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ABSTRACT
We propose a self-supervised point cloud representation learning framework
CrossAlignNet based on cross-modal mask alignment strategy, to solve the problems
of imbalance between global semantic and local geometric feature learning, as well as
cross-modal information asymmetry in existing methods. A geometrically consistent
mask region is established between the point cloud patches and the corresponding
image patches through a synchronized mask alignment strategy to ensure
cross-modal information symmetry. A dual-task learning framework is designed: the
global semantic alignment task enhances the cross-modal semantic consistency
through contrastive learning, and the local mask reconstruction task fuses the image
cues using the cross-attention mechanism to recover the local geometric structure of
the masked point cloud. In addition, the ShapeNet3D-CMA dataset is constructed to
provide accurate point cloud-image spatial mapping relations to support
cross-modal learning. Our framework shows superior or comparative results against
existing methods on three point cloud understanding tasks including object
classification, few-shot classification, and part segmentation.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision,
Data Mining and Machine Learning, Neural Networks
Keywords Point cloud, Self-supervised learning, Feature learning, 3D object classification

INTRODUCTION
As a fundamental 3D spatial data representation, point clouds enable precise modeling of
geometric structures through direct coordinate measurements. This data modality has
gained ubiquitous applications across computer vision and unmanned systems such as
autonomous driving, augmented reality and robotics. Nevertheless, supervised deep
learning paradigms exhibit inherent limitations in scalability for point cloud
comprehension tasks, primarily constrained by their heavy reliance on extensive labeled
datasets. Such dependency inevitably creates dual operational challenges: prohibitive
annotation costs and compromised efficiency when deployed in complex real-world
environments.

To address these limitations, point cloud representation learning has emerged as a
transformative paradigm. Through carefully designed self-supervised pretext tasks, this
approach extracts discriminative, robust, and interpretable features from raw point cloud
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data characterized by disorder, sparsity, and non-structural organization. The learned
representations effectively support various downstream applications including but not
limited to object classification, detection, semantic segmentation, and generative modeling.

Current self-supervised representation learning approaches (Zeng et al., 2024; Xiao
et al., 2023) for point clouds predominantly bifurcate into two technical paradigms: global
representation learning and local representation learning. The global paradigm primarily
emphasizes cross-modal semantic consistency, operating under the foundational premise
that multiple augmented views of identical objects should exhibit feature space
congruence, whereas distinct objects maintain feature divergence. This framework
typically employs contrastive learning frameworks to derive discriminative global
semantics. A representative implementation, Crosspoint (Afham et al., 2022), establishes
3D-2D cross-modal correspondence through invariant space alignment between point
clouds and their rendered 2D counterparts, simultaneously enforcing transformation
invariance within the point cloud domain. Building upon this, CrossNet (Wu et al., 2024)
innovatively decomposes rendered images into RGB and grayscale components, enabling
separate extraction of chromatic features and geometric descriptors, which are
subsequently aligned with their 3D representations. However, global representation
learning methods demonstrate limited efficacy in capturing fine-grained geometric
patterns due to its global feature aggregation mechanism. Consequently, while achieving
superior performance in object classification tasks, its applicability diminishes in scenarios
requiring granular structural understanding, particularly in point cloud segmentation
applications.

Local representation learning frameworks predominantly employ masked
reconstruction mechanisms to preserve geometric fidelity at fine scales. Typical
implementations like Point-Bidirectional Encoder Representations from Transformers
(BERT) (Yu et al., 2022) and Point-Masked Autoencoder (MAE) (Pang et al., 2022)
exemplify this strategy through distinct masking approaches. Point-BERT partitions point
clouds into localized patches, embeds them into discrete token sequences via vector
quantization, and subsequently masks random token subsets for prediction tasks. This
approach emphasizes learning contextual relationships between visible and occluded
regions. In contrast, Point-MAE adapts the masked autoencoder architecture from visual
domains, selectively obscuring substantial point subsets (typically 60–80%) while requiring
coordinate reconstruction of occluded regions. Notably, both methodologies share a
unified objective: to derive discriminative local geometric representations through
self-supervised reconstruction. However, their independent masking protocols introduce
critical limitations in cross-modal learning scenarios. Specifically, modality-specific
masking patterns disrupt inherent cross-modal correlations, resulting in asymmetric
feature preservation across modalities that degrades representation alignment.

To overcome these limitations, we propose CrossAlignNet, a dual-stream cross-modal
framework that synergistically learns global semantics and local geometric representations
of point clouds. Our architecture integrates two complementary pretraining objectives:
global semantic alignment (GSA) targeting cross-modal consistency, and local mask
reconstruction (LMR) focusing on geometric detail restoration. The core innovation lies in
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our synchronized masking strategy for cross-modal inputs. For paired point clouds and
rendered images, we implement geometrically aligned masking that maintains strict
cross-modal correspondence. This strategy ensures equivalent information retention
across modalities, effectively mitigating feature asymmetry caused by independent
masking schemes. The GSA module processes visible patches from both modalities
through contrastive learning in a shared embedding space, maximizing mutual
information between matched pairs. The LMR component employs coordinate regression
to predict masked 3D structures, using cross-attention mechanisms to fuse visual cues
from corresponding image patches. In addition, it is difficult to obtain the correspondence
between points and pixels in existing cross-modal datasets. For this reason we construct a
cross-modal representation learning dataset based on the ShapeNet V2 dataset to support
the learning of global semantic and local geometric representations.

Our main contributions are as follows:

. We propose a dual-stream cross-modal framework to synergistically learn global
semantics and local geometric representations for point cloud understanding tasks.

. A geometrically constrained masking strategy is proposed to establish bi-directional
correspondence between 3D point clusters and 2D image patches, effectively resolving
modality-specific information asymmetry.

. We introduce ShapeNet3D-CMA, a large-scale dataset for representation learning
featuring: precise point cloud-to-pixel spatial mappings, and multi-view photorealistic
renderings with calibrated camera parameters.

. Extensive experiments demonstrate superior performance across object classification
(84.5% accuracy on ScanObjectNN), Few-shot classification (91.8% with 10-shot
samples), and part segmentation (84.2% mIoU on ShapeNetPart).

RELATED WORK
Recent advances in masked self-supervised learning for point cloud representation
demonstrate progressive refinement in geometric relationship modeling through
innovative masking strategies (Wang et al., 2021; Yu et al., 2022; Li et al., 2022; Pang et al.,
2022; Zhang et al., 2022a, 2023; Chen et al., 2023; Tang et al., 2024; Lin et al., 2024;
Zeng et al., 2024; Xiao et al., 2023). The seminal work Occlusion Completion (OcCo)
(Wang et al., 2021) introduced viewpoint-aware occlusion simulation, employing
encoder-decoder architectures for spatial completion tasks. Subsequent innovations like
Mask-Point (Li et al., 2022) established discriminative learning paradigms by partitioning
clouds into masked/unmasked regions and designing binary classification tasks to
authenticate reconstructed points.

The emergence of Transformer-based frameworks marked a paradigm shift.
Point-MAE (Pang et al., 2022) adapted masked autoencoding principles to point clouds
through coordinate reconstruction objectives. Building upon this, Point-M2AE (Zhang
et al., 2022a) developed hierarchical multi-scale transformers to capture structural
dependencies across spatial resolutions. Concurrently, Image-to-Point Masked
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Autoencoders (I2P-MAE) (Zhang et al., 2023) enhanced 3D representation fidelity by
incorporating distilled knowledge from 2D vision transformers. Recent developments
focus on masking strategy optimization. Point-LGMask (Tang et al., 2024)
strengthens local-global interactions through adaptive multi-ratio masking, while
PatchMixing Masked Autoencoders (PM-MAE) (Lin et al., 2024) introduces
momentum contrast with compound masking protocols. These approaches systematically
address the dual challenges of geometric detail preservation and contextual relationship
modeling.

Contrastive learning frameworks (Chhipa et al., 2022; Xie et al., 2020; Long et al., 2023;
Yin et al., 2022; Afham et al., 2022; Wu et al., 2024; Liu et al., 2024; Zeng et al., 2024; Xiao
et al., 2023) have significantly advanced global semantic abstraction in point cloud
representation through innovative pretext task designs. DepthContrast (Chhipa et al.,
2022) pioneers geometric invariance learning by generating positive pairs via depth map
augmentation and modality conversion, followed by contrastive loss formulation in global
feature space. Subsequent works refine the contrastive paradigm through spatial
correspondence constraints. PointContrast (Xie et al., 2020) establishes multi-view
consistency by maximizing feature similarity of overlapping regions while repelling
non-overlapping areas. This approach effectively aligns cross-view geometric contexts
through region-aware contrastive optimization. Further advancements integrate
hierarchical feature learning mechanisms. PointClustering (Long et al., 2023) introduces
transfer variance regularization during multi-perspective feature aggregation, combining
point-wise and instance-level transformations to enhance cluster discrimination. In
parallel, ProposalContrast (Yin et al., 2022) shifts the contrastive granularity to
region-level proposals, enforcing semantic consistency across augmented 3D observation
samples through proposal matching objectives.

Cross-modal self-supervised learning for point cloud representation (Xu et al., 2022;
Afham et al., 2022; Zhang et al., 2023; Chen et al., 2023; Zhou et al., 2024; Wu et al., 2024;
Liu et al., 2024; Zeng et al., 2024; Xiao et al., 2023) enhances feature discriminability
through synergistic fusion of multimodal data. Current methodologies primarily exploit
visual and linguistic modalities for complementary learning. Pioneering work by Jing,
Zhang & Tian (2021) established cross-modal consistency discrimination frameworks
through point cloud-image feature alignment. Following this, Image2Point (Xu et al.,
2022) achieves parameter-level knowledge transfer from 2D pre-trained models via
structural mapping. CrossPoint (Afham et al., 2022) advances differentiable rendering
alignment to maximize geometric-semantic consistency between 3D points and 2D
projections. Recent innovations integrate reconstruction objectives with visual cues.
I2P-MAE (Zhang et al., 2023) jointly optimizes depth prediction and semantic
reconstruction across modalities. Point Cloud and Image Interactive Masked
Autoencoders (PiMAE) (Chen et al., 2023) introduces complementary masking with dual
reconstruction losses for collaborative optimization. CrossNet (Wu et al., 2024) and
Inter-MAE (Liu et al., 2024) further disentangle cross-modal features through contrastive
subspace learning, while PointCMC (Zhou et al., 2024) establishes hierarchical
correspondence via multi-scale graph matching.
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Semantic-aware methods (Zhang et al., 2022b; Zhu et al., 2023; Huang et al., 2024; Xue
et al., 2023, 2024) bridge 3D geometry with linguistic semantics. PointCLIP (Zhang et al.,
2022a) pioneers zero-shot 3D recognition by projecting point clouds to CLIP’s
visual-textual space, albeit constrained by sparse depth representations. PointCLIP V2
(Zhu et al., 2023) overcomes these limitations through learnable projection modules and
GPT-3 optimized prompt engineering.

Inspired by PiMAE (Chen et al., 2023) and Inter-MAE (Liu et al., 2024), we introduce a
masked alignment strategy into a dual-task self-supervised learning framework, addressing
key challenges in cross-modal Point cloud representation learning: asymmetrical modality
information retention and imbalanced learning of global semantics and local geometric
features.

METHOD
Overview
The structure of our CrossAlignNet framework is shown in Fig. 1. It takes the same
viewpoint-aligned point cloud and its rendered image as input. It constructs two branches
of image feature extraction and point cloud feature extraction. To achieve self-supervised
feature learning, we establish a global semantic contrastive learning task and a local
geometric reconstruction task, respectively. Firstly, the farthest point sampling algorithm

Figure 1 Structure of our CrossAlignNet for global semantic and local geometry feature learning of point clouds.
Full-size DOI: 10.7717/peerj-cs.3194/fig-1
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(FPS) and the K-nearest neighbor algorithm (KNN) are used to sample the point cloud
into point cloud patches. Image patches are generated through 2D convolution operations.
Then, the mask alignment strategy is used to synchronize the masked point cloud patches
and the image patches. Visible point cloud patches and image patches are fed into separate
encoders to extract the modality-specific features.

In the global semantic alignment module, the point cloud features extracted by the
encoder are fed to the decoder to extract the global semantic information. It is mapped to
the cross-modal global semantic space through the prediction header module, thus
constituting a contrastive learning task with the image global semantic information. In the
local mask reconstruction module, the cross attention mechanism is introduced. Image
token features constitute the key and value of the attention module; and point cloud token
features constitute the query. The point cloud prediction head reconstructs the coordinates
of the masked point cloud based on the query-completion mechanism. The Chamfer
Distance is introduced as the loss function of local mask reconstruction task.

Mask alignment strategy
Current cross-modal masking approaches exhibit modality isolation in occlusion pattern
generation, creating critical representation learning bottlenecks (Liu et al., 2024).
Specifically, independent masking operations between point clouds and images induce two
inherent flaws: (1) spatial mismatch where masked 3D regions remain visible in 2D
projections, and (2) asymmetric information retention that disrupts cross-modal feature
correlation. These limitations fundamentally constrain joint global-local feature learning
across modalities.

To address this problem, we propose a mask alignment strategy to establish the
cross-modal data correspondence between the point cloud and the image to enhance the
effectiveness of feature learning. The main idea is to first chunk and embed the input point
cloud and image. Then the visibility of the corresponding image blocks is constrained
synchronously when masking the point cloud regions by establishing the point
cloud-image block-level correspondence as shown in Fig. 2. Detailed approaches are
discussed as follows.

Patches Generation. For the input point cloud data X 2 Rn�3, we adopt the FPS to select
key points and construct local neighborhoods via the KNN. This will generate m point
cloud patches PP 2 Rm�k�3. These patches are then embedded into Tpc using a
mini-PointNet (Qi et al., 2017a).

For image data I 2 Rc�h�w, we uniformly partition it into equally-sized image patches,
which undergo 2D convolutional operations and are flattened into embedded token
patches Timg .

Masking. For the point cloud patches, we use random masking process to get the
visible marker patches Tvis

pc with masked markers Tmask
pc . For the image patches, we use

aligned masking process. First, we take the center point of the masked point cloud patches
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through the extrinsic parameters matrix Rt and the intrinsic parameters matrix K to get its
pixel coordinates ðu; vÞ projected in the image. The specific formula can be described as
follows:

u
v
z

2
4

3
5 ¼ proj ðnÞ ¼ K � Rt �

x
y
z
1

2
664

3
775: (1)

After obtaining the pixel coordinates ðu; vÞ corresponding to the center of each point
cloud patch, the mask correspondence between the image and point cloud is established
based on these coordinates. Assuming the image size is H�Wand the image is divided into
patches of size S�S (each assigned an index), the related image patch index Ip can be
calculated by the following formula:

Ip ¼ v
S

j k
� W

S

� �
þ u

S

j k
: (2)

If the center of a point cloud patch is masked, the corresponding image patch
containing the pixel coordinates ðu; vÞ is also masked. If a same image patch corresponds
to a masked point cloud patch and a visible point cloud patch, then both the image patch
and the two point cloud patches will be masked. After this, the visible tokens of the point

Figure 2 Illustration of our mask alignment strategy between point cloud patches and image patches.
Full-size DOI: 10.7717/peerj-cs.3194/fig-2
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cloud Tvis
pc correspond to the visible tokens of the image Tvis

img , while the masked tokens of
the point cloud Tmask

pc correspond to the masked tokens of the image Tmask
img .

Encoders
In order to facilitate the comparative analysis, Transformer-based point cloud and image
encoders are chosen as feature extraction in this article. However, the proposed method is
not limited to this one encoder structure, and the generalization of the learned features
may be further enhanced if a complex encoder structure is used.

For simplicity and generality, both the point cloud encoder Encoderpc and the image
encoder Encoderimg adopt a standard Transformer-based architecture, consistent with
Point-MAE (Pang et al., 2022). The point cloud encoder processes only the visible token
patches Tvis

pc and outputs the feature Encoderpc, while the image encoder processes both the
visible token patches Tvis

img and the masked token patches Emask
img , generating the

corresponding visible feature Evis
img and masked feature Emask

img . This process can be formally
defined as:

Evis
pc ¼ EncoderpcðTvis

pc Þ (3)

Evis
img ;E

mask
img ¼ EncoderimgðConcatðTvis

img ;T
mask
img ÞÞ: (4)

Self-supervised tasks
Global semantic alignment
In the global semantic alignment task, a decoder Decoderfpc is used to extract semantic
information from the point cloud features obtained by the encoder. Then the global
semantic features of the visible point cloud patches are generated and mapped to the
semantic space shared with the image branch by the feature prediction head Fpc. For the
image branch, we only use the image projection head Proimg to extract the global semantic
feature of the image. In this case, the decoder Decoderfpc for the feature prediction task is
structured similarly to the encoder, but with fewer Tranformer blocks. The feature
prediction header Fpc has the same structure as the image projection header Proimg , both
consisting of two fully connected layers, and we use batch normalization and nonlinear
activation only after the first layer.

Specifically, the visible point cloud tokens Evis
pc and the learnable point cloud mask

tokens Emask
pc are concatenated and fed into Decoderfpc. The output is then passed through

the feature prediction head to obtain the predicted feature vector Fpc. Simultaneously, the
image tokens are mapped to the image feature vector Fimg via the projection head Proimg .
This process can be formally expressed as:

Fpre ¼ Pref ðDecoderfpcðEvis
pc ;E

mask
pc ÞÞ (5)

Fimg ¼ ProimgðconcatðEvis
img ;E

mask
img ÞÞ: (6)

According to the idea of contrastive learning, point cloud and image data under the
same viewpoint can be treated as positive sample pairs, and point cloud and image data
under different viewpoints can be treated as negative sample pairs. For each sample pair
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(Fi
pc, F

i
img), a contrastive learning task can be set up, and its loss function is calculated as

follows:

lði; Fpre; FimgÞ ¼ �log
ehF

i
pre;F

i
imgi=sPN

k 6¼i e
hFipre;FKimgi=sþPN

i ehF
i
pre;F

K
imgi=s

(7)

Lossf ¼ 1
2N

XN
i¼1

lði; Fpre; FimgÞ þ lði; Fimg ; FpreÞ: (8)

Local mask reconstruction
This task achieves fine local geometric reconstruction through a cross-modal feature fusion
mechanism. The decoder Decoderrecpc is composed of cross-attention and self-attention
layers, while the point cloud prediction head Prepc consists of a simple fully connected
layer.

Specifically, the visible point cloud tokens Evis
pc , the masked point cloud tokens Emask

pc , and
the visible image tokens Evis

img are jointly fed into Decoderrecpc . After processing by the
decoder, the intermediate feature Dpre is obtained. This feature is then passed through the
prediction head and undergoes dimension reshaping to generate the reconstructed point
cloud patches Ppre. The process can be formally expressed as:

Dpre ¼ Decoderrecpc ðconcatðEvis
pc ; E

mask
pc Þ; Evis

imgÞ (9)

Ppre ¼ ReshapeðPrepcðDpreÞÞ: (10)

Reshape(�) operation reconstructs the vector into a K3 dimensional coordinate matrix
(K denotes the number of points per patch). The reconstruction objective minimizes
coordinate errors in masked regions through an enhanced Chamfer Distance metric
between predicted patches Ppre 2 RK�3 and ground truth patches Pgt 2 RK�3:

Losspc ¼ 1
jPprej

X
x2Ppre

miny2Pgtkx � yk22 þ
1

jPgtj
X
x2Pgt

miny2Pprekx � yk22: (11)

Training
During pre-training, the selected point cloud samples are downsampled to 2,048 points
using the FPS algorithm and partitioned into 64 point cloud patches, each containing 32
points. The corresponding view-aligned images are resized to 224 � 224 as input. No data
augmentation is applied except normalization to both images and point clouds. The
pre-training employs the AdamW optimizer (Loshchilov & Hutter, 2017) for 300 epochs
with a cosine decay learning rate schedule (Loshchilov & Hutter, 2016), initial learning rate
of 0.001, weight decay of 0.05, and batch size of 128. A masking ratio of 60% is adopted
during pre-training. After pre-training, only the point cloud Transformer encoder is
transferred as initial weights for downstream tasks. The total optimization objective
comprises two components: the feature prediction task loss and the mask completion task
loss. The overall loss is defined as:

Losstotal ¼ Losspc þ kLossf : (12)
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k is a hyperparameter used to balance these two losses. In our experiments, we set
k ¼ 0:0001.

EXPERIMENTS
Dataset construction
Existing publicly available point cloud and image datasets typically do not provide point
cloud and image data in the same viewpoint, nor do they contain mapping relationships
between points and image pixels. For this reason, we construct a cross-modal feature
learning dataset, ShapeNet3D-Cross-modal Multi-view Alignment (ShapeNet3D-CMA),
to support self-supervised learning of global semantic and local geometric features.

Our ShapeNet3D-CMA dataset is constructed based on the ShapeNet V2 dataset
(Chang et al., 2015). We render the CAD models using Blender software by simulating
virtual cameras to scan the models from multiple viewpoints around them. This process
generates depth images and RGB-D images for each corresponding viewpoint.
Subsequently, point clouds are reconstructed from the depth maps based on the rendering
parameters. The constructed dataset includes rendered images from different viewpoints
and the corresponding point clouds. Figure 3 shows some of the data in our ShapeNet3D-
CMA dataset. Our dataset is publicly avaiable at https://zenodo.org/records/15269015.

We randomly select 41,928 samples from the rendered data to form the pre-training
dataset. For each selected sample, the point cloud reconstructed with the maximum
number of points from a specific viewpoint is chosen as the final sample.

Downstream tasks
For downstream task evaluation, we validate our method’s effectiveness against three
distinct methods: (1) supervised methods, (2) masked reconstruction-based unsupervised

Figure 3 Visualization of images and point clouds from our ShapeNet3D-CMA dataset. (A′) to (F′)
represent point clouds, while (A) to (F) are their corresponding rendered images.

Full-size DOI: 10.7717/peerj-cs.3194/fig-3
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methods (Liu et al., 2024; Xu et al., 2022), Wang et al. (2021) targeting local geometric
structures, and (3) unsupervised method (Lin et al., 2024) with joint global-local modeling
capabilities that share similar optimization objectives with ours. All unsupervised methods
follow standardized procedures: pre-training on our ShapeNet3D-CMA dataset,
fine-tuning on downstream training sets, and reporting peak test accuracy—with the
highest observed accuracy from multiple experimental trials recorded.

Synthetic 3D object classification
ModelNet40 (Yi et al., 2016) is a meticulously annotated 3D CAD model dataset
comprising 40 categories with a total of 12,311 models. The primary challenges of the
ModelNet40 dataset stem from significant intra-class shape variations and diverse object
poses and orientations. Derived from its synthetic data nature—characterized by absence
of noise, well-defined shapes, and pristine backgrounds—this dataset emphasizes
evaluating models’ capability to capture precise local geometric and global semantic
representations.

Following the standard protocol, we utilize 9,843 models for training and 2,468 models
for testing. To ensure a fair comparison, our method uses only 1,024 points sampled from
each model, containing solely coordinate information, as input. For reporting results, we
employ the standard voting method (Liu et al., 2019) for final evaluation.

As shown in Table 1, our method achieves 93:2% accuracy, outperforming all
comparable self-supervised methods, narrowing the gap with the state-of-the-art
supervised method PointTransformer to merely 0:5%, while significantly surpassing
classical supervised models such as PointNet++ and Dynamic Graph Convolutional
Neural Network (DGCNN).

Experimental results demonstrate that our pre-training approach effectively learns
precise local geometric and global semantic representations. Nevertheless, a
performance gap persists when compared to top-tier supervised methods: Pyramid
Vision Transformer (PVT) (93:6%) and PointTransformer (93:7%). We believe this is
primarily because both PVT and PointTransformer utilize modified Transformer models,
whereas our approach employs the standard Transformer model, and a performance gap
still exists.

Real-world 3D object classification
The ScanObjectNN dataset (Qi et al., 2017a) comprises 15 categories of objects scanned
from real-world scenes. Its samples inherently present challenges such as object occlusions,
background noise, and sensor artifacts. Consequently, models operating on this dataset
must demonstrate the ability to accurately extract local geometric features amidst noise
and occlusion disturbances, while also performing effective reasoning about the global
semantics of complex scenes.

Following Wang et al. (2021), we evaluate three variants: OBJ-BG preserves complete
objects with injected background noise; OBJ-ONLY maintains full object clouds with
artificial background removal; PB-T50-RS combines background interference with 50%
random object occlusion while applying random spatial transformations.
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Table 2 demonstrates that our method achieves state-of-the-art performance on the
OBJ-ONLY variant, while attaining competitive results on OBJ-BG (0:8% lower than
Inter-MAE) and PB-T50-RS (0:6% below Point-M2AE). These findings indicate that our
approach effectively learns both local geometric and global semantic representations,

Table 1 Object classification results (%) on the ModelNet40 dataset. Bold values indicate the best
values.

Supervised methods Accuracy

PointNet (Qi et al., 2017a) 89.2

PointNet++ (Qi et al., 2017b) 90.7

DGCNN (Wang et al., 2019) 92.9

PointCNN (Li et al., 2018) 92.5

KPConv (Thomas et al., 2019) 92.9

RS-CNN (Liu et al., 2019) 92.9

PCT (Guo et al., 2021) 93.2

PVT (Zhang et al., 2021) 93.6

PointTransformer (Engel, Belagiannis & Dietmayer, 2021) 93.7

Transformer (Yu et al., 2022) 91.4

Transformer-OcCo (Yu et al., 2022) 92.1

Point-BERT (Yu et al., 2022) 92.8

Point-MAE (Pang et al., 2022) 92.9

Point-M2AE (Zhang et al., 2022a) 92.7

Inter-MAE (Liu et al., 2024) 92.8

Ours 93.2

Table 2 Object classification results (%) on the ScanObjectNN dataset. Bold values indicate the best
values.

Methods OBJ-BG OBJ-ONLY PB-T50-RS

PointNet (Qi et al., 2017a) 73.3 79.2 68.0

SpiderCNN (Xu et al., 2018) 77.1 79.5 73.7

PointNet++ (Qi et al., 2017b) 82.3 84.3 77.9

DGCNN (Wang et al., 2019) 82.8 86.2 78.1

PointCNN (Li et al., 2018) 86.1 85.5 78.5

GBNet (Qiu, Anwar & Barnes, 2022) – – 80.5

RepSurf-U (Ran, Liu & Wang, 2022) – – 84.3

Transformer (Yu et al., 2022) 79.9 80.6 77.2

Transformer-OcCo (Yu et al., 2022) 84.9 85.5 78.8

Point-BERT (Yu et al., 2022) 87.4 87.1 82.4

Point-MAE (Pang et al., 2022) 88.1 87.9 84.0

Point-M2AE (Zhang et al., 2022a) 88.4 88.1 85.1

Inter-MAE (Liu et al., 2024) 89.3 87.9 83.3

Ours 88.5 88.7 84.5
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though direct comparisons with Inter-MAE and Point-M2AE reveal context-dependent
strengths and limitations.

Compared to Inter-MAE: despite trailing by 0:8% on OBJ-BG, our method surpasses
Inter-MAE by 1:2% on the most challenging PB-T50-RS variant. Crucially, the
performance drop when switching from OBJ-BG to PB-T50-RS is 6:0% for Inter-MAE but
only 4:0% for our method. This demonstrates that the learned local and global
representations from our pre-training approach exhibit superior robustness against spatial
transformations and object occlusions/partiality present in PB-T50-RS.

Compared to Point-M2AE: while our method demonstrates marginal improvements on
the OBJ-BG (þ0:1%) and OBJ-ONLY (þ0:6%) variants, it lags behind by 0:6% on the
most challenging PB-T50-RS variant. This performance gap primarily stems from Point-
M2AE’s hierarchical encoder architecture. Its multi-scale feature fusion mechanism excels
at capturing local geometric details across scales, a capability critically important for
handling complex scenarios characterized by object occlusion and partiality. In contrast,
our approach relies on a standard Transformer encoder, which inherently struggles with
extracting multi-scale local features essential for this difficult setting.

Few-shot classification
To validate the generalization and transferability of the pretrained representations, we
perform fine-tuning with extremely limited labeled samples, forcing the model to
exclusively rely on the prior knowledge acquired during pre-training. Following the
evaluation protocol in Xu et al. (2022), we construct four few-shot learning tasks (covering
different category-sample combinations) on the ModelNet40 dataset (Wu et al., 2015). For
each task configuration, we conduct 10 independent experimental trials and report the
mean classification accuracy along with its standard deviation.

As shown in Table 3, our method achieves higher average accuracy than all methods
under the 5-way 10-shot, 10-way 10-shot, and 10-way 20-shot settings, while
demonstrating the smallest variance among all self-supervised methods. In the 5-way
10-shot scenario, our average accuracy is second only to Point-MAE. These experimental
results indicate that our pre-training approach learns more generic representations,
delivering stronger performance in data-limited scenarios.

Part segmentation
ShapeNetPart (Cheng et al., 2023) is the core benchmark dataset for 3D object part
segmentation. Its primary task is to assign a part semantic label to each point within a
point cloud data. This dataset encapsulates several key challenges: imbalanced part scales,
cross-category semantic ambiguity (geometrically identical structures possessing different
semantics across object categories), and blurred part boundaries. These challenges demand
robust model capabilities encompassing multi-scale feature capture, context-aware global
semantic understanding, and discrimination of local geometric features across diverse
objects.
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In our experiments, following Xue et al. (2023), we report three key metrics: Intersection
over Union (IoU) per category mIoUavg , mean IoU per instance mIoUins, and mean IoU
per category.

As shown in Table 4, our method achieves comparable performance to Point-M2AE in
mIoUavg while outperforming all other comparative methods. For the mIoUins, our

approach ranks second to Point-M2AE, trailing by a marginal 0:3% gap. Experimental
results demonstrate that our method delivers competitive performance in part
segmentation tasks, though there remains explicit room for refinement compared to
Point-M2AE.

Compared to Inter-MAE, our approach achieves higher scores on both mIoUins and
mIoUavg . Further analysis of categories exhibiting IoU differences >1% reveals: for e-phone

and bag classes, our approach achieves þ6:0% and þ2:7% advantages over Inter-MAE
respectively, validating its superior capability in discriminating local geometric
structures—particularly evident in resolving boundary ambiguity in non-rigid soft-body
deformation (bag) and adapting to microscopic components (e-phone). However, a
performance gap of 2:4% is observed in the rocket category, indicating Inter-MAE’s
enhanced contour modeling capability for large-scale continuous surfaces through its
fusion of unmasked image information. Qualitative results (Fig. 4) corroborate that within
regions annotated with red boxes, our method demonstrates significantly higher precision
in parsing local geometric structures.

3D object detection
To further evaluate the applicability of our method in real-world scenarios, we conducted
experiments on indoor 3D object detection tasks. Following the PiMAE (Chen et al., 2023)
approach, we first performed pre-training on the SUN RGB-D (Song, Lichtenberg & Xiao,
2015) dataset and subsequently fine-tuned on the ScanNetV2 (Dai et al., 2017) dataset.
When processing SUN RGB-D dataset scenes containing 20,000 points, we employ
scaled-down PointNet (Qi et al., 2017a) to extract 2,048 key points.

We replace the point cloud encoder with a three-layer standard Transformer module
from 3D End-to-end Transformer Detection (3DETR) (Misra, Girdhar & Joulin, 2021),
where each layer features a hidden dimension of 256 and a 4-head multi-head attention

Table 3 Few-shot classification results (%) on the ModelNet40 dataset. Bold values indicate the best values.

Methods 5-way, 10-shot 5-way, 20-shot 10-way, 10-shot 10-way, 20-shot

DGCNN-rand (Wang et al., 2021) 31:6� 2:8 40:8� 4:6 19:9� 2:1 16:9� 1:5

DGCNN-OcCo (Wang et al., 2021) 90:6� 2:8 92:5� 1:9 82:9� 1:3 86:5� 2:2

Transformer-rand (Yu et al., 2022) 87:8� 5:2 93:3� 4:3 84:6� 5:5 89:4� 6:3

Transformer-OcCo (Yu et al., 2022) 94:0� 3:6 95:9� 2:3 89:4� 5:1 92:4� 4:6

Point-BERT (Yu et al., 2022) 94:6� 3:1 96:3� 2:7 91:0� 5:4 92:7� 5:1

Point-MAE (Pang et al., 2022) 96.2 � 2.5 97:4� 1:6 91:7� 5:2 94:6� 3:5

Point-M2AE (Zhang et al., 2022a) 88:1� 5:9 94:6� 2:5 85:0� 6:5 91:2� 4:4

Iner-MAE (Liu et al., 2024) 95:1� 2:6 97:5� 1:7 91:6� 4:6 94:1� 3:7

Ours 95:2� 2:8 98.1 � 1.4 91.8 � 4.5 94.8 � 3.5
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mechanism. To maintain dimensional consistency, we reduce the number of attention
heads in the decoder from six to four while keeping all other architectural components
unchanged. During the fine-tuning phase, we strictly adhered to 3DETR’s (Misra, Girdhar
& Joulin, 2021) training protocol.

As shown in Table 5, our approach outperforms PiMAE by 0.7% in AP25 and 2.3% in
AP50. This improvement, particularly the more significant gain (+2.3%) on the challenging
AP50 metric, clearly demonstrates the superiority of our pre-training strategy. By
combining two self-supervised tasks, our approach effectively overcomes the issue of
insufficient encoding of global semantic information in PiMAE due to its reliance on a
single masked reconstruction task.

Reconstruction results
To validate the point cloud reconstruction performance of our method, we conducted
visual comparisons of the reconstruction effects on the ShapeNet test set (Chang et al.,
2015) for Point-MAE, Inter-MAE, and our method. Figure 5 shows the reconstruction
results of pre-trained models from each method under a 60% point cloud masking rate.
Our method significantly outperforms other methods in terms of reconstruction quality,
further validating its superiority.

Table 4 Part segmentation results on the ShapeNetPart dataset. We report mIoUavg (%) and mIoUins (%), as well as the IoU (%) for each
categories. Bold values indicate the best values.

Methods PointNet PointNet++ DGCNN Transformer Transformer-
OcCo

Point-
BERT

Point-
MAE

Point-
M2AE

Inter-
MAE

Ours

Wang et al.
(2019)

Qiu, Anwar &
Barnes (2022)

Ran, Liu &
Wang (2022)

Liu et al.
(2024)

Liu et al.
(2024)

Liu et al.
(2024)

Xu et al.
(2022)

Liu et al.
(2019)

Lin et al.
(2024)

Aero 83.4 82.4 84.0 82.9 83.3 84.3 84.9 85.1 84.7 84.7

Bag 78.7 79.0 83.4 85.4 85.2 84.8 83.2 86.5 82.4 85.1

Cap 82.5 87.7 86.7 87.7 88.3 88.0 88.8 89.6 88.9 89.0

Car 74.9 77.3 77.8 78.8 79.9 79.8 80.1 80.9 80.4 80.2

Chair 89.6 90.8 90.6 90.5 90.7 91.0 91.5 91.5 91.3 91.2

e-phone 73.0 71.8 74.7 80.8 74.1 81.7 74.0 77.2 74.6 80.6

Guitar 91.5 91.0 91.2 91.1 91.9 91.6 92.2 92.0 91.8 91.6

Knife 85.9 85.9 87.5 87.7 87.6 87.9 87.6 87.8 87.4 87.8

Lamp 80.8 83.7 82.8 85.3 84.7 85.2 85.8 86.0 85.9 85.3

Laptop 95.3 95.3 95.7 95.6 95.4 95.6 96.1 96.0 96.0 95.8

Motor 65.2 71.6 66.3 73.9 75.5 75.6 75.4 75.7 74.4 75.1

Mug 93.0 94.1 94.9 94.9 94.4 94.7 95.3 94.9 95.6 94.8

Pistol 81.2 81.3 81.1 83.5 84.1 84.3 84.7 84.9 85.2 84.3

Rocket 57.9 58.7 63.5 61.2 63.1 63.4 64.4 60.6 64.8 62.4

s-board 72.8 76.4 74.5 74.9 75.7 76.3 77.0 76.0 75.9 76.7

Table 80.6 82.6 82.6 80.6 80.8 81.5 81.4 82.3 81.4 82.2

mIoUins 83.7 85.1 85.2 85.1 85.6 85.7 85.9 86.2 85.8 85.9

mIoUavg 80.3 82.0 82.3 83.4 84.1 84.1 83.9 84.2 83.8 84.2

Wang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3194 15/24

http://dx.doi.org/10.7717/peerj-cs.3194
https://peerj.com/computer-science/


Ablation study
All ablation studies were conducted on the object classification task using the most
challenging PB-T50-RS variant of the ScanObjectNN dataset (Qi et al., 2017a). The highest
classification accuracy observed over multiple experimental runs is reported.

Percentage of masks
To investigate the impact of masking ratios on classification accuracy,we conducted
experiments with different masking proportions. As indicated in Table 6, our method
achieves optimal performance at a 60% masking ratio with 84:5% classification accuracy.
Experimental results demonstrate that both excessively high and low masking ratios lead
to performance degradation.

Figure 4 Qualitative results of part segmentation. (A)–(D) represent the ground truth; (E)–(H) show
the predictions from Inter-MAE; (I)–(L) demonstrate the results from our method.

Full-size DOI: 10.7717/peerj-cs.3194/fig-4

Table 5 3D object detection performance on ScanNetV2 (Dai et al., 2017) val set. We adopt the
average precision(%) with 3DIoU thresholds of 0.25 (AP25) and 0.5 (AP25) for the evaluation metrics.
Bold values indicate the best values.

Methods Pre-trained ScanNetV2

AP25 AP50

DSS (Song & Xiao, 2016) None 15.2 6.8

3D-SIS (Hou, Dai & Nießner, 2019) None 40.2 22.5

VoteNet (Qi et al., 2019) None 58.6 33.5

3DETR (Misra, Girdhar & Joulin, 2021) None 62.1 37.9

PiMAE (Chen et al., 2023) SUN RGB-D 62.6 39.4

+Ours SUN RGB-D 63.3 (+0.7) 41.7 (+2.3)
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Excessively high masking ratios critically impair point cloud understanding by
obliterating essential local geometric structures and disrupting object continuity.
This dual degradation prevents models from effectively reasoning about global semantics
and reconstructing masked regions. In our method, high masking ratios applied to point
clouds necessitate proportionally aggressive masking of images. This inevitably
compromises global semantic extraction from the visual modality. Under such conditions,
enforcing cross-modal semantic alignment tasks introduces disruptive noise rather than
meaningful learning signals.

Conversely, excessively low masking ratios create information overload, fostering lazy
learning behaviors where models exploit superficial patterns instead of learning robust
representations.

Masking strategy
In this experiment, a fixed random masking ratio of 60% was applied to the point cloud,
while three distinct masking strategies were compared for the image modality: (1) random
masking; (2) correspondence masking (the masked image regions correspond to the

Figure 5 Reconstruction results on the ShapeNet test set. Full-size DOI: 10.7717/peerj-cs.3194/fig-5

Table 6 Classification accuracy with different mask ratios.

Ratio Accuracy (%)

40% 83.8

60% 84.5

80% 84.2

90% 84.3
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masked point cloud regions); (3) complementary masking (the masked image regions
correspond to the visible point cloud regions).

As shown in Table 7, the complementary masking strategy achieved the best
performance with an accuracy of 84:5%, outperforming corresponding masking byþ0:3%
and random masking by þ0:4%. The superiority of complementary masking primarily
stems from its synergistic enhancement of the two self-supervised tasks:

(1) Optimization of Local Mask Reconstruction: when local geometric information in
point clouds is masked, complementary masking retains 2D features (e.g., textures, edges)
in the image corresponding to the masked point cloud regions. This provides critical
auxiliary information for the point cloud reconstruction task.

(2) Enhancement of Global Semantic Alignment: under complementary masking, the
globally encoded semantic information in the image forms a correspondence with the
semantic information of the masked regions in the point cloud. This design forces
the model to infer the global semantics of masked regions based solely on visible areas of
the point cloud, thereby reinforcing its representational capacity for global semantic
features.

Selection of self-supervised tasks
To evaluate the impact of global semantic alignment and local mask reconstruction as
self-supervised tasks on representation learning, we compared different task combinations
and varying k values on classification accuracy by adjusting the weighting coefficient in Eq.
(10). During pre-training, we observed a significant magnitude discrepancy between the
local mask reconstruction loss (Losspc) and the global semantic alignment loss (Lossf ), with
Lossf being approximately 1,000 times larger than Losspc. Therefore, setting k ¼ 0:001

ensured comparable contributions from losspc and k � lossf to the total loss magnitude.
Experimental results are summarized in Table 8.

Experimental results demonstrate that models using only local mask reconstruction task
significantly outperform those relying solely on global semantic alignment task, while
combining both tasks yields clear advantages over either single-task configuration. This
not only confirms the critical importance of locally learned geometric features for
classification accuracy but also reveals complementary benefits in representation learning
between the two tasks.

When k ¼ 0:001, the contributions of the two losses to the total loss reach equilibrium;
when k decreases to 0:0001, the contribution of the global semantic alignment task reduces
by a factor of ten, yet the classification accuracy increases by 0:3 percentage points. This
suggests an intrinsic primary-secondary relationship between the two tasks (with local

Table 7 Classification accuracy using different masking strategies.

Point cloud Image Accuracy (%)

Random Random 84.1

Random Correspondence 84.2

Random Complementary 84.5
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mask reconstruction as primary and global semantic alignment as secondary). By selecting
an appropriate k to regulate the contributions of both tasks, the model’s representation
learning capability can be effectively enhanced.

Efficiency comparison across methods
To evaluate the efficiency of the pre-training and fine-tuning stages, we measured the
parameter count for both the pre-trained and fine-tuned models of our method and other
self-supervised approaches, along with the time required for a single forward pass.
Evaluation during the fine-tuning stage was uniformly conducted on the fine-tuned
ModelNet40 classification task model. Batch size for pre-training and fine-tuning stages
were set to 64 and 32, respectively. All timing metrics were measured and reported on a
single NVIDIA RTX A6000 GPU.

As shown in Table 9, Point-M2AE achieves the smallest parameter count in both
pre-training and fine-tuning stages. Regarding computational efficiency, Point-MAE and
Point-BERT exhibit the shortest forward pass time during pre-training and fine-tuning
phases, respectively.

Our method requires a dedicated image encoder to process visual data, along with a
dual-branch decoder that separately extracts global semantic features and local geometric
features from point clouds. This architectural design results in higher model complexity
and a larger parameter count during pre-training.

It is noteworthy that although Inter-MAE also employs an additional image encoder, it
lacks a dedicated global semantic decoder, resulting in lower parameter count than our
method. In execution time profiling, we observe that during a single pre-training forward
pass, Inter-MAE consumes approximately half its processing time on image encoding. By
contrast, our approach applies masking to images as well, significantly reducing image

Table 8 Classification accuracy for different self-supervised tasks.

Losspc Lossf k Accuracy (%)

– ✓ – 81.7

✓ – – 84.2

✓ ✓ 0.001 84.3

✓ ✓ 0.0001 84.5

Table 9 comparison of parameters and training time of self-supervised-based methods (pre-training
+ fine-tuning). Bold values indicate the best values.

Method Params (M) Time (s)

Point-BERT (Liu et al., 2024) 69.02 + 22.06 0.233 + 0.019

Point-MAE (Xu et al., 2022) 29.00 + 22.09 0.220 + 0.021

Point-M2AE (Wang et al., 2021) 15.25 + 12.83 0.383 + 0.044

Inter-MAE (Lin et al., 2024) 35.07 + 22.22 0.780 + 0.022

Ours 57.69 + 22.09 0.381 + 0.032
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encoding overhead. Consequently, our method demonstrates notable advantages in
pre-training efficiency compared to Inter-MAE.

CONCLUSION
This study proposes a cross-modal self-supervised point cloud representation learning
framework that integrates global semantic alignment with local masked reconstruction.
This combined approach effectively facilitates the joint optimization of global semantic
understanding and local geometric feature learning within point clouds. Experimental
results demonstrate that the proposed method achieves outstanding performance across
multiple downstream tasks, including 3D object classification, few-shot learning, and part
segmentation. Furthermore, the multimodal dataset constructed in this study provides a
new benchmark resource for cross-modal research.

Our method’s pre-training on synthetic CAD data inevitably induces domain shift, as
evidenced by significant accuracy drops when transferring object classification from
ModelNet40 to ScanObjectNN. Enhancing real-world robustness is thus critical.
Furthermore, our encoder adopts a standard Transformer architecture, which exhibits
limitations in multi-scale feature encoding compared to customized variants. Future work
should explore heterogeneous encoder structures to overcome the constraint of
single-scale feature representation.
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