
invgamma: the inverse gamma
distribution in R
David Kahle and James Stamey

Department of Statistical Science, Baylor University, Waco, Texas, United States

ABSTRACT
invgamma is a popular low dependency R package that implements the probability
density function (PDF), cumulative distribution function (CDF), quantile function
(QF) and random number generator (RNG) functions for the inverse gamma, inverse
chi-squared, and inverse exponential distributions, which are missing from base R.
The functions follow the standard R syntax and are efficient, leveraging the
corresponding functions for the gamma distribution currently in R through
straightforward mathematical relationships between the distributions. It is
distributed through the Comprehensive R Archive Network (CRAN, https://cran.r-
project.org) and GitHub (https://github.com/dkahle/invgamma), where it is version
controlled.

Subjects Algorithms and Analysis of Algorithms, Data Science, Scientific Computing and
Simulation, Software Engineering
Keywords Inverse gamma distribution, R, Statistical computing, Data science

INTRODUCTION
R is the programming lingua franca of academic statisticians and one of the most popular
statistics and data science programming languages (R Core Team, 2016; Muenchen, 2023). In
its base distribution it contains core functionality for all sorts of operations essential to a proper
platform for statistical computing: reading and writing files, data manipulation, graphical
capabilities, scientific computing data structures and algorithms (e.g., arithmetic, matrix
algebra, sorting, and special mathematical functions), modeling capabilities (e.g., regression),
and much more. R also has a thriving developer base creating contributed packages, which
number in the tens of thousands at the time of this writing, hosted on R’s primary package
repository, the Comprehensive R Archive Network (CRAN, https://cran.r-project.org).

One of the key components of R is a simple and efficient code base for working with
probability distributions. R has dozens of built-in functions related to common probability
distributions such as probability density functions (PDFs), cumulative distribution functions
(CDFs), quantile functions (QFs), and random number generators (RNGs), typically
implemented as compiledC executables. For a given family of probability distributions, these
four functions follow a memorable naming pattern: [dpqr]<dist>(), where the letters d, p,
q, and r signify the PDF, CDF, QF, and RNG of the distribution (respectively), and <dist> is
the short-hand form of the family name thatR uses. Thus, dnorm() is the PDF of the normal
distribution; qbinom() is the quantile function of the binomial distribution; and rt() is the
RNG for the t distribution. We refer to these as the dpqr functions, and for brevity when
referring to the collection of four for a particular family write �<dist>(), e.g., �gamma().
The specific parameterizations of these families are communicated in their corresponding

How to cite this article Kahle D, Stamey J. 2025. invgamma: the inverse gamma distribution in R. PeerJ Comput. Sci. 11:e3205
DOI 10.7717/peerj-cs.3205

Submitted 11 July 2025
Accepted 19 August 2025
Published 26 September 2025

Corresponding author
David Kahle,
david_kahle@baylor.edu

Academic editor
Massimiliano Fasi

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj-cs.3205

Copyright
2025 Kahle and Stamey

Distributed under
Creative Commons CC-BY 4.0

https://cran.r-project.org
https://cran.r-project.org
https://github.com/dkahle/invgamma
https://cran.r-project.org
http://dx.doi.org/10.7717/peerj-cs.3205
mailto:david_kahle@�baylor.�edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3205
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

documentation accessible with ?, e.g., ?dnorm. These functions are all provided by the stats
package, one of R’s base packages that is loaded by default when an R session is initialized.

Conspicuously missing from the list, however, is the inverse gamma distribution and its
related subfamilies: the inverse v2 and inverse exponential distributions. In this short
article we discuss invgamma, a low-dependency, efficient, and low-maintenance package
available on CRAN that has provided the functions to fill this void for the past decade, with
downloads totaling well over three hundred thousand (Csárdi, 2019). Although previously
only a software implementation, we, the authors of invgamma, write this article now to
reflect on the software, present the core mathematics behind it (some of which is sparsely
documented elsewhere), and clarify a few design choices.

GETTING INVGAMMA
There are two ways to obtain invgamma. First, one can obtain it from CRAN using R’s
built-in packaging tool install.packages():

Alternatively, one can install the most recent stable development version of the package
using remotes (Csárdi et al., 2024):

The package is then loaded and attached to the current R session using the standard
mechanism:

MATHEMATICAL UNDERPINNINGS
The gamma distribution and its implementation in R
This article is interested in the inverse gamma distribution, which is defined in reference to
the gamma distribution. The gamma distribution is so called because it relies
fundamentally on the gamma function, a special function defined for all complex x with
real part greater than zero as the definite integral

�ðxÞ ¼
Z 1

0
tx�1e�t dt; ReðxÞ > 0: (1)

It is well known that this function cannot be expressed in terms of elementary functions
but exhibits many very special properties.

Where the relevant quantities are defined, one important property is the recurrence
identity �ðxÞ ¼ ðx � 1Þ�ðx � 1Þ. This property enables “shifting left” in the sense of
allowing the computation of � at x by computing it its value 1 to the left, i.e., x � 1. It also
enables “shifting right,” computing � at x by computing it 1 to the right, i.e., x þ 1.
Together, these are

ðx � 1Þ�ðx � 1Þ ¼ �ðxÞ ¼ 1
x
�ðx þ 1Þ: (2)

install.packagesinstall.packages ("invgamma")

remotes:: install_githubinstall_github ("dkahle/invgamma")

librarylibrary ("invgamma")

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 2/19

http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

When applied to positive integers n ¼ x, the recurrence identity reveals that the Gamma
function is a generalization of the factorial function communicated in postfix notation,
n! :¼ �ðnþ 1Þ ¼ n�ðnÞ ¼ nðn� 1Þ�ðn� 1Þ ¼ nðn� 1Þðn� 2Þ � � � ð2Þ�ð1Þ ¼
nðn� 1Þðn� 2Þ � � � ð2Þð1Þ ¼ Qn

i¼1 i:

Another identity, valid for non-integer x, is Euler’s reflection formula

�ðxÞ ¼ p
sinðpxÞ�ð1�xÞ : (3)

This formula is particularly important as it allows the definition (more, an analytic
continuation) of the gamma function over whole complex plane minus zero and the
negative integers. For example, when presented with a negative number1 the reflection
formula can be applied to recast the problem as one over the positive numbers. For
example, �ð�3:5Þ ¼ p

sinðpð�3:5ÞÞ�ð1�ð�3:5ÞÞ ¼ p
sinðpð�3:5ÞÞ�ð4:5Þ.

Computing the gamma function is a well-studied problem in numerical analysis
(Schmelzer & Trefethen, 2007; Lange, 2010). The classic reference for numerical
approximations is Abramowitz & Stegun (1964); a more modern reference is National
Institute of Standards and Technology’s (NIST’s) Digital Library of Mathematical
Functions (DLMF) (NIST, 2025).2 In R, �ðxÞ is available via the function gamma(), which
calls a compiled C function called gammafn(), itself a translation of an earlier Fortran
routine attributed in the source code to W. Fullerton.3 gammafn() accepts any number
represented as a numeric, i.e., a floating point or integer, and evaluates the function using
a multi-regime design:

1. If x � 0 and x is integer; return NaN and issue a warning.

2. If 1 � x � 50 and x is an integer, brute-force the product ðx � 1Þ! by looping.

3. If x < 0 is non-integer, apply the reflection formula and compute �ð1�xÞ as below.
4. If jxj � 10, shift x left or right via the recurrence relation until it lies in ½1; 2Þ and then

evaluate �ð1þ yÞ ¼ R1
0 tye�t dt with a 42-term Chebyshev approximant whose

coefficients are hard-coded into the source code, where y is the factional part after
reduction. For example, �ð3:2Þ ¼ 2:2�ð2:2Þ ¼ ð2:2Þð1:2Þ�ð1:2Þ so that y ¼ 0:2 or
�ð�2:2Þ ¼ p

sinð�2:2pÞ�ð1�ð�2:2ÞÞ ¼ p
sinð�2:2pÞ�ð3:2Þ.

5. If jxj > 10, if more than about 171 return Inf or less than about �171 return 0,
otherwise use Stirling’s approximation �ðxÞ ¼ expf12 log 2pþ ðx � 1=2Þ log x�x þ cg,
where c is a correction term with its own hard-coded Chebyshev approximant.

This design is illustrative of the general character of evaluating special functions in R.
Functions directly related to the gamma function, e.g., its natural logarithm implemented
in R as lgamma(), often use C-level manipulations of these.4 So, for example, lgamma()
calls the C-function lgammafn() which either calls gammafn() and computes its log
or uses a reflection formula trick, depending on the input value. In other words, the
C-level implementation gammafn() is central to not just computing �ðxÞ, but related
functions as well.

1 Negative real part, that is.

2 The DLMF gamma function section can
be found at https://dlmf.nist.gov/5.

3 The source code is viewable at https://
svn.r-project.org/R/tags/R-4-5-0/src/
nmath/gamma.c.

4 The source code is viewable at https://
svn.r-project.org/R/tags/R-4-5-0/src/
nmath/lgamma.c.

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 3/19

https://dlmf.nist.gov/5
https://svn.r-project.org/R/tags/R-4-5-0/src/nmath/gamma.c
https://svn.r-project.org/R/tags/R-4-5-0/src/nmath/gamma.c
https://svn.r-project.org/R/tags/R-4-5-0/src/nmath/gamma.c
https://svn.r-project.org/R/tags/R-4-5-0/src/nmath/lgamma.c
https://svn.r-project.org/R/tags/R-4-5-0/src/nmath/lgamma.c
https://svn.r-project.org/R/tags/R-4-5-0/src/nmath/lgamma.c
http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

The PDF of the gamma distribution is one of these, albeit through a somewhat
circuitous route. Suppose a random variable X follows a gamma distribution with
parameters a and k, written X � Gamma a; kð Þ. By definition, this means that its PDF
fXðxja; kÞ is

fXðxja; kÞ ¼ ka

�ðaÞ x
a�1e�kx; x; a; k > 0: (4)

This parameterizaton ða; kÞ is the rate parameterization of the family, whose mean is

lX ¼ a=k and variance is r2X ¼ a
k2
. The Greek character k is commonly used to emphasize

this parameterization, especially in relation to the Poisson distribution. The rate
parameterization is often contrasted with the scale parameterization ða; bÞ, which uses the
Greek character b defined b ¼ 1

k, resulting in the PDF fXðxja; bÞ ¼ 1
�ðaÞba x

a�1e�x=b, the
mean lX ¼ ab, and the variance r2X ¼ ab2 (Casella & Berger, 2002). These parameters
index the same gamma family of probability distributions and in this sense are equivalent,
but they are not identical. The convention matters when actual formulas are desired for
computing, e.g., which convention is signified by fXðxj2; 3Þ.

The function fXðxja; kÞ is implemented in R as dgamma(), which like other dpqr
functions is provided by stats. In dgamma(), the a and k parameters go by the names
shape and rate. The formal arguments of dgamma() begin with x, shape, and rate, so
that R’s standard argument matching rules interpret un-named arguments as the ða; kÞ
parameterization, i.e., dgamma(x, 2, 3) is interpreted as fXðxja ¼ 2; k ¼ 3Þ (Wickham,
2014). However, the scale parameterization Gamma a;bð Þ is also available via dgamma()’s
scale argument, which can be used by explicitly referring to it, e.g., dgamma(x, 2, scale
= 1/3). Indeed, all the dpqr functions of the gamma distribution accept these parameter
arguments.

Internally, dgamma() calls a C-level function by the same name; however, this function
does not directly call the C function gammafn() or its log variant.5 Instead, it calls an
implementation of the probability mass function (PMF) of a Poisson random variable

fYðyjkÞ ¼ e�kky

y! ¼ e�kky

�ðyþ1Þ via a trick that massages a scale-parameterized gamma PDF

fXðxja; bÞ into a Poisson PMF:

fXðxja; bÞ ¼ 1
�ðaÞba x

a�1e�x=b ¼ 1
b
e�x=bðx=bÞa�1

�ðaÞ ¼ 1
b
fYða� 1jk ¼ x=bÞ ¼ P Y ¼ a� 1½ �

b
; (5)

where Y � Pois k ¼ x=bð Þ. The function that implements the Poisson PMF at the C-level,
called dpois_raw(), does call lgammafn() (among other logic), further illustrating the
interdependence of these functions. An illustration of this equivalence can be seen below.

x <- 2.7; alpha <- 2; beta <- 3

dgammadgamma (x, shape = alpha, scale = beta)

[1] 0.1219709

dpoisdpois (alpha-1 , lambda = x/beta)/beta

[1] 0.1219709

5 The source code can be viewed at https://
svn.r-project.org/R/tags/R-4-5-0/src/
nmath/dgamma.c.

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 4/19

https://svn.r-project.org/R/tags/R-4-5-0/src/nmath/dgamma.c
https://svn.r-project.org/R/tags/R-4-5-0/src/nmath/dgamma.c
https://svn.r-project.org/R/tags/R-4-5-0/src/nmath/dgamma.c
http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

The cumulative distribution function of the gamma distribution is FXðxja; kÞ ¼R x
0 fXðtja; kÞ dt 1½x � 0�, a scaled incomplete gamma function, where 1½x � 0� is the
indicator function assuming the value 1 when x � 0 and 0 otherwise. It is implemented in
R as pgamma().6 Like the gamma function itself, the actual computations are performed
via compiled C code that uses a multi-regime design, which is here a bit more complex but
uses the same core functions (e.g., dpois_raw()) and approximation theory concepts. The
computations are sometimes done first on a log scale, which allow for better numerical
properties when the output values’ magnitudes are very large or very small. These can be
returned by dgamma() and pgamma() as well by specifying log = TRUE and log.p = TRUE,
which implement log fXðxja; kÞ and log FXðxja; kÞ, respectively.

The quantile function of the gamma distribution, the inverse-function of its CDF, is
denoted F�1

X ðxja; kÞ. If the CDF solves the problem “Given x in P X � x½ � ¼ p, compute
p.”, the QF solves the problem “Given p in P X � x½ � ¼ p, compute x.” It is implemented in
R as qgamma() and, like the other functions, is computed via compiled C code.7 Like
gamma() and pgamma(), the evaluation uses results from approximation theory, in this
case using a reformulation of the gamma problem into a v2 one to provide an initial guess
followed by 7-term Taylor series correction using pre-computed coefficients (Best &
Roberts, 1975). Newton steps are then performed as-needed to obtain full double-precision
accuracy.

Random number generation from the gamma is implemented in rgamma() using a
modified rejection sampler implemented in C (Ahrens & Dieter, 1982, 1974).8 The
construction is a complicated composite of a few simple regimes, the first of which applies
when the shape a < 1 and the second, more complex, when a � 1. The specific components
generally following standard rejection and envelope rejection sampler strategies (Robert,
Casella & Casella, 1999).

With these tools in hand, we are now able to discuss the relevant functions for the
inverse gamma distribution used in invgamma.

The inverse gamma distribution and its connection to the gamma
The inverse gamma distribution is the distribution of a random variable Y ¼ X�1 whose
inverse is a Gamma a; kð Þ random variable, succinctly written Y � Inv-Gamma a; kð Þ.
Derived below, the PDF of the inverse gamma distribution is

fYðxja; kÞ ¼ ka

�ðaÞ x
�ðaþ1Þe�k=x x; a; k > 0: (6)

One of the standard families of probability distributions, the inverse gamma distribution
showcases strongly in Bayesian statistics, where it is the conjugate prior for the variance of
a normal data model with unknown mean and variance (Christensen et al., 2011; Lunn
et al., 2012). More broadly, it is a common choice for a continuous probability distribution
on the non-negative real numbers.

One of the nice features of the invgamma implementation is that it leverages the dgamma
(), pgamma(), qgamma(), and rgamma() suite of functions shipped with R and
maintained by the R core team. It does so via simple mathematical relationships between

6 Viewable at https://svn.r-project.org/R/
tags/R-4-5-0/src/nmath/pgamma.c.

7 Viewable at https://svn.r-project.org/R/
tags/R-4-5-0/src/nmath/qgamma.c.

8 Viewable at https://svn.r-project.org/R/
tags/R-4-5-0/src/nmath/rgamma.c.

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 5/19

https://svn.r-project.org/R/tags/R-4-5-0/src/nmath/pgamma.c
https://svn.r-project.org/R/tags/R-4-5-0/src/nmath/pgamma.c
https://svn.r-project.org/R/tags/R-4-5-0/src/nmath/qgamma.c
https://svn.r-project.org/R/tags/R-4-5-0/src/nmath/qgamma.c
https://svn.r-project.org/R/tags/R-4-5-0/src/nmath/rgamma.c
https://svn.r-project.org/R/tags/R-4-5-0/src/nmath/rgamma.c
http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

the gamma and inverse gamma distributions. In this section we briefly describe these
relationships. Throughout, it is assumed that X � Gamma a; kð Þ and Y ¼ 1

X. We begin
with the CDF.

Since Y ¼ X�1, the CDF of the inverse gamma can be easily described in terms of the
CDF of the gamma distribution. In particular, if FYðxÞ is the CDF of the inverse gamma
distribution and FXðxÞ is the CDF of the corresponding gamma distribution, for x > 0 the
complement rule and continuity require

FYðxÞ ¼ P Y � x½ � ¼ P X�1 � x
� � ¼ P 1=x � X½ � ¼ 1�P X < 1=x½ � ¼ 1� FX 1=xð Þ: (7)

The pinvgamma() function is implemented by wrapping pgamma() in this way,
leveraging the lower.tail and log.p arguments of the pgamma() function to allow
users to access those same arguments, which is consistent with their expectations set by the
rest of the R ecosystem. Similar conventions analogous to the �gamma() functions are
adopted when users specify special values, e.g., dinvgamma(0, 3, 4) results in 0 (not NaN
which is the result of division by zero), as does dinvgamma(Inf, 3, 4).

A standard result in mathematical statistics known as the transformation theorem states
that if g is a differentiable, monotonic function and Y ¼ gðXÞ, then the PDF of Y satisfies

fYðxÞ ¼ fXðg�1ðxÞÞj d
dx g

�1ðxÞj (Casella & Berger, 2002). For the inverse gamma

distribution gðxÞ ¼ 1
x so that g�1ðyÞ ¼ 1

y and

log fYðxÞ ¼ log fXðg�1ðxÞÞ d
dx

g�1ðxÞ
����

����
� �

¼ log fXð1=xÞ � 2 log x:

This allows us to construct dinvgamma() by computing dgamma() on the log scale (log =
TRUE) and exponentiating as needed. The log argument is implemented in dinvgamma()

as it is often used in likelihood computations; it is also standard in R for d�() functions
(PDFs) to have this argument.

The quantile function is the inverse-function of the CDF. Using the variable-swapping
method of determining function inverses, we start with

p ¼ P Y � x½ � ¼ 1� FX 1=xð Þ; (8)

swap variables, and solve to determine x ¼ F�1
X ð1�pÞ�1. Thus, qinvgamma() is easily

expressible in terms of qgamma(): F�1
Y ðpÞ ¼ 1

F�1
X ð1�pÞ. Like dgamma()’s log and pgamma

()’s log.p arguments, qgamma() can be used on the log scale; it admits the log.p
argument. Naturally (although not obviously), when set to TRUE the input argument p to
qgamma() is assumed to be on the log scale, i.e., log p.

As previously described, in R CDF and quantile functions are often given two other
arguments: lower.tail and log.p. The first of these is used to compute the survival
function 1� FYðxÞ and the other to provide the probability on the log scale. Both of these
are included in both the CDF and quantile functions by simply passing the arguments to
[pq]gamma().

Generating inverse gamma variates is the easiest of the four functions. Since by
definition inverse gamma variates are simply the inverses of gamma variates, the

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 6/19

http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

rinvgamma() function just takes rgamma() variates and inverts them using R’s
vectorized arithmetic operators, which are implemented at the C level.

Altogether, these produce the following four functions and signatures:

These are identical to those of their �gamma() counterparts, making for a nice, intuitive
experience for R users.

ILLUSTRATIVE EXAMPLES
In this section we briefly show how the functions can be used and demonstrate their
correctness. We begin by visualizing the Y � Inv-Gamma 7; 10ð Þ distribution (Wickham,
2009; Wickham et al., 2019). The corresponding PDF is included in Fig. 1.

This also illustrates that the function dinvgamma() is vectorized across its first
argument, as R users expect. This is a really nice feature for likelihood estimation, where
the likelihood function is evaluated at several points and multiplied. Typically computed

load helper packages, installing where necessary

install_if_needed <- function(pkg){

if (!requireNamespacerequireNamespace (pkg)) install.packagesinstall.packages (pkg)

}

install_if_neededinstall_if_needed ("tidyverse"); librarylibrary ("tidyverse")

install_if_neededinstall_if_needed ("patchwork"); librarylibrary ("patchwork")

librarylibrary ("scales", warn.conflicts = FALSE)

theme_settheme_set(theme_minimaltheme_minimal())

theme_updatetheme_update (panel.grid.minor = element_blankelement_blank())

plot the inverse gamma PDF

ggplotggplot() +

stat_functionstat_function(

fun = dinvgamma, n = 251, xlim = c(0, 6), alpha = .65,

args = listlist (shape = 7, rate = 10), geom = "polygon"

) + themetheme (axis.title = element_blankelement_blank())

dinvgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)

pinvgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,

log.p = FALSE)

qinvgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,

log.p = FALSE)

rinvgamma(n, shape, rate = 1, scale = 1/rate)

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 7/19

http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

on the log-scale, we can pass in the argument log = TRUE and apply sum() to affect a
similar, but more numerically useful, result.

The consistency of pinvgamma() with dinvgamma() can be checked with the
integrate() function, which applies numerical quadrature via adaptive Gauss–Kronrod
quadrature. Here, we compute FYð2Þ ¼ P Y � 2½ � using both

integrate(dinvgamma()) and pgamma():

Since these values are equivalent, dinvgamma() and pinvgamma() are satisfying the
expected relationship consistently. Checking qinvgamma()’s consistence is a simple step
from here: we simply take the inverse of P Y � 2½ �, expecting 2.

The above illustrates that dinvgamma(), pinvgamma(), and qinvgamma() are
consistent in the sense that they satisfy the probabilistic relationships demanded among
their respective functions: they refer to the same probability distribution. To demonstrate
that they are sampling from the correct distribution, we compute the same quantity as
before, FYð2Þ, using Monte Carlo simulation via rinvgamma(). Since rinvgamma()
simply uses 1/rgamma(), it samples from the correct distribution by definition; its
numerics are addressed shortly.

0.0

0.2

0.4

0.6

0.8

0 2 4 6

Figure 1 The PDF of the Inv-Gamma (7, 10) distribution can be visualized with dinvgamma().
Full-size DOI: 10.7717/peerj-cs.3205/fig-1

f <- functionfunction(x) dinvgammadinvgamma (x, 7, 10)

q <- 2

integrateintegrate (f, 0, q)

0.7621835 with absolute error < 7.3e-05

(p <- pinvgammapinvgamma (q, 7, 10))

[1] 0.7621835

qinvgammaqinvgamma (p, 7, 10) # = q

[1] 2

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 8/19

http://dx.doi.org/10.7717/peerj-cs.3205/fig-1
http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

Since 0.76209 is within the Monte Carlo error of 0.7621835 (the true value computed
previously) when using 100,000 draws, it is clear that the implementations are correct. As
more complex demonstrations, in Fig. 2 we superimpose a kernel density estimate of the
100,000 sampled values with the density given by dinvgamma() and present a QQ-plot of
the draws, both of which strongly confirm the correctness of the sampler (Pedersen, 2024).
Figure 2 is generated with the following code:

As a final note, like their �gamma() counterparts, �invgamma() functions accept both
the rate (default) and scale parameters. Their consistency can be seen in the following
example with dinvgamma():

df <- data.framedata.frame ("x" = draws)

p_hist <- ggplotggplot (df, aesaes(x = x)) +

geom_histogramgeom_histogram (aesaes(y = after_statafter_stat (density)), bins = 250) +

geom_functiongeom_function(fun = f, color = "red", n = 251) +

coord_cartesiancoord_cartesian (xlim = cc (0, 6))

qq_df <- data.framedata.frame(

"theoretical_quantiles" = ppointsppoints (n) |> qinvgammaqinvgamma (7, 10),

"observed_quantiles" = sortsort (draws)

)

p_qq <- ggplotggplot (qq_df, aesaes (theoretical_quantiles, observed_quantiles)) +

geom_pointgeom_point () +

geom_ablinegeom_abline(slope = 1, intercept = 0, color = "red") +

labslabs ("x" = "Theoretical Quantiles", "y" = "Observed Quantiles")

p_hist + p_qq

set.seedset.seed (1)

n <- 1e5

draws <- rinvgammarinvgamma (n, 7, 10)

meanmean (draws <= q)

[1] 0.76209

dinvgammadinvgamma (.75, shape = 7, rate = 10)

[1] 0.2246903

dinvgammadinvgamma (.75, shape = 7, scale = 1/10)

[1] 0.2246903

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 9/19

http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

THE INVERSE v2 AND INVERSE EXPONENTIAL
DISTRIBUTIONS
The mathematical arguments made in the previous section work for any continuous
distribution with a smooth density defined on the positive real numbers. Particularly
notable among this class of distributions are two commonly used families subsumed by the
gamma distribution: the v2 (chi-squared) distribution and the exponential distribution.
Since these two are so closely related to the gamma distribution, we have implemented the
entire dpqr line of functions for the inverses of both of these distributions in invgamma as
well.

The chi-squared distribution with m degrees of freedom, denoted v2m , is equal to the

Gamma a ¼ m
2 ; k ¼ 1

2

� �
distribution; it is the distribution of the sum of m independent

squared standard normal variates. In invgamma, the �invchisq() functions for the
inverse v2 distribution could be implemented through the �invgamma() functions, but we
have chosen to model them off of the �chisq() functions in the same way that the
�invgamma() functions are implemented using the �gamma() functions, for two reasons.
First, the �chisq() functions allow for non-central v2 distributions, which are not special
cases of the inverse gamma but nevertheless can be obtained by logic similar to that of the
previous section. Second, using the �chisq() functions insures that the �invchisq()
functions are synchronized with base R’s implementation of the v2 distribution, which is
more natural than syncing them with the �gamma() implementations.

The exponential distribution, like the gamma distribution, also manifests in a rate and a
scale parameterization; both are obtained by setting the gamma distribution’s shape
parameter a to 1. However, only the rate parameterization is implemented in R’s �exp()
functions. invgamma stays true to this convention in its �invexp() functions, which have
a rate argument defaulted to 1. And, like the �invchisq() functions, the �invexp()

Figure 2 (A) A histogram based on 100,000 draws generated with rinvgamma() superimposed with
the inverse gamma density provided by dinvgamma() (red); and (B) a QQ plot of the estimated
quantiles (order statistics) vs. theoretical quantiles computed with qinvgamma(). Both strongly
suggest the RNG is correct. Full-size DOI: 10.7717/peerj-cs.3205/fig-2

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 10/19

http://dx.doi.org/10.7717/peerj-cs.3205/fig-2
http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

functions wrap the �exp() functions, not the �invgamma() functions. As in the inverse v2
case, this allows the functions to naturally sync with the �exp() functions.

A NOTE ON PARAMETERIZATION AND ARGUMENT NAMES
The point of invgamma is to provide a simple, low-maintenance implementation of the d,
p, q, and r functions of the inverse gamma, chi-squared, and exponential distributions. To
do this, it uses the transformation theorem along with the implementations of the
corresponding functions for the gamma distribution, which are already implemented in
stats as dgamma() and so on. The argument names were intended to reflect this fact. Thus,
rate in dinvgamma() refers to the rate parameter of dgamma(), the rate parameter of
the gamma distribution.

This forms a kind of linguistic problem: the parameter rate of dgamma() is called rate
because it is a rate parameter, which has a technical definition outside of the gamma/
inverse gamma context. The inverse gamma distribution has a rate parameter in this other
sense as well, but that rate parameter is not the same as the rate parameter of the gamma
distribution. Worse: the rate parameter of the inverse gamma is the inverse of the rate
parameter of the gamma distribution, which is the scale parameter. Thus, while (for
example) dinvgamma() admits a parameter called rate, it is referring to the rate of the
rate of the associated gamma distribution, not the rate parameter of the inverse gamma
distribution, and this has naturally led to some confusion.

An analogy of the naming convention oddities may be helpful here to explain how these
clashes occur. The lognormal distribution LogNðl;r2Þ is, by definition, the distribution of
a random variable whose log is a normal Nðl; r2Þ distribution, i.e., Y ¼ eX with

X � Nðl; r2Þ: a lognormal is the exponential of a normal. Throughout statistics l
conventionally denotes the mean of a random variable or distribution and r2 its variance.
However, although the first parameter of the lognormal is conventionally denoted l, the
mean of a lognormal random variable is not this l, and similarly r2 is not its variance.
Users simply have to know that they are the mean and variance of the “distribution behind
the distribution.” This is a bit confusing and goes against the convention that l (r2) is the
mean (variance) of the distribution. It is a clash of conventions that the community deals
with and accepts as a fact of life, albeit in some cases begrudgingly.

Base R implements the lognormal distribution as dlnorm() with formal arguments
meanlog and sdlog to try to clarify this distinction, but this was not done when initially
writing invgamma, and this has been a source of confusion. When writing invgamma, our
original intention was to write other similar packages that do the same thing: provide tools
for other common distributions not in R that are simple transformations of distributions
that are. The convention was to maintain the parameters of the “distributions behind the
distributions.” This makes sense, but it does make this part messy.

Unfortunately it is not something that can be changed at this point, as the package has
been in use for nearly a decade with several hundred thousand downloads. Similar to the
base distribution of R, we have adopted a long-term mindset lending significant deference
to software interface continuity, and thus have opted to keep the naming the way it is. To
avoid mishaps, invgamma issues a package startup message alerting users to this issue. It is

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 11/19

http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

possible that if a responsible way can be determined to gradually transition to a more
transparent naming convention, the code base will shift, alerting users to the change.

RELATED WORKS
As the inverse gamma distribution has important applications all over statistics, similar
implementations of it have arisen in other user-contributed R packages. The two most
prominent of these are the MCMCpack and actuar packages (Martin, Quinn & Park, 2011;
Dutang, Goulet & Pigeon, 2008; Dutang, 2016). MCMCpack is designed for Markov chain
Monte Carlo algorithms in Bayesian statistics, and actuar is designed for actuarial science
in R. Both are large, domain-specific packages that are strange to list as dependencies in
packages with applications in unrelated domains, e.g., pharmaceutical statistics. Moreover,
both of them have little quirks that make them less than ideal: MCMCpack only
implements dinvgamma() and rinvgamma(), with restricted argument lists and a
hard-coded version of the PDF; and actuar uses custom C-level implementations of the
functions.

While not dramatically different than these, invgamma is preferable to these two
packages as a general purpose implementation of the inverse gamma distribution for three
reasons. First, invgamma is a small package, domain neutral, and has a name that reflects
what it is, which is ideal for loading in other packages and for finding it. Second, invgamma
leverages mathematical relationships between the gamma distribution and the inverse
gamma distribution to allow the �invgamma() functions to wrap the �gamma() functions.
Consequently, the �invgamma() functions are both efficient and automatically keep pace
with changes to the gamma distribution functions made by the core team ofRmaintainers.
Third, invgamma follows the same naming conventions and parameterizations as base R
and has the same arguments as the �gamma() functions, so that using the �invgamma()
functions are natural to R users. We note that actuar’s implementation satisfies (3) as well.
Additionally, invgamma includes �invchisq() and �invexp() functions for the closely
related inverse v2 (chi-squared) and exponential distributions.

ACCURACY CONSIDERATIONS AND LIMITATIONS
One additional point that warrants a note is numerics concerning the transformations.
invgamma was intended to be a lightweight, low-maintenance package implementing the
inverse gamma, inverse chi-square, and inverse exponential distributions. It uses the
transformation theorem in all cases. One of the challenges to using this implementation
strategy is that the numerics are not optimized for the particular situation at hand.
Arithmetic on a computer is not the same as arithmetic in theory, and as a consequence the
best computer implementations of mathematical facts/algorithms are tailored to the
specific cases at hand. Since these are not optimized in this way, questions may arise to the
extent of the validity of the functions. The biggest questions surround the random number
generators.

One way to test the values produced by the RNGs is via goodness-of-fit (GoF) testing of
their draws. From an inferential perspective this is analogous to the graphics presented in
Fig. 2, but operationally it is more mechanical as it does not require judgment calls, at least

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 12/19

http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

not directly. The basic idea is to take a large number of draws n from the presumed
distribution and assess those with a GoF test where H0 : FX ¼ F0, where FX represents the
distribution of the draws and F0 represents the claimed distribution. If we conduct such a
procedure at points ranging across the ða; kÞ parameter space, we can get a good feel for
which ranges of the parameter space the RNGs break down.

To code such a simulation, we begin with a function that performs such a GoF test, the
Kolmogorov-Smirnov (KS) test, for a specific shape/rate combination. The following code
accepts an ða; kÞ shape/rate parameterization of the inverse gamma and uses the built-in
function ks.test() to generate a p-value corresponding to the KS test for the inverse
gamma distribution:

We then create a grid across a wide range of the parameter space, using a logarithmic

spacing for better representation. We conduct the simulation at each of the points on the
grid. Under the null hypothesis that the sampler is working correctly, at the 5% level
roughly one out of every 20 tests will reject by design, so if we see regions that seem to have
a higher rejection rate, those regions should be considered suspect. Figure 3 contains the
results based off of the following code.

create the grid over the parameter space

n_grid <- 51

param_vals <- 10 ��seqseq(-4, 4, length.out = n_grid)

param_grid <- expand_gridexpand_grid ("shape" = param_vals, "rate" = param_vals)

run the simulations (in parallel)

install_if_neededinstall_if_needed("furrr"); librarylibrary ("furrr"); furrr_optionsfurrr_options (seed =

TRUE)

<furrr_options>

install_if_neededinstall_if_needed ("parallelly"); librarylibrary ("parallelly")

planplan(multisessionmultisession(workers = minmin(availableCoresavailableCores(), 10)))

param_grid <- param_grid |>

mutatemutate ("p_val" = future_map2_dblfuture_map2_dbl (shape, rate, test_rinvgamma))

plot the results

test_rinvgamma <- functionfunction (shape, rate, n = 1e5) {

sample <- rinvgammarinvgamma (n, shape, rate)

ks.testks.test (sample, functionfunction (p) pinvgammapinvgamma (p, shape, rate)) $ p.value

}

test_rinvgammatest_rinvgamma (shape = 3, rate = 7)

[1] 0.4811224

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 13/19

http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

If the RNG were correct, roughly 1 out of every 20 points should be purple. As this is
violated for small shapes, the RNG is not to be trusted for small a. Figure 3 clearly suggests
that this is the case when a is less than about 0.01, regardless of what the value of k is. As a
consequence, rinvgamma() issues a warning in these situations:

rinvgammarinvgamma(4, shape = .001, rate = 3)

Warning:�rinvgamma()�is unreliable for�shape�<=.01.

[1] Inf Inf Inf 1.528909e+113

10−4

10−3

10−2

10−1

100

101

102

103

104

10−4 10−3 10−2 10−1 100 101 102 103 104

�

�

p value

0.00

0.05

Figure 3 KS GoF tests of inverse gamma draws for different parameter values.
Full-size DOI: 10.7717/peerj-cs.3205/fig-3

fmt <- scales:: math_formatmath_format (10��.x)
ggplotggplot (param_grid, aesaes (shape, rate, color = p_val)) +

geom_pointgeom_point () +

scale_x_log10scale_x_log10 (expressionexpression (alpha), n.breaks = 10, labels = fmtfmt (-5:5)) +

scale_y_log10scale_y_log10 (expressionexpression (lambda), n.breaks = 10, labels = fmtfmt(-5:5)) +

scale_color_binnedscale_color_binned(breaks = cc(0, .05, 1)) +

labslabs(color = "p value") +

coord_equalcoord_equal ()

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 14/19

http://dx.doi.org/10.7717/peerj-cs.3205/fig-3
http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

The reason for this failure is quite evident: when the shape is low, the gamma
distribution piles its mass near 0. When the draws are inverted, they are enormous,
frequently overflowing the floating point number system to return infinity. This problem is
inherited from R’s RNG for the gamma distribution, for which the corresponding values
are identically zero:

Similar R problems exist with duplications, even when the sampler is accurate:

Both of these illustrate that the problems that rinvgamma() has are limitations
inherited from the R’s rgamma() itself and are quite mild. Because the functions of
invgamma are tied to these implementations, they will be corrected automatically when
rgamma() is.

Similar tests can be conducted for the inverse chi-squared and inverse exponential
distributions. The inverse chi-squared distribution is similar to the inverse gamma.
Figure 4 illustrates that the inverse chi-squared RNG fails when m � 0:01 and ncp � 10 or
so, and thus the RNG issues a warning in this setting.

test_rinvchisq <- function (df, ncp, n = 1e5) {

sample <- rinvchisqrinvchisq(n, df, ncp)

ks.testks.test(sample, function(p) pinvchisqpinvchisq(p, df, ncp))$p.value

}

expand_gridexpand_grid("df" = param_vals, "ncp"= param_vals) |>

mutatemutate ("p_val" = future_map2_dblfuture_map2_dbl (df, ncp, test_rinvchisq)) |>

ggplotggplot (aesaes(df, ncp, color = p_val)) +

geom_pointgeom_point() +

scale_x_log10scale_x_log10(expressionexpression(nu), n.breaks = 10, labels = fmt(-5:5))+

scale_y_log10scale_y_log10("ncp", n.breaks = 10, labels = fmtfmt(-5:5)) +

rgammargamma(10, shape = .001, rate = 3) == 0

[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE

rgammargamma (1e7, shape = 3, rate = 7) |>

tabletable () |> sortsort(decreasing = TRUE) |> headhead (n = 5)

##

0.265165629569841 0.269360625139932 0.2955693295218 0.305498470042189

2 2 2 2

0.61988692622084

2

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 15/19

http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

The inverse exponential is the easiest as it only admits a single parameter, rate. Unlike
the others, the simulations illustrated in Fig. 5 suggest that the inverse exponential RNG is
robust across a wide range of parameter values.

10−4

10−3

10−2

10−1

100

101

102

103

104

10−4 10−3 10−2 10−1 100 101 102 103 104

�

nc
p

p value

0.00

0.05

Figure 4 KS GoF tests of inverse chi-squared draws for different parameter values.
Full-size DOI: 10.7717/peerj-cs.3205/fig-4

test_rinvexp <- functionfunction (rate, n = 1e5){

sample <- rinvexprinvexp (n, rate = rate)

ks.testks.test (sample, functionfunction (p) pinvexppinvexp (p, rate))$p.value

}

tibbletibble ("rate" = 10��seqseq(-4, 4, length.out = 2�n_grid)) —>

mutatemutate ("p_val" = future_map_dblfuture_map_dbl (rate, test_rinvexp)) —>

ggplotggplot (aesaes(rate, 0, color = p_val)) +

geom_pointgeom_point () +

scale_x_log10scale_x_log10 (expressionexpression (lambda), n.breaks = 10, labels = fmtfmt

(-5:5)) +

scale_color_binnedscale_color_binned(breaks = cc(0, .05, 1), guide = FALSE)+

scale_color_binnedscale_color_binned(breaks = cc(0, .05, 1)) +

labslabs(color = "p value") +

coord_equalcoord_equal()

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 16/19

http://dx.doi.org/10.7717/peerj-cs.3205/fig-4
http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

CONCLUSIONS
In this article we have surveyed the invgamma R package, along with documenting the
mathematics motivating the functions provided and tests of their accuracy. The package
functions �invgamma(), �invchisq(), and �invexp() are largely self-maintained
through their connections to the �gamma(), �chisq(), and �exp() functions provided in
the base distribution ofR and efficient for the same reason. The package is light weight and
ideal for including in other R packages.

ACKNOWLEDGEMENTS
The authors thank Keefe Murphy for private correspondence fixing errors in the quantile
function with log.p = TRUE.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. David Kahle conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. James Stamey conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at GitHub and Zenodo:
- https://github.com/dkahle/invgamma.
- David Kahle. (2025). dkahle/invgamma: v1.2 (v1.2). Zenodo. https://doi.org/10.5281/

zenodo.16944077.

10−4 10−3 10−2 10−1 100 101 102 103 104

�

Figure 5 KS GoF tests of inverse exponential draws for different parameter values.
Full-size DOI: 10.7717/peerj-cs.3205/fig-5

themetheme (axis.text.y = element_blankelement_blank (), axis.title.y = element_blankelement_blank

(), panel.grid.major.y = element_blankelement_blank()) +

coord_equalcoord_equal ()

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 17/19

https://github.com/dkahle/invgamma
https://doi.org/10.5281/zenodo.16944077
https://doi.org/10.5281/zenodo.16944077
http://dx.doi.org/10.7717/peerj-cs.3205/fig-5
http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.3205#supplemental-information.

REFERENCES
Abramowitz M, Stegun IA. 1964. Handbook of mathematical functions with formulas, graphs,

and mathematical tables. In: Applied Mathematics Series. Vol. 55. Washington, D.C.: U.S.
Government Printing Office.

Ahrens JH, Dieter U. 1974. Computer methods for sampling from gamma, beta, poisson and
binomial distributions. Computing 12(3):223–246 DOI 10.1007/bf02293108.

Ahrens JH, Dieter U. 1982. Generating gamma variates by a modified rejection technique.
Communications of the ACM 25(1):47–54 DOI 10.1145/358315.358390.

Best DJ, Roberts DE. 1975. Algorithm AS 91: percentage points of the v2 distribution. Journal of
the Royal Statistical Society. Series C (Applied Statistics) 24(3):385–388 DOI 10.2307/2347113.

Casella G, Berger RL. 2002. Statistical inference. Second Edition. Pacific Grove: Duxbury.

Christensen R, Johnson W, Branscum A, Hanson TE. 2011. Bayesian ideas and data analysis: an
introduction for scientists and statisticians. Boca Raton: CRC Press.

Csárdi G. 2019. cranlogs: download Logs from the ‘RStudio’ ’CRAN’Mirror. R package version 2.1.1.
Available at https://CRAN.R-project.org/package=cranlogs.

Csárdi G, Hester J, Wickham H, Chang W, Morgan M, Tenenbaum D. 2024. remotes: R package
installation from remote repositories, including ‘GitHub’. R package version 2.5.0. Available at
https://CRAN.R-project.org/package=remotes.

Dutang C. 2016. CRAN task view: probability distributions. Available at https://cran.r-project.org/
web/views/Distributions.html (accessed 4 August 2025).

Dutang C, Goulet V, Pigeon M. 2008. actuar: an R package for actuarial science. Journal of
Statistical Software 25(7):1–37 DOI 10.18637/jss.v025.i07.

Lange K. 2010. Numerical analysis for statisticians. Second Edition. New York: Statistics and
Computing. Springer.

Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D. 2012. The BUGS book: a practical
introduction to Bayesian analysis. Boca Raton: CRC press.

Martin AD, Quinn KM, Park JH. 2011. MCMCpack: Markov chain Monte Carlo in R. Journal of
Statistical Software 42(9):1–21 DOI 10.18637/jss.v042.i09.

Muenchen RA. 2023. The popularity of data analysis software. Blog post. Available at https://
r4stats.com/articles/popularity/ (accessed 4 August 2025).

NIST. 2025. NIST digital library of mathematical functions. Release 1.2.4 of 2025-03-15. Available
at https://dlmf.nist.gov/.

Pedersen TL. 2024. patchwork: the composer of plots. R package version 1.3. 0. Available at https://
CRAN.R-project.org/package=patchwork.

R Core Team. 2016. R: a language and environment for statistical computing. Vienna: R
Foundation for Statistical Computing. Available at https://www.r-project.org.

Robert CP, Casella G, Casella G. 1999. Monte Carlo statistical methods. Vol. 2. Cham: Springer.

Schmelzer T, Trefethen LN. 2007. Computing the gamma function using contour integrals and
rational approximations. SIAM Journal on Numerical Analysis 45(2):558–571
DOI 10.1137/050646342.

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 18/19

http://dx.doi.org/10.7717/peerj-cs.3205#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3205#supplemental-information
http://dx.doi.org/10.1007/bf02293108
http://dx.doi.org/10.1145/358315.358390
http://dx.doi.org/10.2307/2347113
https://CRAN.R-project.org/package=cranlogs
https://CRAN.R-project.org/package=remotes
https://cran.r-project.org/web/views/Distributions.html
https://cran.r-project.org/web/views/Distributions.html
http://dx.doi.org/10.18637/jss.v025.i07
http://dx.doi.org/10.18637/jss.v042.i09
https://r4stats.com/articles/popularity/
https://r4stats.com/articles/popularity/
https://dlmf.nist.gov/
https://CRAN.R-project.org/package=patchwork
https://CRAN.R-project.org/package=patchwork
https://www.r-project.org
http://dx.doi.org/10.1137/050646342
http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

Wickham H. 2009. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag New
York.

Wickham H. 2014. Advanced R. In: Chapman & Hall/CRC the R Series. First Edition. Boca Raton,
FL: Chapman and Hall/CRC.

Wickham H, Averick M, Bryan J, ChangW, McGowan LD, François R, Grolemund G, Hayes A,
Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson
D, Seidel DP, Spinu V, Takahashi K, Vaughan D,Wilke C, Woo K, Yutani H. 2019.Welcome
to the tidyverse. Journal of Open Source Software 4(43):1686 DOI 10.21105/joss.01686.

Kahle and Stamey (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3205 19/19

http://dx.doi.org/10.21105/joss.01686
http://dx.doi.org/10.7717/peerj-cs.3205
https://peerj.com/computer-science/

	invgamma: the inverse gamma distribution in R
	Introduction
	Getting invgamma
	Mathematical underpinnings
	Illustrative examples
	The Inverse and Inverse Exponential Distributions
	A note on parameterization and argument names
	Related works
	Accuracy considerations and limitations
	Conclusions
	flink10
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

