, Stacking ensemble, and the XGBoost meta-learner. The performance of
each configuration was evaluated using Accuracy, Precision, Recall, F1-score, and ROC-
AUC. As shown in Table 7, the full hybrid model combining TabTransformer, stacking
classifier, and XGBoost achieves the highest accuracy (98.7%) and ROC-AUC (99.6%).
Removing the XGBoost meta-learner or evaluating TabTransformer or stacking classifier
in isolation resulted in a noticeable drop in performance. This confirms that the
integration of deep feature representations (tab transformer), classical ensemble
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Figure 10 Visual statistical comparison between the hybrid ensemble (XGBoost + TabTransformer + Stacking).
Full-size K&] DOT: 10.7717/peerj-cs.3206/fig-10

Table 7 Ablation study: performance comparison of different model configurations.

Model variant Accuracy Precision Recall F1-score ROC-AUC
Full Hybrid (XGBoost + Stacking + TabTransformer) 0.9870 0.9815 0.9815 0.9815 0.9965
Stacking only 0.7532 0.6600 0.6111 0.6346 0.8281
TabTransformer only 0.7403 0.6061 0.7407 0.6667 0.8069
Without meta-learner 0.7468 0.6364 0.6481 0.6422 0.8237

Table 8 Performance of tuned ML models without SMOTE including overall class-wise metrics.

Model Accuracy Classes Precision Recall F1-score

RF (Tuned) 0.74 Class 0 0.77 0.86 0.81
Class 1 0.67 0.52 0.58

LR (Tuned) 0.74 Class 0 0.84 0.74 0.79
Class 1 0.61 0.74 0.67

KNN (Tuned) 0.75 Class 0 0.79 0.84 0.81
Class 1 0.66 0.57 0.61

predictions (stacking classifier), and boosting-based meta-learning (XGBoost) is
complementary and collectively enhances predictive performance.

Impact of SMOTE on model performance

The impact of applying SMOTE and hyperparameter tuning is assessed by testing each
machine learning model in two different scenarios: without SMOTE and with SMOTE
applied just to the training data. The models’ performance is evaluated using four essential
metrics: accuracy, precision, recall, and F1-score, both overall and by class (Class 0 for
non-diabetics and Class 1 for diabetic patients).
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Table 9 Performance of tuned ML models with SMOTE including overall class-wise metrics.

Model Accuracy Classes Precision Recall F1-score

RF (Tuned) 0.75 Class 0 0.84 0.76 0.80
Class 1 0.62 0.74 0.68

LR (Tuned) 0.73 Class 0 0.84 0.72 0.77
Class 1 0.59 0.74 0.66

KNN (Tuned) 0.65 Class 0 0.76 0.67 0.71
Class 1 0.50 0.61 0.55

Table 10 Performance comparison with previous studies.

Ref Proposed technique Accuracy
Gupta & Goel (2023) RF with preprocessing techniques 88.61%
Ulutas, Giinay ¢ Sahin (2024) PSO-GWO optimized RF 98%
Hasan et al. (2020) RF with pima Indian dataset 95%
Proposed Hybrid Ensemble using XGBoost (Stacking + Tab Transformer) 99%

Table 8 displays the results of tuned models without SMOTE, providing a breakdown of
each model’s predictive performance. This table shows that KNN had the greatest accuracy
(0.75) of the three models when SMOTE is not utilized, with somewhat balanced class-wise
metrics. LR and RF followed closely after, with accuracies of 0.74 each.

In contrast, Table 9 presents the results of the same models when SMOTE is applied to
the training data. Here, RF showed the most improvement, increasing its accuracy to 0.75.
LR slightly decreased to 0.73, and KNN’s performance dropped more notably to 0.65.
These tables clearly demonstrate that the impact of SMOTE varies across different
classifiers and that careful tuning and sampling are essential to achieving reliable
performance in imbalanced medical datasets.

Error analysis

To assess the usefulness of the model in practice, we would provide error evaluation based
on the confusion matrix and F1-scores of each class. The confusion matrix of the final
hybrid model was quite good, with a minimal number of false negative and false positive
cases than those of all the base learners. This is vital in the clinical arena, such that inability
to classify diabetic patients (false negative) may result in delayed therapy and unfavourable
health implications. The hybrid model was exact and also achieved good recall on the two
classes, especially the highly sensitive positive (diabetic) values.

State of the art comparison

We evaluated the proposed model’s effectiveness by comparing its accuracy with that of
existing research that employed ML methods to predict diabetes. Table 10 presents a
review of various strategies, highlighting the accuracy improvements achieved by different
ensemble and optimized methodologies. The proposed hybrid ensemble model, which
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integrates XGBoost with stacking classifier and tab transformer techniques, achieved a 99%
accuracy rate, exceeding the predictive capabilities of previous models.

CONCLUSION AND FUTURE DIRECTIONS

The accuracy of diabetes predictions has significantly improved through the integration of
the tab transformer with a stacking ensemble model enhanced by a meta-learner utilizing
XGBoost. This stacking ensemble model, which incorporates RF, KNN, and LR, surpasses
the performance of the individual models. The tab transformer employs a self-attention
mechanism that effectively captures complex relationships among features, thereby
providing valuable insights into non-linear interactions among key variables. By
incorporating XGBoost as a meta-learner, the predictive capabilities of these models have
been further enhanced, resulting in more reliable and versatile outcomes. This mixed
design has attained the mean accuracy of 97.92%, F1-score of 97.02%, and ROC-AUC of
99.58% in terms of 10-fold cross-validation. The overall performance of these results is a
major improvement compared to the performance of the best individual model (RF)
whereby its average F1-score and ROC-AUC were 64.87 and 83.99 respectively. To
ascertain the statistical significance of these improvements, a paired t-test run between the
hybrid model and the baseline stacking classifier was successful (p < 0.001). This approach
underscores the significance of utilizing innovative ML techniques to address the
challenges encountered in medical prediction tasks.

Limitations

While the results are promising, it is essential to acknowledge the research’s limitations.
First, the dataset used for this work, the PIMA Indian Diabetes dataset, has 768 patient
samples, which might restrict the model’s potential to generalize to a larger dataset.
Furthermore, the absence of comprehensive hyperparameter tuning may have hindered
the tab transformer’s predictive capabilities, thereby affecting its overall performance.
Furthermore, although the model performed satisfactorily on the diabetic dataset, it
requires evaluation on a broader range of real-world clinical datasets. Such assessments
could introduce additional challenges, including issues related to class imbalances, noise,
and missing values.

Future research

Future research should concentrate on optimizing the convergence and performance of the
tab transformer. Key areas for investigation include hyperparameter tuning, regularization
techniques, learning rate scheduling, and advanced optimization algorithms. Additionally,
examining domain-specific feature engineering methods could facilitate a more effective
capture of complex relationships within the data. To further improve model performance,
it may be advantageous to explore alternative collaborative approaches and meta-learning
strategies. Moreover, to evaluate the model’s generalizability and robustness, it is essential
to test it across a diverse array of datasets, including real clinical data. Also, it is necessary
to validate this model using larger, more varied external clinical data to see how applicable
it would become to the real world. Lastly, to boost trust and transparency in the medical
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ML applications, future work can consider other ensemble techniques and explainability
tools, such as SHapley Additive exPlanations (SHAP), to provide detailed feature
attribution.
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