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ABSTRACT
Deep learning (DL) techniques are increasingly applied in scientific studies across
various domains to address complex research questions. However, the
methodological details of these DL models are often hidden in the unstructured text,
making it difficult to extract and interpret critical information about their design,
training, and evaluation. To address this issue, in this work, we present a pipeline that
leverages five different open-source large language models (LLMs): Llama-3 70B,
Llama-3.1 70B, Mixtral-8x22B-Instruct-v0.1, Mixtral 8x7B, and Gemma 2 9B in
combination with retrieval-augmented generation (RAG) approach to extract and
process DL methodological details from scientific publications automatically. To
ensure accurate reporting of DL methodologies, we developed a voting classifier
based on the outputs of these five LLMs. We demonstrate the utility of this approach
in biodiversity research, testing it on two datasets of DL-related biodiversity
publications: a curated set of 100 publications and an additional set of 364
publications from the Ecological Informatics journal. Our results demonstrate that
the multi-LLM, RAG-assisted pipeline enhances the retrieval of DL methodological
information, achieving an accuracy of 69.5%, with precision (61.8%), recall (89.3%),
and F1-score (67.5%) based solely on textual content from publications which further
demonstrates our pipeline robustness. This performance was assessed against human
annotators who had access to code, figures, tables, and other supplementary
information. Additionally, the cosine similarity between the responses of different
LLM pairs, ranging from 0.39 to 0.68, highlights the variability in model outputs. The
voting classifier leverages this variability to improve the final results. Although
demonstrated in biodiversity, our methodology is not limited to this field; it can be
applied across other scientific domains where detailed methodological reporting is
essential for advancing knowledge and ensuring reproducibility. This study presents
a scalable and reliable approach for automating information extraction, facilitating
better reproducibility and knowledge transfer across studies.
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INTRODUCTION
Deep learning (DL) has become a cornerstone in numerous fields, revolutionizing how
complex data is analyzed and interpreted. From healthcare and finance to autonomous
systems and natural language processing (NLP), DL techniques have delivered
groundbreaking results. With this rapid adoption, there is growing emphasis on the need
for transparent reporting of DL methodologies including model design, training,
evaluation, and deployment processes to support reproducibility, interpretability, and
scientific integrity (Waide, Brunt & Servilla, 2017; Stark, 2018; Samuel, Löffler & König-
Ries, 2021; Pineau et al., 2021; Gundersen, Shamsaliei & Isdahl, 2022). However, in
practice, such methodological details are often inconsistently documented or embedded
within unstructured text in research articles, making them difficult to access, evaluate, or
reuse (Feng et al., 2019; GPAI, 2022).

For a DL pipeline (El-Amir & Hamdy, 2020) to be reproducible, detailed documentation
at each stage is essential (Pineau et al., 2021). This includes logging data collection
methods, preprocessing steps, model architecture configurations, hyperparameters, and
training details, as well as performance metrics and test datasets. Additionally, maintaining
records of software libraries, hardware, frameworks, and versions used is critical for the
accurate replication of the study. Without access to such crucial information, stakeholders
including academics, industry professionals, and policymakers face significant challenges
in validating study outcomes or advancing research in meaningful ways. In areas like
healthcare, finance, and autonomous systems, where DL applications influence real-world
decisions, the absence of methodological transparency can compromise trust in DLmodels
and limit their broader application (Haddaway & Verhoeven, 2015). We contend that the
same holds true for biodiversity research.

Given the growing scale and complexity of scientific literature, addressing this
documentation gap necessitates scalable, automated solutions for extracting
methodological information from unstructured textual data. Traditional manual review is
time-consuming, error-prone, and difficult to scale, while earlier automated methods
based on rule-based systems or classical NLP often lack generalizability across domains or
tasks. At the same time, large language models (LLMs) especially when paired with
retrieval-augmented generation (RAG) (Lewis et al., 2020) have shown promise in
contextual information extraction and question answering, making them well-suited for
such tasks. RAG integrates the power of pre-trained language models with external,
domain-specific information sources, in this case, publications, allowing it to retrieve
relevant data in real-time and generate more accurate, contextually enriched, and highly
relevant responses to any given query.
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In this study, we address the following research question: How effectively can
open-source large language models, enhanced with retrieval-augmented generation,
extract methodological details from unstructured scientific texts, and how do their outputs
compare to those of human experts?

To explore this, we propose a scalable, automated pipeline that leverages multiple
open-source LLMs within a RAG framework to extract DL methodological details from
scientific publications. The pipeline is built around a set of competency questions (CQs)
(Grüninger & Fox, 1995) that are general enough to apply to any DL study, yet specific
enough to capture fine-grained methodological choices. To enhance consistency, we
integrate a voting classifier that aggregates responses across five LLMs Llama-3 70B
(Touvron et al., 2023) (https://ai.meta.com/blog/meta-llama-3/), Llama-3.1 70B (https://ai.
meta.com/blog/meta-llama-3-1/), Mixtral-8x22B-Instruct-v0.1 (Jiang et al., 2024) (https://
mistral.ai/news/mixtral-8x22b/), Mixtral 8x7B (https://mistral.ai/news/mixtral-of-experts/),
and Gemma 2 9B (Team et al., 2024a) (https://blog.google/technology/developers/
google-gemma-2/).

We evaluate our approach on two datasets: (1) a manually curated set of 100
DL-focused biodiversity articles from our previous work (Ahmed et al., 2024b), and (2) an
extended dataset of 364 publications from the Ecological Informatics journal (https://www.
sciencedirect.com/journal/ecological-informatics). We take biodiversity publications as a
case study due to the growing popularity of DL methods in biodiversity research and the
enormous number of publications using DL for various applications in this domain. Given
the importance of biodiversity research and the critical need for transparent sharing of DL
information in these studies (GPAI, 2022), we chose this field to demonstrate our
approach. We assess the quality of extracted answers based on their agreement with
human-annotated ground truth, considering not only accuracy but also diversity in
responses across models.

This article makes the following key contributions: (1) Multi-LLM information
extraction pipeline: We develop a novel pipeline that combines five state-of-the-art,
open-source LLMs in a RAG setup, supported by a voting classifier to increase reliability
and reduce hallucination in outputs. (2)Domain-specific application and evaluation:We
apply this pipeline to biodiversity literature and evaluate its effectiveness using two
expert-annotated datasets. Our results show that the pipeline achieves 69.5% agreement
with human evaluations across 600 comparisons despite only using textual content, while
annotators had access to all modalities. (3) Insights into LLM variability and answer
diversity:We analyze how different LLMs interpret and respond to the same queries. Our
findings highlight significant variations in responses and underline the importance of
aggregating outputs to achieve higher accuracy and consistency. (4) Generalizable
framework: While demonstrated on biodiversity publications, our approach is domain-
agnostic. The core CQ-driven architecture and LLM-based information extraction pipeline
can be extended to other scientific domains, such as health, engineering, or social sciences,
where structured methodological understanding is essential.
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Our approach can help identify gaps in reporting and ensure that critical information
about DL methodologies is accessible, thereby enhancing the transparency and
reproducibility of research. This article presents a comprehensive case study on applying
multiple LLMs for information retrieval in the context of DL methodologies within
biodiversity publications. Through our approach, we aim to contribute to the growing
body of research focused on automating information extraction and improving the
reproducibility of results in scientific literature. By demonstrating the effectiveness of our
pipeline, we hope to pave the way for future research that harnesses advanced AI
techniques to further enhance data retrieval and analysis in biodiversity and beyond.
Ensuring reproducibility in LLM applications requires a clear, comprehensive
methodology that specifies all critical steps, settings, and model configurations. By
providing all methodological details transparently, we aim to ensure that our approach can
be consistently replicated and applied in future studies, supporting the reliable and
reproducible use of LLMs in scientific research.

In the following sections, we provide a detailed description of our study. We start with
an overview of the state-of-the-art (“Related Work”). We provide the methodology of our
study (“Methods”) We describe the results of our work (“Results”) and provide a detailed
evaluation of our results (“Evaluation”). We discuss the implications of our study
(“Discussion”). Finally, we summarize the key aspects of our study and provide future
directions of our research (“Conclusion”).

Portions of the text throughout the manuscript were previously published as part of a
preprint (Kommineni, König-Ries & Samuel, 2024a).

RELATED WORK
In this section, we review relevant literature corresponding to the key components of our
study: Identifying relevant biodiversity research publications, and automated information
retrieval techniques. We contextualize these studies within our research framework and
highlight how our approach advances the current state of the art.

Identifying relevant biodiversity research publications: Accurately identifying
biodiversity research publications that employ DL methodologies is a foundational step in
our information extraction pipeline. Selecting the right set of publications is critical for
conducting effective analysis, as it directly impacts the quality and reliability of the
extracted methodological insights (Cornford et al., 2021). In the context of biodiversity
research, this task is particularly nuanced due to variability in data accessibility, thematic
scope, and interdisciplinary overlap. Much of the data pertinent to biodiversity research
remains scattered across non-centralized sources such as grey literature, unpublished
technical reports, or individual researchers’ datasets. In many cases, key findings are
embedded within scientific publications that are not easily discoverable or openly
accessible (Costello et al., 2013). Systematic methods are particularly useful in biodiversity
informatics, where the heterogeneity of data types and terminologies can hinder
automated identification of relevant publications. Several studies have employed machine
learning or text classification models to identify relevant documents in scientific corpora
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(Peng & Lu, 2017). For example, topic modeling and supervised classifiers have been
applied to biomedical and environmental literature to improve relevance detection beyond
keyword matching. Recent advancements in large language models (LLMs) have opened
new possibilities for semantic filtering and relevance classification (Brown et al., 2020).
Leveraging LLMs for domain filtering is especially useful when full-text access is available,
allowing richer representations of the research context than abstracts or metadata alone
(Kommineni et al., 2024).

In our work, we rely on a combination of strategies to curate biodiversity-related
literature that involves DL. These include (1) harvesting articles from
biodiversity-focused journals and databases; (2) consulting domain experts to compile
biodiversity-specific keywords; (3) applying keyword-based filters to large corpora; and
(4) using large language models (LLMs) to assess the contextual relevance of
publications beyond simple keyword matches. Prior work has shown that simple keyword
filters may either be too inclusive (capturing irrelevant studies) or too exclusive
(missing relevant ones), particularly when terms are used inconsistently across disciplines
(Karimi et al., 2021).

Automated information retrieval techniques: Information retrieval (IR) plays a critical
role in accessing relevant data from extensive textual corpora (Schütze, Manning &
Raghavan, 2008). Traditional IR systems have evolved from simple keyword matching to
more sophisticated models that consider contextual semantics. The advent of
transformer-based models has significantly enhanced IR capabilities, enabling more
nuanced understanding and retrieval of information (Vaswani et al., 2017). Inspired by
these advancements, our study employs RAG techniques to enhance the extraction of DL
methodologies from biodiversity publications, leveraging the strengths of both retrieval
and generation paradigms.

The emergence of LLMs has introduced new possibilities for automatically
extracting and synthesizing information from text (Zhu et al., 2023), which can be
particularly useful for addressing the gaps in methodological reporting. LLMs, such as
GPT-3 (Brown et al., 2020) and its successors (OpenAI et al., 2023; Touvron et al., 2023;
Team et al., 2024b), have demonstrated remarkable abilities in natural language
understanding and generation, enabling tasks like summarization, question-answering,
and information retrieval from vast textual datasets. Recent studies, including those by
Lewis et al. (2020) on RAG, have explored how combining LLMs with retrieval
mechanisms can enhance the extraction of relevant information from large corpora,
offering a promising solution for improving the accessibility of methodological details in
scientific literature. In this study, we build on these developments by employing a
multi-LLM and RAG-based pipeline to retrieve and categorize DL-related methodological
details from scientific articles systematically.

While the application of LLMs for methodological extraction remains underexplored,
several tools and approaches have been developed for automating information extraction
(Beltagy, Lo & Cohan, 2019; Lozano et al., 2023; Dunn et al., 2022; Dagdelen et al., 2024).
Tools like SciBERT (Beltagy, Lo & Cohan, 2019) and other domain-specific BERT models
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have been used to extract structured information from unstructured text, yet their
application has primarily been focused on citation analysis, abstract summarization, or
specific biomedical applications. Bhaskar & Stodden (2024) introduced “ReproScreener,” a
tool for evaluating computational reproducibility in machine learning pipelines, which
uses LLMs to assess methodological consistency. Similarly, Gougherty & Clipp (2024)
tested an LLM-based approach for extracting ecological information, demonstrating the
potential of LLMs to improve metadata reporting and transparency. These studies
underscore the need for versatile, automated methodologies capable of handling DL
pipeline documentation across various fields.

While existing studies have addressed individual components pertinent to our research
such as information retrieval, LLM output processing, and ensemble methods but there
remains a gap in integrating these elements into a cohesive framework tailored for
extracting DL methodologies from biodiversity literature. Our approach distinguishes
itself by systematically combining automated publication selection, competency question
formulation, RAG-enhanced information retrieval, LLM output processing, and a voting
classifier mechanism. This integrated pipeline not only streamlines the extraction process
but also enhances the accuracy and reliability of the extracted methodological details,
thereby advancing the current state of the art in this domain.

In summary, our work builds upon and extends existing research by integrating
multiple advanced techniques into a unified framework aimed at improving the extraction
of DL methodologies from biodiversity publications. This holistic approach addresses
existing challenges and contributes to the broader goal of enhancing transparency and
reproducibility in DL research within the biodiversity domain.

MATERIALS AND METHODS
In this section, we provide detailed information about the pipeline employed (Fig. 1) to
extract and analyse the information from the selected biodiversity-related publications.

Dataset
Our work is based on two datasets. The first one originates from our previous research
(Ahmed et al., 2024a), while the second is sourced from the Ecological Informatics Journal.
Each dataset was indexed using different methodologies, contributing to a diverse
representation of information. This variation arises from the range of journals included in
the first dataset and the specific selection criteria applied in the second.

Dataset from prior research
In our previous study (Ahmed et al., 2024b), we used a modified version of the keywords
from previous research (Abdelmageed et al., 2022) to query Google Scholar and indexed
over 8,000 results. From this, the authors narrowed down the selection to 100 publications,
excluding conference abstracts, theses, books, summaries, and preprints. Later, the first
and second authors of that work manually extracted deep-learning information on ten
variables (Dataset, Source Code, Open source frameworks or environment, Model
architecture, Software and Hardware Specification, Methods, Hyperparameters,
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Randomness, Averaging result and Evaluation metrics) from the biodiversity publications,
recording each as a categorical value: “yes” if the information was present and “no” if it was
absent. In the current study, these 100 publications (https://github.com/fusion-jena/
Reproduce-DLmethods-Biodiv/blob/main/Final_data.csv) serve as an evaluation dataset,
supporting the comparison and validation of our findings.

Dataset from ecological informatics journal
To index DL-related publications from the Ecological Informatics journal, we first
identified relevant keywords and used them to guide the indexing of publications.

Keywords selection: Related keywords are crucial for automatically indexing DL-related
publications from a journal. To identify these relevant deep-learning keywords, we
downloaded AI-related session abstracts from the Biodiversity Information Standards
(TDWG) conferences (https://www.tdwg.org/) held in 2018 (Pando et al., 2018), 2019
(Frandsen et al., 2019), and 2021–2023 (Groom & Ellwood, 2021; Kommineni, Groom &
Panda, 2022; Johaadien, Lewers & Torma, 2023) (no AI session was available for 2020). We
then used an open-source large language model (Mixtral 8x22b Instruct-v0.1) to extract all
deep-learning-related keywords from each abstract. The query in the prompt template
(Box 1) for extracting DL keywords from the given context is “your task is to extract the
deep learning related keywords from the provided context for the literature survey”.

Mixtral
8x22B

Instruct v0.1

Llama 3.1
70B

Llama 3
70B

Mixtral
8x7B

Gemma 2
9B 

Textual responses
for all the available

CQs and
publications for all

LLMs 

Textual to
categorical ("yes"
or "no") response

conversion

Voting
classifier

364 publications
Ecological
informatics

Filters: 2016-2024,
open access only,
research articles

only

100 publications
Google Scholar

Evaluation dataset

Evaluation

Categorical
responses ("yes"
or "no") to all the

CQs for 364
publications  

Categorical
responses ("yes"
or "no")to all the

CQs for 100
publications 

LLMs

Figure 1 Workflow of the pipeline. The solid arrows represent the main process flow, while the dotted line indicates the evaluation phase for the
categorical responses from 100 publications retrieved from our previous research (Ahmed et al., 2024a).

Full-size DOI: 10.7717/peerj-cs.3204/fig-1
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Box 1 Prompt for deep-learning-related keyword extraction.

”’’

%INSTRUCTIONS:
Use the provided pieces of context to answer the query. If you don’t know the
answer, just say that you don’t know, don’t try to make up an answer.
%Query
Query: {query}
Context: {context}
Provide your answer as follows:
Answer:::
Deep learning related words: (Deep learning related words in comma separated list)
Answer:::
”’’

The LLM extracted a total of 248 keywords from 44 abstracts, averaging approximately
5.6 keywords per abstract (https://github.com/fusion-jena/information-retrieval-using-
multiple-LLM-and-RAG/tree/main/Data/TDWG_abstracts). Since each abstract was
treated individually during keyword extraction, the LLM indexed the same keywords
multiple times, leading to redundancy and non-qualitative keywords. To improve keyword
quality, we prompted the same LLM again with the full list, instructing it to eliminate
redundancies and non-deep-learning-related terms. This refinement reduced the list from
248 to 123 keywords. Finally, a domain expert further curated this list down to 25
keywords (Fig. 2) by removing abbreviations and redundant terms, ensuring accurate
indexing from the journal.

Publication citation data extraction: Using the 25 refined keywords identified from
TDWG abstracts with the assistance of both the LLM and domain experts, we queried the
Ecological Informatics journal. The query applied the following filters: publication years
from 2016 to August 1, 2024, article type as research articles, and open-access availability.
Due to the platform’s limit of eight boolean connectors per search, the keywords were
divided into five sets, each connected with the boolean operator OR (e.g., “Keyword 1” OR
“Keyword 2”OR “Keyword 3”OR “Keyword 4”OR “Keyword 5”). Citation data from each
search was manually exported in BibTeX format. In total, 991 citation records were
indexed, and after removing duplicates based on DOIs, 364 unique publications were
identified (https://github.com/fusion-jena/information-retrieval-using-multiple-LLM-
and-RAG/tree/main/Data/Metadata_open_access).

The bar plot (Fig. 3) illustrates the annual distribution of these 364 publications from
Ecological Informatics. The trend shows a consistent increase in publication frequency up
to 2023, with 65 data points recorded for that year. In 2024, there is a significant rise to 239
data points, representing a fourfold increase compared to 2023.

Full-text publication download: Using the DOIs of the 364 unique publications, we
retrieved the full-text PDFs through the Elsevier Application Programming Interface
(API). These PDFs were subsequently used as input for the selected LLMs.
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Datasets diversity
The complete dataset comprises 464 publications, 100 of which were sourced from
previous research (Ahmed et al., 2024a), and 364 from the Ecological Informatics journal.
The first part of the dataset (comprising 100 publications) is highly diverse. These
publications were identified using a set of 10 biodiversity-related keywords and one
deep-learning keyword across 22 different publishers. The second part, which consists of
publications from Ecological Informatics, was curated using 25 DL-related keywords. This
broad keyword selection ensures the inclusion of a wide range of topics without focusing
on a single subfield, such as image classification. As a result, the entire dataset is not only
diverse in terms of its coverage of various biodiversity subtopics, but also in its
methodological approaches, keywords, and journal sources.

Competency questions
We employed competency questions (CQs) to retrieve specific DL methodological
information from selected biodiversity publications. Competency questions are natural
language questions that users seek answers to and are essential for defining an ontology’s
scope, purpose, and requirements (Grüninger & Fox, 1995). In our previous work
(Kommineni, König-Ries & Samuel, 2024b), two domain experts formulated 28 CQs to
cover every aspect of the DL pipeline for retrieving information from the provided context.

Figure 2 LLM-Human optimized 25 DL-related keywords from 44 AI-related session abstracts at the
Biodiversity Information Standards (TDWG) conferences.

Full-size DOI: 10.7717/peerj-cs.3204/fig-2

Figure 3 Number of publications selected from Ecological Informatics Journal (364 publications).
Full-size DOI: 10.7717/peerj-cs.3204/fig-3
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For this study, we applied the same set of 28 CQs with multiple LLMs to extract relevant
DL information from a total of 464 biodiversity-related publications (364 from Ecological
Informatics journal and 100 from previous research).

Information retrieval
Recently, the RAG approach has rapidly been used for information retrieval from both
structured and unstructured data. This method leverages LLM text generation to extract
information from authoritative sources, such as biodiversity publications in our case. In
this work, we employed five LLMs from two providers, namely hugging face Mixtral 8x22B
Instruct v0.1 (https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1) and Groq’s
(https://console.groq.com/docs/models) Llama 3.1 70B, Llama 3 70B, Mixtral 8x7B and
Gemma 2 9B with temperature set to 0 for all models. The Mixtral 8x22B Instruct
v0.1 model was run on a custom Graphics Processing Unit (GPU), while the Groq models
were accessed through their API, where a custom GPU is not required. These specific
LLMs were selected because they are open-source and represent the state-of-the-art
language models available when we began working on our pipeline.

Information retrieval using LLMs and RAG was also a component of our previous work
pipeline (Kommineni, König-Ries & Samuel, 2024b), where we aimed to build a
semi-automated construction of the Knowledge Graph (KG) pipeline (we refer to the
definition of KG from Hogan et al. (2021). This approach allowed us to extract, organize,
and link information from unstructured text into structured, queryable data within the KG
framework. By semi-automating the construction of KGs, we streamlined the process of
mapping complex domain knowledge, which is crucial for advancing research in areas that
require high levels of detail, such as biodiversity and DL methodologies. In this work, we
build on our previous information retrieval component (then CQ Answering) by limiting
the retrieval tokens to 1,200, chunk size to 1,000 and overlap to 50 chunks. Additionally,
we specified that the responses should be concise and limited to fewer than 400 words to
enhance the clarity and focus of the responses. For each selected LLM, the CQs and
biodiversity-related publications were provided as input, and the RAG-assisted LLM
pipeline generated answers to all CQ-publication combinations in textual sentence format
as output.

Preprocessing LLM outputs
After the information retrieval process, we obtained answers to the CQ for each
combination of LLM, CQ, and publication. Some of these responses contained unnecessary
structured information. To streamline the outputs, we preprocessed the responses using a
Python script, removing strings like “Helpful Answer::” and “Answer::” to eliminate
unnecessary content. We indexed only the information following these strings for the
Mixtral 8x22B Instruct v0.1 model, as that portion contained details relevant to the queries
and selected context.

Next, we converted all preprocessed LLM textual responses into categorical “yes” or
“no” answers. To achieve this, we prompted the same LLMs that generated the CQ answers
to provide categorical responses for each question-answer pair. To guide this process, a
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Box 2 Prompt for converting textual to categorical responses.

”””

%INSTRUCTIONS:
Your task is to determine if the provided answer contains specific information that
could be derived from a research article, based on the given question and answer.
Provide a binary response (“yes” or “no”). Use the examples below as a reference for
your decision.
“Yes”: Choose “yes” if the answer includes specific details or direct information that
seems likely to come from a research article.
“No”: Choose “no” if the answer is general or does not provide specific information
that appears to be sourced from a research article.
%EXAMPLES:
Example 1:
Question: What methods are utilized for collecting raw data in the deep learning
pipeline (e.g., surveys, sensors, public datasets)?
Answer: Unfortunately, there is no information provided about where the code
repository of the deep learning pipeline is available. It could be hosted on platforms
such as GitHub, GitLab, or BitBucket, but without explicit mention in the provided
context, I cannot provide a definitive answer.
Response: No
Example 2:
Question: What data formats are used in the deep learning pipeline (e.g., image,
audio, video, CSV)?
Answer: The study uses audio data from bird calls, specifically spectrograms derived
from the audio files. These spectrograms serve as the input for the Convolutional
Neural Network (CNN) model employed in the research. Therefore, the primary
data format utilized in this deep learning pipeline is audio data, processed into
spectrograms for further analysis.
Response: Yes
Example 3:
Question: What are the data annotation techniques used in the deep learning
pipeline (e.g., bounding box annotation, instance segmentation)?
Answer: Unfortunately, there isn’t any information about specific data annotation
techniques used in the deep learning pipeline within the provided context. However,
it does mention that Convolutional Neural Networks (CNNs) were employed for
image classification tasks and pattern recognition. This implies that some form of
image labeling or categorization was likely involved during the model training
process. Nevertheless, without explicit details regarding the use of bounding box
annotations, instance segmentations, or other similar techniques, I cannot provide a
definitive response based solely on the given context.
Response: No
%QUERY
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couple of in-context examples are provided in the prompt (Box 2) as references for the
LLM. The conversion to categorical responses is determined by whether the generated
responses include the essential information required, rather than simply assessing if the
query was answered in general. This approach prioritizes the presence of specific, relevant
details in the response, ensuring that the information provided meets the core needs of the
query. This conversion from textual to categorical responses will later facilitate the
evaluation of our pipeline.

Assessment metrics
All key outputs generated by the LLMs, including the CQ answers and the conversion of
textual responses to categorical values (“yes” or “no”), were manually evaluated. For
assessing the CQ answers, we relied on our previous work (Kommineni, König-Ries &
Samuel, 2024b), in which we manually evaluated 30 publications from the evaluation
dataset (https://github.com/fusion-jena/automatic-KG-creation-with-LLM/tree/master/
Evaluation/CQ_answers).

Inter-Annotator Agreement (IAA) score: To evaluate the categorical responses (“yes” or
“no”) produced by the LLMs, we randomly selected 30 publications, used those for each
LLM, and manually annotated the ground truth data by assessing the question-answer
pairs generated by the RAG-assisted LLM pipeline. We then compared the inter-annotator
agreement between the LLM-generated and manually annotated answers using Cohen’s
kappa score (https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_
kappa_score.html). This annotation process was conducted by the first and last authors of
this article.

Voting classifier: Since we leveraged multiple LLMs to retrieve the DL-related information
and processed that information to categorical values, it became feasible to build a voting
classifier. We employed a hard voting methodology, where each of the five instances
(derived from five LLMs) produced possible outcomes of “yes” or “no” for each
combination of CQ and publication. The voting classifier made decisions based on the
majority of votes, which enhances the overall quality of the results.

Semantic similarity between five LLM outputs: As mentioned before, we have five
answers for each combination of CQ and publication, one from each LLM formatted in

(continued)
Here are the “Question” and “Answer”
Question: {Question}
Answer: {Answer}
%ANSWER FORMAT
Answer:::
Response: (Yes or No)
Answer:::
”””
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both textual and categorical forms. We used these five textual answers to compute the
cosine similarity matrix (https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.pairwise.cosine_similarity.html). With this matrix, average cosine similarities for
all the responses between all the LLM combinations were calculated. Additionally, we
assessed the inter-annotator agreement among the categorical responses using Cohen’s
kappa score for all possible combinations.

Computing infrastructure
We have used 1xNVIDIA H100 (94 GB), 2xNVIDIA A100 (80 GB) and Intel Xeon
Platinum 9242 to execute different parts of the pipeline (Table 1).

Additional analysis
Publication filtering: Our pipeline was driven by the DL-related keywords, which means
that our dataset may include publications that mention these keywords without actually
detailing a DL pipeline. To investigate this assumption as an addition to our current
pipeline, we filtered the publications by using a RAG-assisted LLM pipeline (https://github.
com/fusion-jena/information-retrieval-using-multiple-LLM-and-RAG/blob/main/
Prompts/DL_pipeline.txt) (Llama 3.1 70B) to identify if any publications that contained
only DL-related keywords, rather than discussing a DL pipeline. This filtering pipeline will
output a response of “yes” or “no”. A response of “yes” indicates that the publication
includes a DL methodology, while “no” indicates the absence of such a methodology.
These categorical responses then be used to filter publications accordingly. To evaluate the
LLM’s judgement, we compared its findings with 100 articles from our previous work
(Ahmed et al., 2024a), where all the publications were focused on DL methods.
Furthermore, we also compared the outputs of all the publications with those of filtered
publications.

Time logs: Computational tasks inherently rely on physical resources, and there is a
growing awareness of the substantial environmental footprint associated with both the
production and use of these resources (Samuel & Mietchen, 2024). In the context of our
work, which leverages information retrieval workflows involving DL methodologies in
biodiversity research, one of our aims is to evaluate and quantify the environmental impact
of these computational processes. In this pipeline, we recorded the time taken to process all
the requests for each document. We preprocessed the time logs by considering the last
instance while removing the duplicates based on the unique identifiers of the log file. These
time records are essential for calculating the environmental footprint (Lannelongue et al.,
2021; Lannelongue, Grealey & Inouye, 2021) of the pipeline. By assessing the energy and
resource consumption of our DL-driven information retrieval pipeline, we hope to
contribute to more sustainable practices in biodiversity informatics and computational
research more broadly.

Environmental footprint: Although our pipeline recorded processing times for each
publication and each combination of CQ and publication, we only utilized the logged times
for each publication for two key components of the pipeline (Table 1): 1. RAG answers and
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2. Conversion of RAG textual responses to categorical responses. To estimate the
environmental footprint, we used the website (http://calculator.green-algorithms.org/)
(Lannelongue, Grealey & Inouye, 2021), which requires input on hardware configuration,
total runtime, and location to estimate the environmental footprint of our computations.
Our calculation only accounts for the pipeline components mentioned above and the
hardware components from our side, excluding the hardware components from Groq. Our
pipeline consumed 177.55 kWh of energy to generate the RAG textual responses, resulting
in a carbon footprint of 60.14 kg Carbon Dioxide Equivalent (CO2e), which is equivalent
to the carbon offset of 64.65 tree months. For converting textual to categorical responses,
the pipeline consumed 50.63 kWh of energy, corresponding to a carbon footprint of 17.15
kg CO2e and 18.7 tree months. For the environmental footprint estimates, we selected
Germany as the location and assumed that we used the total number of cores in the Intel
Xeon Platinum 9242 processor (which is 48 cores).

Replication details
To ensure the reproducibility of our approach, we provide details on the hyperparameters,
computational resources, and training configurations used in our experiments.

Hyperparameters: Since our study primarily focuses on retrieving and extracting
information using LLMs, we did not fine-tune any models. Instead, we utilized the models
in their pre-trained state with prompt-based querying. However, the following inference
parameters were set for all LLMs used: Temperature: 0, Retrieval tokens: 1,200, Chunk size:
1,000, Chunk overlap: 50.

Computational resources: Our experiments were conducted on a high-performance
computing (HPC) cluster with the following specifications: GPU: 1xNVIDIA H100
(94 GB), 2xNVIDIA A100 (80 GB) and Intel Xeon Platinum 9242 (Table 1).

Training configurations: We used the default setting for groq models and four-bit
precision to reduce memory consumption and speed up computations for hugging face
models.

RESULTS
This section presents the results from each part of the pipeline. We queried 28 CQs
(Kommineni, König-Ries & Samuel, 2024b) across 464 publications for each LLM, resulting

Table 1 Processing time for two key components of the pipeline.

LLM name Hardware RAG textual responses Conversion of textual to categorical responses

Mixtral 8x22B Instruct v0.1 NVIDIA H100 (94 GB) 71 h 3 min 6 h 34 min

NVIDIA A100 (2x80 GB) 69 h 10 min –

Mixtral 8x7B Intel Xeon Platinum 9242 63 h 32 min 40 h 39 min

Llama 3.1 70B Intel Xeon Platinum 9242 5 h 52 min 9 h 31 min

Llama 3 70B Intel Xeon Platinum 9242 38 h 36 min 22 h 28 min

Gemma 2 9B Intel Xeon Platinum 9242 16 h 2 min 8 h 49 min
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in a total of 12,992 textual answers. Overall, we obtained 64,960 textual responses from the
five selected LLMs. These textual responses were then converted into categorical “yes” or
“no” responses using the respective LLMs.

To evaluate the LLM’s judgements in these conversions, we compared the categorical
responses against human-annotated ground truth data from 30 randomly selected
publications. We used those randomly selected 30 publications for each LLM, leading to
840 comparisons per LLM (30 publications� 28 CQs). This resulted in 4,200 comparisons
for five LLMs, with 3,566 agreements between the LLM responses and the
human-annotated ground truth responses, achieving a maximum agreement of 752 out of
840 for the Llama 3 70B model (Table 2).

The highest inter-annotator agreement between the LLM responses and human
annotations was 0.7708, achieved with the Llama 3 70B model. This score reflects a strong
level of agreement, as Scikit-learn’s Cohen’s Kappa score ranges from −1 (indicating no
agreement) to +1 (indicating complete agreement) (Table 2). As mentioned in the dataset
subsection, we used a dataset from our previous work (Ahmed et al., 2024a), consisting of
100 publications, to evaluate our pipeline. We compared the manually annotated
responses from that study (Ahmed et al., 2024a) with the results generated by the voting
classifier. Six DL reproducibility variables are both common to this work and the prior
study, allowing us to analyze six CQs across 100 publications, which resulted in a total of
600 comparisons.

There are 417 agreements between the human annotators from the previous work
(Ahmed et al., 2024a) and the voting classifier results. Table 3 shows the number of
agreements and other metrics (accuracy, precision, recall and F1-score) between the
human annotators and the voting classifier for each reproducibility variable. The DL
variable Model architecture has the highest agreement, with 89 agreements, while Open
source framework has the lowest, with 53 agreements. The Precision and F1-score is
highest for the variable Model architecture and lowest for the Source code. The Recall is
highest for the variables Source code and Open source framework. For statistical
significance, we calculated the Chi-Square Test of Independence (https://docs.scipy.org/
doc/scipy/reference/generated/scipy.stats.chi2_contingency.html). P-value for dataset,
source code, open source framework and hyperparameters are less than 0.05, which means,
we need to reject the null hypothesis and conclude that there is a statistically significant
difference between the human annotators and the voting classifier. The accuracy,
precision, recall and F1-score were calculated using Scikit learn (https://scikit-learn.org/
stable/modules/model_evaluation.html). Table 3 also shows the mapping of CQs from this
pipeline to the reproducibility variables of the previous work (Ahmed et al., 2024b).

This serves as a proof of concept for validating the voting classifier for the
remaining 364 publications (Table 3). In this context, we calculated the voting classifier
decisions for all 464 publications. After filtering out those publications that do not include
a DL pipeline in their research, only 257 publications remained from the initial analysis
(Table 4).

Table 4 shows that CQ 25 (purpose of the deep learning model) is the most frequently
mentioned, appearing in 345 publications. In contrast, CQ 27 (process to deploy the trained
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deep learning model) is the least frequently mentioned. Following the filtering process, CQ
25 with 247 mentions, and CQ 27 with six mentions retain their positions as the most and
least mentioned variables, respectively, among the 257 publications. With the current
pipeline, 3,524 queries were answered out of a total of 12,992 total queries. After filtering
the publications, 2,574 queries were answered out of 7,196 total queries.

Figure 4 and Table A1 provide the average positive response rate for 100 publications,
which is an evaluation dataset from our previous work (Ahmed et al., 2024b) for all the five
LLMs and then compared the positive response rates with human responses where ever the
data is available. The human annotator positive response rate is highest for CQ 12 (type of
deep learning model is used in the pipeline), which is also in line with all LLM responses.
Consistently, CQ 27 and 28 show very low positive responses across all LLM responses.
This positive rate information will showcase the quantitative variability of all LLM
responses and also with human responses wherever the data is available. Table A2 provides
more insights into the total number of 464 publications about the positive response before
and after publications.

Table A3 shows agreements between human responses and each LLM response,
including the voting classifier. Across all the LLMs, including the voting classifier, the
variableModel architecture has the highest agreements and Open source framework has the
lowest agreements.

Additionally, we also computed the average cosine similarity scores for the
RAG-assisted pipeline textual responses between different combinations of LLMs. This
allows us to identify which LLM pairs provide similar outputs and assess whether different
LLMs are generating comparable results. Table 5 shows that the Llama 3.1 70B–Llama 3
70B pair have the most similar answers, while Gemma 2 9B–Mixtral 8x22B Instruct v0.1
have the least similar answers before filtering. After filtering, the same LLM pairs perform
in the same direction.

Furthermore, the IAA scores were calculated for the categorical responses, which were
generated from textual responses using LLMs for all the model combinations. The IAA
score calculated using Scikit-learn Cohen’s Kappa score ranges from −1 (no agreement) to
+1 (complete agreement). All calculated IAA scores range between 0.5321 and 0.7928, both
inclusive, indicating moderate to strong agreement among all LLM pairs. Before the
publication filtering, the Llama 3.1 70B–Llama 3 70B combination exhibits the maximum
IAA score of 0.7924, while the Gemma 2 9B–Mixtral 8x7B combination has the minimum

Table 2 Evaluation of LLM responses when converting textual answers to categorical responses
(“yes” or “no”). IAA, Inter-annotator agreement.

LLM name Agreements between LLM
and human response

Cohen’s kappa score
(IAA)

Mixtral 8x22B Instruct v0.1 667/840 0.5711

Mixtral 8x7B 666/840 0.5583

Llama 3.1 70B 735/840 0.7221

Llama 3 70B 752/840 0.7708

Gemma 2 9B 746/840 0.7128
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IAA score of 0.5321. After the filtering process, these same LLM pairs showed maximum
and minimum IAA scores of 0.7928 and 0.5644 respectively (Table 6).

DISCUSSION
Manually extracting DL-related information from scientific articles is both
labour-intensive and time-consuming. Current approaches that rely on manual retrieval
often vary significantly based on the annotator’s perspective, which can differ from one
annotator to another due to task interpretation and the annotators’ domain knowledge
(Ahmed et al., 2024b). This variability can lead to inconsistencies and raises significant
concerns regarding the reproducibility of manually annotated data.

To address these challenges, this work proposes an automated approach for retrieving
information from scientific articles by employing five different LLMs. This strategy aims to
improve both the accuracy and diversity of information extraction. By utilizing multiple
LLMs, our pipeline is positioned to capture a broader range of variable-level information
related to DL methodologies in scientific publications.

In this current pipeline, there are three critical components: 1. Identifying relevant
research publications 2. Automatically extracting relevant information from publications
for the desired queries, and 3. Converting the extracted textual responses into categorical
responses. For the first component, we choose a method that extracts publications based
on selected keywords. These keywords were derived from AI-related abstracts presented at
the Biodiversity Information Standards (TDWG) conference, resulting in a total of 25
keywords. It is important to note that even if a publication mentions any of the keywords
only once, without providing the actual DL methodology, it will still be included in the
extraction process. As a result, our pipeline queries these publications, which may yield a
higher number of negative responses, indicating that the context does not contain relevant
information to answer the queries.

To mitigate this issue, we filtered the extracted publications again using the
RAG-assisted pipeline. As a result, of this filtering, the number of publications decreased
by 44.6%, leaving us with 257 publications. This process was also evaluated using 100
publications from previous work (Ahmed et al., 2024a), all of which included DL

Table 3 Mapping of current CQs to the DL variables in the previous work (Ahmed et al., 2024b) and the number of agreements, other metrics
between the human annotators from Ahmed et al. (2024b) and the voting classifier for each reproducibility variable. See Table 4 for the CQ
number reference.

CQ number Deep learning variable from
Ahmed et al. (2024b)

Agreements between human
response and voting classifier

Accuracy Precision Recall F1-score Chi-square
statistic

p value

5 Dataset 63/100 0.63 0.78 0.60 0.68 6.3297 0.0119

10 Source code 74/100 0.74 0.13 1.00 0.24 6.5600 0.0104

12 Model architecture 89/100 0.89 0.92 0.97 0.94 0.0623 0.8029

13 Hyperparameters 63/100 0.63 0.56 0.93 0.70 11.3945 0.0007

19 Open source framework 53/100 0.53 0.47 1.00 0.64 7.6479 0.0057

22 Metrics availability 75/100 0.75 0.85 0.86 0.85 0.0058 0.9391

Note:
The boldfaced values correspond to the maximum results in each comparison group (column).
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Table 4 Number of publications providing information on specific CQs based on the voting classifier, before and after filtering out
publications that do not include DL in the study.

CQ
Nr.

CQ Number of
publications that
provide CQ info

Number of publications that provide
CQ info after filtering the publications
that do not contain DL in the study

1 What methods are utilized for collecting raw data in the deep learning pipeline
(e.g., surveys, sensors, public datasets)?

215/464 109/257

2 What data formats are used in the deep learning pipeline (e.g., image, audio,
video, CSV)?

333/464 232/257

3 What are the data annotation techniques used in the deep learning pipeline (e.g.,
bounding box annotation, instance segmentation)?

61/464 55/257

4 What are the data augmentation techniques applied in the deep learning
pipeline (e.g., Flipping, Rotating, Scaling)?

76/464 69/257

5 What are the datasets used in the deep learning pipeline (e.g., MNIST, CIFAR,
ImageNet)?

152/464 134/257

6 What preprocessing steps are involved before training a deep learning model
(e.g., normalization, scaling, cleaning)?

145/464 92/257

7 What are the criteria used to split the data for deep learning model training (e.g.,
train, test, validation)?

141/464 102/257

8 Where is the code repository of the deep learning pipeline available (e.g.,
GitHub, GitLab, BitBucket)?

23/464 18/257

9 Where is the data repository of the deep learning pipeline available (e.g.,
Zenodo, Figshare, Dryad, GBIF)?

27/464 16/257

10 What is the code repository link of the deep learning pipeline (e.g., Link to
GitHub, GitLab, BitBucket)?

20/464 17/257

11 What is the data repository link of the deep learning pipeline (e.g., Link to
Zenodo, Figshare, Dryad, GBIF)?

18/464 12/257

12 What type of deep learning model is used in the pipeline (e.g., CNN, RNN,
Transformer)?

275/464 235/257

13 What are the hyperparameters used in the deep learning model (e.g., learning
rate, optimizer)?

124/464 104/257

14 How are the hyperparameters of the model optimized (e.g., grid search, random
search)?

76/464 37/257

15 What optimization techniques are applied in the deep learning pipeline (e.g.,
SGD, Adam)?

122/464 111/257

16 What criteria are used to determine when training is complete (e.g., validation
loss plateau)?

75/464 64/257

17 What are the regularization methods used to prevent overfitting in the deep
learning pipeline (e.g., dropout, L2 regularization)?

101/464 85/257

18 What is the strategy implemented to monitor the model performance during
training?

205/464 129/257

19 Which frameworks are used to build the deep learning model (e.g., TensorFlow,
PyTorch)?

101/464 94/257

20 Which hardware resources are used for training the deep learning model (e.g.,
GPUs, TPUs)?

101/464 95/257

21 What are the postprocessing steps involved after the model training (e.g.,
Saliency maps, Metrics calculation, Confusion matrix)?

131/464 80/257

22 What metrics are used to evaluate the performance of the deep learning model
(e.g., accuracy, precision, recall)?

340/464 225/257

23 What measures were taken to ensure the generalizability of the deep learning
model (e.g., Diverse dataset, cross-validation, Stratified splitting)?

174/464 115/257
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Table 4 (continued)

CQ
Nr.

CQ Number of
publications that
provide CQ info

Number of publications that provide
CQ info after filtering the publications
that do not contain DL in the study

24 What strategies are employed to handle randomness in the deep learning
pipeline (e.g., random seed value)?

60/464 42/257

25 What is the purpose of the deep learning model (e.g., classification,
segmentation, detection)?

345/464 247/257

26 What techniques are used to address data bias during preprocessing of the deep
learning pipeline (e.g., Stratified splitting, oversampling, undersampling,
Diverse data collection)?

59/464 41/257

27 What process was followed to deploy the trained deep learning model (e.g.,
Model serialization, Platform selection)?

7/464 6/257

28 Which platform was used to deploy the deep learning model (e.g., AWS, Azure,
Google Cloud platform)?

17/464 8/257

– Total for all queries 3,524/12,992 2,574/7,196

Note:
The boldfaced values correspond to the maximum results in each comparison group (column).

Figure 4 Positive response rate between all the CQs and LLMs, human experts (Evaluation data set).
Full-size DOI: 10.7717/peerj-cs.3204/fig-4
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methodologies in the study, and it achieved an accuracy of 93%. Before filtering, our
pipeline only provided positive responses to 27.12% of the total queries (3,524 out of
12,992). After implementing the filtering step, the percentage of positive responses
increased to 35.77% (2,574 out of 7,196). This represents an improvement of 8.65% in the
positive response rate, which is a significant gain. However, after filtering, 64.23% of the
queries still did not yield available information in the publications. This gap can be
attributed to the complexity of the queries (CQs), which cover all aspects of the DL
pipeline, from data acquisition to model deployment.

In practice, not all studies utilize techniques like data augmentation; some prefer to use
readily available datasets, thus bypassing the formal requirement for data annotation steps.
Moreover, certain studies may not address model deployment at all. As a result, it is
uncommon for publications to provide details on aspects such as deployment status, model
randomness, generalizability, and other related factors. Consequently, the positive
response rate for the queries tends to be relatively low.

Table 5 Average cosine similarity scores between all possible LLM pairs for the CQ textual responses.

LLM pair Cosine similarity score
for all publications

Cosine similarity score after the removal
of non-deep learning publications

Gemma 2 9B–Llama 3.1 70B 0.4619 0.4857

Gemma 2 9B–Llama 3 70B 0.4773 0.5022

Gemma 2 9B–Mixtral 8x7B 0.4201 0.4327

Gemma 2 9B–Mixtral 8x22B Instruct v0.1 0.3989 0.4128

Llama 3.1 70B–Llama 3 70B 0.6854 0.6958

Llama 3.1 70B–Mixtral 8x7B 0.5232 0.5385

Llama 3.1 70B–Mixtral 8x22B Instruct v0.1 0.4759 0.4959

Llama 3 70B–Mixtral 8x7B 0.5374 0.5505

Llama 3 70B–Mixtral 8x22B Instruct v0.1 0.4901 0.5064

Mixtral 8x7B–Mixtral 8x22B Instruct v0.1 0.4995 0.5035

Table 6 Inter-annotator agreement scores between all possible LLM pairs for the CQ categorical responses.

LLM pair Inter-annotator agreement
score for all publications

Inter-annotator agreement score after the
removal of non-deep learning publications

Gemma 2 9B–Llama 3.1 70B 0.6945 0.7445

Gemma 2 9B–Llama 3 70B 0.6853 0.7312

Gemma 2 9B–Mixtral 8x7B 0.5321 0.5644

Gemma 2 9B–Mixtral 8x22B Instruct v0.1 0.6354 0.6937

Llama 3.1 70B–Llama 3 70B 0.7924 0.7928

Llama 3.1 70B–Mixtral 8x7B 0.5533 0.5784

Llama 3.1 70B–Mixtral 8x22B Instruct v0.1 0.6770 0.7184

Llama 3 70B–Mixtral 8x7B 0.5705 0.5958

Llama 3 70B–Mixtral 8x22B Instruct v0.1 0.6901 0.7306

Mixtral 8x7B–Mixtral 8x22B Instruct v0.1 0.5581 0.5992
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The publication filtering process can be applied either during the data processing stage
of the pipeline or after the pipeline execution. We chose the latter approach, as it offers
more insightful comparisons between the results before and after filtering. As
demonstrated in the previous text, the filtering step significantly improved the positive
response rate: before filtering, only 27.12% of queries returned positive results, while after
filtering, this rate increased to 35.77%, representing an 8.65% improvement.

To address the second component, we employed an RAG-assisted LLM pipeline to
extract relevant information from the publications for all our queries (CQs). This
component generated a total of 12,992 textual responses for each combination of queries
(CQs) and publications across the different LLMs. The textual responses were initially
preprocessed, and we calculated the average cosine similarity between the generated
responses by different LLMs. The average cosine similarity score was high for the Llama
3.1 70B–Llama 3 70B model pair, indicating that these models generated similar outputs.
On the other hand, the Gemma 2 9B–Mixtral 8x22B Instruct v0.1 model pair exhibited a
lower average cosine similarity score, suggesting more significant variability in their
response generation. Even after filtering the publications, the trend in the similarity scores
remained consistent for these two model pairs, indicating that the response generation was
not significantly affected by the exclusion of publications that did not utilize DL methods
in their studies.

The third crucial component of our pipeline involves converting the extracted textual
responses into categorical responses. This transformation simplifies the evaluation process,
making it easier to compare the outputs generated by the LLM with human-extracted
outputs from previous work (Ahmed et al., 2024a). Additionally, it facilitates the creation
of an ensemble voting classifier. Two annotators reviewed the different question-answer
pairs generated by the LLM and provided their assessments to ensure effective conversion
from textual to categorical responses. The IAA scores between the human-annotated and
LLM responses indicated that the highest levels of agreement were observed for the Llama
3 70B, Llama 3.1 70B, and Gemma 2 9B models in descending order, which generated
straight forward answers that were easy for human annotators to evaluate. In contrast, the
Mixtral 8x22B Instruct v0.1 and Mixtral 8x7B models exhibited the lowest IAA scores,
reflecting only moderate agreement. The generated responses from these models were
often ambiguous, combining actual answers with generalized or hallucinated content,
which made it challenging for annotators to make precise judgments.

We also calculated the IAA scores for the categorical responses generated by different
LLM pairs to evaluate the level of agreement among them. Overall, we observed a
moderate to strong agreement between the various LLMs. However, following the
publication filtering process, the IAA scores improved for all LLM pairs, indicating that the
quality of the generated responses enhanced after the filtering.

The categorical responses have powered the ensemble approach of the voting classifier.
We compared and calculated the metrics between the categorical values from the voting
classifier and the manually annotated values from our previous work for six deep-learning
variables. This comparison revealed that the agreement between the LLM and human
annotations is particularly low for the datasets, open-source frameworks, and
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hyperparameters. The accuracy, precision and F1-score are high for the variable Model
architecture, which suggests that the information is clearly mentioned in most of the
publications and extracting this information is easier using automated methods. The
precision is particularly low for the variables Source code andOpen source framework while
the recall is cent for the same variables (Table 3). This means that our pipeline is predicting
all the positive cases correctly and also predicting many negative labels as positive cases.
Particularly with the variable Source code, the pipeline is hallucinating the new GitHub
links or combining multiple GitHub links from the same article. In the manual
annotations, the authors from the previous work (Ahmed et al., 2024a) also considered the
accompanying code, which could explain the low agreement regarding open-source
frameworks and hyperparameters. For datasets, the authors from the previous work
(Ahmed et al., 2024a) considered dataset availability only when persistent identifiers were
provided in the respective studies. In contrast, the LLM also considers the dataset name
itself, even when persistent identifiers are not mentioned.

Our approach incorporates a variety of LLMs, each with distinct parameters, ensuring
that the voting classifier considers diverse perspectives generated by different models for
the same query. By ensembling the outputs of these varied models, the voting classifier
enhances its robustness in making final decisions. This method not only enriches the
decision-making process but also improves the classifier’s overall reliability.

There is a lot of variability in generating positive responses for each model (Table A1
and Fig. 4) and also a significant difference between the accuracies of each LLM and the
human responses (Table A3). All these variability suggests that each model predicts the
outputs differently, and our voting classifier aggregates the strengths of these multiple
models to achieve better accuracy. The Chi-square p-value less than 0.05 confirms that our
voting classifier has a meaningful relationship with the human responses, and their
performance is statistically significant.

Our pipeline is applicable to any unstructured data corpus where reporting and analysis
of methodological details are required. While we have tested the pipeline on biodiversity
publications, the pipeline’s core is based on CQs to extract and analyze information from
unstructured data. The CQs used in our pipeline are designed to be highly generalized for
DL methodologies, making it adaptable to any domain for obtaining precise information
on DL techniques. Moreover, since CQs drive the pipeline, it is possible to customize these
queries to focus on specific methodologies or domains of interest.

A key limitation of the current pipeline is that it utilizes only textual content from
publications as input to the RAG-assisted LLM, excluding other important modalities such
as code, data, tables, figures, and supplementary materials. These additional modalities are
essential for answering certain queries, and addressing this limitation would require the
development of parallel multimodal models. However, this is beyond the scope of the
current work and can be explored in future research. Another significant limitation of our
work is the time-intensive manual evaluation of LLM-generated content, which requires
domain expertise for thorough assessment. Another limitation lies in the designed CQs, as
many studies bypass data annotation or omit model deployment details, resulting in low
positive response rates for such queries.
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A further limitation of this study lies in the publication selection process, which uses a
keyword-based approach. Publications that mention relevant keywords even once are
included, regardless of whether they actually employ DL methods. To address this, we used
an LLM to filter out publications without DL methods, achieving 93% accuracy in the
process. However, this means some publications may still have been incorrectly included
or excluded. Moreover, the generated textual responses from the LLMs were often
ambiguous, blending actual answers with generalized or hallucinated content. This made it
challenging for annotators to make precise judgments while annotating evaluation
datasets.

The technical limitation of the pipeline is the use of the Groq API. We utilized the free
tier, which could become a scalability bottleneck if someone attempted to run the entire
pipeline in a single day. Another limitation is the availability of high-end GPUs, which
were accessible in our case but may not always be readily available for others.

CONCLUSIONS
There is widespread concern about the lack of accessible methodological information in
DL studies. We systematically evaluate whether that is the case for biodiversity research.
Our approach could be used to alleviate the problem in two ways: (1) by generating
machine-accessible descriptions for a corpus of publications (2) by enabling authors and/or
reviewers to verify methodological clarity in research articles. In this study, we used an
automatic information retrieval method through an RAG-assisted LLM pipeline.
Specifically, we employed five LLMs: Llama-3 70B, Llama-3.1 70B, Mixtral-8x22B-
Instruct-v0.1, Mixtral 8x7B, and Gemma-2 9B to create an ensemble result, and then
comparing the outputs with human responses from previous work (Ahmed et al., 2024b).
Our findings revealed that different LLMs generated varying outputs for the same query,
indicating that information retrieval is not uniform across models. This underscores the
necessity of considering multiple models to achieve more robust and accurate results.
Additionally, precisely indexing publications that utilize DL methodologies significantly
enhanced our results, and filtering out studies that did not employ these methods
improved our findings. Furthermore, our results demonstrated that incorporating multiple
modalities enriched the retrieval process, as evidenced by comparisons between the
outputs of previous work (Ahmed et al., 2024b) and our study’s outputs. Although our
methodology has been demonstrated in the context of biodiversity studies, its applicability
extends far beyond this field. It is a versatile approach that can be utilized across various
scientific domains, particularly those where detailed, transparent, and reproducible
methodological reporting is essential.

In future research, we plan to develop a hybrid system that combines human expertise
with LLM capabilities, where the LLMs will evaluate results using a metric to ensure the
accuracy of generated outputs. In instances where the metric score is low, humans will
manually assess those cases. We also aim to include different modalities (such as code and
figures) in the pipeline to ensure more accurate information retrieval.
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APPENDICES

Table A1 Comparison of the number of publications providing information on specific CQs for all the LLMs with human response. The
numbers in the table are positive responses out of 100 data points (evaluation dataset).

CQ Nr. Llama-3 70B Llama-3.1 70B Mixtral 8x22B Instruct v0.1 Mixtral 8x7B Gemma 2 9B Domain expert

1 58 43 50 61 30 NA

2 91 83 86 98 97 NA

3 23 24 38 38 14 NA

4 30 30 35 46 30 NA

5 74 75 47 51 55 50

6 36 33 33 53 27 NA

7 41 38 43 47 35 NA

8 11 8 8 7 12 NA

9 11 12 9 5 7 NA

10 4 7 4 3 9 30

11 9 9 3 4 8 NA

12 90 84 88 96 93 96

13 51 51 44 54 42 77

14 15 16 15 21 14 NA

15 51 53 52 71 48 NA

16 30 28 32 40 26 NA

17 48 48 46 54 30 NA

18 57 40 64 80 31 NA

19 43 43 42 50 39 88

20 42 36 39 59 38 NA

21 35 40 52 55 13 NA

22 84 84 83 86 87 85

23 47 45 64 54 23 NA

24 38 16 16 33 6 NA

25 98 89 90 100 94 NA

26 41 26 23 24 7 NA

27 3 1 6 42 2 NA

28 3 5 1 4 3 NA

Table A2 Number of publications providing information on specific CQs for all the LLMs before and after filtering the publications. The
numbers in the table are positive responses out of 464 data points before filtering and 257 data points after filtering.

CQ
Nr.

Llama-3 70B Llama-3.1 70B Mixtral 8x22B Instruct
v0.1

Mixtral 8x7B Gemma 2 9B

Without
filtering

With
filtering

Without
filtering

With
filtering

Without
filtering

With
filtering

Without
filtering

With
filtering

Without
filtering

With
filtering

1 265 131 199 96 228 110 280 154 101 67

2 322 226 301 210 281 205 390 246 319 230

3 71 64 63 56 106 87 106 88 42 36
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Table A2 (continued)

CQ
Nr.

Llama-3 70B Llama-3.1 70B Mixtral 8x22B Instruct
v0.1

Mixtral 8x7B Gemma 2 9B

Without
filtering

With
filtering

Without
filtering

With
filtering

Without
filtering

With
filtering

Without
filtering

With
filtering

Without
filtering

With
filtering

4 77 69 77 69 85 73 112 99 73 65

5 205 157 177 148 138 108 156 121 123 113

6 133 97 106 85 215 102 212 133 224 125

7 155 108 140 98 161 110 165 128 121 89

8 25 19 23 16 20 15 14 12 26 21

9 29 18 31 22 28 17 21 13 21 13

10 19 16 23 20 16 13 14 10 26 23

11 22 16 29 20 11 7 9 8 20 14

12 281 233 267 222 259 228 294 241 262 229

13 141 114 143 114 124 107 150 118 112 98

14 90 46 82 40 80 37 106 58 71 36

15 128 116 130 114 134 114 199 157 119 109

16 99 77 83 70 95 75 139 100 75 62

17 132 106 109 90 158 95 167 132 82 72

18 211 135 177 102 240 158 324 205 113 79

19 107 97 106 95 98 91 164 136 98 91

20 107 98 95 89 98 92 156 124 98 92

21 142 83 126 82 237 127 230 141 50 34

22 352 223 348 225 321 210 321 223 302 222

23 191 120 186 120 227 154 209 148 89 65

24 117 89 47 38 73 36 186 118 87 58

25 357 243 340 242 301 226 357 246 320 239

26 118 89 78 58 113 59 112 63 31 23

27 5 4 4 3 11 10 115 97 6 5

28 18 8 26 16 11 6 17 7 15 7

Table A3 Number of agreements between human responses and each LLM, including a voting classifier. The numbers in the table are the
agreements out of 100.

CQ
number

Deep learning
variable from
Ahmed et al.
(2024b)

Agreements between
human response and
Mixtral 8x22B
Instruct v0.1

Agreements
between human
response and
Mixtral 8x7B

Agreements
between human
response and
Llama 3.1 70B

Agreements
between human
response and
Llama 3 70B

Agreements
between human
response and
Gemma 2 9B

Agreements
between human
response and
voting classifier

5 Dataset 59 61 55 58 63 63

10 Source code 74 73 73 74 73 74

12 Model
architecture

88 94 84 90 93 89

13 Hyperparameters 59 63 64 66 61 63

19 Open source
framework

54 60 55 55 51 53

22 Metrics
availability

78 77 75 73 76 75
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