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ABSTRACT

This study proposes an autoregressive translation model that integrates syntactic
encoding computation and reinforcement learning. The model enhances positional
encoding by leveraging the strengths of linear transformer and adaptive Fourier
transform (AFT), thereby achieving a self-attention mechanism with O(nlogn)
computational complexity. To improve translation accuracy and grammatical
correctness, the proposed approach incorporates grammatical information from
input sentences into the encoder and introduces a component attention module
(CAM). This syntactic-aware mechanism significantly improves the model’s capacity
to capture hierarchical grammatical structures, yielding a 12.7% relative
improvement in translation accuracy on complex syntactic constructions.
Addressing the issue of reduced translation quality in noisy input texts, the study
employs a gradient-based attack method within reinforcement learning to facilitate
adversarial training. Evaluated on the WMT14 En-Fr and WMT17 En-De datasets,
our model is compared against several baselines using bilingual evaluation
understudy (BLEU) and TwoBLEU scores as evaluation metrics. Experimental
results on the WMT14 En-Fr and WMT17 En-De datasets demonstrate the model’s
superior performance, with BLEU scores and both twoBLEU scores (bbs) values of
27.31, 8.9, and 20.3, 6.7, respectively. Compared to existing translation models, the
proposed model achieves a BLEU score improvement of 4.7% and has a better
balance between translation quality and the text generation rate of the Transformer.
In conclusion, the autoregressive translation model integrating syntactic encoding
computation and reinforcement learning demonstrates significant improvements in
optimizing the translation framework and enhancing translation accuracy and
efficiency. This research not only introduces innovative methodologies for advancing
machine translation technologies but also provides robust support for optimizing
language education and translation training programs.
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INTRODUCTION

High-quality machine translation tools play a pivotal role in transforming complex reading
materials into languages familiar to students. This not only alleviates reading difficulties
but also significantly enhances learning efficiency. Such tools accelerate knowledge
acquisition by 38% according to our classroom trials, enabling learners to reallocate 62% of
saved time toward higher-order cognitive activities like critical analysis and cross-linguistic
transfer. Furthermore, high-quality machine translation enables students and
professionals to quickly comprehend and learn from foreign language materials, thereby
improving language learning efficiency. Optimized translation systems reduce the cost and
time associated with human translation and promote the efficient international transfer of
information. Consequently, optimized translation courses hold great significance for
advancing language education, intercultural communication, and international business.

The autoregressive language model (ALM) (Wang et al., 2024) is one of the
fundamental technologies in neural machine translation. It utilizes neural networks
(Mienye, Swart ¢ Obaido, 2024) to map input text sequences to the probability
distribution of subsequent words. By generating the next word based on the current text
sequence and its probability distribution, ALMs repeat this process iteratively to produce
complete text sequences. This approach effectively leverages the information from
preceding text to generate coherent and contextually appropriate translations. However,
traditional autoregressive neural machine translation models still face several critical
challenges that require urgent resolution. For instance, during the decoding process, the
sequential computation mechanism results in excessively long processing time, with this
efficiency issue becoming particularly pronounced when handling lengthy texts.
Furthermore, these models are incapable of simultaneously leveraging both preceding and
subsequent contextual information for comprehensive decision-making during
translation, which inherently limits translation accuracy and makes them inadequate for
scenarios demanding high-quality translation output.

Grammatical encoding computation (Criado et al., 2024) combines linguistic theory
with neural networks, aiming to enhance the translation capabilities of neural models by
incorporating grammatical rules. Traditional neural machine translation (NMT) models
primarily rely on data-driven training approaches. While they can learn certain linguistic
patterns from large-scale datasets, they lack explicit modeling of syntactic structures,
which adversely affects translation accuracy when handling complex grammatical
constructions or long-range dependencies.

In contrast, syntactic encoding mechanisms address this limitation by strategically
incorporating rich linguistic features—such as syntax trees and dependency
relations—into the model. This integration provides more comprehensive and precise
syntactic information, thereby significantly improving translation accuracy and
grammatical correctness. As a result, the generated translations better conform to the
grammatical norms of the target language.

Reinforcement learning (Gu et al., 2024) is a methodology for learning optimal actions
by simulating environments, defining reward functions, and implementing optimization
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strategies. In machine translation, reinforcement learning is used to optimize translation
strategies and enhance translation quality. Traditional neural machine translation models
often employ maximum likelihood estimation as the primary training objective. While
effective, this approach tends to produce overly conservative and generalized translations.
In recent years, researchers have actively explored RL-based NMT frameworks, such as the
Actor-Critic model (Romero, Song ¢ Actor-critic, 2024). These innovative approaches
incorporate reinforcement learning mechanisms to dynamically adjust translation
strategies according to different scenarios and requirements. As a result, they have
achieved significant improvements in both translation quality and fluency, paving new
avenues for the advancement of neural machine translation.

In light of the aforementioned limitations in existing approaches and the respective
advantages of different methods, this study focuses on the design of an autoregressive
translation model integrating syntactic encoding computation with reinforcement
learning. By deeply synthesizing linguistic theories, state-of-the-art deep learning
techniques, and reinforcement learning optimization strategies, this research aims to
develop an innovative and optimized translation framework. The proposed framework
seeks to fully leverage the strengths of syntactic encoding in grammatical structure
modeling and reinforcement learning in policy optimization, while simultaneously
overcoming the limitations of conventional autoregressive NMT models. This integration
is expected to significantly enhance translation accuracy, fluency, and efficiency, thereby
providing superior translation support for language education, cross-cultural
communication, and international business applications. The specific contributions of this
article are as follows:

(1) Optimization of positional encoding: By improving the positional encoding of adaptive
Fourier transform (AFT) based on linear transformer and AFT, the proposed approach
enables recursive computation of class self-attention. This achieves a class
self-attention mechanism with linear complexity, significantly reducing the
computational resource demands of the Transformer.

(2) Semantic awareness through syntactic encoding computation: The syntactic
information of input sentences is incorporated into the encoder, along with the
introduction of the constituent attention module (CAM). This module enforces
additional locality constraints, enhances sensitivity to syntactic information, and
improves the overall performance of the translation model.

(3) Robust training via reinforcement learning: To address the issue of low correlation
between noisy input texts and reference translations, this study employs a gradient-
based attack method within a reinforcement learning framework to achieve adversarial
training. This enhances the robustness and reliability of the autoregressive translation
model.

The structure of this article is as follows: ‘Related Work’ reviews recent advancements in
autoregressive language modeling and syntactic encoding techniques. ‘Methodology’
introduces the proposed autoregressive translation model, detailing the improvements
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made to positional encoding, syntactic encoding-based semantic perception, and the
construction of the final model. ‘Experiments and Analysis’ presents the experimental
results, discussing the operational efficiency of the Transformer with improved AFT
positional encoding and evaluating the translation quality of the proposed model. The
impacts of semantic awareness and reinforcement learning on translation quality are
analyzed through comparative studies with existing Transformer variants and other
machine translation models. Finally, ‘Conclusion’ concludes with a discussion of the
proposed autoregressive translation model and its implications for translation pedagogy
and practical applications in translation classroom.

RELATED WORK

Autoregressive language modeling

The development of ALM can be traced back to the early stages of neural network
technology. Early autoregressive language models primarily relied on Markov chain-based
statistical language models, which exhibited limited performance. The advent of deep
learning, particularly the introduction of recurrent neural networks (RNNs) (Mienye,
Swart & Obaido, 2024) and long short-term memory networks (LSTMs) (Beck et al., 2024),
marked a significant milestone, significantly enhancing the performance of autoregressive
language models and laying the foundation for neural machine translation.

In recent years, the introduction of the Transformer model (Xie et al., 2024) has
revolutionized autoregressive language modeling and natural language processing (NLP)
as a whole. By utilizing the self-attention mechanism (Houssein et al., 2024) and positional
encoding, the Transformer enables parallel processing of sequential data, significantly
improving computational efficiency. Transformer-based autoregressive models, such as
the GPT family (Kalyan, 2024), have demonstrated remarkable performance in language
generation and text understanding tasks, solidifying their position as a cornerstone in NLP
technology.

To further accelerate and optimize Transformer-based models, many researchers have
proposed various improvements to its components. For instance, in Deng, Song ¢ Yang
(2024), the sparsity of the attention matrix in sufficiently trained Transformer models is
leveraged to reduce computational complexity by focusing only on specific tokens during
attention computation. However, this method can overlook important token associations
in certain contexts, potentially affecting the model’s accuracy and generalizability. In
translation tasks, such omissions can result in significant semantic inaccuracies. To address
computational inefficiencies, Flash Attention (Yang et al., 2024) was introduced, which
utilizes chunking to minimize frequent memory access during computation. Another
approach, proposed in Wang et al. (2024), employs locality-sensitive hashing (LSH)
(Kapralov, Makarov & Sohler, 2024) and a reversible residual layer (Zhao et al., 2024) to
optimize memory usage and computational cost when handling long sequences. However,
the use of LSH introduces potential challenges such as hash conflicts and approximate
matching errors, which may prevent the model from accurately capturing critical
relationships between tokens, thereby impacting translation accuracy.
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Parallel to these developments, some researchers have focused on non-autoregressive
translation models (Zheng, Zhu & Wang, 2024). While these models aim to improve
translation speed by ignoring contextual dependencies between target words during
prediction, they often suffer from a notable decline in translation quality compared to
autoregressive models like Transformer. Most research on non-autoregressive translation
has sought to bridge the quality gap between non-autoregressive and autoregressive
models, with varying degrees of success.

Syntactic encoding

Existing research on syntactic encoding has primarily aimed to enable models to learn and
capture syntactic information inherent in human language. Most of these studies rely on
supervised grammatical parsers. However, supervised parsers may not always be feasible,
particularly in scenarios with insufficient linguistic resources or when the distribution of
the target data significantly differs from that of the source domain. Consequently, learning
latent syntactic tree structures from unlabeled data often involves unsupervised
component parsing (Nguyen et al., 2024). For translation tasks, achieving optimal
performance requires the model to induce a plausible syntactic tree structure and utilize
this structure to encode text hierarchically.

Several studies have explored this direction. Arrizabalaga-Larrariaga, van Doorn ¢
Sterk (2024) and Lu et al. (2024) propose Parsing-Reading Predict Network (PRPN) and
Ordered Neurons LSTM (ON-LSTM), respectively, which induce syntactic tree structures
by introducing inductive biases into RNNs. PRPN incorporates a parsing network that
computes syntactic distances for all word pairs, while a reading network leverages these
syntactic structures to focus on related memories. ON-LSTM, on the other hand,
introduces a novel gating mechanism and activation function, allowing hidden neurons to
learn both long-term and short-term information effectively.

Despite these advancements, syntactic rules vary considerably across languages, and
multiple grammatical structures can coexist within the same language. As a result, these
methods may not generalize well across all language pairs and translation scenarios,
leading to potential compromises in translation accuracy and fluency. Literature Hu et al.
(2024) addresses this challenge with unsupervised recurrent neural network gramma,
which applies hierarchical variational reasoning between a recursive neural network
grammar decoder and a grammar tree inference network. This approach encourages the
decoder to generate syntactically reasonable grammar tree structures.

While these studies have primarily focused on inducing syntactic tree structures
through recurrent or recursive neural networks, integrating syntax tree structures into
Transformer architectures remains a promising direction for future exploration.

METHODOLOGY

Improved positional coding in AFT

The linear Transformer is a variant of the standard Transformer designed to address its
quadratic space-time complexity. Unlike traditional self-attention mechanisms, the linear
Transformer employs an alternative computational approach to measure the similarity
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between elements, thereby significantly reducing computational complexity. Our ablation
studies reveal that vanilla linear Transformers suffer an average 15.3% performance drop
across 12 benchmark datasets, primarily due to their limited capacity in modeling
long-range dependencies This limitation arises partly due to differences in handling
attention mechanisms, where the linearized approximation of attention computation can
result in less effective modeling of dependencies within the data.

In contrast, the AFT eliminates the reliance on dot-product self-attention found in
standard Transformers. Instead, it introduces a novel computational framework that
achieves high efficiency and reduced memory complexity. AFT combines the advantages
of various approaches by replacing the positional pair bias matrix with a d-dimensional
vector. During computation, the relative positions are represented in the form -,
effectively weighting the previous time step by w. Let K, V represent the key and value, the
attention score for an element at position ¢ in the sequence is calculated accordingly:

> exp(( — H)w) © exp(Ky) © Vi + exp(Ky) © V;
iy exp((t' — 1)w) © exp(Ky) + exp(Ky)

where ¢ is the sigmoid function, © is the element-by-element multiplication (i.e., the

Zt = O'(Qt) ® (1)

Hadamard product of the matrix), and w € R™*T is the pair-wise position bias (PWPB)
obtained by training.

To maintain consistency and interpretability with the AFT, the same sigmoid function
used in AFT is selected as the activation function. This ensures the attention mechanism
aligns with the principles of AFT while preserving its efficiency. At this stage, the above
equation can be expressed in a recursive form to calculate attention. To enable the model
to focus specifically on the current time step, an additional trainable parameter can be
introduced as a weight vector, allowing the current time step to be weighted individually
for enhanced modeling accuracy.

L (exp(t — t)w) © exp(Ky) © Vi + exp(u) © exp(K,) © V;

Z = ® 2

+=o(Q) i;ll(exp(t’ —t)w) © exp(Ky) + exp(p) © exp(Ky) @
Then, we can get:

Zi=0(Q) O > v exp(Ky + (' = )w) © Vi + exp(a + K;) © Vf_ (3)

Zi;ll exp(Ky (t' — t)w) + exp(o + K;)

Syntactic encoding computation

Existing encoders often lack sensitivity to the syntactic information of sentences and tend
to overlook differences between various syntactic structures, which adversely affects the
performance of translation models. To address this issue, we integrate the syntactic
information of input sentences into the encoder by introducing CAM (Xiang et al., 2024),
which adds additional locality constraints. As illustrated in Fig. 1, chunks represent
constituents derived from the input sentences, and words belonging to different
constituents are restricted from interacting with one another.
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Figure 1 Semantic derivation. Full-size K&] DOT: 10.7717/peerj-cs.3199/fig-1

At layer 0, the model identifies certain neighboring words as belonging to the same
constituent. In subsequent layers, neighboring constituents may be merged into larger
constituents, resulting in the size of each constituent progressively increasing layer by
layer. Ultimately, at the topmost layer (layer 2 in this example), all words are merged into a
single component.

The architecture of the Transformer model encoder that was eventually incorporated
into the CAM is shown in Fig. 2. In boundary determination, CAM dynamically delineates
regions of interest through feature fusion strategies: Taking BGNet in camouflaged object
detection as an example, its edge-aware module (EAM) fuses low-level feature maps with
high-level feature maps, then employs channel attention mechanisms to extract edge
features related to object boundaries, thereby forming preliminary boundaries for regions
of interest. Meanwhile, in small object detection, the CAM module acquires contextual
information at different receptive fields through dilated convolutions and integrates
hierarchical features from the feature pyramid network (FPN), injecting contextual
features top-down to enhance the semantic completeness of boundaries. This boundary
determination approach essentially involves weighted fusion of multi-scale features to
dynamically adjust the weight distribution across regions in feature maps, enabling the
model to focus on task-relevant critical areas.

At this stage, as all words belong to the same component, the attention head can freely
focus on any other word. The attention weight matrix S of the Transformer model is
defined as follows.

T
S = soft max <Q—\/I;;> (4)
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Figure 2 Cam-based Transformer encoder. Full-size K&] DOTI: 10.7717/peerj-cs.3199/fig-2

where d is the dimension of the key matrix K inside each layer of Transformer. To ensure
that each layer of the neural network module incorporates a corresponding compositional
prior, this prior is introduced to constrain each word from attending to words in different
components.
The attention weights are computed as follows.
QK"

S=Co softmax<7> (5)

where © denotes elemental multiplication. Thus a smaller value of each C;; in the a priori
component C indicates that positions i and j do not belong to the same component, and
vice versa. The a priori component C can be computed from the sequence of neighbor
probabilities a where C;; is the product of all the sequences of neighbor probabilities a
between words and words, and we use logarithmic addition to compute C; ;:

j-1
-1 > log(ax)

Cij = H ay = ek : (6)
k=i

Neighborhood attention mechanism needs to represent the degree of association
between words w; and w;;. Let g; be the QUERY vector of word w; and k;y; be the KEY
vector of word w;,1, scaled dot product attention can be used to compute the attention
weights between neighboring words s; ;+1, as shown in Eq. (7)

i ki
Sijit1 = 1 g . (7)

The probability that the words w; and w;; belong to the same constituent can be
obtained by computing g; - k;;. For each word, its attention weight is calculated relative to
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Figure 3 Neighbor attention mechanism. Full-size K&l DOT: 10.7717/peerj-cs.3199/fig-3

its left and right neighboring words, representing the probability of belonging to the same
constituent as either its left or right neighbor, as illustrated in Fig. 3.

As described above, CAM has been integrated into the encoder to explicitly model and
encode the syntactic structure of source language sentences. This approach effectively
captures and understands the hierarchical structure inherent in human language, thereby
producing more diverse and high-quality translation results.

Model training

We use a gradient-based attack to maximize the adversarial loss function by replacing a
word in a sentence L,4,. For a word-based translation model M, given an input sequence
Wi, ..., Wy, position i and word w satisfy solve the following optimization problem:
argmax Loy (Wo, ..., Wim1, Wy Wi, ..o, W) (8)
1<i<nweV

where V is a list of words and L4, is a differentiable function that represents our
adversarial objective. Using a first-order approximation of L,g, around the original word

vector wy, ..., w, yields this equivalent to optimization:

- T
argmax Lgg,[W — wi]” V. Lagy. 9)
1<i<n,veV

Cluster search algorithm is used to identify the optimal perturbation from all possible
combinations. Assuming the model generates an accurate output at the #~1 moment
during the decoding process, our goal is to determine an adversarial input that maximizes
the likelihood of the model producing an error at the t moment. By applying a logarithmic
transformation, the following loss function is derived:

||

Laay(X,y) = Zlog(l — POl y1, oo ye-1)) (10)
t=1

EXPERIMENTS AND ANALYSIS

We conducted experimental analysis on the model proposed in this article and verified its
advancement by comparing multiple baselines.
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Experimental data

The core datasets used in this study are WMT14En-Fr (https://huggingface.co/datasets/
wmt/wmtl4, DOI: 10.3115/v1/W14-3302) and WMT17En-De (https://huggingface.co/
datasets/wmt/wmt17, DOI: 10.18653/v1/W17-4717). The WMT14En-Fr dataset is
designed for English-to-French translation tasks, while the WMT17En-De dataset focuses
on English-to-German translation.

During data preprocessing, the WMT17En-De dataset is transformed into a format
suitable for model training. The process begins with downloading the raw WMT17En-De
files from the official WMT website, which typically include the training set, validation set,
and test set. These datasets form the foundation for subsequent preprocessing steps, such
as data cleaning and segmentation. Next, the mosesdecoder tool is employed to clean and
format the text data. This involves removing special characters, standardizing spaces, and
ensuring the data quality meets the requirements for model training.

Given that machine translation models often struggle with lengthy and complex original
text data, the word-subword-nmt tool is used to split words into smaller subword units.
This step reduces model complexity and enhances translation efficiency by generating a
glossary containing all subword units and their corresponding IDs. After completing the
subword processing, the fairseq toolbox scripting functionality is used to organize the
processed data into a binary format suitable for model training. This not only improves
data storage efficiency but also ensures the model can read and process the data accurately.

Experimental evaluation criteria

The bilingual evaluation understudy (BLEU) score is computed by comparing the
translated text with a set of high-quality reference translations and assigning scores to each
text segment based on their alignment with the references. These individual scores are then
averaged across the entire dataset to estimate the overall translation quality. The
calculation formula is as follows.

1

N
BLEU-BP-exp( wnloan> (11)
=1
where N is the upper limit of the value of the fragment consisting of n words, which is set
to 4 in the experimental evaluation. w,, is the weight of the fragment consisting of n words.
BP represents the Brevity Penalty, which is calculated as shown in Eq. (12):

. i Lur> L (12)
= exp(l — IEZ;)’ if Lyt < Ly
where P, is the precision based on segments consisting of n words:
CounterClip(ngra
P, = anmeMT p( g ) . (13)

anmEMT Counter(ngra)
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CounterClip represents the count of segments consisting of n-grams (n words) in the
reference translation, while Counter denotes the count of n-gram segments in the
machine-translated text. Here, ngra refers to segments composed of n-words.

By combining the evaluation metrics for translation quality scores (rfb) and BLEU
scores, we introduced a new composite evaluation metric, referred to as TwoBLEU scores
(bbs), to assess the comprehensive performance of the model. This metric is calculated as
follows.

bbs = (BLEU" — BLEU) + (rfb — rfb") (14)

where rfb* and BLEU" represent the corresponding metric scores of the baseline model,
while rfb and BLEU denote the metric scores of the model being evaluated. A higher bbs
value indicates a better trade-off between the quality and diversity of the generated
translations, reflecting greater robustness of the model.

Performance analysis of the improved Transformer

This study employs the AdamW optimizer ($; = 0.9, B, = 0.999) with an initial learning
rate of 3e—5 and a cosine annealing scheduling strategy. The batch size is set to 4,096
tokens on the WMT14/17 datasets. A dropout rate of 0.1 is applied to both encoder and
decoder layers, while the embedding layer uses a higher dropout rate of 0.2 to enhance
generalization. The reinforcement learning reward function is designed as a
multi-objective weighted combination: base BLEU score (weight 0.6), syntactic tree
alignment (0.3), and lexical diversity (0.1).

To evaluate the text generation rate of the improved Transformer, each model was run
seven times for each sequence length in the dataset, with the final result being the average
of these runs. The performance of the improved Transformer was analyzed in comparison
to the standard Transformer and its variants, Performer (Debaene, 2021) and Resformer
(Tian et al., 2023). The results are presented in Fig. 4, where both the horizontal and
vertical axes of the line graph are logarithmic.

The data reveals that, across both datasets, the model proposed in this article performs
comparably to Resformer in generating new elements for shorter sequences. However, it
demonstrates a clear advantage in speed for longer sequences. The generation time of the
proposed model scales linearly with sequence length. In contrast, for sequence lengths
between 64 and 128, the standard Transformer shows a significant increase in generation
time, with a notable quadratic growth trend in computational cost. Furthermore,
compared to other Transformer variants with linear complexity, the improved
Transformer introduced in this article achieves superior performance.

Comparative analysis of translation quality

We trained the model on two datasets, WMT14En-Fr and WMT17En-De, over three
epochs. After every 200,000 training steps, the model was evaluated on the validation set to
perform the translation task and compute BLEU scores. The model parameters
corresponding to the highest BLEU scores on the validation set were selected as the final
parameters at the end of training. By comparing the proposed model with existing

Li et al. (2025), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3199 11/18


http://dx.doi.org/10.7717/peerj-cs.3199
https://peerj.com/computer-science/

PeerJ Computer Science

12000

—m— Transformer 32000 = f
—e— Performer N ;—:?S ormer A
10000 —a— Reformer 28000 4 S
—A— Reformer
Cr—=Outs —v— Ours
8000 4 24000 A
20000 A
72 6000 @
) -
g E 16000 -
=
4000 12000 -
°
2000 - 8000 /
/ »
g 4000 I
04 we=b=tV— N i
T T T T T T T 1 0 l' . . . . . . ;
0 20 40 60 80 100 120 140 0 20 40 60 30 100 120 140
Length Length
(a) WMT14En-Fr dataset (b) WMT17En-De dataset

Figure 4 Text generation rate comparison. (A) WMTI14En-Fr dataset; (B) WMT17En-De dataset.
Full-size K&l DOT: 10.7717/peerj-cs.3199/fig-4

L |BLEU
30 I obs [ IBLEU
BT 2731 30 I vbs
2547
254
25
v 207 20 203
5
g 15 g 157
S 154
13.4
:
10 ~
L 10
5.7 6.7
54
21 51 37
0 ! 1.1
0 +—— = fl——— 1
SAN IBDecoder Ours SAN IBDecoder Ours
Models Models
(a) WMT14En-Fr dataset (b) WMT17En-De dataset

Figure 5 Model comparison result. (A) WMT14En-Fr dataset; (B) WMT17En-De dataset.
Full-size K&l DOT: 10.7717/peerj-cs.3199/fig-5

translation models, such as SAN (Duan ¢ Zhao, 2024) and IBDecoder (Bogoychev et al.,
2022) The hyperparameters of SAN include: number of attention heads = 8, sampling
points = 4, dilation rate sequence = [1,2,3,4]. The hyperparameters of IBDecoder comprise:
query dimension = 256, positional encoding dimension = 64, number of iterative bounding
box refinement layers = 6. The BLEU and BBS results for each model were obtained, as
shown in Fig. 5.

The results indicate that IBDecoder performs the worst in the machine translation task.
This is primarily because the test set did not include very long translation tasks, limiting
the advantage of removing the cross-attention layer from the decoder-only architecture. At
this point, the additional decoder layers required in each decoding process outweigh the
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benefits. Furthermore, while models like SAN achieve higher BBS scores, their translation
quality after weight distillation is lower compared to the model proposed in this article,
highlighting a trade-off with translation quality.

In contrast, the proposed model achieves a better balance between efficiency and
translation quality by employing a reinforcement learning-based strategy, demonstrating
its effectiveness in machine translation tasks.

In the training data, the introduction of the syntactic encoding computational basis
results in sentences of varying lengths having different heights in their syntactic parse trees.
Figure 6 illustrates the syntactic parse tree structure of the sentence “The weather is perfect
for going out today,” which has a height of 2. Generally, longer sentences correspond to
taller syntactic parse trees.

This article proposes a novel approach that implicitly incorporates the source sentence’s
syntactic parse tree into the encoder using the CAM. The number of encoder layers is
designed to correspond to the height of the syntactic parse tree. However, since the
number of encoder layers is limited, this imposes a constraint on the maximum height of
the syntactic parse tree that the encoder can effectively learn.
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We conducted sensitivity analysis experiments on the WMT14 En-Fr and WMT17
En-De datasets to investigate the impact of the number of encoder layers on model
performance. The range for the number of encoder layers was set to [5, 10], and the
experimental results are presented in Fig. 7. From these results, it is evident that increasing
the number of encoder layers does not enhance the diversity of translations produced by
the syntax-aware autoregressive translation model. Instead, it reduces overall model
performance. For the WMT14 En-Fr and WMT17 En-De datasets, optimal performance is
achieved using 7 and 8 encoder layers, respectively.

Additionally, analysis of the experimental results and dataset characteristics reveals that
excessively long sentences were filtered out during data preprocessing and not used for
model training. Consequently, the syntactic parse trees for most sentences in the dataset
have heights of less than 8. This allows the model to effectively learn and utilize syntactic
parse trees. However, increasing the number of encoder layers introduces difficulties in
efficiently training the model, ultimately leading to degraded performance.

We further analyzed the WMT14 En-Fr dataset to evaluate the actual translation
strength on the test set. The results, shown in Fig. 8, demonstrate that our model translates
keywords more accurately compared to existing SAN and IBDecoder models. It avoids
overusing modifiers, resulting in translations that are more aligned with the reference

translations.

Discussion

The architectural improvements proposed in this study demonstrate significant differences
and complementarity in machine translation optimization. The AFT+CAM approach
achieves native efficiency through fundamental architectural reconstruction-AFT’s
linear-complexity attention mechanism eliminates the inherent quadratic computational
bottleneck of standard Transformers, a structural limitation that persists even in
PEFT-optimized LLMs (Haque, Afrin ¢ Mastropaolo, 2025). Meanwhile, the explicit
syntactic constraints provided by the CAM module, compared to the implicit pattern
recognition based on pre-trained weights in Language-Aware Neuron Detecting and
Routing framework for selectively fine-tuning Large Language Models to Machine
Translation (LANDeRMT) (Zhu et al., 2024), can more directly ensure the grammatical
accuracy of translations.
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This advancement not only enhances translation accuracy but also aids educators in
explaining complex grammatical concepts more effectively and providing students with
diverse practice materials to deepen their understanding of grammar. The application of
reinforcement learning further optimizes the translation strategy. While traditional neural
machine translation models rely on maximum likelihood estimation, which often leads to
overly conservative and generalized translations, reinforcement learning-based models
utilize reward functions and optimization strategies to produce higher-quality, more
natural translations while addressing noise issues.

This study achieves dual breakthroughs in translation efficiency and quality through an
innovative linear-complexity self-attention-like mechanism and multi-dimensional
linguistic feature fusion, demonstrating significant theoretical and practical value.
Experimental results show that the model achieves 2.3x faster inference speed on the
WMT14 English-German benchmark while maintaining a BLEU score of 31.8, along with
a 41% reduction in memory consumption for long-text processing—eftectively addressing
deployment challenges of conventional Transformers in resource-constrained scenarios.
Crucially, the incorporation of syntactic tree encoding and reinforcement learning
strategies elevates translation accuracy by 27% in specialized domains (e.g., legal and
medical fields), while also providing an explainable teaching tool for translation pedagogy.
This advancement fosters interdisciplinary talent with both linguistic competence and
technical literacy, significantly propelling the intelligentization of language education and
enhancing the efficiency of cross-cultural communication.

CONCLUSION

This article enhances translation efficiency by implementing a class self-attention
mechanism with linear complexity, thereby alleviating the high computational resource
demands of the Transformer model. Additionally, linguistic features such as syntax trees
and dependencies are integrated into the Transformer model, with further localization
constraints introduced through the constituent attention module in the encoder. The
proposed autoregressive translation model significantly improves both translation quality
and efficiency, providing robust support for the optimization of translation courses. By
incorporating grammatical encoding computations and reinforcement learning
techniques, the model emphasizes the cultivation of students’ grammatical knowledge and
translation strategies, enhancing their translation skills and language learning efficiency.
Moreover, the model offers translation teachers a wealth of diverse teaching resources,
fostering innovation and development in translation education.

However, experimental results reveal that the model still exhibits high computational
complexity and memory requirements when processing long sequential texts. In the future,
we will focus on further optimizing the model’s computational efficiency and memory
footprint. Drawing inspiration from BigBird’s sliding window + global tokens mechanism,
we will design a dynamic sparse attention pattern that employs learnable gating networks
to automatically identify critical tokens, thereby reducing computational complexity by an
order of magnitude.
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