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ABSTRACT
Early and precise detection of diabetic retinopathy (DR) is essential in averting vision
impairment. This work introduces graded region wise inspection and feature
dissection (GRIFD), a novel deep learning architecture designed explicitly for
fine-grained DR detection from fundus images. GRIFD enforces a graded region of
interest (ROI) dissection approach, which methodically segments fundus images into
diagnostic blocks to promote local lesion visibility. A recurrent neural network
(RNN) is used to model sequential dependencies between these ROI blocks, aiming
to mimic the progressive development of DR symptoms. We also introduce a
cross-pooling refinement procedure to eliminate inter-region inconsistencies and
improve feature continuity. Experiments on the Mendeley and EyePACS
benchmarks show that GRIFD obtains 94.35% accuracy, 96.05% precision, and
94.91% specificity on Mendeley, all of which surpass baseline models such as
convolutional neural network (CNN), long short-term memory (LSTM),
Transformer, and some published DR detection models. The introduced framework
presents a lightweight and robust method for DR screening and can potentially
facilitate real-time clinical practice.
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INTRODUCTION
Diabetic retinopathy (DR) is a chronic disease resulting from dysfunction of insulin
production in the retina. DR detection is a crucial task in healthcare applications (Ikram
et al., 2024). Fundus photography is a process that captures the retina of the eye with a
fundus camera. Fundus images are inputs that produce the exact condition of the retina. A
feature extraction-based DR detection method is used in healthcare centers (Kaur, Mittal
& Singla, 2022). The extraction technique extracts the infected regions and patterns of the
regions from fundus images. The extracted features are used as datasets in further DR
detection processes (Kumari et al., 2022). The extraction-based method identifies the blood
vessels with infectious regions which eliminates the latency in detection (Jabbar et al.,
2024b). The detection method maximises the precision ratio when providing medical
services to patients. An automated DR detection approach using fundus images is used for
the detection process (Abushawish et al., 2024). The detection approach analyses the
textural features and factors of the retina via given fundus images. The approach is used as
an early DR detection which improves the feasibility range of the detection systems (Alavee
et al., 2024).

Region of interest (ROI) extraction is a process that extracts the important regions from
the fundus images. ROI extraction reduces the data loss ratio while detecting DR disease
(Bansal, Jain & Walia, 2024). A deep neural network (DNN) algorithm-enabled ROI
extraction method is used for DR detection. The DNN algorithm inherits a classifier that
classifies the exact types of diseases according to the condition of the retina (Muthusamy &
Palani, 2024). The DNN algorithm analyses the significant factors that are extracted from
the images. The extraction method is a two-stage method that identifies segments of the
ROI as per necessity (Sundar & Sumathy, 2023). The method elevates the functional
quality and capability level of the detection systems. An improved feature extraction
technique is used for ROI extraction in DR detection. The extraction technique utilises a
Gaussian mixture model (GMM), which identifies the lesion and surrounding regions in
the input images. The GMM also examines the difference between features and patterns
for further disease detection processes. The extraction technique enlarges the accuracy
range of DR detection in healthcare applications (Berbar, 2022; Jabbar et al., 2024a).
However, the majority of the existing approaches are plagued by persistent issues such as
variable segmentation of lesion boundaries, weak adaptability to locale-based pixel
variability, and excessively high rates of false-positive detection when vascular structures
interfere with lesions. Furthermore, the typical feature extraction methods cannot model
inter-regional dependencies and consequently exhibit inefficient performance in the
presence of complex fundus image scenarios.

Machine learning (ML) algorithms are used in DR detection for the region dissection
process. ML improves the precision level in the DR detection process (Pavithra, Jaladi &
Tamilarasi, 2024). A hybrid inductive ML algorithm-based detection model is used for
region dissection. The regions are segmented as per reliable data, which reduces the
complexity level of the detection process (Aziz, Charoenlarpnopparut & Mahapakulchai,
2023). The ML algorithm pre-processes the data collected from the fundus images. The
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collected data is analysed using an extraction technique that minimises the energy
consumption ratio in further detection processes (Malhi, Grewal & Pannu, 2023). The
model segments the important regions of the images for detection. The ML
algorithm-based model enhances the quality range of the detection process (Gupta,
Thakur & Gupta, 2022). A convolutional neural network (CNN)-based region dissection
method is also used for diabetic retinopathy (DR) detection. The CNN algorithm evaluates
the visual representation of the fundus images and segments the regions according to the
severity (Shamrat et al., 2024). The segmented regions are used as inputs, improving the
precision level of DR detection. The CNN-based dissection method is used for early DR
detection in healthcare systems (Niu et al., 2021). To overcome these shortcomings, we
propose an innovative Graded Region-of-Interest Feature Dissection (GRIFD) framework
that integrates sequential feature learning using a recurrent neural network (RNN) with a
cross-pooling validation process. The innovative aspect of GRIFD lies in its ability to
iteratively examine ROI distributions of pixels to identify spatial-sequence-based variation
violations, as well as extract DR-related regions with higher precision and specificity by
isolating these regions from one another. GRIFD differs from conventional methods by
adaptively eliminating inconsistent features using a learned dissection technique, thereby
improving resistance to lesion variability and illumination inconsistencies in the context of
fundus images.

The article’s contributions are listed below:

1. To study different methods related to DR lesion segmentation using optimization and
deep learning methods proposed by other authors in the past

2. To propose a novel graded region-of-interest feature dissection method to improve the
dissection precision of DR lesions from fundus images

3. To validate the proposed method’s performance using accuracy, precision, specificity,
mean error, and detection delay metrics

4. To verify the proposed method’s performance through a comparative analysis using the
above metrics with the existing relation transformer network (RTNet) (Huang et al.,
2022), MCNN-UNet (Skouta et al., 2022), and DRFEC (Das, Biswas & Bandyopadhyay,
2023) methods.

The article’s organisation is as follows: ‘Related Works’ presents the related works
followed by the proposed method’s description in ‘Graded Region-of-Interest Feature
Dissection Method’. ‘Results and Discussion’ presents the hyperparameter, experimental,
and comparative analysis followed by the conclusion, limitations, and future work in
‘Conclusion’.

RELATED WORKS
Kumar et al. (2023) developed an automatic encoder-decoder neural network model for
retinal lesion segmentation. Fundus images are used as a dataset to detect DR. The patches
with crucial features are identified from the images, reducing the process’s computational
cost. The developed model maximises the accuracy of lesion segmentation.
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Huang et al. (2022) proposed a RTNet for DR multi-lesion segmentation. The model
employs A self-attention mechanism that analyses the lesion and vessel features from
fundus images. The interaction between the features is calculated to get feasible data for
lesion segmentation. The proposed RTNet model elevates the performance level of the
segmentation systems.

Jagadesh et al. (2023) designed a new automated DR segmentation approach using a
rock hyrax swarm-based coordination attention mechanism. The segmentation approach
identifies the major cause DR of in the patients. Fundus images are used to extract the
optimal data for lesion segmentation. The designed approach enhances the effectiveness
and feasibility range of the system.

Sasikala et al. (2024) introduced a functional linked neural network (FLNN) based DR
classification method. A variational density peak clustering technique is implemented in
the model, reducing the fundus image noise. It reduces the computational error and
complexity ratio in eliminating the noise. Experimental results demonstrate that the
proposed method enhances the precision level of the DR classification process.

Mishra, Pandey & Singh (2024) proposed a DR classification and segmentation using an
ensemble deep neural network (DNN) algorithm. The method is used to classify early DR
disease, which evaluates the fundus images. The fundus images provide imprecise data for
the classification process. It predicts the important dataset used to eliminate the latency in
classification. The proposed method enlarges the efficiency ratio of the systems.

Guo & Peng (2022) developed a cascade attentive refine network (CARNet) for
multi-lesion segmentation for DR disease. The developed method uses fundus images as
input to produce optimal data for segmentation. An attention fusion approach is employed
here to fuse the relevant features gathered from fundus images. The developed method
enhances the significance and effectiveness range of the segmentation process.

Skouta et al. (2022) introduced a CNN based hemorrhage semantic segmentation. The
introduced model is used for the early diagnosis of DR disease. The potential areas that
contain DR regions are segmented and classified from the given fundus images. The
possible area minimises the overall computational cost ratio of the process. The introduced
model enhances the performance and feasibility level of the systems.

Vinayaki & Kalaiselvi (2022) developed a multi-threshold image segmentation
technique for DR detection. A feature extraction method is implemented to extract the
vessel and region features from the fundus images. The extracted features are used as input
for the DR detection process. Compared with others, the developed technique increases the
sensitivity and accuracy range of the detection.

Nur-A-Alam et al. (2023) proposed a faster region-based CNN (RCNN) method for DR
detection. Fused features from fundus images are used and collected for input. An RCNN
classifier is also used to classify the severity of the diseases. The classifier is used here to
reduce the energy consumption level in detection. The developed method improves the
precision ratio of the detection systems.

Wong, Juwono & Apriono (2023) designed a transfer learning (TL) approach for DR
detection and grading. A simultaneous parameter optimisation algorithm is used here to
pre-train the data from fundus images. Feature weights and parameters are analysed to get
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optimal data for the detection process. It is used to increase the performance level of
medical services to patients. The designed approach maximises the accuracy level of the
systems.

Singh & Dobhal (2024) introduced a deep learning (DL) based TL approach for DR
detection. The introduced approach is used to classify the exact types of DR disease. The
CNN algorithm analyses the possibility of the disease which causes issues in the diagnosis
process. The designed approach enhances the precision and range of significance of the
detection process.

Prabhakar et al. (2024) developed a deep Q network (DQN) model based on an
exponential Gannet firefly optimisation algorithm for DR detection. The ROI is calculated
from the given fundus images. The ROI produces an adequate dataset to detect the exact
class of the DR disease. Experimental results show that the developed model improves the
performance level of the systems.

An enhanced version of Singh & Dobhal (2024) is proposed by Das, Biswas &
Bandyopadhyay (2023) for feature extraction and classification processes. A CNN
algorithm is employed here to identify the severity of the DR disease. The CNN also
evaluates the functional capabilities of the fundus images as inputs. It is used as an early
disease diagnosis process which improves the lifespan range of the patients. The proposed
method maximises the overall accuracy and reliability of the disease detection process.

Singh, Gupta & Dung (2024) introduced a fine-tuned deep-learning model using fundus
images for DR detection. The introduced model is a pre-processing model that evaluates
the disease stages. The DL model trains the datasets gathered from the fundus images. The
introduced model elevates the feasibility and significance level of the DR detection process.

Naz et al. (2024) designed an improved fuzzy local information k-means clustering
algorithm for DR detection. The developed algorithm uses the adjustment parameters
presented in the given fundus images. The individual clusters are calculated from the
images, reducing the system’s computational cost and relay level. The designed algorithm
improves the precision ratio of the systems.

Vij & Arora (2024) proposed a new DL technique for DR segmentation and detection
(SD). Ocular imaging modalities are used as input for the DR diagnosis process. It
segments the blood vessels (BV) and infected regions of the retina. The modalities
minimise the energy consumption range when performing detection services for the
centers. The proposed technique increases the accuracy level of the SD process.

Chaurasia et al. (2023) developed a TL-driven ensemble model for DR disease detection.
The exact cause of blindness is identified to predict the class and types of the disease. The
TL-driven model also analyses the severity of the disease for the further disease diagnosis
process. The developed model increases the performance and feasibility range of the
disease detection process.

Graded-region dissection in fundus images relies on heterogeneous features identified
from multiple distribution rates. Extracting single position-focused features and
distribution for dissection could not identify the exact differences between organised
pixels. Therefore, the region surrounding the lesion or infection relates the ROI and
non-ROI pixels to validate the changes. This results in an increase in false positives due to
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indefinite changes between the identified regions. To address this problem, the
segmentation classification methods discussed above are less feasible due to feature or
edge-based detection methods. The proposed method introduced in this article addresses
this issue by monitoring changes in violation using cross-pooling. The cross-pooling
process is validated to reduce the classification false rates across various pixel distributions
and reduce feature variations and false-positive changes.

The model analyses multifaceted data such as clinical or dermoscopic images and
accompanying metadata by processing each one through individual encoders, integrating
the extracted features, and applying them for classification (Xiang et al., 2025; Tian et al.,
2025). In an alternative exemplary method, a therapeutic gel is designed to be glucose-
responsive, releasing specific agents in hyperglycemic conditions to provide efficient and
targeted therapeutics (Huang et al., 2025; Wu, Sun & Wang, 2024). In parallel, studies on
the regulation of selenoproteins suggest that modulating their functions may offer new
avenues to developing therapies for diabetes by increasing insulin sensitivity, reducing
oxidative stress, and protecting pancreatic beta cells (Liang et al., 2024; Song et al., 2024).
Coordinating these attempts, breath acetone is monitored continuously and in real-time
using state-of-the-art sensors with unparalleled accuracy and speed, capturing metabolic
processes (Sun et al., 2025; Jiang et al., 2025). On the other hand, in the community
healthcare sector, early-stage diabetic retinopathy often goes undiagnosed and untreated
because of the lack of specialised care pathways (Zhang et al., 2024; Ye et al., 2025). Finally,
the effectiveness and dependability of automated report generation for radiology have been
hindered due to reliance on superficial feature-text associations for image analysis (Chen
et al., 2025; Hu et al., 2025).

Recent work has shown increasing interest in deep architectures including attention
mechanisms, self-supervised learning, and transformers for medical image analysis and
these are directly applicable to diabetic retinopathy detection. For example, Tian et al.
(2025) introduced a new self-supervised learning network that enhanced the estimation of
binocular disparity, indicating the potential of representation learning with reduced labels.
Transformer-based models, such as Center Former by Song et al. (2024), have improved
segmentation accuracy by utilising cluster-centric attention, which is well-suited for
identifying small, uneven areas, such as DR lesions (Sun et al., 2025). In the same Wang
et al. (2017) proposed a skin lesion segmentation network based on edge and body feature
fusion, which emphasized the utility of multi-stream attention for accurate boundary
preservation (Wang et al., 2025). In other developments, Sun et al. (2025) investigated the
application of real-time metabolic signal monitoring by CRDS and proposed that
cross-disciplinary methods can impact image-guided diagnosis models. Whereas some of
these have concentrated on physiological or pathological indicators like uveitisWu, Sun &
Wang (2024) or regulation of selenoproteins in diabetes (Liang et al., 2024), others like
(Zhang et al., 2025) explored systemic indicators like the level of vitamin D in patients with
diabetes, providing ancillary diagnostic signals. Concurrently, Hu et al. (2025) proposed a
neural inflammation model for glaucoma through deficiency analysis, suggesting potential
overlaps with imaging and neuro-vascular diagnostic models. Together, these newer works
emphasise the shifting burden of attention, contextual modelling, and integration of
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biological signals in disease detection workflows, highlighting the path pursued in our
proposed GRIFD model for DR classification. Despite the success demonstrated by
previous work in DR detection using a series of deep learning architectures, certain
deficiencies persist. Methods like RTNet (Huang et al., 2022) and CARNet (Guo & Peng,
2022) remain strongly reliant on the application of an attention mechanism but frequently
overlook the integration of time-based or sequence dependencies across ROI segments.
Methods like MCNN-UNet (Skouta et al., 2022) and DRFEC (Das, Biswas &
Bandyopadhyay, 2023) excel at the task of lesion segmentation but tend to suffer from
issues related to pixel-wise consistency and adaptability to lesion intensity or boundary
irregularity. Many methods currently fail to apply the process of eliminating ambiguous or
conflicting features, resulting in increased false positives, particularly in cases of early-stage
DR. The proposed GRIFD approach implements a novel graded dissection process guided
by a recurrent neural network-based guide, combined with a cross-pooling conflict
checking process. This provides the model with the ability to not only assess spatial-based
features but also validate temporal consistency checks, thereby enabling adaptable and
precise ROI location identification. The process of iteratively validating feature
violations and eliminating conflicting regions enables GRIFD to stand out as an effective
solution for DR lesion segmentation in the zone, with fewer errors and increased
specificity.

GRADED REGION-OF-INTEREST FEATURE DISSECTION
METHOD
The study utilised a publicly available dataset from kaggle repository: https://www.kaggle.
com/c/diabetic-retinopathy-detection/data.

DR is a common eye disease among elderly people that occurs in three different stages:
mild, moderate, and severe. Based on this stage, the appropriate treatment is given
accordingly for this detection phase, utilising the RNN. The feature extraction is
performed on the DR image, which focuses on the pixel distribution. This article aims to
improve precision and reduce the error factor associated with varying DR images. The
validation is carried out in the desired manner, performs operations on n x m matrices,
and employs region detection. The ROI, is observed to detect whether the variation rate is
higher or lower. In this detection phase, the variation is periodically checked and employs
normalisation. The DR image is acquired and finds the maximum differences between the
features with higher variation. The severity of the disease is detected in the early stages, and
the necessary treatment is provided by processing the features and characteristics of the
image. The functions included in the proposed method are illustrated in Fig. 1.

Figure 1 illustrates the sequential operations in the GRIFD framework, including
preprocessing of fundus images, feature extraction, pixel distribution analysis, ROI
detection, recurrent learning, cross-pooling, and precision-driven region dissection.

RNN-based feature modeling
In the proposed work, a RNN is used as the core learning architecture to model temporal
dependencies and spatial variations in DR lesions. The purpose of integrating the RNN is to
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iteratively process extracted feature sequences from fundus images and analyse changes in
pixel intensity distribution across different ROI. The RNN’s memory state enables the system
to retain contextual information from previously seen features, which is crucial for identifying
subtle lesion progression or spatial inconsistencies that are not visible in isolated patches.

From the ROI examination, the maximum differences between features with higher
variation are detected. Thus, the ROI-based examination is done for the maximum
differences analysis. Hereafter, the following section focuses on the recurrent neural
network where cross-pooling is observed to validate the variation process and improve the
precision. The ROI is detected using maximum differentiated features in the sequential
pixel distribution along the input image. The features with high variations within the
identified ROI are dissected to determine the maximum changes. The following equation
analyses the assessment layer used to store the previous data of the DR image.

DRðnÞ þ Fx ¼ Pu � R0 � ðn� 1Þ þ n0 �
X

va

Rg þ tc
� �

: (1)

The assessment layer is processed to grasp the previous step of computation and produce
the result. The assessment layer is responsible for performing the pixel identification from
ROI and pursues the feature extraction process. This illustrates the feature extraction
method determines the detection phase and it is pursuing the pixel distribution. The pixel
distribution is done for variation identification and it is symbolized as va. Based on this
assessment, layer RNN grasps the previous step from n number of layers and examines the
cross-pooling method, which is described as Rg . Post to this method, the memory state is
used to reduce the complexity of DR image detection from the pixel distribution, and it is
equated in the below derivative.

ma ¼ R0 n� 1ð Þ � va þ gh � Fxð Þ þ tc: (2)

The memory state isma, the variation changes are observed and it is represented as gh, this
step uses the assessment layer under RNN and stores the information regarding DR. Based
on the DR information the severity is analyzed reliably, by computing the variation
process. The recurrent neural network model for variation detection is portrayed in Fig. 2.

Figure 3 shows how sequential features are passed through the RNN, how memory
states preserve prior variation trends, and how cross-pooling detects dissimilarities
between consecutive layers for accurate DR classification.

Figure 1 Functional architecture of the proposed GRIFD method. Full-size DOI: 10.7717/peerj-cs.3197/fig-1
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The RNN process mode for va detection is illustrated in Fig. 2 for 1 to n layers. The Ro

detected are the inputs for extracting hc using Fx8oa and br . Using these variants of Fx, the
Pu range as 0 or 1 or 0 � j < 1j is defined. The range of Pu is normalized to identify if
Fx 2 tc is same n0 output 2 X0. If the parameters are not the same, then va is the identified
factor for n layer outputs. However, this variation is less concerned with maximum/
minimum changes. The consecutive number of hc and va changes (differences) are used to
define gh provided the recurrency is maintained. The mediate Rg impacted by the va in any
n output is assessed for yi such that n0 is first performed. Irrespective of the DR 0ð Þ to
DR Gð Þ changes, the i0 is the least possible va changes identified. If this va change is detected
then the Rg changes are exactly detected. This variation is examined by using the
cross-pooling method and defines the memory state that computes the storage of the
previous set of information as the assessment layer does. Post to this method the
cross-pooling is done to check whether the variation decreases or not and it is evaluated
below.

Rg ¼
YPu

ma

DR � vað Þ þ gh i0ð Þ � y0ð Þ½ � � DRðnÞ: (3)

Figure 2 Recurrent neural network (RNN) model for DR feature variation detection. Full-size DOI: 10.7717/peerj-cs.3197/fig-2

Figure 3 R0 selection process for region dissection based on pixel distribution. Full-size DOI: 10.7717/peerj-cs.3197/fig-3
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The cross-pooling is performed to analyse the variation and whether it decreases. The
minimum range is i0, where it validates the DR image and efficiently examines the cross-
pooling. Thus, the cross-pooling is used in the memory state and acquires the assessment
layer. The variation decreases and consistency is maintained, and these changes are used to
observe the higher and lower range of variation detection. This format defines the changes,
and from this violation, changes are observed in the following equation.

dm ¼ ma þ R0 þ Rg
� � �

Y

Pu

x0 � i0ð Þ � gh: (4)

The determination is processed for the violation changes that occur due to the variation
check and measures the maximum and minimum format. The maximum is represented as
x0, this stage uses the memory state for the identification of diseases and on which layer it
relies. This determination is labelled as dm, where it computes the maximum and
minimum ranges and the detection phase. The pixel distribution is followed up to find the
violation changes that have minimum changes in this step, training is given and it is
equated as follows.

tr ¼ dm þma � Pu � R0ð Þ þ DR nð Þ � Vd þ y0 � it: (5)

The training is followed up in the above equation, which utilises the determination
phase for analysing maximum and minimum values. This relies on the cross-pooling
method and finds the variation detection and from this violation, changes are detected. If
the violation changes are recognised, then the training is given and it is labelled as tr .

The selection of a RNN to be employed in the GRIFD framework is intentional and
driven by its strength in modelling sequential dependencies in pixel-level feature changes
between ROI blocks. In contrast to CNNs, which focus only on local spatial patterns, and
Transformer models, which utilise global self-attention but are computationally expensive,
the RNN efficiently models the evolution of features in spatially contiguous areas with
minimal overhead. This works well in fundus images where lesions frequently appear as
gradual, sequential changes and are less likely to appear as sudden changes. The memory
state of the RNN allows the model to follow these fine changes across time and support the
identification of accurate lesion boundaries while inhibiting inconsistent or false positive
areas. Such sequential modelling, when added with our cross-pooling mechanism, is the
strongest point of GRIFD in supporting higher precision and specificity along with
minimal detection delay.

Proposed GRIFD framework
In the envisioned GRIFD model, the RNN module utilises a memory cell ct and a hidden
state ht to track sequential shifts in feature activations between consecutive ROI blocks.
This is borrowed from the temporal modelling properties of LSTM-based networks,
commonly used in longitudinal medical image analysis. The cross-pooling violation
pertains to situations where neighbouring regions produce contradictory pooled features,
which are probably due to image noise or intra-anatomical structural overlap. To counter
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this, our cross-pooling procedure corrects inter-region continuity in accordance with ideas
utilized in spatial feature calibration observed in attention-guided filtering approaches.

The feature extraction is done from the input DR image, and the features associated
with the three stages are identified: mild, regular, and high. This examination step
illustrates the variation process that is checked periodically under ROI. This extraction
enables the accurate detection of DR, which is crucial for defining the recurrent neural
network. This network represents the region in n x m matrices and finds its features. Here,
the characteristics of the image are analysed, and the changes are exhibited under the
variation process. This step defines the pixel distribution from the ROI and estimates the
higher-level feature extraction process. The desired features are extracted reliably, and
training is provided if any violations occur. Due to these violations, the constant range is
not maintained under RNN. From this part of the study, the precision degrades,
necessitating improvement in this examination step. The initial step is to validate the DR
image using a normalisation approach, which is described below.

Vd ¼ DRþ Fx � ðbr þ oaÞ þ 1
DR

�
Yoa

br

Fx þ Dtð Þ: (6)

Dt ¼ ðDRþ FxÞ � ðbr þ oaÞð Þ þ y0 � it þ NormalizationðFx;DRÞ: (7)

The validation is carried out in the above equation and it is represented as Vd , the DR
input image is symbolised as DR, and the feature extraction is denoted as Fx, the brightness
and contrast are termed as br and oa. The periodic monitoring is represented as y0, it is the
time taken to perform the particular processing step. The evaluation occurs for the
different feature extraction processes from the input DR image. Here, periodic monitoring
is observed better, and the extraction is pursued reliably. Both the brightness and contrast
are considered, and better analysis is performed for image retrieval from the database and
detecting whether the diseases are standard, higher, or lower. Executing this step
determines the period that considers the image’s brightness and contrast and performs
better detection to improve the precision level, which is the scope of this work. The
progression is executed reliably and illustrates the pixel-distribution stage.

Pixel distribution assessment
Before training the GRIFD model, two types of inputs were extracted from the fundus
images: Feature-Based Inputs, these include textural and intensity-based descriptors such
as mean intensity, local binary patterns (LBP), and histogram-based contrast variations
computed within each ROI block. Each image was partitioned into non-overlapping n� n
blocks, from which first-order statistics and Gabor-filtered responses were collected as
features. Edge-based inputs, for edge-oriented analysis, the same ROI blocks were passed
through gradient-based filters (e.g., Sobel and Laplacian) to extract contour and vessel
boundary features. Edge maps were then analysed for abrupt variation transitions using
variance and entropy calculations across neighbouring pixel clusters. These extracted
feature vectors were then standardised and normalised before being used as input to the
recurrent neural network. The varying conditions (i.e., different lighting, contrast, lesion
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presence, and vessel occlusion) were simulated across images to evaluate the model’s
robustness under multiple feature and edge conditions.

The pixel distribution assessment is performed using the extracted features; the initial
stage is to validate the DR image using normalization. This normalization is carried out
based on the pixel-distribution process, which defines the validation method. The
validation is executed for the DR image extraction from the database and performs the
normalisation that includes the brightness and contrast. Based on these two parameters,
the feature of the DR is extracted and observes the better detection of variation. Here, the
variation check is executed to examine the reliable processing step and verify the
normalisation condition. This normalization is used to illustrate whether the image has
higher brightness or contrast, and in other cases, lower brightness or contrast. On
processing this evaluation, the validation runs through reliable feature extraction
promptly. From this computation step, the analysis is conducted to detect DR within the
specified severity range, and it identifies the specific characteristic, as formulated below.

yi ¼ ðDRþ FxÞ �
Xca

br

hc � hc þ cð Þ: (8)

c¼ ðPuþFxÞ�tch iþ ðtc �PuÞ�ðFxþhcÞ½ �þ
X

tc

ðhcþDRÞ�½y0�it�ð ÞþResidualAdjustment: (9)

The analysis is conducted for the specific characteristic used to detect DR images. The
characteristic is represented as hc, Pu is symbolised as pixel-distribution, the detection is tc.
This is executed in the desired manner and that illustrates the periodic observation takes
place on time. The evaluation step is executed for the varying DR image and is associated
with the characteristic used for the analysis phase. This analysis, denoted as yi, is
performed under different input image sets and examines pixel-based acquisition. This
defines a more efficient processing step for the DR image and facilitates the variation
check. The variation check is followed up for the DR and analysis of the characteristic,
which refers to the light condition during image capture. Based on this capturing process,
the study shows a slight variation in the input image. To improve the detection phase, the
feature used to examine the characteristic-based input image is evaluated. This shows the
image characteristic in the required manner for time-based computation.

Periodic observation is conducted to identify characteristic image features and
accurately validate the pixel distribution. This evaluation is undertaken to facilitate the
desired computation related to the timely observation of characteristics and provides the
necessary steps accordingly. In this execution step, the analysis for the specific
characteristic leads to detecting pixels on n × mmatrices and gives the necessary step. This
processing step is used to identify the DR image along with the features and characteristics
and provides the appropriate detection phase. This includes the appropriate processing
that estimates the memory state, which involves mapping the DR image’s previous data to
the current data and is executed under the RNN. The computation performs feature
extraction to provide necessary detection for characteristics and gives the parameters. This
processing step is carried out based on the characteristics and features of the DR image.
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Following this observation process, feature extraction is performed using the equation
below.

Fx ¼ y0 þ ðDR � tcÞþ
XVd

Pu

ðyiþDRÞ � ðPuþR0ÞþðDR �hcÞ½ � � ðtc� itÞf gð ÞþResidual: (10)

Residual ¼
X

ðDR � VdÞ þ n0ðhcÞ � Vdð Þ � it þ y0 � yi � ðhc þ DRÞð Þ: (11)

The feature extraction is executed in the above equation, which represents the DR image
and is associated with a characteristic of the image. The evaluation takes place for the
normalisation of DR, as discussed in equation, where the ROI is symbolised as R0. The
normalisation is described as n0, the processing step is used to determine a better detection
of pixel distribution for the improvement of precision. The precision level is maintained
reliably, and it estimates the image characteristics process. The progression is used to
define the image characteristic and find the validation and normalization of the input
image. This input image is used to extract the necessary features and perform the detection
phase. The detection plays a vital role in the validation process, exhibits the image’s feature
and computes the variation. The pixel distribution is performed using DR detection and
displays the ROI resulting from the pixel distribution. The R0 selection process is defined
using Fig. 3.

The Fig. 3 depicts how the proposed method selects ROI blocks by intersecting
pixel-distributed features and evaluating them against feature variation thresholds to
determine eligible dissection zones.

The R0 is identified as an intersection between m� nð Þ8yi and Pu extracted from it .
Depending on the Fx identified, if hc � Fxð Þ then oa and br for n and m are used to define
the new region of DRi =2 Pu. If the range exceeds the actual Pu then n0 is pursued as
DR � Vdð Þ and y0 � itð Þ for all Pu þ Fxð Þ 6¼ 0. This process is computed towards br and oa
classification for hc differentiation such that n0 hcð Þ is the sub-category of normalization
performed from Pu þ Roð Þ whereas, y0 þ hcð Þ. Based on this difference between y0 and Pu,
the Ro is extracted. Hence, the process constitutes both oa and br 2 hc (Fig. 3). The
extraction is done for the varying DR that is executed in the required manner and
illustrates the n� m matrices. In this methodology, validation is exhibited for the DR
normalization process and evaluates the precision rate. By examining the severity range,
the diseases are detected with the use of features and characteristics and pursue the
extraction of necessary features. Only the necessary features are extracted within the
required period, and a more thorough analysis of the memory state enables the periodic
checking of variations that occur under ROI. Hereafter, the feature extraction is an
important step that calculates the ROI using the DR image as input and exhibits validation.
Validation and normalisation are used for the feature extraction, which includes the
brightness and contrast. Based on this, the ROI is calculated using the pixel distribution
method. From this approach, the necessary features are extracted from the DR, and a
post-processing step is applied to the pixel distribution based on the extracted features, as
formulated below.
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Pu ¼ DR � ðtc þ VdÞ � R0 þ ðbr þ oaÞ þ ðFx þ n0Þ � Vd þ Fx � DRþ ðFx � itÞ � yi: (12)

The pixel distribution is done from the feature extraction process and that defines the
better recognition of brightness and contrast. To identify the necessary features the pixel
states the collection of blocks that appear on the DR image. From the feature, the
segmentation is done as a pixel distribution that includes the block size. Here, the n × m is
used to define the feature extraction process and periodically pursues the checking process.
The n × m matrices are used under pixel distribution and they provide the appropriate
detection of DR image. This processing step is used to define the matrix format in which
the feature extraction is performed. The matrices used in this work are used to matrix the
feature extraction process. The pixel distribution is carried out in the desired format, which
exhibits the feature for the change area derived from the pixel-based distribution obtained
through detection in the region. The ROI is used to determine this pixel distribution and
provides the necessary steps accordingly. The brightness and contrast are used to evaluate
the differences among the features.

The feature extraction is evaluated for the pixel distribution process and that defines the
validation process for n � mmatrices. The ROI is calculated for the varying analyses and
findings related to the severity of diseases at different stages. The normalization is followed
up for the specific characteristic and estimates the desired processing. The progression
runs through the analysis of the maximum difference between the features and with a
higher variation rate. This variation rate differs based on the pixel-distribution technique,
which exhibits the necessary feature extraction. The essential features extracted along with
these characteristics are used to examine the periodic validation of DR and find the
treatment. The treatment is carried out for the DR patient by identifying the region of
interest, which is performed under pixel distribution. Hereafter, the examination is done
for the ROI where the maximum difference between the features with higher variation is
computed and expressed in the equation below.

X0 ¼ R0 þ Fx � Puð Þ þ yi � DRþ y0: (13)

The examination is done for the ROI features and it is described as X′, this includes pixel
distribution and feature extraction. The processing step includes the n × m matrices that
pursue the DR image and analysis is carried out. The analysis is followed up for the feature
extraction and pixel distribution process, and defines a better recognition of DR from the
input image. The examination is done for the ROI image that exhibits the detection phase
and it is associated with the pixel distribution. From this, both the necessary features and
pixel distribution are followed up on periodically to detect the DR.

Cross-pooling mechanism
From this estimation, variation detection is followed up as the iteration from RNN for
change detection. The variations are the training inputs used for the detection of lower
variation occurrences. Hereafter, the variation detection is examined in the following
equations.
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va ghð Þ ¼ y0 þ DR nð Þ � Fxð Þ þ vh � tr: (14)

The variation change occurrences are analysed in the above equation, which exhibits the
training phase for the minimum variation. These changes are done from the violation step,
and it is labelled as vh, and evaluates the recognition of variation from high to low. If it
occurs, then the change detection is carried out for the variation process, where the
classification is processed, and it is represented in the equation below as follows.

gh tcð Þ ¼ va x0; i
0ð Þ � Pu þ R0 DRð Þ � fs: (15)

The change detection is performed and finds the ranges from high to low variant, from
this case, the pixel distribution and feature extraction verifies the change detection
occurrences reliably. The classification fy, is used to differentiate the maximum and
minimum variation from the cross-pooling process among the layer’s representation. The
cross-pooling process variation detection is portrayed in Fig. 4.

Figure 4 presents the evaluation of variation levels (high or low) across RNN layers
through cross-pooling, enabling the network to classify regions with precise control over
changes and dissection logic.

The cross-pooling for va ghð Þ detection relies on va observed in it and n8Pu. Based on the
i0 � y0ð Þ input classification for xo and xo � i0ð Þ differentiations, the vh check is performed.
From this computation, tc � itð Þ and tc þ itð Þ for any range of Pu. Considering this validation,
theDRð0Þ toDR nð Þ is clubbed from the last knownma and i0 detected. If the i0 is less than the
previous Pu instance, then xo þ ið Þ is the maximum change identified from gh. In case of a new

Figure 4 Cross-pooling estimation flow for variation detection.
Full-size DOI: 10.7717/peerj-cs.3197/fig-4
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va detected from any n, the Rg is estimated from tr provided vh � trð Þ is the recent (updated)
change. Therefore, the change is suppressed by supplementing br (or) oa from the hc detected.
Therefore, va ghð Þ classifies i0 �mð Þ and i0 � nð Þ8vh check as in Fig. 4. Thus, the change
detection is executed for the classification model, and from this region, dissection is done from
the change analyzed as maximum to minimum and it is identified below.

fy ¼ gh tcð Þ þ tr � Vd Fx þ tcð Þ � y0: (16)

The identification is observed for the analysis of themaximum tominimum range of variation
process and that illustrates the validation method for the feature extraction. The identification is
termed as fy, which detects the phase for DR images and determines the cross-pooling
techniques. The detection is carried out for the region dissected from the occurrences of the
change in the variation process. The precision level improves, as shown below.

a ¼ fy þ DR � tcð Þ þ x0; i
0ð Þ � Vd þ RgðhcÞ: (17)

The precision level improves by decreasing the error rate, which is achieved through this
reduction, as discussed in Eq. (2). The precision is a, which defines the validation process
for the cross-pooling method and provides the change occurrences from maximum to
minimum variation; thus, region dissection is done using RNN. Therefore, the scope of
this article is satisfied by using RNN for region dissection.

RESULTS AND DISCUSSION
Hyperparameter analysis
In the hyperparameter analysis, the variables related to dissection accuracy are identified
and their impact on performance is studied. In this manner, the n0 confusion matrix for
X08gh and va is represented in Fig. 5.

The confusion matrix shows the classification performance across different classes of
DR severity, highlighting true positives, false positives, and false negatives obtained from
the GRIFD.

The va and gh changes are abrupt by identifying xa þ i0ð Þ; xoð Þ; and xo � i0ð Þ from
different it . The tr for DR 0ð Þ to DR nð Þ is performed to verify if hc � Fxð Þ for any range of
m� nð Þ. The categorization of i0 �mð Þ and i0 � nð Þ are performed under the above three
variants of xo such that Rg delivers errorless va. The recurrent processes of tc � itð Þ and

Figure 5 Confusion matrix visualization for accuracy, precision, and specificity metrics.
Full-size DOI: 10.7717/peerj-cs.3197/fig-5
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tc þ itð Þ is required to decide n08hc. Hence, the yi for the varying sizes is optimal to reduce
the va ghð Þ. The Rg identifies the i0 from the consecutive set of Fx and hc mapping to ensure
fewer errors are identified. Thus, the new tr relies on the target of xo � ið Þ for reducing the
vh that maximizes the dissection of i0 �mð Þ and i0 � nð Þ. Therefore, the n0 outputs are
sufficient to maximize the dissection accuracy (Fig. 5). The ROC for va and gh is
analysedmaximise as presented in Fig. 6.

The receiver operating characteristic curve illustrates the TPR against the FPR for
different thresholds, demonstrating the classification capability and sensitivity of the
proposed method.

The true positive rate (TPR) for the false positive rate (FPR) for va and gh is analyzed in
Fig. 6. The xo � i0ð Þ is the objective for accuracy improvement regardless of xo and
tc þ itð Þ. The recurrent learning process identifies the exact Pu � n0ð Þ and Pu þ n0ð Þ
variants from the actual Fx. In the condition validation of Fx � hcð Þ, the Rg with
maximum xoð Þ is suppressed. This reduces the chance of FPR for m� nð Þ by performing
i0 �mð Þ and i0 � nð Þfy such that existing Fx is sufficient for increasing accuracy. The

DR � tcð Þ and Rg hcð Þ regulates the xo by identifying dm from ma to ensure gh i0ð Þ � y0½ �
reduces the error and thereby the training retains the maximum �Pu xo � i0ð Þ for accuracy
improvement. In the final hyperparameter analysis, the error is considered and presented
in Fig. 7.

Figure 7 illustrates the convergence pattern of the error metric over multiple training
iterations, indicating the robustness of the model for different feature and edge types.

The error analysis for the tr iterations and n0 is presented in the above Fig. 7. The
Pu þ Fxð Þ 6¼ 0 is the optimal case for reducing va and gh under different it . Based on the
DR 0ð Þ to DR nð Þ outputs the n0 priority is defined; this instance identifies the xo to xo þ i0ð Þ

Figure 6 ROC curve for true positive rate (TPR) vs. false positive rate (FPR). (A) ROC curve for dataset Va showing TPR vs. FPR for computed
and actual results. (B) ROC Curve for dataset 9b showing TPR vs. png Full-size DOI: 10.7717/peerj-cs.3197/fig-6
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or xo � i0ð Þ variant by identify Rg changes. Depending on the oa and br differences in tc
from any n layers, the a improvement is pursued. Therefore, the Rg is revisited using ma

that validates dm to reduce vh. If this is achieved then X′ for all Pu ad Fx are equated for
similar congruency and specificity. Therefore, the least i0 serves as the tr point for any range
of FPR observed. The region combining m and i is segregated from n to i to ensure fewer
errors under tr and n0.

Experimental setup and results
The proposed method is evaluated using MATLAB codes executed in a standalone
computer with 4 GB-2slots random memory and a 2.1 GHz Intel processor with a storage
of 128 GB.

Before training the GRIFD model, two types of inputs were extracted from the fundus
images: Feature-based inputs include textural and intensity-based descriptors, such as
mean intensity, local binary patterns (LBP), and histogram-based contrast variations
computed within each ROI block. Each image was partitioned into non-overlapping n� n
blocks, from which first-order statistics and Gabor-filtered responses were collected as
features. For edge-oriented analysis, the same ROI blocks were passed through
gradient-based filters (e.g., Sobel and Laplacian) to extract contour and vessel boundary
features. Edge maps were then analysed for abrupt variation transitions using variance and
entropy calculations across neighbouring pixel clusters. These extracted feature vectors
were then standardised and normalised before being used as input to the recurrent neural
network. The varying conditions (i.e., different lighting, contrast, lesion presence, and
vessel occlusion) were simulated across images to evaluate the model’s robustness under
multiple feature and edge conditions.

Figure 7 (A) Error trend across iterations for feature-based analysis. (B) Error trend across iterations for edge-based analysis.
Full-size DOI: 10.7717/peerj-cs.3197/fig-7
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Dataset
The testing fundus image inputs are fetched from Akram et al. (2020) which contains 100+
fundus images of patients between 25 and 80 years of age. The digital image resolution is
1,500� 1,000 pixels of which 76 are infected with DR. The learning rate is set between 0.8
and 1.0 for 1,200 iterations under three epochs. The training images are 100 and the testing
image count is 76 for which the epochs are repeated for maximum precision. This dataset
contains retinal blood vessel networks, segmented artery and vein networks, and a testing
image count of 76. It is used to calculate the arteriovenous ratio (AVR), annotate the optic
nerve head (ONH), and identify various retinal abnormalities, such as hard exudates (HE)
and cotton wool spots. we employed a grid search strategy combined with 5-fold
cross-validation on the Mendeley dataset to identify optimal values for learning rate, batch
size, number of epochs, and dropout rate. Performance was evaluated based on validation
accuracy and mean error across folds.

These images are organised into distinct categories based on retinal conditions,
including DR, hypertensive retinopathy, papilledema, and normal. While the dataset
provides folder-level grouping for these four diagnostic classes, it does not include explicit
annotations for the different stages of DR (such as mild, moderate, or severe). Therefore,
any further categorisation by DR severity must be performed manually based on visual
inspection of retinal lesions such as microaneurysms, haemorrhages, and exudates, or
through clinical labelling where available. This dataset serves as a valuable resource for
evaluating both segmentation and classification algorithms in the context of retinal disease
detection. Figure 8 presents the identified ROIs from test images using the GRIFD model,
with a focus on severity-based visual segmentation across different DR stages.

Figure 9 presents visual or matrix-based results of lesion region segmentation and
dissection after applying feature variation analysis and RNN-based validation.

The dataset for the current study comprises more than 100 colour fundus images from
the Mendeley Data repository (Akram et al., 2020), which contain various retinal
conditions, including diabetic retinopathy. A total of 100 images were manually examined
and selected for training and testing, 24 normal, 28 mild DR and 48 severe DR—a balance
across the spectrum of severity. All images were rescaled to 512 � 512 and underwent
preprocessing operations, including grayscale conversion, contrast normalisation,
histogram equalisation, and median filtering for denoising. ROI-based cropping was used
to focus on central retinal areas. Annotation validity was ensured by referencing the
metadata and folder structure in the dataset. In instances where severity labels were not
available, clinical features such as microaneurysms and haemorrhages were visually
examined and labelled by expert annotators to preserve the ground truth.

A dropout layer with a rate of 0.3 was applied after the RNN and fully connected layers
to reduce co-adaptation of neurons and minimise overfitting. Additionally, L2
regularization with a coefficient of 1e−4 was applied to the weights during training. For the
Mendeley dataset, we applied basic augmentation techniques including horizontal flipping,
rotation (	15 degrees), brightness scaling (	10%), and minor Gaussian blurring to
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synthetically expand the training set and introduce variability in lesion appearance. These
augmentations were applied in real time during each training epoch.

Comparative analysis
The comparative analysis is presented using the metrics: accuracy, precision, specificity,
mean error, and segment detection time. These metrics are analysed under the varying
features and edges, and therefore, they vary in number (1–12) and (1–9), respectively. To
verify the proposed method’s efficiency, the method is compared with the existing RTNet
(Huang et al., 2022), MCNN-UNet (Skouta et al., 2022), and DRFEC (Das, Biswas &
Bandyopadhyay, 2023) methods.

Figure 8 ROI detection outputs for sample fundus images.
Full-size DOI: 10.7717/peerj-cs.3197/fig-8
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To assess the performance of the proposed GRIFD method, the following standard
metrics are used: Accuracy (Acc) is the proportion of correctly predicted observations
(both DR and non-DR) out of the total observations.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

: (18)

Precision (Prec) is the ratio of true positive predictions to the total predicted positive
cases. It reflects the model’s ability to correctly identify DR.

Precision ¼ TP
TP þ FP

: (19)

Specificity (Spec) is the ability of the model to correctly identify non-DR cases (true
negatives).

Figure 9 Dissected lesion region outputs from GRIFD method.
Full-size DOI: 10.7717/peerj-cs.3197/fig-9
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Specificity ¼ TN
TN þ FP

: (20)

Mean error (ME), is the average absolute error between predicted and actual region
boundaries or lesion locations. This is computed across all tested images.

Mean error ¼ 1
N

XN

i¼1

Pi � Aij j (21)

where Pi is the predicted value and Ai is the actual ground truth. Detection delay (Dd) is the
average computational time (in seconds) taken by the model to detect and localise the DR
region per image.

To conduct fair and consistent comparison all three methods (Huang et al., 2022;
Skouta et al., 2022 and Das, Biswas & Bandyopadhyay, 2023) were re-implemented and
trained on the same fundus image dataset used in the proposed GRIDFmethod. RTNet is a
transformer-based architecture that applies self-attention mechanisms to establish
relational dependencies between lesions and their corresponding vessel features in fundus
images. It combines the accuracy of a relation encoder-decoder framework to perform
multi-lesion segmentation. The MCNN-UNet method combines a multi-channel CNN
feature extractor with a U-Net-inspired decoder for the task of hemorrhagic regions
segmentation, preserving the channel-wise feature hierarchies. The DRFEC method
consists of a convolutional feature extraction process and a fully connected classification
process to identify and compare severity of DR-related abnormalities due to their structure
and texture in associated vessels. The number of images, training methods and parameters,
and the dimensions of what the network sees remained consistent and each method was
trained from scratch. For both training (100 images) and testing (76 images), the same
image set from the Mendeley Data (Akram et al., 2020) repository was used. These
scenarios enable the evaluation of the most expansive metrics, including accuracy,
precision, specificity, mean error, and detection delay,the through both training and
testing across the three methods.

Accuracy
Figure 10 compares the accuracy metric for the proposed and existing methods across
multiple feature and edge variations, showing superior performance of GRIFD.

The accuracy rate for the proposed work is high (Fig. 10) for varying features and edges
and that purses the feature extraction process and estimates the pixel distribution. The
input DR image is acquired, and the feature extraction process is performed here, resulting
in n�mmatrices that are accurately followed up. This illustrates the better recognition of
ROI from the two matrices and provides the distribution factor. The validation is
performed for image normalisation, which in turn supports the severity analysis for disease
detection. The varying stages are used to explore the ROI and provide an estimation
process by using an RNN. The necessary feature is extracted by detecting changes in
occurrence. Here, the training is given to the RNN and that is associated with the
cross-pooling process. The accuracy rate for the proposed work is used to determine the
pixel distribution, based on the extraction. Achieving accuracy plays a significant role in
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this proposed work and employs the normalization of the DR image. This is associated
with the severity caused by the diseases and address and it is formulated as
DRþ Fxð Þ � br þ oað Þ½ � þ y0.

Precision
Figure 11 shows how GRIFD outperforms other methods in terms of precision by
effectively identifying regions with maximum variation across fundus images.

The precision in this work is improved (Fig. 11) by identifying the maximum difference
between the features that show the higher variation changes. This is observed in two
metrics such as features and edges of the DR image and that is associated with the pixel
distribution. Based on this proposal the validation is followed by the training phase that
uses the memory state under RNN. This methodology illustrates the feature extraction
process and defines the specific characteristics of the image. Both the image’s feature and
unique characteristics are considered to give the necessary result. In this manner, it
determines the accuracy of the DR image that envelopes the examination step and provides
the n � m matrices. This processing step defines the normalization of the image by
validation process and examines the violation changes. The violation changes occur due to
the feature extraction process and accurately define the precision level and it is equated as
Pu þ Fxð Þ � tch i þ tc � Puð Þ � Fx þ hcð Þ½ �, here it shows a higher precision rate.

Specificity

The Fig. 12 compares the specificity scores, reflecting how accurately each method avoids
false positives while detecting DR-affected regions.

The specificity is computed for the pixel distribution and uses ma, for the DR images.
This estimates the necessary feature extraction process that illustrates the variation change
occurrences. The variation changes define the reliable specificity among the DR images
and detect the diseases. Periodic monitoring is observed in this category, which determines

Figure 10 Accuracy comparison among GRIFD, RTNet, MCNN-UNet, and DRFEC. (A) Accuracy of proposed and existing methods for various
feature variations. (B) Accuracy comparison of different edge variation. Full-size DOI: 10.7717/peerj-cs.3197/fig-10
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Figure 11 Precision comparison for DR region identification. (A) Precision for various feature variations in DR region identification. (B)
Precision for different edge variations shown. Full-size DOI: 10.7717/peerj-cs.3197/fig-11

Figure 12 Specificity values for feature and edge-based dissection. (A) Specificity for feature-based DR region detection. (B) Specificity for edge-
based detection showing fewer false positive. Full-size DOI: 10.7717/peerj-cs.3197/fig-12
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the precision level of accuracy. This methodology is developed to explore the variation and
gives the feature-based processing for the features. These features are associated with the
variation changes and provide the training phase. The training is given based on this
violation changes are analyzed based on the pixel-based image. From this processing step,
the extraction is monitored for n × m matrices, and the resultant is generated accurately.
This section focuses on two varying metrics such as features and edges; based on these the
specificity shows a higher value range. To explore the differences between the features that
rely on higher variation and determine the specificity it is represented as

Pu þ R0ð Þ þ DR � hcð Þ½ � � tc � itð Þf g (Fig. 12).

Mean error

Figure 13 shows the mean error of region detection for all compared methods, indicating
significant improvements with the proposed cross-pooling-based dissection.

In Fig. 13, the mean error is found to be less based on the specific characteristics and
features. Based on this approach, the training phase is carried out in the desired manner,
resulting in matrix-oriented processing. This matrix shows the pixel distribution among
the input image and that is forwarded to the ROI. The ROI image is extracted from the
pixel distribution, which relates to the cross-pooling mechanism. The pooling is used to
check for the variation, ranging from higher to lower. If it is lower, the necessary training is

Figure 13 Mean error reduction achieved by the GRIFD method. (A) Mean error for feature-based region detection. (B) Mean error for edge-
based detection, showing reduced errors. Full-size DOI: 10.7717/peerj-cs.3197/fig-13
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given based on the feature distribution. The distribution is followed up for the violation
changes and detects for the region distributed process. The scope of this work is to attain
the region disserted and observe the variation process among the features. The
cross-pooling is carried out in the desired way that explores the addressing of mean error
in this work and reduces it is equated in Eq. (17) where the precision and error rate are
equated and it is symbolised as fy þ DR � tcð Þ þ x0; i0ð Þ � Vd .

Detection delay
Figure 14 highlights the efficiency of GRIFD in reducing detection time, making it more
suitable for real-time or rapid screening scenarios.

The detection delay is reduced in this proposed work which shows lesser value
compared to the previous methods (Fig. 14). This progresses under two metrics such as
features and edges, and gives the ROI-based image processing. The image processing runs
through the desired computation and that relates with the region dissected. From this the
precision level is improved and the error rate is reduced by considering this process so that
the delay is addressed and shows a better DR image. The DR image is used to envelop the
cross-pooling mechanism and relates with the pixel distribution among n � m matrices.
Both the matrices are associated with changes occurrences due to the variation that is
performed under variation changes. Thus, it explores the violation changes given to the
training section and examines the better pixel distribution phase. This step is processed
among the specific characteristics to explore the variation changes and reduce the delay
factor. This detection is associated with the ROI region extraction and delay is addressed
and it is formulated as gh tcð Þ þ tr � Vd Fx þ tcð Þ � y0.

Figure 14 Detection delay comparison among DR detection methods. (A) Detection time for feature-
based analysis (B) detection time for edge-based analysis, showing faster processing.

Full-size DOI: 10.7717/peerj-cs.3197/fig-14
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Comparison with literature survey
A few recent works suggested varied methods to enhance diabetic retinopathy (DR)
detection with their respective accuracy rates and architectural designs.Huang et al. (2022)
presented RTNet as a model utilising transformers, along with relational self-attention, for
multi-lesion segmentation, achieving an accuracy of 92.2%. Although RTNet excels at
structurally modelling the dependencies of features across spatial context spaces, the model
does not support sequential dissection, thereby precluding the ability to extract the subtle
progression of the lesion over time.Mishra, Pandey & Singh (2024) employed an ensemble
deep neural network (DNN) framework, achieving 88% accuracy. Though ensemble
methods often enhance robustness, their performance may degrade in the presence of
noisy or overlapping features due to a lack of explicit region-level dissection.

Guo & Peng (2022) put forwarded the model of CARNet, where attentive refinement
was used for DR segmentation with multi-lesion and attained good accuracy of 93%.
However, the model of CARNet becoming space-attention-fusion-dependent and lacking
temporal context verification sometimes causes inconsistency in the identification of lesion
boundaries at different pixel intensities. Wong, Juwono & Apriono (2023) used a transfer
learning approach with parameter optimization and ECOC ensemble classification, but
reported only 82.1% accuracy. This lower performance may be attributed to domain
mismatch and limited adaptability of pre-trained features to the diverse lesion types in
fundus images. Singh & Dobhal (2024) reported 92.66% accuracy using a DL-based
transfer learning model, demonstrating competitive results. However, the model’s
dependence on static feature representations constrains its ability to model evolving lesion
characteristics across image sequences. Table 1 provides a comparison of results with the
literature survey.

Singh, Gupta & Dung (2024) presented a fine-tuned deep learning model, but achieved
only 74.58% accuracy, indicating a lack of generalization capacity, possibly due to limited
training diversity or insufficient feature dissection. Naz et al. (2024) presented an
enhanced fuzzy local information k-means clustering approach, which provided the best
accuracy of 94.00% compared to the methods discussed above. Though encouraging, the
clustering-based scheme has limited contextual learning over depth and is prone to
hyperparameter sensitivity when the distribution of the lesion is highly variable. With the

Table 1 Result comparison with literature survey.

Reference Method Accuracy (%)

Huang et al. (2022) RTNet 92.2

Mishra, Pandey & Singh (2024) Ensemble DNN 88.0

Guo & Peng (2022) CARNet 93.0

Wong, Juwono & Apriono (2023) TL (Parameter Opt and ECOC) 82.1

Singh & Dobhal (2024) DL-based TL 92.6

Singh, Gupta & Dung (2024) Fine-tuned DL model 74.5

Naz et al. (2024) Fuzzy Local K-means 94.0

Proposed method GRIFD method 94.35
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above methods suggested by each author in the above table as comparison methods, the
suggested GRIFD method had accuracy rates of 94.35% (features) and 93.72% (edges).
This work rivals each of the above methods or outperforms them. The edge of GRIFD lies
in its graded region-of-interest dissection, cross-pooling-based variation filtering and
RNN-based sequential learning simultaneously allow the model to actively abolish false
positives and stably retain lesion structures throughout the ROI. Unlike static methods
based on attention alone or transfer learning alone, GRIFD formally verifies the pixel-level
consistency and derives the high-variation regions by itself and hence ensures precise
segmentation even under challenging image conditions.

Cross validation and comparison with additional dataset
To further test the generalizability of the suggested GRIFD approach, we experimented
with the publicly accessible EyePACS dataset, a large set of diverse colour fundus images
with diabetic retinopathy severity level annotations. We randomly selected 1,000 images
(balanced by normal, mild, moderate, and severe diabetic retinopathy) from the EyePACS
dataset for testing. These were preprocessed using the identical pipeline outlined above.
The GRIFD model was also trained employing a 5-fold cross-validation approach to
guarantee robustness. Results showed uniform performance across folds, with a mean
accuracy of 93.85%, precision of 94.20%, and specificity of 92.78%, validating the method
on a larger dataset with enhanced variability in image quality and lesion distribution, as
shown in Table 2.

To evaluate the generalizability and robustness of the presented GRIFD model, we
conducted 5-fold cross-validation on the original Mendeley dataset as well as on the larger
EyePACS dataset. As presented in Table 3, GRIFD performed uniformly well for all folds

Table 2 GRIFD performance on EyePACS dataset (5-fold cross-validation).

Fold Accuracy (%) Precision (%) Specificity (%) Mean error Detection delay (s)

Fold 1 93.70 94.10 92.60 0.058 1.02

Fold 2 93.90 94.25 92.85 0.056 0.99

Fold 3 93.80 94.30 92.70 0.055 1.01

Fold 4 93.95 94.10 92.90 0.054 1.00

Fold 5 93.95 94.25 92.80 0.053 0.98

Average 93.85 94.20 92.78 0.0552 1.00

Table 3 GRIFD performance on Mendeley dataset (5-fold cross-validation).

Fold Accuracy (%) Precision (%) Specificity (%) Mean error Detection delay (s)

Fold 1 93.60 95.75 94.40 0.056 0.96

Fold 2 94.20 96.15 94.80 0.054 0.95

Fold 3 94.10 95.90 94.70 0.053 0.97

Fold 4 94.50 96.20 95.10 0.055 0.96

Fold 5 94.40 96.25 95.15 0.054 0.95

Average 94.16 96.05 94.83 0.0544 0.958
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on the EyePACS dataset with an average accuracy of 93.85%, precision of 94.20%, and
specificity of 92.78%. The detection delay remained constant at 1.00 s, proving the
suitability of the method for real-world application. This performance ensures that the
GRIFD algorithm maintains accuracy on a larger and more varied dataset, where
differences in image quality, lesion size, and class distribution are greater.

Table 3 shows the results of 5-fold cross-validation on the Mendeley dataset. GRIFD
had excellent accuracy for all folds, having an average accuracy of 94.16%, precision of
96.05%, and specificity of 94.83%, and a smaller mean error of 0.0544. The mean detection
delay was 0.958 s, which reflects the model’s low-latency nature. These findings confirm
that GRIFD is not only accurate in its predictions but also consistent across diverse subsets
of the same set.

A comparative overview in Table 4 identifies that GRIFD was slightly better on the
Mendeley dataset (in single-run as well as cross-validation environments) than on
EyePACS, as could be anticipated from the fact that Mendeley contains tidier, more
uniformly preprocessed images. Yet the slight degression in EyePACS performance
reaffirms the model’s ability to generalize, as it continues to post robust metrics without
significant loss of performance. This shows that the suggested GRIFD architecture can
transfer successfully to other datasets with maintaining both diagnostic accuracy and
computational cost.

Ablation study
An extensive ablation analysis was performed to analyse the effect of every main
component in the GRIFD framework. The complete model achieved the highest
performance overall, with 94.16% accuracy, 96.05% precision, and the most minor mean
error and detection delay. The elimination of the cross-pooling layer resulted in a
significant decline in specificity and precision, underscoring its crucial role in filtering out
unreliable feature variations. Removing the RNN module impaired sequential learning,
bringing accuracy down to 89.45%, replacing graded ROI dissection with uniform

Table 4 Comparative accuracy across datasets (GRIFD model).

Dataset Validation type Accuracy (%) Precision (%) Specificity (%) Mean error Detection delay (s)

Mendeley (Single Run) Hold-out (76 test) 94.35 96.05 94.91 0.0545 0.9625

Mendeley (5-Fold CV) Cross-Validation 94.16 96.05 94.83 0.0544 0.958

EyePACS (5-Fold CV) Cross-Validation 93.85 94.20 92.78 0.0552 1.00

Table 5 Ablation study (Mendeley dataset).

Configuration Accuracy (%) Precision (%) Specificity (%) Mean error Detection delay (s)

Full GRIFD model 94.16 96.05 94.83 0.0544 0.958

Without cross-pooling 91.80 92.55 90.10 0.0685 1.12

Without RNN (only CNN features) 89.45 90.30 88.20 0.0721 1.25

Without ROI-based graded dissection 90.20 91.45 89.60 0.0653 1.18

Without preprocessing enhancements 88.90 89.10 87.10 0.0738 1.27
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segmentation affected region localization and boosted the false positive rate. Last but not
least, skipping preprocessing improvements yielded the worst accuracy (88.90%) and error
rate due to unnormalized contrast and brightness levels in the input images. These findings
indicate clearly that both modules are making significant contributions to the system
overall, with cross-pooling and RNN taking centre stage in enhancing lesion boundary
verification and classification resiliency. Table 5 shows an ablation study with the
Mendeley dataset.

Statistical validation
To statistically validate the observed performance gains, we conducted a 5-fold paired
t-test comparing the complete GRIFD model to its reduced variants. The t-test results
showed that the whole model’s improvement in accuracy over the cross-pooling-removed
version was statistically significant (p = 0.0032), as was its improvement in precision
(p = 0.0047). Additionally, the 95% confidence intervals for GRIFD’s average accuracy and
precision were [93.72%, 94.59%] and [95.75%, 96.35%], respectively, indicating high
reliability and low variance in performance. These findings confirm that the enhancements
introduced by GRIFD are not only consistent but also statistically meaningful.

Table 6 Performance comparison based on feature-level analysis.

Model Type Accuracy Precision Specificity Mean error Detection delay (s)

RTNet Published 0.829 0.838 0.776 0.139 2.190

MCNN-UNet Published 0.855 0.874 0.813 0.104 1.740

DRFEC Published 0.899 0.926 0.891 0.089 1.330

CNN (Simple-5 layer) Baseline 0.874 0.889 0.856 0.077 1.400

LSTM (Single-layer) Baseline 0.892 0.898 0.873 0.071 1.300

CNN-LSTM Hybrid Baseline 0.916 0.927 0.900 0.064 1.200

Transformer (ViT-Base) Baseline 0.921 0.933 0.911 0.061 1.350

GRIFD Proposed method 0.9435 0.9605 0.9491 0.0545 0.9625

Table 7 Performance comparison based on edge-level analysis.

Model Type Accuracy Precision Specificity Mean error Detection delay (s)

RTNet Published 0.779 0.823 0.774 0.113 2.180

MCNN-UNet Published 0.821 0.871 0.829 0.104 1.850

DRFEC Published 0.874 0.912 0.902 0.082 1.325

CNN (Simple-5 layer) Baseline 0.857 0.875 0.840 0.084 1.450

LSTM (Single-layer) Baseline 0.873 0.882 0.855 0.078 1.320

CNN-LSTM Hybrid Baseline 0.895 0.910 0.882 0.069 1.180

Transformer (ViT-Base) Baseline 0.909 0.922 0.897 0.063 1.310

GRIFD Proposed method 0.9372 0.9617 0.9448 0.0572 0.9198
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Summary
The comparison of performances in Tables 6 and 7 emphasizes the better performance of
the proposed GRIFD model compared to both existing methods (RTNet, MCNN-UNet,
DRFEC) and conventional deep learning baselines (CNN, LSTM, CNN-LSTM,
Transformer). On the feature level, GRIFD obtained the best accuracy (94.35%), precision
(96.05%), and specificity (94.91%), while having the smallest mean error and detection
delay. Equivalently, at the edge level, GRIFD also outperformed with 93.72% accuracy and
96.17% precision. Baseline models such as CNN and LSTM, on the other hand,
demonstrated considerably poor specificity and detection times. These findings validate
that GRIFD’s integration of cross-pooling, RNN sequencing, and ROI-based dissection
greatly contributes to both consistency in segmentation and reliability in lesion
classification across different areas in fundus images. Table 6 compares GRIFD with
RTNet, MCNN-UNet, and DRFEC based on five evaluation metrics (accuracy, precision,
specificity, mean error, and detection delay) using features as the basis for analysis.

The proposed GRIFD improves accuracy by 8.25%, precision by 8.12% and specificity
by 12.24%. This method reduces mean error by 11.23% and detection delay by 9.04%.
Table 7 provides a similar comparison as Table 6 but evaluates the metrics based on edge
features, confirming GRIFD’s superiority in structural and boundary-based analysis.

The proposed GRIFD improves accuracy by 11.25%, precision by 9.3% and specificity
by 10.98%. This method reduces mean error by 8.49% and detection delay by 9.69%. The
observed improvements in precision and specificity can be directly attributed to GRIFD’s
modular innovations. The graded ROI dissection improved lesion localization, while the
cross-pooling module filtered spatial noise. Meanwhile, the RNN layer provided contextual
continuity. These contributions collectively reduce misclassification and enhance decision
reliability, as confirmed by the ablation results.

Limitation
Although GRIFD generally exhibits good performance, some instances of failure were
observed. Misclassifications were primarily seen in low signal-to-noise ratio images,
motion-blurred images, or in images where lesions become indistinguishable from the
vascular tissue. Moreover, when trained on very imbalanced datasets like EyePACS, the
model was found to have slightly lower sensitivity in minority classes. These mistakes
imply that future research should incorporate sophisticated data balancing methods and
adaptive attention components to enhance robustness. Another restriction exists in the
sequential RNN inference, though optimised, which may be outperformed by parallelised
attention-based options for increased speed and lesion boundary sensitivity.

CONCLUSION
This article proposed the graded region-of-interest feature dissection method to improve
the precision of DR segmentation from fundus images. The accuracy is improved by
reducing the feature variations from a range of randomly distributed pixels. The features
are identified through continuous dissection of variation based on their range. This range
is validated by identifying replicated features through edge classifications. The proposed
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method incorporates cross-pooling to identify and reduce high pixel variations. Therefore
the recurrent analysis of the learning aids in determining the features that fail
cross-pooling to reduce mean distribution errors due to false rates. Additionally, the
low-variation violating features are filtered after the cross-pooling process to enhance
precision. The violation involves feature dissection on continuous distribution sequences
used to train the learning network based on specificity. Thus, the proposed method
retained 8.12% of precision and 12.24% of specificity to reduce 11.23% of the mean error.

While GRIFD demonstrates high performance in terms of accuracy, precision, and
detection speed, it is not without limitations. The model currently relies on fixed ROI
dissection and lacks an adaptive attention mechanism, which may impact generalisation to
fundus images with varying resolutions and qualities. Additionally, although RNNs
effectively model sequential pixel transitions, they may introduce latency when scaled to
high-resolution inputs. Future work will explore replacing RNNs with lightweight
transformer-based modules to improve parallelism and scalability. Integrating
self-supervised pretraining and domain adaptation strategies will also be considered to
reduce dependency on labelled data. Finally, multi-centre validation on diverse clinical
datasets will be performed to strengthen generalizability and clinical robustness.

The proposed method’s dissection property is limited to the classification performed
after cross-pooling. This limitation will likely be saturated for precision estimation over
homogeneous pixel distribution for even-sized fundus images. Therefore, the possibilities
of classification are limited to the false rate computed. To address this problem, a
cross-sectional dissection model with the same pooling is required in future work.
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