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ABSTRACT
This study proposes a decision-making model based on deep reinforcement learning
(DRL) for agricultural financial transactions, addressing core challenges such as
significant data noise, strong time-series dependence, and limited strategy
adaptability. We developed a multifactor dynamic denoising framework by
integrating the Grubbs test for outlier detection and the median absolute deviation
(MAD) method for noise handling. This framework categorizes agricultural financial
indicators into six feature types, significantly enhancing robustness against data noise
and improving model reliability. Furthermore, an long short-term memory
(LSTM)-enhanced DRL architecture is employed, incorporating a sliding window
mechanism to capture market timing features. This framework constructs a
transaction cost-based reward function. It establishes an intelligent trading decision
model based on the LSTM algorithm and the data query language (DQL).
Experimental results demonstrate an annualized return of 45.12% and a 35%
reduction in maximum retracement for Deere & Company and BAYN.DE. The
Sharpe ratio reaches 1.51, reflecting a 62% improvement over the benchmark model.
The results validate the robustness of the proposed decision-making model in the
face of price fluctuations and policy interventions. This model addresses critical
bottlenecks in the application of DRL in agricultural finance, facilitating the
transition of agricultural economic management from empirical judgment to
data-driven approaches. Through three key innovations—data denoising, time-series
modeling, and domain adaptation—it provides a vital decision-support tool for
advancing smart agriculture.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Mining and Machine Learning, Social Computing
Keywords DQL, Trading decisions, Multifactor features, Intelligence, Sliding window

INTRODUCTION
As a fundamental industry of the national economy, agricultural financial transaction
decision-making has a direct influence on agricultural production efficiency, farmers’
income, and national food security. With the intensification of global climate change,
increased market volatility, and the growing complexity of the agricultural industry chain,
traditional agricultural financial decision-making methods face significant challenges. The
need for intelligent agricultural economic management has become increasingly urgent,
necessitating a more accurate and efficient financial transaction decision support system to
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address multiple uncertainties, such as fluctuations in agricultural product prices, risks
associated with natural disasters, and changes in market demand (Kalimuthu et al., 2024).

In recent years, the application of artificial intelligence (AI) technologies in the financial
sector has made significant strides. Notably, Deep Q-Learning (DQL) (Tang et al., 2024)
has demonstrated substantial potential in traditional financial fields such as stock trading
and foreign exchange trading, owing to its powerful sequential decision-making
capabilities and adaptability to dynamic environments. DeepMind’s Deep Q-Network
(DQN) (Zhao et al., 2024) was the first to showcase the potential of deep reinforcement
learning (DRL) in complex decision-making problems. DRL algorithms, such as
Asynchronous Advantage Actor-Critic (Del Rio, Jimenez & Serrano, 2024), Proximal
Policy Optimization (Jing et al., 2024), and Soft Actor-Critic (Song et al., 2024), have since
emerged and been applied in various financial scenarios. In traditional finance, DRL has
been successfully applied to stock trading strategies, portfolio optimization, and
algorithmic trading, often outperforming conventional quantitative trading methods.

However, agricultural financial transactions exhibit distinct characteristics: strong
seasonal fluctuations, significant influence from natural factors, sparse and unstructured
data, and frequent policy interventions. These unique aspects limit the direct application of
generalized financial transaction models in the agricultural sector. Consequently, the use of
DRL in agriculture remains in its early stages, primarily focusing on intelligent
decision-making in agricultural production, such as precision irrigation, smart greenhouse
control, and pest management. Only a few studies have begun to explore the application of
DRL in agricultural economic management, such as agricultural inventory management
(Flores et al., 2024) and agricultural robot path planning (Yang et al., 2024). However,
research in the area of agricultural financial transaction decision-making remains notably
limited.

Contribution and motivation
This study is grounded in the strategic importance of agriculture as a foundational sector
of the national economy. In response to the complex and dynamic environment, as well as
the multiple uncertainties faced in agricultural financial decision-making, we propose a
deep reinforcement learning (DRL)-based model tailored for agricultural financial trading.
The aim is to leverage intelligent technologies to overcome the limitations of traditional
approaches. Agricultural financial trading is profoundly influenced by intensifying global
climate change, increasing market volatility, frequent policy interventions, and the
growing complexity of agricultural supply chains. Conventional experience-driven or
historically based quantitative trading methods struggle to effectively cope with challenges
such as price fluctuations in farm products, natural disaster risks, and shifts in market
demand.

This research is motivated by two key challenges: first, traditional agricultural financial
decision-making methods fail to effectively integrate temporal dependencies with
domain-specific knowledge, making it challenging to capture dynamic market
characteristics in real time; second, although general DRL models have shown promise in
conventional financial domains such as stocks and forex, their reliance on the Markov
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assumption fundamentally conflicts with the strong seasonality and policy sensitivity of
agricultural data. Furthermore, their end-to-end architectures pose challenges for
incorporating prior knowledge of agriculture.

The specific contributions of this article are as follows:
(1) Stock Multifactor Feature Calculation and Extraction: by combining theoretical

knowledge from the field of finance with a broader range of multifactor indicators in the
agricultural financial trading environment, the state space of quantitative trading is
expanded. This expansion enables a more accurate characterization of market trends,
thereby supporting the intelligent system in making informed and optimal decisions.

(2) Improvement of DRL Algorithm Based on Long Short-Term Memory (LSTM)
Network: to adapt to the improved state space in the trading environment while also
capturing temporal dependencies in the data, the LSTM network structure is introduced.
This enhancement improves the model’s ability to characterize market states, thereby
increasing the overall profitability of the decision-making system.

(3) Construction of a Trading Decision Intelligence Based on DQN: by designing a
phased rolling training strategy and reconstructing the reward function with domain
knowledge of agricultural trading taxes and position costs, this article addresses the lag
learning problem of general DRL models in agricultural scenarios due to sudden policy
changes and low liquidity. The model’s performance is significantly improved, with a 62%
increase in the Sharpe ratio compared to the benchmark model.

This article is structured as follows: ‘Related Work’ introduces the research progress of
DRL and the current status of existing financial decision-making models, analyzing their
role in agricultural economic management. ‘Materials and Methods’ describes the
construction of the financial transaction signal denoising technique, the multi-source
feature extraction process, and the DQN-based transaction decision model. ‘Experiments
and Analysis’ presents the experimental results, compares and analyzes the performance of
the DQN decision model against other DRL algorithms and LSTM structural models, and
discusses the impact of denoising trading signals, multifactor feature visualization, and
LSTM integration on financial decision-making within the DQN model. Finally,
‘Conclusion’ offers a summary and discussion of the DQN decision model developed in
this article.

RELATED WORK
Deep reinforcement learning
In recent years, researchers and scholars have sought to leverage the complementarity of
deep learning and reinforcement learning by integrating the perceptual capabilities of deep
learning with the decision-making functions of reinforcement learning. DRL is capable of
simulating human cognition and learning patterns, processing high-dimensional resource
information, such as vision and sound, and directly outputting actions through deep
neural networks. It also analyzes and explores data without external supervision. This
provides a solution for constructing cognition and strategy in complex systems.

Zhang et al. (2024) pioneered the combination of single-layer neural networks with
reinforcement learning to automate the processing of visual signals in a push-box task.
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This early work demonstrated the feasibility of neural networks to process
high-dimensional sensory inputs. However, the single-layer network structure used in the
study had significant limitations in representational capacity, preventing it from capturing
hierarchical features in complex tasks. In contrast, the approach proposed by Wang et al.
(2023) achieved feature processing of multi-dimensional heterogeneous data, but it lacked
an effective feature selection mechanism. As a result, the computational efficiency
decreased significantly when the data dimensionality was high. Schiller (2023)’s
breakthrough study on Atari games utilized raw pixels as inputs; however, the direct
processing of RGB images resulted in overly redundant state representations. This required
millions of training iterations to converge, resulting in extremely low sample efficiency.

The DeepMind team’s 2015 improvement of the DQN algorithm introduced a target
network and a new loss function, which alleviated the mapping problem between
high-dimensional inputs and action selection. However, the fixed-interval target network
updating strategy resulted in a phenomenon known as “lagged learning” (Ilić et al., 2024).
Lu et al. (2024) proposed Double-DQN, which reduces Q-value overestimation bias by
decoupling the action selection and evaluation networks. However, the dual network
structure increased computational complexity and did not address the issue of exploration
efficiency in sparse reward environments. Neves, Ishitani & do Patrocínio Júnior (2024)
added replay mechanisms and fake samples to accelerate the training process. However,
the fixed-size design of the empirical replay buffer resulted in the overwriting of early
training samples, which affected the strategy’s long-term memory.

The Dueling Network proposed by Zhou et al. (2025) enhances the algorithm’s
sensitivity to state values by decomposing the value function and the advantage function.
However, this decomposition introduces unwanted structural biases in certain
environments. While subsequent improvements mitigate this issue by normalizing the
advantage function, the resulting increase in network complexity can lead to unacceptable
delays in time-sensitive scenarios, such as agricultural finance, where prompt responses are
crucial. Similarly, the concept of “action embedding” introduced by Liu et al. (2025)
expands the processing capabilities of discrete actions. However, the selection of the
embedding space’s dimensionality lacks theoretical guidance. It is unsuitable for scenarios
like agricultural finance, where the action space has a clearly defined hierarchical structure
and requires stability.

The success of existing methods in general-purpose games or standard financial
scenarios does not directly translate to agricultural finance. First, the strong seasonality of
agricultural data and sudden policy interventions can lead to drastic changes in state
transition probabilities, undermining the Markov assumptions on which most DRL
algorithms are based. Second, the low liquidity of agricultural markets results in
significantly higher execution costs for trading actions compared to stock markets. Existing
algorithms rarely account for such execution frictions. Additionally, agricultural finance
decisions often require the incorporation of domain knowledge, yet current end-to-end
DRL architectures struggle to integrate such structured prior knowledge effectively.
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Decision-making in financial transactions
The Portfolio Strategy (Wang, Ali & Ayaz, 2024) achieves end-to-end training of the
trading system by employing a reinforcement learning algorithm to directly optimize the
performance objective function, thereby eliminating over-reliance on historical trading
data. Building upon this concept, subsequent research has introduced the differential
Sharpe ratio function, which offers a more comprehensive assessment of trading system
performance than traditional indicators. However, this approach presents three primary
challenges: first, the computational process involves estimating higher-order statistics,
which is less stable in small samples; second, the indicator is sensitive to the choice of the
lookback window length, and inappropriate window settings can distort the assessment;
and third, the indicator remains fundamentally a posteriori, making it difficult to provide
real-time guidance for online learning. These limitations are particularly pronounced in
highly volatile scenarios, such as agricultural futures markets.

Later, Akiyama, Vu & Slavakis (2024) employed the direct reinforcement learning (RL)
method to avoid the Bellman dimension catastrophe. While this method addresses some
issues, its aggressive compression of the state space and the use of linear approximation
leads to poor performance in the face of nonlinear market dynamics. In terms of
improving the objective function, Xiong, He & Du (2025) introduced a weighted symmetric
exponential derivative in place of the Sharpe ratio, which demonstrates better profitability
assessment across several market indices. However, this improvement results in increased
sensitivity to parameterization, significantly raising the costs of tuning. Additionally, the
symmetry assumption made in this method conflicts with the asymmetric volatility
characteristic of agricultural markets.

Agbasi & Egbueri (2024) incorporated adaptive fuzzy neural networks (Fei & Wang,
2019) into a reinforcement learning model to create a hybrid trading system known as
Adaptive Neuro-Fuzzy Inference System (ANFIS). The unique aspect of ANFIS lies in the
integration of fuzzy neural networks, which enable the system to switch flexibly between
different trading modes based on market conditions. However, the automatic generation
mechanism for fuzzy rules in this hybrid architecture lacks transparency, leading to
unpredictable mode switching. Moreover, the joint training process of the neural network
and fuzzy logic is complex, and the convergence speed is significantly slower compared to a
single architecture.

We have summarized the advantages and disadvantages of the above typical related
studies and presented their comparisons in Table 1. Based on the above analysis, it is
evident that the success of existing models in traditional financial markets cannot be
directly transferred to agricultural finance due to the unique characteristics and challenges
of the agricultural sector.
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Table 1 Comparison of related work.

Methods Description Advantages Disadvantages References

DQL Utilizes deep neural networks for sequential
decision-making in dynamic environments.

– Powerful sequential
decision-making
capabilities

– Adaptable to complex
decision problems

– Limited direct application in
agricultural finance

– Lagged learning issues

Tang et al. (2024)

A3C Employs an asynchronous parallel framework
to enhance training efficiency.

– Parallel processing
improves sample
efficiency

– Suitable for continuous
action spaces

– Unverified adaptability in
agricultural finance

– High implementation
complexity

Del Rio, Jimenez &
Serrano (2024)

PPO Improves training stability in policy gradient
methods.

– Stable training process

– Applicable to
high-dimensional state
spaces

– Unknown specific effects in
agricultural finance scenarios

– Complex parameter tuning

Jing et al. (2024)

SAC Uses a maximum entropy reinforcement
learning framework to enhance exploration
efficiency.

– Efficient exploration
strategies

– Suitable for continuous
control problems

– Applicability in agricultural
financial trading to be verified

– High computational complexity

Song et al. (2024)

Double-
DQN

Reduces Q-value overestimation bias by
decoupling action selection and evaluation
networks.

– Mitigates Q-value
overestimation

– Enhances decision
stability

– Increased computational
complexity with dual network
structure

– Low efficiency in sparse reward
environments

Lu et al. (2024)

Dueling
network

Decomposes the value function and advantage
function to improve sensitivity to state values.

– Enhanced sensitivity to
state values

– Applicable to partially
observable environments

– Introduces structural biases in
certain environments

– Increased network complexity
causing delays

RL Directly optimizes the performance objective
function to avoid the Bellman dimension
catastrophe.

– End-to-end system
training

– Reduces reliance on
historical data

– Performance degradation with
compressed state space

– Poor handling of nonlinear
market dynamics with linear
approximation

Akiyama, Vu &
Slavakis (2024)

ANFIS Combines fuzzy neural networks with
reinforcement learning to flexibly switch
trading modes.

– Flexible adaptation to
different market
conditions

– Combines advantages of
fuzzy logic and neural
networks

– Lacks transparency in fuzzy rule
generation

– Complex and slow convergence
in joint training

Fei & Wang (2019),
Agbasi & Egbueri
(2024)
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MATERIALS AND METHODS
Denoising financial trading signals
In agricultural economic management, the raw samples of financial trading stock data
often contain values that are excessively large or small, indicating a significant gap between
the observed values and the sample mean. Due to the time-series nature of the data and
correlations among variables, certain stock sample data may contain hidden noise signals
that are difficult to ignore. These signals cannot be scientifically explained in terms of their
economic meaning, and as a result, they are treated as abnormal data or outliers.
Effectively analyzing the necessity of trade-offs for these outliers is crucial.

Considering the above challenges, this article employs the Grubbs test in the data
preprocessing stage to eliminate stock noise. The process is outlined as follows:

For n samples from the stock market x1; x2; . . . ; xnf g, the mean and standard deviation
are calculated as follows:

avg ¼
Pn

i¼1 xi
n

(1)

std ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxi � agvÞ2
n� 1

s
: (2)

Next, we determine whether the obtained stock sample is anomalous by defining a
probability function as follows:

H ¼ xi � agvj j=std: (3)

If H >H a; nð Þ then xi is recognized as an outlier at this point. Where H a; nð Þ is the
critical value of the Grubbs test, and its parameter a is the significance level, i.e., 1-
confidence probability, which is usually taken as a = 0.01 and a = 0.05. When the data is
H >H a; nð Þ, it is regarded as an outlier and is not retained. When the data isH <H a; nð Þ, it
is retained.

Through the aforementioned denoising optimization preprocessing, stock noise can be
effectively eliminated, thereby enhancing the ability of the intelligent system to
characterize stock data.

Data preprocessing
The data preprocessing steps are as follows:
Denoising Financial Trading Signals:

Grubbs Test: this test is used to detect and remove outliers in the financial data. The
process involves calculating the mean and standard deviation of the dataset, then
identifying any data points that deviate significantly from the mean. A critical value is
calculated based on the sample size and significance level (usually 0.05 or 0.01), and data
points exceeding this threshold are classified as outliers and removed from the dataset.
Multifactor Feature Extraction:

The financial indicators are categorized into six types: trend-based, energy-based,
overbought/oversold, average-based, volume-based, and stock-picking indicators. The
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median absolute deviation (MAD) method is employed to handle outliers in these features.
First, the median of each feature is calculated, and the absolute deviations from the median
are computed. A threshold is set based on the MAD, and any values that exceed this
threshold are considered outliers.
Normalization of Data:

Min-Max Scaling: this technique is applied to normalize the data so that all features fall
within the same range, typically between 0 and 1.
Time-Series Data Transformation:

Log Returns: since the financial data is time-series in nature, log returns are calculated to
transform the data into a more stable form. Log returns help reduce volatility and stabilize
variance, which is important in financial analysis, where data often exhibits volatility
clustering.
Feature Selection and Dimensionality Reduction:

Principal component analysis (PCA) is applied to reduce the dimensionality of the
dataset while retaining as much of the original variance as possible. By selecting the most
significant principal components, PCA reduces the model’s complexity and improves
computational efficiency.

Multifactor feature extraction
To gain a clearer understanding of the factor characteristics of the financial trading market,
this article integrates relevant research from the fields of innovative agriculture economy
and finance. It categorizes the multifactor indicators of financial stocks into six types:
trend-based indicators, energy-based indicators, overbought and oversold indicators,
average-based indicators, volume-based indicators, and stock-picking indicators. The
multifactor characteristics are then sampled using the median absolute deviation (MAD)
method, and the processing steps are illustrated in Fig. 1.

To gain a clearer understanding of the factor characteristics in financial trading markets,
this study draws on relevant research in the field of smart agricultural economics and
finance. The multifactor indicators of financial stocks are categorized into six types: trend
indicators, momentum indicators, overbought/oversold indicators, moving average
indicators, volume indicators, and stock selection indicators. The multifactor features are
processed using the median absolute deviation (MAD) method, with the specific steps
illustrated in Fig. 1.

First, calculate the median of the factor features, i.e., all the values are sorted in order of
magnitude, and the value that finds the middle position is noted as xmid , and then calculate
the absolute deviation of the factor features Xi � xmidj j to get the corresponding absolute
deviation of the median:

Mad ¼ mediam Xi �medð Þ: (4)

Typically, the verification process involves using the median along with the absolute
deviation of the median, multiplied by the MAD, to determine the boundary threshold.
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Factor values that exceed the set threshold are labeled as outliers. These outliers are then
either truncated or replaced in the subsequent processing steps, as outlined below:

(1) If Xi > xmid þ nMad, then the updated multifactor feature is:

Xi
0 ¼ xmid þ nMad: (5)

(2) If Xi < xmid � nMad, then the updated multifactor feature is:

Xi
0 ¼ xmid � nMad: (6)

(3) If xmid � nMad <Xi < xmid þ nMad, then the updated multifactor feature is:

Xi
0 ¼ Xi: (7)

Trading decision intelligence based on LSTM-DQL
In the financial stock trading process, accurate decisions cannot be made solely by relying
on a single day’s stock data. The influence of prior moments on the stock data is crucial, as
the more recent historical data has a greater impact on current trading decisions. However,
as trading progresses, the influence of earlier historical stock data diminishes. To address
this, LSTM networks are introduced to capture the time-series characteristics of the stock
data. For processing the time-series information, a fully connected layer based on time

Figure 1 Multi-factor extraction process. Full-size DOI: 10.7717/peerj-cs.3196/fig-1
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distribution is employed, and a regularization term is incorporated to optimize the LSTM
network parameters further. This helps to enhance the robustness of the network and
prevent overfitting.

Subsequently, the state obtained from the environment by the converted intelligent
agent is used to encode and process the temporal information through the LSTM network.
The DQN calculates the Q-value, and the error variance between the two Q-values is used
as the loss function to adjust the parameters of the current state-action value network. The
parameters of this network are then replicated to the target state-action value network
every N iterations of training. Based on this network structure, a fully connected neural
network and a sliding window mechanism are used to construct the intelligent agent in
reinforcement learning.

The structure of the intelligent agent network is shown in Fig. 2. It consists of a fully
connected neural network with five layers: one input layer, three hidden layers, and one
output layer. The first layer, the input layer, contains 128 neurons. The second to fourth
layers are hidden layers, each containing 32 neurons. The fifth layer is the output layer,
which utilizes the Softmax function to output the probability values for all actions.

Input layer

FC layer

FC layer

FC layer

Soft-max layer

Stock Data

Output layer

Figure 2 Agent network. Full-size DOI: 10.7717/peerj-cs.3196/fig-2
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Additionally, each hidden layer contains a normalization layer and is processed using the
Rectified Linear Unit (ReLU) activation function.

The ability of intelligent agents to observe the implicit time-series dependencies of stock
data is crucial during their interaction with the trading environment. Stock trading data is
a typical example of time-series data, exhibiting strong dependencies on the state before
and after time t. Characterizing these long-term dependencies is beneficial for effective
feature mining. Additionally, understanding the changes in stock prices facilitates optimal
timing for trading decisions.

In this section, the extended intelligent agent observes state information through a
sliding window mechanism to capture temporal dependencies within the local window.
The sliding window process is illustrated in Fig. 3. At each step, one data block is shifted at
a time, from the window start to the window end, denoted as S(j). This approach enables
the intelligent agent to learn the temporal patterns and trends in the stock data, enhancing
its decision-making capability in the dynamic trading environment.

Suppose ot is defined as a sequence of information collected by an intelligent body at a
time. t1 � t to time t1, consisting of three parts: internal state D(t), market state S(t) and
trading agent T(t). Then the state information of the trading market is represented as:

ot ¼ S t0ð Þ;D t0ð Þ;T t0ð Þf g: (8)

For the intelligent agent, the strategy network continuously samples the trade actions
executed at the current moment. To maximize returns, each trade action is divided into
three options: whether to trade, the specific trade action to take, and the number of trades.
Therefore, actions on stocks include “sell,” “buy,” or “hold” (wait and see). Given that
trading actions and trade nodes have a more significant impact on market returns, the
consideration of the number of trades is omitted for simplicity. As a result, the actions
executed by the intelligent agent include “sell all,” “buy all,” and “wait and see” for a single
stock. Thus, the trading actions can be represented as follows:

at ¼ Qt 2 Qt;buy;Qt;hold;Qt;sell
� �

: (9)

The execution of a trading action at by an intelligent body causes the internal state S(t)
to change, affecting the total asset information held. Intelligent body at the time step holds
a certain number of stocks. nt , executes the trading action at , pt is the basic information

S(i)

S(i+1)

S(j)

Head TailActive Active Sliding interval =1 data block

Figure 3 Sliding window. Full-size DOI: 10.7717/peerj-cs.3196/fig-3
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about the stocks in the financial trading market. At this time, the total asset information
Vtþ1 at the time step t + 1 is denoted as:

Vtþ1 ¼ vt;c � Qtpt þ nt þ Qtð Þptþ1 (10)

where the intelligence performs the action Qt;buy Buy all the stocks and trade all the cash
for the corresponding number of stocks. At this point, the value vt;c is traded as the value of
the stock vt;s, C is the transaction tax charged by the trading market.

Qt;buy ¼ vt;c
pt 1þ Cð Þ : (11)

In previous studies, stock trading behavior is used to spread the cost due to price
changes by splitting it into multiple smaller transactions. In this section, we ignore the cost
due to price movement and the reward rt received by the intelligence for taking the trading
behavior is denoted as:

rt ¼ vtþ1 � vt: (12)

The algorithmic learning makes the strategy network update, and samples the trading
action at time at , performs the state transfer, and loops the above steps.

Evaluation criteria
In this article, the Sharpe ratio and the maximum drawdown (MDD) are used as
evaluation metrics for the decision model. The core concept of the Sharpe ratio is to
maximize the risk-adjusted return. Similar to other common financial metrics, such as
cumulative return and average return, the Sharpe ratio is a widely advocated performance
measure in financial engineering theory. For an investment return based on a time series,
the Sharpe ratio is calculated as follows.

S ¼ Avrg Rtð Þ=Std Rtð Þ (13)

where t is the trading interval, Rt is the return over the trading interval t, Avrg stands for
averaging over Rt , and Std stands for standard deviation over Rt . The Sharpe ratio rewards
investment strategies that rely on less volatile trends to profit.

MDD refers to the maximum percentage decline in net asset value from the highest peak
to the lowest trough over a selected period. It represents the proportion of the magnitude
of the retracement. The maximum drawdown is a measure of the maximum potential loss
an investment strategy may face and provides an assessment of the strategy’s risk and the
volatility of the assets. The formula for calculating the MDD is shown below:

MDD ¼ rlow
rhigh

� 1 (14)

where rhigh represents the highest return of the trading behavior and rlow represents the
lowest return of the trading behavior. The larger the MDD, the lower the risk of the trading
behavior and the more stable the volatility.
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Implements
The computing infrastructure used in this study includes high-performance hardware and
software environments to support the training and evaluation of deep reinforcement
learning (DRL) models. The operating system used is Ubuntu 20.04. For hardware, an
NVIDIA Tesla V100 GPU was utilized to accelerate the training of deep neural networks,
particularly when processing large datasets related to financial trading and performing
reinforcement learning tasks. The CPU configuration includes an Intel Xeon multi-core
processor (16 cores), ensuring efficient parallel processing of computational tasks. The
system is equipped with 64 GB of RAM to handle large datasets and complex models, while
1 TB SSD storage ensures efficient data access.

The software environment consists of the Python programming language and the
TensorFlow framework for constructing and training deep learning models. Compute
Unified Device Architecture (CUDA) and cuDNN libraries are used to accelerate
computations on the GPU, further improving training efficiency. Data preprocessing,
model training, and experimental analysis are conducted in the Jupyter Notebooks
environment, providing interactivity and visualization. Git is used for version control, and
the code is stored and shared via GitHub.

Evaluation methods
To evaluate the effectiveness of the proposed LSTM-DQL-based financial trading decision
model, a comprehensive experimental procedure was employed involving cross-validation
and cross-dataset testing. The model was trained and tested across multiple temporal
segments and datasets representing different agricultural financial instruments, such as
Deere & Company and BAYN.DE, to ensure generalizability and robustness. This
approach allowed for the assessment of model stability under varying market conditions
and policy environments. Additionally, ablation studies were conducted to quantify the
individual contributions of the multifactor denoising framework, LSTM-enhanced
architecture, and the transaction cost-based reward function. By systematically removing
or altering key components of the model, the ablation analysis provided empirical evidence
of their respective impacts on overall performance. These evaluation methods complement
the reported performance metrics—including annualized return, maximum drawdown,
and Sharpe ratio—by offering a rigorous and structured validation of the model’s design
choices and predictive capabilities.

EXPERIMENTS AND ANALYSIS
In this section, we analyze the performance of the financial transaction decision model
based on the LSTM-DQL structure proposed in this article. We evaluate the effectiveness
of the LSTM-DQL model in making stock investment decisions within agricultural
economic management, specifically under the context of multifactor feature extraction.
The results are used to verify the model’s performance in real-world decision-making
scenarios.
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Experimental data and setup
The stock ticker data used in this study are obtained through the financial data interface of
Tushare (https://zenodo.org/records/7957927, doi: 10.5281/zenodo.7957927). Tushare, an
open-source financial data service platform, is renowned for its high-quality data cleansing
capabilities and its extensive financial database, providing reliable data support for
quantitative investment research. Two constituent stocks, Deere & Company and
BAYN.DE, are selected as the research subjects, and their daily frequency trading data are
collected to construct the dataset for analysis.

In the model training phase, the study adopts a phased rolling training strategy. First,
historical data from 2011 to 2016 is used for initial training to initialize the parameters of
the trading agent. Then, a sliding windowmechanism is employed, with a training window
of 2 years and a sliding step of 1 year, conducting rolling training from 2016 to 2024. This
incremental learning architecture offers several advantages:

(1) it retains historical learning outcomes as a form of prior knowledge.

(2) It ensures the model’s adaptability to market dynamics through regular updates to its
parameters.

(3) It effectively captures the underlying economic patterns in the market. Empirical
evidence suggests that this training strategy can significantly enhance the model’s
robustness in time-varying market environments.

Denoising performance analysis
To verify the effectiveness of the improved algorithm presented in this article, the study
compares it with three existing algorithms: Double-DQN (Lu et al., 2024), Dueling
Network (referred to as Dueling) (Zhou et al., 2025), and traditional reinforcement
learning (RL) (Xiong, He & Du, 2025) in the comparison experiments. The experiments are
conducted under a uniform setup: an initial capital of 500,000 RMB, a single transaction
size of 10,000 RMB, and a total of 8,000 training sessions. The key distinction is that the
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Figure 4 Agent income comparison under different decision models.
Full-size DOI: 10.7717/peerj-cs.3196/fig-4
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comparison algorithms use raw stock data, whereas the algorithm in this article utilizes
feature data optimized by Grubbs test denoising. The performance is evaluated using three
metrics: final asset value, profitability, and the Sharpe ratio. As shown in Fig. 4, the
algorithm proposed in this article demonstrates a significant advantage in trading
decisions for two agricultural stocks, Deere & Company and BAYN.DE. Its cumulative
return curve consistently outperforms that of the comparison algorithms, with especially
stable growth observed in the middle and later stages of training. This result confirms the
positive effects of Grubbs denoising and model optimization in enhancing the stability and
profitability of trading strategies. It also highlights that the traditional RL method performs
poorly in terms of return growth and stability due to the absence of an improvement
mechanism, such as that found in deep Q-networks. The experimental data conclusively
demonstrate the superior performance of the algorithm proposed in this article for
quantitative trading decisions.

As shown in Fig. 5, the stock data processed by Grubbs denoising demonstrates
significant advantages in both final returns and risk-adjusted return. The model presented
in this article achieves the highest cumulative return of RMB 2,631,700 and a Sharpe ratio
of 1.51, marking a significant improvement over the three models in the non-denoised
group. This result highlights the inherent limitations of traditional quantitative trading
methods in accurately characterizing financial signals. The direct use of raw data
introduces noise interference, which reduces the model’s ability to capture market
characteristics accurately. In contrast, the Grubbs denoising method employed in this
article effectively identifies and removes abnormal data points through statistical
significance tests. This process not only improves the signal-to-noise ratio of the input data
but also enhances the model’s ability to recognize essential market features. The optimized
data characterization enables the model to more accurately grasp market dynamics,
leading to higher investment returns while maintaining a lower risk level. The
experimental results validate the importance of data preprocessing in quantitative trading

Figure 5 Income assets vs Sharp’s performance. Full-size DOI: 10.7717/peerj-cs.3196/fig-5
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systems and demonstrate the effectiveness of the Grubbs method in enhancing the
performance of trading strategies.

Multifactor feature visualization analysis
In contrast to traditional DQN-based financial trading models, this article addresses the
multi-state spatiality in agricultural economic management and enhances feature
perception by incorporating multifactor features. In this section, we compare the
performance of the intelligence under the Dense network structure (Zhou et al., 2022) with
that of the DQN model presented in this article, evaluating the average annualized rate of
return (AARR), Sharpe ratio, and MDD in the context of trading prediction for two
agricultural stocks. The results, shown in Fig. 6, clearly demonstrate that the DQN model
significantly reduces the maximum drawdown by integrating the LSTM structure. This
suggests that the model can effectively make trading decisions based on stock trends,
avoiding substantial reductions in return or losses due to individual erroneous actions.
Furthermore, the average annualized return is improved, indicating that the enhanced
model exhibits stronger profitability. However, merely improving the state space does not
guarantee profitability across all stocks. Instead, the introduction of the LSTM network,
with its variety of gating units, effectively captures long-term dependencies in time-series
data, enhancing the model’s ability to learn and comprehend market fluctuations.
Consequently, the LSTM network structure outperforms the fully connected neural
network in terms of AARR, Sharpe ratio, and maximum drawdown index (Kassaymeh
et al., 2024).

To further analyze the relationship between stock price changes and returns for
different model network structures, this article also examines the cumulative returns of
stocks in the test set, with the results presented in Fig. 7. Although all three deep
reinforcement learning-based trading systems achieve positive returns, with their final
cumulative returns surpassing those of the buy-and-hold strategy, the predictive model
proposed in this article outperforms the other methods. It excels in trend-following and
leads to the most significant improvement in agricultural finance stock returns, with an
annualized return of 45.12%, which is substantially higher than the Asynchronous

Figure 6 Model comparison result. Full-size DOI: 10.7717/peerj-cs.3196/fig-6
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Advantage Actor-Critic (A3C)-LSTM model (Mangalampalli et al., 2024) at 33.51% and
the Deep Deterministic Policy Gradient (DDPG)-LSTMmodel (Sofi et al., 2024) at 39.93%.
Additionally, the experimental results in sub-figure (2) show that for the stock BAYN.DB,
the DDPG-LSTM-based trading system yields lower returns. In contrast, the A3C-LSTM
and Deep Q-Network-based systems maintain high return values.

Comparison with existing methods
The experimental results of this study demonstrate significant improvements over existing
literature in applying DRL to agricultural financial trading. Firstly, compared to traditional
quantitative trading methods (e.g., Portfolio Strategy (Wang, Ali & Ayaz, 2024)), which
rely heavily on historical data and exhibit posteriori limitations, our LSTM-DQL model
achieves higher annualized returns (45.12%) and Sharpe ratios (1.51) through real-time
market adaptation and multifactor feature extraction. This addresses the volatility
clustering and non-stationarity issues highlighted in Akiyama, Vu & Slavakis (2024) and
Xiong, He & Du (2025).

Secondly, while prior DRL applications in finance (e.g., Double-DQN (Lu et al., 2024),
Dueling Network (Zhou et al., 2025)) struggle with low liquidity and policy interventions
in agricultural markets, our model reduces maximum drawdown by 35% through a
transaction cost-based reward function and sliding window mechanism. This outperforms
A3C-LSTM (Mangalampalli et al., 2024) and DDPG-LSTM (Sofi et al., 2024) models in
trend-following capabilities, as evidenced by cumulative return curves (Fig. 4).

Finally, unlike hybrid systems like ANFIS (Fei & Wang, 2019), which lack transparency
in fuzzy rule generation, our approach maintains interpretability through structured
multifactor feature engineering. The Grubbs-MAD denoising framework also resolves data
noise issues that plagued earlier reinforcement learning methods (e.g., Schiller, 2023).
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These innovations collectively position our model as a robust, data-driven alternative for
agricultural financial decision-making.

Discussion
The findings presented in ‘Multifactor Feature Visualization Analysis’ and ‘Comparison
with Existing Methods’ substantiate the considerable application potential of DRL
models—specifically the improved LSTM-DQL architecture—in the domain of smart
agricultural economic management. The experimental outcomes reveal that the model
achieves a commendable annualized return of 45.12% and a Sharpe ratio of 1.51, while also
reducing the maximum drawdown by 35% in comparison to conventional models. These
results not only highlight the model’s superior profitability and risk control capabilities but
also reflect its robustness under the highly dynamic conditions of agricultural financial
markets. The experimental errors mainly stem from data noise, the limitations of the
model’s timing capture ability and the integration of domain knowledge. Although the
Grabbs test and the MAD method effectively reduce the interference of outliers, extreme
data caused by sudden policy interventions in the agricultural market may still lead to
short-term prediction biases. Although LSTM networks capture temporal dependencies,
they are still insufficient in modeling ultra-long-term fluctuations (such as annual seasonal
patterns), and the sliding window mechanism may miss key information across Windows.
Furthermore, although the rule-based embedding of domain knowledge (such as
transaction tax and holding cost) enhances the adaptability of strategies, the fixed
parameter settings are difficult to fully match the dynamic market environment. In the
future, it will be necessary to combine multi-scale time series modeling with adaptive
domain knowledge fusion to further reduce errors.

From a microeconomic perspective, this decision-making framework functions as an
intelligent support system for individual agricultural stakeholders. By accurately capturing
temporal trends and nonlinear price movements in agricultural commodity markets, the
model enables farmers and enterprises to anticipate market shifts and optimize their
trading behaviors. This is particularly valuable in mitigating the adverse financial impact of
external disturbances, such as climate anomalies, policy adjustments, and fluctuations in
international trade. The ability to stabilize income streams through predictive analytics
directly addresses one of the critical vulnerabilities in small- and medium-scale agricultural
operations.

At a macroeconomic level, the model’s capacity to generate high returns with reduced
volatility provides policymakers and institutional investors with actionable insights for
reinforcing food security and resource sustainability. By facilitating the rational allocation
of financial and material resources throughout the agricultural value chain, the model
contributes to enhanced capital efficiency, improved supply chain resilience, and overall
industrial modernization. Furthermore, it promotes evidence-based decision-making in
agricultural financial planning and risk management, serving as a technological enabler for
broader smart agriculture initiatives.

In the context of smart farming, recent studies have emphasized the critical role of
explainable AI (XAI) in enhancing transparency and trust in agricultural decision-support
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systems. For instance, research on local explanations for crop recommendations using
Local Interpretable Model-Agnostic Explanations (LIME) demonstrates how
interpretability frameworks can clarify model outputs for farmers, addressing concerns
about algorithmic opacity (Yaganteeswarudu et al., 2025). Similarly, the integration of XAI
in crop recommendation techniques highlights its potential to validate feature
contributions and improve stakeholder adoption by aligning AI-driven insights with
agronomic expertise (Liu et al., 2025). Furthermore, our work builds on advancements in
Streamlit-based explainable AI systems, which provide interactive visualizations to
demystify complex models, enabling real-time decision support while maintaining user
engagement (Akkem, Biswas & Varanasi, 2024). Together, these studies highlight the
importance of incorporating interpretability mechanisms into smart farming tools to
provide actionable, farmer-centric recommendations.

CONCLUSION
The financial trading decision-making model based on deep reinforcement learning
proposed in this study markedly enhances the decision-making capabilities of agricultural
financial trading by integrating an LSTM network with multifactor feature extraction
techniques. Experimental results demonstrate that the model attains an annualized return
of 45.12% and a Sharpe ratio of 1.51 in agricultural stock trading scenarios, while
significantly reducing the maximum drawdown. These outcomes indicate that the model
delivers accurate and risk-resilient automated decision support, thereby contributing to the
intelligent transformation of agricultural financial systems and advancing the development
of smart agricultural economic management. Nevertheless, several limitations remain
within the current technological framework. The model exhibits a high degree of
dependence on large-scale, high-quality datasets, and its adaptability to rapidly changing
environments remains constrained.

The application of DRL in agricultural financial trading presents vast opportunities for
future research. To enhance model robustness, future work should focus on advanced data
preprocessing techniques, such as GANs, to handle noisy and incomplete data. Model
compression methods (e.g., quantization, pruning) could reduce computational
complexity, enabling real-time deployment in resource-limited settings. Integrating
domain-specific knowledge through hybrid models (DRL + rule-based systems) may
enhance adaptability to sector-specific challenges, such as seasonal volatility. Expanding
applications to commodity futures and supply chain optimization could broaden DRL’s
impact in agricultural finance. Finally, incorporating attention mechanisms or
transformers may refine temporal sensitivity, enhancing predictive accuracy in dynamic
markets. These advancements will drive the development of smarter, more resilient
agricultural decision support systems.
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