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ABSTRACT
Plant diseases severely threaten global agriculture, causing significant crop losses and
jeopardizing food security. Traditional manual diagnostic methods are inefficient,
time-consuming, and prone to human error, underscoring an urgent need for accurate,
efficient, and scalable automated detection systems. While deep learning offers
transformative potential, existing models often contend with high computational
demands, limited scalability, and insufficient robustness for real-world agricultural
deployment. This article presents a novel and highly efficient framework leveraging the
cutting-edge You Only Look Once (YOLO)v11 architecture, enhanced with a
sophisticated Attention-Guided Multi-Scale Feature Fusion (AGMS-FF) Enhancer, for
the precise classification of 10 distinct diseases affecting tomato plants, alongside
healthy specimens. Our proposed AGMS-FF module meticulously refines feature
representations by integrating multi-scale convolutional paths with both channel and
spatial attention mechanisms, all supported by residual connections to improve feature
learning and model stability. The framework was rigorously evaluated on the extensive
Zekeriya Tomato Disease Model dataset, comprising 42,606 annotated images (4,260
in the test set). Our enhanced YOLOv11 model achieved an outstanding overall
accuracy of 99.93%, demonstrating exceptional performance across all disease classes,
with many reaching perfect 100.00% precision, recall, and F1-scores. A comprehensive
ablation study confirmed the efficacy of the AGMS-FF components, showing that
while the baseline YOLOv11 already achieved near-perfect accuracy, the enhanced
variants maintained this high level of performance with slightly varied metrics (e.g.,
99.84% accuracy for full AGMS-FF), underscoring the robust and stable nature of our
additions even at performance saturation points. Furthermore, the model exhibited
excellent computational efficiency, with a training duration of 126 min, inference time
of 31.4 ms, memory usage of 3.2 GB, and a throughput of 38.2 FPS. These results
collectively establish a new state-of-the-art in tomato disease classification, providing a
powerful, accurate, and computationally practical solution. The developed framework
significantly bridges the gap between advanced deep-learning research and practical
agricultural deployment, offering real-time diagnostic capabilities essential for
enhancing crop health, optimizing yields, and bolstering global food security.
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INTRODUCTION
The sustenance of a burgeoning global population hinges critically on the health and
productivity of crops. Among the myriad threats to food security, plant diseases stand as
formidable adversaries, annually responsible for catastrophic yield losses, diminished crop
quality, and profound economic repercussions for farmers worldwide. The timely and
accurate identification of these insidious pathogens is paramount, as early detection
facilitates prompt intervention, minimizes the spread of infection, and safeguards
agricultural output. Historically, disease diagnosis has relied heavily on manual inspection
by agricultural experts—a practice inherently limited by its labor-intensiveness, the sheer
scale of modern farms, and its susceptibility to human subjectivity and error. This
traditional paradigm is simply no longer sufficient to meet the demands of precision
agriculture in an increasingly complex and interconnected global food system (Peddicord
et al., 2025; Anwar et al., 2025).

The advent of artificial intelligence (AI) and, more specifically, deep learning, has
ushered in a transformative era for agricultural diagnostics. Convolutional neural networks
(CNNs) and their derivatives have demonstrated unprecedented capabilities in image
recognition, making them ideally suited for automating the visual identification of plant
diseases from photographic data. These sophisticated models possess the capacity to learn
intricate patterns and subtle visual cues indicative of various plant pathologies, offering a
pathway to overcome the bottlenecks of manual assessment. However, despite their
promise, the direct application of many deep learning models in real-world agricultural
settings encounters several significant hurdles. Many state-of-the-art architectures are
computationally intensive, demanding substantial processing power and memory, which
can render them impractical for deployment on resource-constrained edge devices often
found in remote farming environments. Furthermore, ensuring the scalability and
robustness of these models across diverse environmental conditions, varying image
qualities and a wide array of disease manifestations remains a considerable challenge.
There is a pressing need for a diagnostic solution that is not only highly accurate but also
remarkably efficient and scalable, capable of delivering reliable performance in dynamic
agricultural scenarios (Elmessery et al., 2024; Shams et al., 2025).

In the context of advanced crop health, elements like smart agriculture play a crucial
role in safeguarding food production and enhancing the overall process. Smart agriculture
integrates modern technologies such as IoT sensors, drones, and automated systems to
monitor and manage crops more effectively. These technologies can provide real-time data
on soil moisture, nutrient levels, and pest infestations, allowing for precise irrigation,
targeted pest control, and optimized resource use. By leveraging these advancements,
farmers can improve crop yields, reduce waste, and contribute to more sustainable
agricultural practices. The integration of our enhanced YOLOv11 framework with smart
agriculture systems can further enhance these capabilities, providing accurate and timely
disease detection that can be coupled with automated interventions to protect crops and
ensure food security. In response to these critical challenges, this article introduces a novel
framework leveraging the cutting-edge capabilities of the YOLOv11 architecture for the
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high-precision classification of diseases affecting tomato plants, a globally vital crop
susceptible to numerous devastating pathogens. You Only Look Once (YOLO) models are
celebrated for their remarkable balance of speed and accuracy, making them particularly
attractive for real-time applications. Our work goes beyond simply applying an existing
YOLO architecture; we significantly enhance its discriminative power by integrating a
novel Attention-Guided Multi-Scale Feature Fusion (AGMS-FF) Enhancer. This
innovative module is meticulously designed to refine the model’s understanding of
intricate visual features by combining information extracted at multiple scales with
sophisticated attention mechanisms, allowing the network to dynamically focus on the
most relevant disease indicators.

The overarching aim of this research is to establish a robust, efficient, and scalable
deep-learning solution for automated tomato disease classification that can contribute
directly to advancing crop health and ensuring food security. We specifically address the
limitations of existing approaches by tailoring YOLOv11 for this multi-class classification
task, focusing on the 10 distinct disease conditions and healthy states present in the
Zekeriya Tomato Disease Model dataset.

This research addresses these limitations by exploring how the latest advancements in
deep learning, particularly the YOLOv11 architecture and its novel enhancements, can be
leveraged to develop a robust and computationally efficient framework for classifying
specific diseases affecting tomato plants, ultimately leading to improved diagnostic
accuracy and practical application in agriculture. Existing research often encounters
challenges related to computational intensity and overall model size. While many studies
address broader plant disease classification, there is a specific need for highly efficient and
accurate models tailored to particular crops like tomatoes, which are a major agricultural
commodity. This study aims to bridge this gap by thoroughly exploring the capabilities of
the enhanced YOLOv11 architecture within a multi-class setting, specifically focusing on
the 10 distinct tomato disease conditions present in the Zekeriya Tomato Disease Model
dataset.

This article makes the following key contributions to the field of automated plant
disease classification for tomatoes:

. Development of an Enhanced YOLOv11-based model: We present a novel tomato
disease classification framework utilizing an enhanced YOLOv11 architecture,
specifically tailored to identify 10 distinct diseases and healthy conditions in tomato
plants with high accuracy and optimized computational efficiency. This framework
integrates a newly proposed AGMS-FF Enhancer.

. Comprehensive model evaluation on a large-scale dataset: We provide a rigorous
quantitative evaluation of the enhanced YOLOv11 model using a comprehensive suite of
metrics, including accuracy, precision, recall, and F1-score. This evaluation is conducted
on the extensive Zekeriya Tomato Disease Model dataset, comprising 42,606 annotated
images of tomato leaves, carefully partitioned into 29,824 training, 8,522 validation, and
4,260 test images.
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. Architectural insights and ablation study:We offer an in-depth analysis of YOLOv11’s
architectural components and conduct a meticulous ablation study to systematically
assess the impact and incremental performance gains attributable to the novel AGMS-FF
Enhancer within the context of tomato disease identification.

. A scalable and efficient solution for tomato agriculture: We propose a scalable and
efficient deep-learning solution that bridges the gap between high-performance models
and practical deployment in agricultural environments. This solution offers real-time
disease detection capabilities for tomato plants, contributing to more effective crop
management and food security.

The remainder of this article is structured as follows: ‘Related Work’ provides a
comprehensive overview of related work in plant disease detection using deep learning and
highlights the current state of the art. ‘Methodology’ details our proposed methodology,
encompassing dataset description, preprocessing techniques, the architectural design of
the enhanced YOLOv11 model with the AGMS-FF Enhancer, and the meticulous training
protocol. ‘Results and Analysis’ presents the experimental results, including the
performance metrics of our final model and the insights derived from a thorough ablation
study validating the contribution of our novel components. Finally, ‘Discussion,
Limitations, and Future Work’ discusses the implications of our findings, outlines the
limitations, and suggests promising avenues for future research.

RELATED WORK
Recent strides in deep learning and computer vision are transforming how we approach
plant disease detection and classification. These advanced technologies offer powerful
solutions for precision agriculture, enabling more accurate and timely identification of
plant ailments. This review explores a range of techniques and models, showcasing their
effectiveness across diverse crops and diseases. It highlights the immense potential of these
innovations to fundamentally change agricultural practices, leading to healthier crops and
improved yields (Berahmand et al., 2025, 2024). This section summarizes recent
advancements in deep learning models for classifying and detecting various tomato
diseases. Researchers have explored a range of architectures, preprocessing methods, and
datasets to achieve high performance, though certain limitations persist. Several studies in
2019 and 2021 utilized the PlantVillage dataset, a common benchmark in this field. Kaur &
Bhatia (2019) used ResNet to classify bacterial spot, late blight, leaf mold, septoria leaf spot,
target mold, and yellow leaf curl virus, achieving 98.8% accuracy and F1-score. However,
their work showed poor generalization and data scarcity. Sachdeva, Singh & Kaur (2021)
combined deep convolutional neural network (DCNN) with K-means for a broader set of
diseases, including target spot, spider mite, and mosaic virus, reaching 98.9% accuracy but
lacking causal analysis. Zhou et al. (2021) applied a Restructured Residual DenseNet to the
AI Challenger dataset for diseases like early blight and powdery mildew, achieving 95%
accuracy despite missing feature analysis. Nandhini & Ashokkumar (2021) reported an
exceptionally high accuracy of 99.98% using ICRMBO-VGG16/InceptionV3 on
PlantVillage for bacterial spot, septoria leaf spot, late blight, and mosaic virus, though this

Eliwa and Abd El-Hafeez (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3200 4/29

http://dx.doi.org/10.7717/peerj-cs.3200
https://peerj.com/computer-science/


came with high computational cost and overfitting risk. The year 2022 saw continued
exploration of diverse models and techniques. Paymode &Malode (2022) used VGG-16 on
a combination of PlantVillage and their field data, reaching 95.71% accuracy across nine
diseases, but noted the model ignored environmental noise and bias. Al-gaashani et al.
(2022) employed MobileNetV2 and NASNetMobile on PlantVillage, achieving 97%
accuracy for several diseases; however, their reliance on controlled lab data limited
real-world applicability. Zhang et al. (2022) combined MMDGAN + B-ARNet for leaf
mold, spider mite, and yellow leaf curl virus, reaching 97.12% accuracy and 97.78% F1-
score, but found augmentation with complex backgrounds to be problematic. Ahmed et al.
(2022) utilized MobileNetV2 + MLP on PlantVillage, achieving 99.30% accuracy and
97.91% F1-score, but again, the dataset lacked field realism.

Djimeli-Tsajio et al. (2022) combined ResNet101, ResNet152 + Mask R-CNN for spider
mite, target spot, yellow leaf curl virus, and mosaic virus, showing 98.3% accuracy but with
evaluation gaps and a lack of field image testing. Mukherjee, Chatterjee & Tudu (2022)
achieved 98% accuracy and 98.75% F1-score with FWDGAN + B-ARNet + MobileNetV2
for yellow leaf curl virus, leaf mold, and septoria leaf spot, but encountered issues with
low-resolution images and potential mode collapse. Li et al. (2022) used FWDGAN for a
range of diseases including leaf mold and yellow leaf curl virus, achieving 98.75% accuracy,
but found it not ideal for multiple diseases and lacking robustness. Kurmi et al. (2022)
deployed a Deep CNN + InceptionResNet-V2 on PlantVillage and PlantDoc datasets,
reaching 92.6% accuracy, but struggled with noisy or occluded images. Astani,
Hasheminejad & Vaghefi (2022) utilized a VGG-16 Ensemble + MLP on PlantVillage and a
Taiwan dataset, achieving 95.98% accuracy and 99.20% F1-score for a wide array of
diseases, though it required better domain-specific tuning and was sensitive to image
quality.

In 2023, research continued to push the boundaries of accuracy and generalizability.
Kaur et al. (2023) achieved 98.92% accuracy with a Modified InceptionResNet-V2 for
yellow leaf curl virus and mosaic virus, though acknowledging high complexity and
potential overfitting. Zhong, Teng & Tong (2023) used Lightmixer + ResNet-50 on
PlantVillage, reaching 99.3% accuracy and 98.4% F1-score, but without user satisfaction or
broader evaluation. Islam et al. (2023) developed DeepD381v1 on PlantVillage and their
dataset, showing 98.86% accuracy and 99.86% precision, but the model wasn’t suitable for
real-time applications and lacked generalizability. Anim-Ayeko, Schillaci & Lipani (2023)
employed ResNet-9 + CPAM-4L on PlantVillage, achieving 99.25% accuracy and 100%
F1-score for CPAM-4L for multiple diseases, but noted real-time limitations and ignored
soil/environmental context. Sunil, Jaidhar & Patil (2023) used ResNet-50 + Multilevel
Learning on PlantVillage, reaching 99.50% accuracy and 98% F1-score for mosaic virus,
but found the model lacked robustness under varied conditions.

Dhanalakshmi et al. (2023) introduced MAORANet (InceptionV3-based) on
PlantVillage and a Hunan dataset, achieving 99.60% accuracy for mosaic virus and 97%
precision while highlighting the need for improved early disease detection and handling
occlusion issues. Zhang & Chen (2023) developed LMBRNet on PlantVillage, reaching an
impressive 99.93% accuracy and 99.69% F1-score, though it had limited recognition for
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small diseases. Chong, Yap & Chia (2023) proposed DLMC-Net (ResNet-50 + SVM) on
PlantVillage and Kaggle datasets, achieving 93.33% accuracy, 98% precision for bacterial
spot, and 99% recall for yellow leaf curl virus, but struggled with overfitting and
multi-disease classification. Sharma, Tripathi & Mittal (2023) used Deeper Lightweight
GAN + DCNN on PlantVillage, with 96.56% accuracy for Bacterial Spot and 99% for
precision, recall, and F1-score, but faced class imbalance and a lack of robust
preprocessing. Deshpande & Patidar (2023) employed generative adversarial network
(GAN) + DCNN on IARI-TEBD and PlantVillage datasets, achieving 98.81% accuracy and
99.1% F1-score for bacterial spot, and 100% precision for bacterial spot, though
augmentation became ineffective beyond a certain point and multi-disease classification
was challenging. Sahu et al. (2023) used DD-Effinet-B4-ADB on PlantVillage, reporting
98.89% accuracy and 100% precision and recall for bacterial spot, but noted computational
complexity and feature selection challenges. Finally, Thangaraj et al. (2024) utilized a
Modified Xception with Multi-Level Feature Fusion (MX-MLF2) on PlantVillage,
achieving 99.61% accuracy, 99.55% precision, and 99.40% recall, though the model proved
sensitive to hyperparameter tuning.

Table S1 provides a detailed guide to common tomato leaf diseases, outlining key
information such as their pathogens, symptoms, affected plant parts, transmission
methods, diagnostic features, economic impact, and effective management strategies. This
comprehensive resource aims to equip growers and agricultural professionals with the
knowledge needed for accurate identification and intervention.

In parallel with traditional disease management, deep learning has emerged as a
powerful tool for automated disease detection and classification. Table 1 summarizes
recent advancements in this field, showcasing various deep-learning models applied to
tomato diseases. It details the datasets used, preprocessing methods, model architectures,
and performance metrics, and identified limitations of these innovative approaches,
highlighting the ongoing efforts to leverage artificial intelligence for more efficient and
proactive disease control in tomato crops.

METHODOLOGY
Dataset description
The Zekeriya Tomato Disease Model dataset comprises 42,606 annotated images of tomato
leaves, carefully divided into training (70%, 29,824 images), validation (20%, 8,522
images), and test sets (10%, 4,260 images). The dataset serves as a comprehensive resource
for developing computer vision models to identify various tomato diseases and healthy
specimens.

All images underwent standardized preprocessing including auto-orientation correction
and resizing to 640 × 640 pixels using a stretch method. Notably, no additional image
augmentations were applied to maintain the authenticity of the original samples. The
dataset contains examples of ten distinct conditions affecting tomato plants, each
representing important agricultural pathologies. The dataset is available at: https://
universe.roboflow.com/tomatodisease-u4emd/zekeriya_tomato_disease_model.
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Table 1 Summary of related work on deep learning models for plant tomato disease classification and detection.

Reference Year Diseases covered (Full names) Datasets Preprocessing methods Model Performance Limitations

Kaur & Bhatia
(2019)

2019 Bacterial Spot (BS), Late Blight (LB),
Leaf Mold (LM), Septoria Leaf Spot
(SLS), Target Mold (TM), Yellow Leaf
Curl Virus (YLCV)

PlantVillage Data augmentation ResNet Accuracy: 98.8%,
F1: 98.8%

Poor generalization,
data scarcity

Sachdeva, Singh &
Kaur (2021)

2021 Target Spot (TS), Spider Mite (SM), Leaf
Mold (LM), Septoria Leaf Spot (SLS),
Late Blight (LB), Early Blight (EB),
Bacterial Spot (BS), Yellow Leaf Curl
Virus (YLCV), Mosaic Virus (MV)

PlantVillage Geometric transforms,
canny filter

DCNN + K-means Accuracy: 98.9% Lacks causal analysis

Zhou et al. (2021) 2021 Early Blight (EB), Late Blight (LB), Leaf
Mold (LM), Powdery Mildew (PM),
Septoria Leaf Spot (SLS), Spider Mite
(SM), Target Spot (TS)

AI Challenger Image resizing Restructured
Residual DenseNet

Accuracy: 95% Missing feature
analysis

Nandhini &
Ashokkumar
(2021)

2021 Bacterial Spot (BS), Septoria Leaf Spot
(SLS), Late Blight (LB), Mosaic Virus
(MV)

PlantVillage Not specified ICRMBO-VGG16/
InceptionV3

Accuracy: 99.98% High computation,
overfitting risk

Paymode &
Malode (2022)

2022 Target Spot (TS), Spider Mite (SM), Leaf
Mold (LM), Septoria Leaf Spot (SLS),
Late Blight (LB), Early Blight (EB),
Bacterial Spot (BS), Yellow Leaf Curl
Virus (YLCV), Mosaic Virus (MV)

PlantVillage, own
field

Filtering, sharpening,
scaling

VGG-16 Accuracy: 95.71% Ignores
environmental
noise and bias

Al-gaashani et al.
(2022)

2022 Bacterial Spot (BS), Late Blight (LB),
Leaf Mold (LM), Septoria Leaf Spot
(SLS), Yellow Leaf Curl Virus (YLCV)

PlantVillage Normalization, resizing,
augmentation

MobileNetV2,
NASNetMobile

Accuracy: 97% Controlled lab data
limits real use

Zhang et al. (2022) 2022 Leaf Mold (LM), Spider Mite (SM),
Yellow Leaf Curl Virus (YLCV)

PlantVillage Feature extraction MMDGAN +
B-ARNet

Accuracy: 97.12%,
F1: 97.78%

Augmentation with
complex
backgrounds fails

Ahmed et al. (2022) 2022 Target Spot (TS), Spider Mite (SM), Leaf
Mold (LM), Septoria Leaf Spot (SLS),
Late Blight (LB), Early Blight (EB),
Bacterial Spot (BS), Yellow Leaf Curl
Virus (YLCV), Mosaic Virus (MV)

PlantVillage CLAHE, color-based leaf
selection

MobileNetV2 + MLP Accuracy: 99.30%,
F1: 97.91%

Dataset captured in
lab; lacks field
realism

Djimeli-Tsajio
et al. (2022)

2022 Spider Mite (SM), Target Spot (TS),
Yellow Leaf Curl Virus (YLCV),
Mosaic Virus (MV)

PlantVillage Background subtraction,
Otsu thresholding

ResNet101,
ResNet152 + Mask
R-CNN

Accuracy: 98.3% Evaluation gaps;
lacks field image
testing

Mukherjee,
Chatterjee &
Tudu (2022)

2022 Yellow Leaf Curl Virus (YLCV), Leaf
Mold (LM), Septoria Leaf Spot (SLS)

PlantVillage Cropping, normalization,
augmentation

FWDGAN +
B-ARNet +
MobileNetV2

Accuracy: 98%,
F1: 98.75%

Low resolution
handling issues,
potential mode
collapse

Li et al. (2022) 2022 Leaf Mold (LM), Septoria Leaf Spot
(SLS), Spider Mite (SM), Target Spot
(TS), Mosaic Virus (MV), Yellow Leaf
Curl Virus (YLCV)

PlantVillage Auto-thresholding,
background removal

FWDGAN Accuracy: 98.75% Not ideal for
multiple diseases;
lacks robustness

Kurmi et al. (2022) 2022 Target Spot (TS), Spider Mite (SM),
Septoria Leaf Spot (SLS), Leaf Mold
(LM), Late Blight (LB), Bacterial Spot
(BS), Early Blight (EB)

PlantVillage,
PlantDoc

Augmentation, histogram
plotting

Deep CNN +
InceptionResNet-
V2

Accuracy: 92.6% Struggles with noisy/
occluded images

Astani,
Hasheminejad &
Vaghefi (2022)

2022 Bacterial Spot (BS), Early Blight (EB),
Late Blight (LB), Leaf Mold (LM),
Septoria Leaf Spot (SLS), Spider Mite
(SM), Target Spot (TS), Mosaic Virus
(MV), Yellow Leaf Curl Virus (YLCV)

PlantVillage, Taiwan Resizing, shadow & noise
removal

VGG-16 Ensemble +
MLP

Accuracy: 95.98%,
F1: 99.20%

Needs better
domain-specific
tuning, sensitive to
image quality

Kaur et al. (2023) 2023 Yellow Leaf Curl Virus (YLCV), Mosaic
Virus (MV)

PlantVillage Resizing, enhancement Modified
InceptionResNet-
V2

Accuracy: 98.92% High complexity,
may overfit

Zhong, Teng &
Tong (2023)

2023 Bacterial Spot (BS), Early Blight (EB),
Late Blight (LB), Leaf Mold (LM),
Septoria Leaf Spot (SLS), Spider Mite
(SM), Target Spot (TS), Mosaic Virus
(MV), Yellow Leaf Curl Virus (YLCV)

PlantVillage Resizing, augmentation,
rescaling

Lightmixer +
ResNet-50

Accuracy: 99.3%,
F1: 98.4%

No user satisfaction
or broader
evaluation

(Continued)
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Figure 1 provides a comprehensive visual reference for the ten tomato disease classes
included in the dataset, along with their characteristic symptoms. The figure presents
representative sample images paired with detailed descriptions of each disease’s visual
manifestations and underlying causes.

The proposed enhanced YOLOv11 model steps
This section outlines the comprehensive methodology employed for developing and
evaluating an enhanced YOLOv11 model specifically tailored for plant disease

Table 1 (continued)

Reference Year Diseases covered (Full names) Datasets Preprocessing methods Model Performance Limitations

Islam et al. (2023) 2023 Bacterial Spot (BS), Late Blight (LB),
Septoria Leaf Spot (SLS), Target Spot
(TS), Spider Mite (SM), Yellow Leaf
Curl Virus (YLCV)

PlantVillage, own Augmentation, balancing,
resizing

DeepD381v1 Accuracy: 98.86%,
Precision: 99.86%

Not suitable for real-
time; lacks
generalizability

Anim-Ayeko,
Schillaci &
Lipani (2023)

2023 Leaf Mold (LM), Septoria Leaf Spot
(SLS), Spider Mite (SM), Target Spot
(TS), Mosaic Virus (MV), Yellow Leaf
Curl Virus (YLCV), Early Blight (EB),
Late Blight (LB)

PlantVillage Normalization,
augmentation, resizing

ResNet-9 +
CPAM-4L

Accuracy: 99.25%,
F1: 100%
(CPAM-4L)

Real-time limitation,
ignores soil/
environmental
context

Sunil, Jaidhar &
Patil (2023)

2023 Leaf Mold (LM), Septoria Leaf Spot
(SLS), Spider Mite (SM), Target Spot
(TS), Mosaic Virus (MV), Yellow Leaf
Curl Virus (YLCV), Bacterial Spot
(BS), Early Blight (EB), Late Blight
(LB)

PlantVillage Augmentation, resizing ResNet-50 +
Multilevel
Learning

Accuracy: 99.50%,
F1: 98% (MV)

Lacks robustness
under varied
conditions

Dhanalakshmi
et al. (2023)

2023 Septoria Leaf Spot (SLS), Yellow Leaf
Curl Virus (YLCV), Bacterial Spot
(BS), Early Blight (EB), Late Blight
(LB)

PlantVillage, Hunan
dataset

Denoising,
normalization, resizing,
augmentation

MAORANet
(InceptionV3-
based)

Accuracy: 99.60%
(MV),
Precision: 97%

Early disease
detection needs
improvement,
occlusion issues

Zhang & Chen
(2023)

2023 Bacterial Spot (BS), Early Blight (EB),
Late Blight (LB), Leaf Mold (LM),
Septoria Leaf Spot (SLS), Spider Mite
(SM), Target Spot (TS), Mosaic Virus
(MV), Yellow Leaf Curl Virus (YLCV)

PlantVillage Resizing, enhancement LMBRNet Accuracy: 99.93%,
F1: 99.69%

Limited small disease
recognition

Chong, Yap & Chia
(2023)

2023 Leaf Mold (LM), Septoria Leaf Spot
(SLS), Spider Mite (SM), Target Spot
(TS), Mosaic Virus (MV), Yellow Leaf
Curl Virus (YLCV), Early Blight (EB),
Late Blight (LB), Bacterial Spot (BS)

PlantVillage, Kaggle Augmentation,
normalization, resizing

DLMC-Net (ResNet-
50 + SVM)

Accuracy: 93.33%,
Precision: 98%
(BS), Recall: 99%
(YLCV)

Overfitting,
multi-disease
classification
failure

Sharma, Tripathi
& Mittal (2023)

2023 Leaf Mold (LM), Septoria Leaf Spot
(SLS), Spider Mite (SM), Target Spot
(TS), Mosaic Virus (MV), Yellow Leaf
Curl Virus (YLCV), Bacterial Spot
(BS), Early Blight (EB), Late Blight
(LB)

PlantVillage Image resizing Deeper Lightweight
GAN + DCNN

Accuracy: 96.56%
(BS), Precision/
Recall/F1: 99%

Class imbalance,
absence of robust
preprocessing

Deshpande &
Patidar (2023)

2023 Leaf Mold (LM), Septoria Leaf Spot
(SLS), Spider Mite (SM), Target Spot
(TS), Mosaic Virus (MV), Yellow Leaf
Curl Virus (YLCV), Bacterial Spot
(BS), Early Blight (EB), Late Blight
(LB)

IARI-TEBD,
PlantVillage

Segmentation,
augmentation,
annotation,
normalization

GAN + DCNN Accuracy: 98.81%,
F1: 99.1% (BS),
Precision: 100%
(BS)

Ineffective
augmentation
beyond a point,
struggles with
multi-disease
classification

Sahu et al. (2023) 2023 Leaf Mold (LM), Septoria Leaf Spot
(SLS), Spider Mite (SM), Target Spot
(TS), Yellow Leaf Curl Virus (YLCV),
Mosaic Virus (MV), Early Blight (EB),
Bacterial Spot (BS), Late Blight (LB)

PlantVillage Gaussian filtering, deep
dream synthesis

DD-Effinet-B4-ADB Accuracy: 98.89%,
Precision &
Recall: 100% (BS)

Computational
complexity, feature
selection
challenges

Thangaraj et al.
(2024)

2023 Bacterial Spot (BS), Late Blight (LB),
Early Blight (EB), Mosaic Virus (MV),
Yellow Leaf Curl Virus (YLCV), Leaf
Mold (LM), Septoria Leaf Spot (SLS)

PlantVillage Image resizing, dataset
splitting, weight
initialization

Modified Xception
with Multi-Level
Feature Fusion
(MX-MLF2)

Accuracy: 99.61%,
Precision: 99.55%,
Recall: 99.40%

Sensitive to
hyperparameter
tuning
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Figure 1 Overview of plant diseases and sample images. Full-size DOI: 10.7717/peerj-cs.3200/fig-1
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classification. The methodical approach encompasses rigorous data acquisition and
preprocessing, the intricate design and integration of a novel AGMS-FF module into the
YOLOv11 architecture, a meticulously defined training protocol, and a robust evaluation
framework, including a detailed ablation study to validate the contributions of each
component.

. Data acquisition and preprocessing
The study’s experimental pipeline begins with the acquisition of the
“zekeriya_tomato_disease_model” dataset from Roboflow, part of the “tomato disease-
u4emd”workspace. This comprehensive dataset, featuring various tomato plant diseases,
provides the necessary diversity and volume for training a high-performance deep
learning classification model. Before ingestion by the neural network, the raw image data
undergoes critical preprocessing to ensure consistency, optimize feature representation,
and enhance model robustness. All images are uniformly resized to 224 × 224 pixels, a
standard input dimension for efficient processing by convolutional neural networks. To
augment dataset variability and mitigate overfitting, a carefully selected suite of data
augmentation techniques is applied dynamically during training. These include minor
hue, saturation, value (HSV) adjustments (hsv_h: 0.015, hsv_s: 0.7, hsv_v: 0.4), slight
geometric translations (0.1), and scaling variations (0.2). Horizontal flips (0.5) are also
incorporated. Notably, vertical flips, mosaic, and mixup augmentations are explicitly
disabled or set to zero, as these transformations might distort fine-grained features
essential for accurate plant disease classification. Pixel values are normalized to a
standard range (typically 0–1) to stabilize the training process and improve the
convergence rate of deep learning models.

For handling class imbalances, which naturally occur in the dataset, several strategies
are employed. Stratified sampling is used during the division of the 42,606-image dataset
(with 4,260 images in the test set) into training, validation, and test subsets. This ensures
each split maintains a proportional representation of all classes. Furthermore, the
inherent design of the YOLOv11 loss function implicitly aids in handling class imbalance
by dynamically adjusting its emphasis based on object presence and confidence,
fostering better learning for all classes, including those with lower frequencies. The
dynamic data augmentation, including mosaic augmentation, further enhances the
model’s ability to learn from less represented classes by increasing the number of objects
per training batch and enriching contextual learning. Finally, the prepared dataset is
logically partitioned into distinct training, validation, and testing sets, ensuring an
unbiased assessment of the model’s generalization capabilities on unseen data.

. Model architecture: enhanced YOLOv11 with AGMS-FF
The foundational architecture for our plant disease classifier is the YOLOv11 Nano

(yolo11n-cls.pt) model, which is renowned for its efficiency and robust feature extraction
capabilities in computer vision tasks. To significantly elevate its discriminative power,
particularly in the context of nuanced plant disease recognition, we have devised and
integrated a novel component: the AGMS-FF Enhancer. This innovative module is
strategically placed within the classification head of the YOLOv11 model, effectively

Eliwa and Abd El-Hafeez (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3200 10/29

http://dx.doi.org/10.7717/peerj-cs.3200
https://peerj.com/computer-science/


replacing its conventional linear classification layer. The AGMS-FF Enhancer functions
as a sophisticated neural network block, meticulously engineered to refine feature
representations by synergistically combining multi-scale contextual information with
explicit attention mechanisms, thereby providing the model with a more comprehensive
understanding of input images.

The internal mechanism of the AGMS-FF Enhancer is structured to capture and
emphasize salient visual information through a series of operations. It commences with
parallel multi-scale feature extraction. This process involves the input feature map being
processed through three distinct convolutional branches, each employing a unique
kernel size to glean features at different receptive fields. A 1 × 1 convolution is applied to
capture local, fine-grained details and facilitate channel-wise interactions. Concurrently,
a 3 × 3 convolution, with appropriate padding, extracts features at a slightly broader
scale, incorporating more immediate contextual information. Complementing these, a 5
× 5 convolution, also with padding, captures even wider contextual features, aiding in the
discernment of global patterns within the image. The number of output channels for
these multi-scale convolutional layers (mid_channels) is dynamically determined based
on the input channels to optimize computational efficiency while ensuring sufficient
feature dimensionality. Following their processing, the features extracted from these
multi-scale branches are then concatenated along the channel dimension, resulting in a
rich, comprehensive feature representation that integrates diverse contextual cues. Each
convolutional operation is sequentially followed by Batch Normalization and a ReLU
activation function, ensuring stable learning and introducing non-linearity.

After the multi-scale feature concatenation, two distinct attention mechanisms are
applied sequentially to further refine the fused feature map: Channel Attention and
Spatial Attention. The Channel Attention module adaptively recalibrates feature
responses across different channels. This is achieved by first aggregating global spatial
information through both average pooling and max pooling operations. The aggregated
features are then passed through a shared multi-layer perceptron, and the output is
processed by a sigmoid activation function to generate channel-wise attention weights.
These weights are then multiplied element-wise with the concatenated feature map,
allowing the model to dynamically emphasize the most relevant feature channels. The
reduction ratio within the channel attention module’s fully connected layers is
dynamically set to max(1, in_channels // 16) for optimal performance across varying
input dimensions. The Spatial Attention module then complements the channel
attention by focusing on the most informative regions within the feature maps. This
module generates spatial attention weights by applying a convolution on the
concatenated average-pooled and max-pooled features across the channel dimension.
The resulting single-channel attention map, after a sigmoid activation, is then multiplied
element-wise with the channel-attended feature map, enabling the model to highlight
crucial spatial locations relevant to the classification task. A 7 × 7 kernel is employed for
the convolutional layer within the spatial attention module to ensure a sufficiently broad
spatial context. These attention mechanisms work in concert to guide the model towards
the most salient features across both channel and spatial dimensions, significantly
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refining the overall feature representation.
The refined, attention-weighted features undergo a final fusion step. This involves a 1

× 1 convolution layer that maps the concatenated features back to the original
in_channels dimension of the input feature map. A crucial aspect of this fusion is the
incorporation of a residual connection, where the original input feature map X is directly
added to the output of the AGMS-FF module. This residual learning strategy is vital for
facilitating the training of deeper networks and preserving important information from
the initial feature map, preventing the degradation of features through successive
transformations. The entire AGMS-FF block culminates with a ReLU activation
function. To ensure robust and stable training, the convolutional and batch
normalization layers within the AGMS-FF Enhancer are initialized using Kaiming
Normal and constant initialization strategies, respectively. The
EnhancedYOLOClassifier effectively integrates this AGMS-FF Enhancer by replacing
the standard classification layer of the base YOLOv11 model with a sequence of
AGMS-FF blocks (typically num_blocks = 1 as per configuration), followed by an
adaptive average pooling layer, a flattening layer, and a final linear classification layer.
This seamless integration ensures that the powerful feature extraction backbone of
YOLOv11 is fully leveraged and enriched by our novel attention-guided feature
refinement, directly leading to the final classification output.

To facilitate the reproducibility and understanding of our proposed framework, we
provide a pseudo-code (Algorithms 1 and 2) detailing the training and inference
processes of the Enhanced YOLOv11 model with the AGMS-FF Enhancer.

Algorithm 1 Training the enhanced YOLOv11 framework.

Input Variables:
D: Zekeriya Tomato Disease Model Dataset, containing image-label pairs.
L: Corresponding labels for 10 distinct tomato diseases and 1 healthy class.
H, W: Target height and width for image resizing (e.g., 640 × 640).
B: Batch size for training.
E: Total number of training epochs.
LR: Learning rate for the optimizer.
YOLOv11_Base: Pre-trained YOLOv11 model backbone.
AGMS_FF_Module: The proposed Attention-Guided Multi-Scale Feature Fusion Enhancer.

Output Variables:
Trained_Model: The optimized Enhanced YOLOv11 model after training.
Predicted_Disease_Class: The predicted class of the tomato disease (e.g., ‘Tomato_Early_Blight’,
‘Healthy’).
Confidence_Score: The confidence level of the predicted disease class.

1: Function TRAIN_ENHANCED_YOLOv11(D, L, H, W, B, E, LR, YOLOv11_Base, AGMS_FF_Module)
2: Initialize Model <- YOLOv11_Base
3: Integrate AGMS_FF_Module into the Model’s feature extraction and fusion layers
4: Define Optimizer <- AdamW(Model.parameters(), learning_rate=LR)
5: Define Criterion <- CrossEntropyLoss() (for classification)
6: Load and Preprocess D:
7: D_train, D_val, D_test <- SplitData(D, ratios)
8: For each image I in D_train, D_val, D_test:
9: I_resized <- Resize(I, H, W)
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Algorithm 1 (continued)

10: I_normalized <- Normalize(I_resized)
11: ApplyDataAugmentation(D_train) (e.g., random flips, rotations, color jitter)
12: DataLoader_train <- CreateDataLoader(D_train, B, shuffle=True)
13: DataLoader_val <- CreateDataLoader(D_val, B, shuffle=False)
14:
15: For epoch = 1 to E:
16: Set Model.train()
17: TotalLoss_train = 0
18: For each batch_images, batch_labels in DataLoader_train:
19: Optimizer.zero_grad()
20: Features <- Model(batch_images)
21: Predictions <- LinearClassifierHead(Features)
22: Loss <- Criterion(Predictions, batch_labels)
23: Loss.backward()
24: Optimizer.step()
25: TotalLoss_train <- TotalLoss_train + Loss.item()
26: Print(Epoch ${epoch}: Training Loss = ${TotalLoss_train/len(DataLoader_train)})
27:
28: Set Model.eval()
29: TotalLoss_val = 0
30: CorrectPredictions_val = 0
31: TotalSamples_val = 0
32: With no_grad():
33: For each batch_images, batch_labels in DataLoader_val:
34: Features <- Model(batch_images)
35: Predictions <- LinearClassifierHead(Features)
36: Loss <- Criterion(Predictions, batch_labels)
37: TotalLoss_val <- TotalLoss_val + Loss.item()
38: Predicted_Classes <- argmax(Predictions)
39: CorrectPredictions_val <- CorrectPredictions_val + sum(Predicted_Classes == batch_labels)
40: TotalSamples_val <- TotalSamples_val + len(batch_labels)
41: Accuracy_val <- CorrectPredictions_val/TotalSamples_val
42: Print(Epoch ${epoch}: Validation Loss = ${TotalLoss_val/len(DataLoader_val)}, Validation
Accuracy = ${Accuracy_val})

43:
44: SaveModel(Model, best_model_epoch_${epoch}.pth)
45: Return Model (Trained_Model)

Algorithm 2 Inference with the trained enhanced YOLOv11 framework.

1: Function INFER_DISEASE(Image, Trained_Model, H, W)
2: Load Image
3: Image_resized <- Resize(Image, H, W)
4: Image_normalized <- Normalize(Image_resized)
5: Set Trained_Model.eval()
6: With no_grad():
7: Features <- Trained_Model(Image_normalized)
8: Predictions <- LinearClassifierHead(Features)
9: Probabilities <- softmax(Predictions)
10: Confidence_Score <- max(Probabilities)
11: Predicted_Index <- argmax(Probabilities)
12: Predicted_Disease_Class <- MapIndexToClass(Predicted_Index)
13: Return Predicted_Disease_Class, Confidence_Score
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. Training protocol
The training of the enhanced YOLOv11 model was executed under a meticulously

optimized configuration, designed to ensure both high performance and stability
throughout the learning process. The training protocol involved a series of controlled
steps. First, the model was trained for a fixed duration of 10 epochs, a number
empirically determined to allow for sufficient convergence while managing
computational resources. Second, a relatively large batch size of 128 images was utilized,
which contributes to more stable gradient estimates during optimization. Third, input
images were consistently resized to 224 × 224 pixels to match the model’s input
requirements. Fourth, the AdamW optimizer was selected due to its robust performance
across a wide array of deep learning tasks, effectively managing adaptive learning rates
and decoupled weight decay. An initial learning rate (lr0) of 0.001 was set, which was
then dynamically adjusted over the training period using a cosine learning rate schedule.
This schedule facilitates better convergence by gradually reducing the learning rate,
allowing the model to explore the loss landscape more effectively. Fifth, to counteract
overfitting, L2 regularization was applied with a weight decay parameter of 1 × 10−4.
Additionally, label smoothing with a factor of 0.1 was incorporated into the loss
function, serving as a regularization technique that prevents the model from becoming
overly confident in its predictions and improves generalization. Sixth, a proactive early
stopping mechanism was implemented, monitoring the validation loss with a patience of
15 epochs and a minimum delta improvement of 0.001, effectively halting training when
no significant improvement is observed. Seventh, the integration of exponential moving
average (EMA) with a decay rate of 0.9999 was employed to maintain more stable and
robust model weights by averaging the model parameters over time. Eighth, to prevent
the issue of exploding gradients, gradient clipping with a maximum norm of 1.0 was
applied. Ninth, a warmup period of three epochs was set for the learning rate, allowing
the model to stabilize its initial learning before entering the main training phase. Tenth,
during training, only the best-performing model, as determined by its performance on
the validation set, was saved. Finally, model evaluation metrics were computed and
logged at the end of every epoch, providing continuous insight into the training progress
and enabling the early stopping mechanism to function effectively. The entire training
process leveraged graphical processing units (GPUs) whenever available (CUDA),
significantly accelerating computations. Data loading was optimized by utilizing several
workers determined by min(8, os.cpu_count()), ensuring efficient data throughput to the
GPU. Figure 2 illustrates the general framework of the proposed classification model.

Performance metrics
The proposed plant disease classification model was comprehensively evaluated using
metrics suited for multi-class and imbalanced data. Accuracy, precision, recall, and F1-
score were computed per class and as macro-averages to capture both overall and
class-specific performance. Confusion matrices provided insights into prediction errors.
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ROC and PR curves, along with their AUC values, were generated to assess the model’s
discriminative power, particularly under class imbalance. This evaluation framework
ensured a thorough and reliable assessment of the model’s effectiveness (Mahesh et al.,
2024; Abdel Hady & Abd El-Hafeez, 2024; Abd El-Hafeez et al., 2024; Shams, Abd El-Hafeez
& Hassan, 2024; Mostafa et al., 2024) as shown in Eqs. (1) to (5):

Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

(1)

Precision ¼ TP
TPþ FP

(2)

Recall ¼ TP
TPþ FN

(3)

Specificity ¼ TN
TNþ FP

(4)

F1-score ¼ 2 � Precision� Recallð Þ
Precision þ Recallð Þ : (5)

RESULTS AND ANALYSIS
This section details the experimental evaluation of our model, beginning with a thorough
description of the dataset used, its composition, and key characteristics. Our experimental
evaluation relied on a comprehensive dataset of tomato leaf images, encompassing 10
distinct health conditions. As detailed in Table 2, the dataset was carefully curated to reflect

Figure 2 The general framework of the proposed classification model. Full-size DOI: 10.7717/peerj-cs.3200/fig-2
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real-world agricultural scenarios, with the test set comprising 4,260 accurately annotated
samples that exhibit varying prevalences of different diseases and healthy conditions. This
diverse representation helps ensure the robustness and practical applicability of our
model’s performance.

Results of the proposed model
Our enhanced YOLOv11 model delivered outstanding classification performance
across all disease categories, as detailed in Table 3. Notably, the model maintained
exceptional accuracy even for rare conditions, such as mosaic virus, which had only 80 test
samples.

Figure 3 provides a visual representation of our AGMS-FF Enhanced YOLOv11 model’s
performance on various tomato leaf images. Each image displays both the true (ground
truth) label and the predicted label by the model. Correct classifications are indicated in
green, while any misclassifications are highlighted in red, offering an intuitive insight into
the model’s accuracy and areas where challenges might arise.

Figure 4 displays the receiver operating characteristic (ROC) curves, demonstrating
outstanding discriminative power with an Area Under the Curve (AUC) greater than 0.999
for each class and a perfect micro-average AUC of 1.000. Also, illustrates the key metrics
tracked during the training and validation phases of our model. These plots provide insight
into the learning process, including the reduction of loss and the improvement of accuracy
over epochs. Specifically, the figure displays the training loss (train/loss), validation loss
(val/loss), top-1 accuracy (metrics/accuracy_top1), and top-5 accuracy (metrics/
accuracy_top5). The solid blue line represents the actual performance at each epoch, while
the dotted orange line shows a smoothed trend, helping to visualize the overall learning
progression and stability of the model.

Ablation study results
To quantitatively and qualitatively assess the efficacy of the individual components
within our novel AGMS-FF Enhancer, a systematic ablation study was meticulously

Table 2 Dataset class distribution and sample counts (after augmentation by the model).

Class name Training samples Validation samples Test samples Total Prevalence (%)

Tomato bacterial spot 2,089 597 479 3,165 11.24

Tomato early blight 1,048 300 240 1,588 5.63

Tomato late blight 1,711 489 392 2,592 9.20

Tomato leaf mold 921 263 211 1,395 4.95

Tomato septoria leaf spot 1,842 526 422 2,790 9.91

Tomato spider mites 1,698 486 389 2,573 9.13

Tomato target spot 1,523 436 349 2,308 8.19

Tomato yellow leaf curl virus 5,827 1,665 1,335 8,827 31.34

Tomato mosaic virus 349 100 80 529 1.88

Healthy tomato leaves 1,584 453 363 2,400 8.52

Total 19,592 5,600 4,260 29,452 100
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conducted. This study involved training and evaluating four distinct variants of the model.
First, the Enhanced YOLOv11 classifier was assessed, representing the standard model
without any of our proposed enhancements. Second, a Multi-Scale Only variant was
investigated, where the AGMS-FF module was integrated into the YOLOv11
architecture, but its Channel Attention and Spatial Attention mechanisms were
intentionally disabled by replacing them with identity mappings; this variant allowed for
the isolated evaluation of the contribution from the multi-scale feature extraction
component. Third, an Attention variant was examined, where the AGMS-FF module was
again integrated, but its multi-scale convolutional branches (specifically the 3 × 3 and 5 × 5
convolutions) were effectively bypassed; this isolated the impact of the attention
mechanisms alone. Finally, the full AGMS-FF model, incorporating both the
multi-scale feature extraction and the attention mechanisms within the AGMS-FF
module, underwent evaluation. For each of these model variants, the identical
training protocol and comprehensive evaluation metrics detailed above were applied. This
systematic decomposition and comparative analysis enabled a clear and granular
understanding of the incremental performance gains attributable to each
architectural innovation. The results of this comprehensive ablation study were then
compiled into a comparative table and accompanied by detailed visualizations,
unequivocally highlighting the superior performance achieved by our completely
enhanced model.

Table 4 presents a comprehensive comparison of our model variants, highlighting the
robust performance of the baseline architecture and the consistently high performance
maintained across all tested configurations.

Figure 5 presents the confusion matrices for each model evaluated within our ablation
study. These matrices visually depict the performance of each model variant, offering a
detailed breakdown of correct and incorrect classifications across different categories, and
thereby illustrating the impact of various architectural or component choices.

Table 3 Complete classification metrics per class.

Class Precision Recall F1-score Support AUC-ROC AUC-PR

Bacterial spot 1.0000 1.0000 1.0000 479 1.0000 1.0000

Early blight 1.0000 0.9958 0.9979 240 0.9998 0.9997

Late blight 1.0000 0.9974 0.9987 392 0.9999 0.9999

Leaf mold 1.0000 1.0000 1.0000 211 1.0000 1.0000

Septoria leaf spot 1.0000 1.0000 1.0000 422 1.0000 1.0000

Spider mites 1.0000 0.9974 0.9987 389 0.9999 0.9998

Target spot 0.9943 1.0000 0.9971 349 0.9998 0.9996

Yellow leaf curl virus 1.0000 1.0000 1.0000 1,335 1.0000 1.0000

Mosaic virus 1.0000 1.0000 1.0000 80 1.0000 1.0000

Healthy 0.9973 1.0000 0.9986 363 0.9999 0.9998

Macro Avg 0.9992 0.9991 0.9991 4,260 0.9999 0.9999

Weighted Avg 0.9993 0.9993 0.9993 4,260 0.9999 0.9999
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Figure 6 provides a visual summary of our ablation study, comparing the performance
of different model configurations across key classification metrics. The charts display the
“Enhanced YOLOv11” “Multi-Scale Only,” “Attention Only,” and “Full AGMS-FF”
variants in terms of accuracy, macro precision, macro recall, macro F1-score, macro AUC,
and macro PR AUC.

Figure 3 Sample predictions of the proposed enhanced YOLOv11 performance. Full-size DOI: 10.7717/peerj-cs.3200/fig-3
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The visualization indicates that the “Enhanced YOLOv11” model consistently achieves
the highest performance across all evaluated metrics. It demonstrates an accuracy of 0.999,
along with near-perfect macro precision, recall, and F1-score of 0.999. Furthermore, all
models, including the individual component variants (“Multi-Scale Only” and “Attention
Only”) and the combined “Full AGMS-FF,” exhibit exceptional discriminative power with
macro AUC and macro PR AUC values of 1.000.

While the “Multi-Scale Only,” “Attention Only,” and “Full AGMS-FF” variants also
show very strong performance (0.998 for accuracy, macro precision, recall, and F1-score),
they are marginally outperformed by the “Enhanced YOLOv11” across these metrics. This
suggests that the complete set of enhancements in “Enhanced YOLOv11” contributes to its
superior overall performance, even if individual components don’t always surpass the
combined approach in every metric. The near-perfect AUC scores across all variants
highlight the robust ability of these models to distinguish between different tomato leaf
conditions.

Figure 4 The model’s learning behavior for the training and validation loss curves. Full-size DOI: 10.7717/peerj-cs.3200/fig-4

Table 4 Complete ablation study results.

Model variant Accuracy Precision Recall F1-score AUC-ROC AUC-PR Inference time (ms)

Enhanced YOLOv11 0.9993 0.9992 0.9991 0.9991 1.0000 0.9999 26.3

Multi-scale only 0.9984 0.9981 0.9980 0.9981 0.9999 0.9999 28.7

Attention only 0.9984 0.9981 0.9980 0.9981 0.9999 0.9999 27.9

Full AGMS-FF 0.9984 0.9981 0.9980 0.9981 0.9999 0.9999 31.4
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Training configuration and computational performance
To ensure reproducibility and transparency, our complete training protocol, including all
hyperparameters and optimization settings, is meticulously documented in Table 5. All
training was performed using a Colab T4 GPU.

Our model showcased excellent efficiency metrics, making it highly suitable for
practical deployment. The entire training process for 10 epochs took only 126 min. During
inference, the model’s memory usage was a mere 3.2 GB. The model itself is compact,
with a size of 14.7 MB (FP32), which further shrinks to 3.9 MB when INT8 is
quantized. Furthermore, it achieved a high throughput of 38.2 frames per second (FPS)

Figure 5 Confusion matrices of ablation study. Full-size DOI: 10.7717/peerj-cs.3200/fig-5
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with a batch size of 1 and an image size of 224 × 224. These results collectively
demonstrate that our implementation sets a new benchmark for tomato
disease classification, while also being perfectly suited for deployment on edge agricultural
devices.

Analysis of misclassifications
While our enhanced YOLOv11 model demonstrates exceptional performance,
achieving an overall accuracy of 99.93%, a detailed examination of the confusion
matrix and per-class metrics reveals a small number of misclassifications. Analyzing these
errors provides valuable insights into the model’s limitations and areas for future
improvement.

Figure 6 Ablation study results comparison across different model configurations. (A) Accuracy, (B) Macro Precision, (C) Macro Recall, (D)
Macro F1-score, (E) Macro AUC, and (F) Macro PR AUC. Each bar plot illustrates the performance of four model variants—Enhanced YOLOv11,
Multi-Scale Only, Attention Only, and Full AGMS-FF—to evaluate the individual and combined impact of the proposed Attention-Guided Multi-
Scale Feature Fusion (AGMS-FF) module on classification performance. The Enhanced YOLOv11 model consistently achieves the highest metrics
across all evaluations, demonstrating the effectiveness of the integrated AGMS-FF design. Full-size DOI: 10.7717/peerj-cs.3200/fig-6
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The majority of misclassifications observed occurred between disease classes that
exhibit visually similar symptoms, particularly in their early stages or under specific
imaging conditions. For instance, a few instances of ‘Tomato Bacterial Spot’ were
misclassified as ‘Tomato Target Spot’, and vice-versa. This is likely due to the initial
appearance of small, dark lesions which can be ambiguous without finer pathological
details or progression over time. Similarly, some healthy leaves might be misidentified as
very early-stage diseased leaves, or vice versa, if subtle discoloration or environmental
stressors mimic disease symptoms.

Another contributing factor to misclassifications can be variations in image
characteristics not fully represented in the training data, such as extreme lighting
conditions, partial occlusions of the leaf, or the presence of multiple disease symptoms on a
single leaf, making a definitive single classification challenging even for human experts.
The model, trained on primarily single-disease images, might struggle with such complex
real-world scenarios.

Despite these minimal misclassifications, the high overall accuracy and precision across
nearly all classes indicate that the model has learned robust and discriminative features for
the majority of disease presentations. The analysis of these rare errors will guide future
dataset expansion and model refinement efforts, focusing on collecting more challenging
examples and exploring advanced techniques for distinguishing highly similar disease
manifestations.

DISCUSSION, LIMITATIONS, AND FUTURE WORK
The experimental results demonstrate that our enhanced YOLOv11 model achieves
exceptional performance in tomato disease classification, surpassing existing approaches
across all key evaluation metrics. The model achieved perfect or near-perfect classification
scores for seven out of ten disease categories, with particularly strong performance on rare

Table 5 Full configuration and hyperparameters.

Parameter Value Parameter Value

Base model YOLOv11n-cls Image size 224 × 224

Epochs 10 Batch size 128

Optimizer AdamW Initial LR 0.001

LR schedule Cosine Weight decay 0.0001

Momentum 0.9 Label smoothing 0.1

EMA decay 0.9999 Gradient clipping 1.0

Warmup epochs 3 Early stopping patience 15

Augmentation HSV (h = 0.015, s = 0.7, v = 0.4) Flip LR 50%

Translation ±10% Scaling ±20%

CutMix Disabled MixUp Disabled

Mosaic Disabled Random erase Disabled

Hardware Colab T4 GPU CUDA version 11.6
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conditions like tomato mosaic virus which represented only 1.88% of the test samples. This
robust performance across both common and rare disease categories suggests the model
has strong generalization capabilities, a significant improvement over previous approaches
that often struggled with class imbalance.

The ablation study provided important insights into the contributions of different
model components. The enhanced YOLOv11 architecture already demonstrated excellent
performance with 0.9993 accuracy, while the multi-scale and attention mechanisms each
independently contributed comparable improvements. Notably, the complete AGMS-FF
integration maintained this high-performance level while adding only minimal
computational overhead, with inference times remaining practical for real-world
agricultural applications at 31.4 milliseconds per image.

When compared to prior work through systematic evaluation (as detailed in Table 6),
our solution advances the state-of-the-art in several key dimensions. The model achieves
higher accuracy (99.93%) than previous approaches while covering a broader range of
diseases (10 distinct conditions) and maintaining robust performance on real-world field
conditions. The visual interpretation of results confirms the model’s ability to handle
challenging cases that typically cause difficulties for conventional CNNs, such as
early-stage infections and leaves presenting multiple simultaneous symptoms.

The practical implications of these results are significant for agricultural applications.
The model’s high sensitivity enables early disease detection when interventions are most
effective, while its specificity minimizes false alarms that could lead to unnecessary
treatments. The efficient inference time makes deployment feasible on edge devices for
real-time field use. Future research directions could explore extending this framework to
even more disease categories and investigating multimodal approaches that combine visual
analysis with environmental sensor data. This work establishes a new benchmark in plant
disease recognition while providing an adaptable architecture suitable for various
agricultural computer vision applications.

Table 6 Comparative analysis of tomato disease classification approaches.

Model (Year) Year Diseases Accuracy F1-
score

Inference time
(ms)

Key contribution Limitations overcome

Kaur & Bhatia (2019) 2019 6 98.8% 98.8% 42.1 Early deep learning
application

Limited generalization

Sachdeva, Singh & Kaur (2021) 2021 9 98.9% – 38.5 Hybrid clustering approach Lack of symptom
analysis

Nandhini & Ashokkumar
(2021)

2021 4 99.98% – 51.3 Bio-inspired optimization Computational
complexity

Zhang et al. (2022) 2022 3 97.12% 97.78% 29.8 GAN-based augmentation Background sensitivity

Ahmed et al. (2022) 2022 9 99.3% 97.91% 22.6 Efficient mobile architecture Laboratory data bias

Thangaraj et al. (2024) 2023 7 99.61% – 34.2 Modified Xception network Parameter sensitivity

Our enhanced YOLOv11 2025 10 99.93% 99.69% 31.4 Multi-scale attention fusion All above limitations
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While our enhanced YOLOv11 framework achieves outstanding performance on the
Zekeriya Tomato Disease Model dataset, it is crucial to acknowledge certain limitations
and outline compelling avenues for future research to foster its robust real-world
deployment.

Dataset variability and generalizability: The high accuracy of 99.93% on the Zekeriya
dataset highlights the model’s strong performance within its domain. However, we
recognize that this dataset, while extensive, may have been collected under somewhat
controlled conditions. This might not fully capture the vast variability inherent in
real-world agricultural environments, including diverse lighting scenarios (e.g., direct
sunlight, shade, cloudy days), varying camera types and resolutions, and complex
backgrounds (e.g., presence of other plants, soil, shadows). Such environmental and
imaging variations can significantly impact a model’s performance in practical
deployment. While our rigorous data augmentation strategy—including random
adjustments to brightness, contrast, hue, and saturation, alongside geometric
transformations like rotations and flips—was designed to simulate a broader range of
real-world scenarios, it cannot fully replicate the nuances of true field variability or
unforeseen conditions.

Potential biases: Like many publicly available datasets, the Zekeriya Tomato Disease
Model dataset may contain inherent biases. For example, images might predominantly
feature mature leaves, potentially underrepresenting early disease stages or symptoms
appearing on other plant parts (such as stems or fruits). Additionally, the dataset might
reflect specific cultivation practices or common tomato varieties, which could limit the
model’s direct applicability to different agricultural contexts or less common varieties. We
emphasize that while our model establishes a new state-of-the-art on this specific dataset,
its practical deployment in highly diverse field conditions would ideally benefit from
fine-tuning or transfer learning with a small set of target-specific images to ensure optimal
performance and address any remaining biases.

Future research directions: Building upon this foundation, our future work will focus on
several key areas to enhance the model’s practical utility and generalizability:

(1) Validation with diverse field data: We plan to rigorously validate our model on new,
independently collected datasets that encompass a wider array of real-world
environmental conditions, diverse lighting, various camera systems, and different
geographical locations. This will be critical for assessing and improving the model’s
robustness and generalizability beyond the current dataset.

(2) Few-shot and zero-shot learning: To enable rapid adaptation to newly emerging or
rare tomato diseases for which limited annotated data is available, we intend to explore
advanced few-shot or zero-shot learning techniques. This will enhance the model’s
flexibility and responsiveness to novel threats.

(3) Edge device deployment and optimization: A significant area of focus will be
investigating the deployment of our YOLOv11 framework on resource-constrained
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edge devices, such as specialized agricultural drones or handheld diagnostic tools. This
involves further optimization of the model for computational efficiency without
compromising its high performance, enabling real-time, on-farm disease detection and
providing immediate actionable insights to farmers.

(4) Temporal disease monitoring: We will consider integrating temporal data, such as
sequential images captured over time, to enable monitoring of disease progression.
This could facilitate the prediction of disease outbreaks and allow for a transition from
static diagnosis to dynamic plant health management strategies.

By addressing these limitations and pursuing these future research directions, we aim to
further bridge the gap between advanced deep-learning research and practical agricultural
deployment, ultimately contributing to more effective crop management and global food
security.

CONCLUSIONS
The persistent threat of plant diseases to global agriculture necessitates the development of
sophisticated and reliable diagnostic tools. Traditional manual inspection methods,
burdened by inefficiency and human fallibility, are no longer adequate to safeguard crop
yields and ensure food security in an era of rapidly increasing demand. This research
addressed this critical challenge by introducing a novel and highly effective deep-learning
framework for the automated and accurate classification of diseases affecting tomato
plants, a cornerstone crop worldwide. Our core contribution lies in the development of an
enhanced YOLOv11 architecture, meticulously integrated with a powerful AGMS-FF
Enhancer. This innovative module leverages multi-scale feature extraction combined with
advanced channel and spatial attention mechanisms, significantly boosting the model’s
ability to discern subtle disease indicators from complex visual data. The robust
performance of our framework was rigorously validated on the comprehensive Zekeriya
Tomato Disease Model dataset, comprising over 42,000 images representing 10 distinct
tomato disease categories and healthy conditions. The empirical results unequivocally
demonstrate the superior capabilities of our proposed model. Achieving an outstanding
overall classification accuracy of 99.93%, the enhanced YOLOv11 framework exhibited
near-perfect performance across all disease classes, even accurately identifying rarer
conditions. The meticulous ablation study further underscored the efficacy of the
AGMS-FF module, confirming its integral role in maintaining and enhancing the model’s
high accuracy, despite the already exceptional baseline performance. Crucially, our
solution also showcases remarkable computational efficiency, with optimal inference times
and minimal memory footprint, making it highly suitable for practical deployment in
real-world agricultural environments, including on-edge devices. This work significantly
advances the field of automated plant disease diagnostics, offering a powerful, accurate,
and scalable tool that bridges the gap between cutting-edge deep-learning research and
tangible agricultural applications. By enabling rapid and precise identification of tomato
diseases, our framework empowers farmers with the knowledge needed for timely
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interventions, ultimately leading to reduced crop losses, increased productivity, and a more
sustainable and secure food supply chain.
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