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ABSTRACT
This study reviews disease detection with Automated Machine Learning (AutoML),
aiming to identify gaps and evaluate AutoML’s impact in this field. In this study,
seven review articles published in Q1- or Q2-quartile journals between 2020 and
2025 were analyzed. The reviews were assessed using ten academic criteria, covering
AutoML performance, data strategies, feature techniques, noise reduction, model
selection, training/testing methods, and frameworks for disease detection.
Additionally, test reliability, patient selection, reference standards, and application
processes were evaluated with the Quality Assessment of Diagnostic Accuracy
Studies-2 (QUADAS-2) tool. A literature review was conducted using 11 different
databases; however, due to limited functionality in four of them, the research
primarily relied on seven digital databases, which initially yielded 552 studies. The
study selection and screening processes were performed in accordance with the
Preferred reporting items for systematic reviews and meta-analyses (PRISMA)
guidelines. Next, 40 studies published outside the 2020–2025 period were removed,
followed by the exclusion of 117 studies that were not journal articles. An additional
145 studies were eliminated because they were reviews, books, conference
proceedings, posters, editorial notes, etc., and seven studies were excluded as they did
not pertain to human diseases. After these elimination processes, 243 articles
remained for full-text review. Out of these, 214 articles were read in full and assessed
for relevance, leading to 29 articles deemed suitable for inclusion in this review on
disease detection using AutoML. After removing five duplicate articles, a final total of
24 studies were included in the review. The research questions of the study include
questions such as which disease detection models AutoML methods are preferred
more, the input features and data sets used, the effects of feature extraction and
selection methods on model performance, how often noise reduction methods are
used in disease data, and what the AutoML model evaluation metrics are. The results
show that AutoML methods are effectively used on disease detection and that
different AutoML techniques, data sets, and model selection processes make
significant contributions to success. This review provides an important resource for
making AutoML applications for disease detection more efficient and for eliminating
the deficiencies in the literature.
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INTRODUCTION
Automated machine learning (AutoML) simplifies machine learning processes, enabling a
wider audience to benefit from this technology. By automating complex steps such as data
preprocessing, model selection, and hyperparameter tuning, it helps even non-experts
develop effective models. This allows data scientists to spend their time on more strategic
and creative tasks. Additionally, AutoML tools increase the consistency of results using
existing best practices (Salehin et al., 2024). The primary objective of AutoML is to
enhance the accessibility and efficiency of machine learning workflows. It enables data
scientists to speed up and optimize the model development process by including steps such
as automatic data preprocessing, model or algorithm selection, and hyperparameter
optimization. At the same time, by automating these processes, it becomes easier for
non-machine learning experts to benefit from machine learning. This democratization
allows AutoML to accelerate innovations and technological developments in different
sectors, while also supporting the implementation of machine learning projects with fewer
resources.

AutoML also minimizes the need for manual tuning in machine learning through
automatic optimization methods that try the best parameter combinations to improve
model performance, helping to make machine learning applications more reliable,
accurate, and sustainable.

Several widely utilized platforms in this domain include Google Cloud AutoML, H2O
AutoML Framework (H2O), artificial intelligence (AI), and Tree-Based Pipeline
Optimization Tool (TPOT), which are among the prominent tools employed for
implementing AutoML techniques in disease detection and related biomedical
applications. These tools provide fast and effective solutions by allowing users to simply
upload their data and start processing. The development of AutoML increases the
accessibility of machine learning, making it available in more industries (Romero et al.,
2022). Abbreviations and expansions are shown in Table S1 and are presented in
Supplemental Files.

AutoML enables the automation of machine learning workflows, including data
preprocessing, feature engineering, model selection, and hyperparameter tuning. This
reduces the need for manual intervention and allows both experts and non-experts to
develop high-performance models efficiently. Widely used AutoML platforms such as
H2O, TPOT, and Google Cloud AutoML provide scalable and accessible solutions across
various domains, particularly in healthcare. The main objective of this review is to evaluate
the effects of AutoML methods on disease detection and to reveal the gaps existing in the
literature in this field.

AUTOML
AutoML distinguishes itself from conventional machine learning approaches by
automating key stages of the pipeline, including data preprocessing, feature engineering,
model selection, and hyperparameter optimization (Bergstra et al., 2015). AutoML uses
methods such as neural architecture search, transfer learning, and reinforcement learning
to identify and use the most suitable model, reducing the need for manual trial and error.
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While in traditional ML processes, these stages are performed manually by experts,
AutoML streamlines these steps, making model development faster and more efficient.
Additionally, AutoML platforms often include automated evaluation and optimization
mechanisms, ensuring that models are fine-tuned for optimal performance with minimal
human intervention.

AutoML is more accessible and can be used by the masses, including non-experts and
domain specialists who may not have extensive machine learning expertise, while
traditional methods require deep theoretical and practical knowledge. However, while
AutoML provides less human intervention, scalability, and faster deployment, traditional
ML offers more control, flexibility, and customization for domain-specific requirements.
In highly specialized applications where expert-driven feature engineering and fine-tuning
are necessary, traditional ML may still be preferred. Nonetheless, the rapid advancements
in AutoML continue to bridge the gap between automation and expert-driven
customization, making it an increasingly powerful tool in machine learning workflows.

In recent years, due to the increasing data volume and demand for machine learning
solutions, automatic data processing has gained great importance and studies on these
have begun to appear in the literature. The studies primarily addressed individual solutions
such as data preprocessing (cleaning, missing data completion, labeling, categorical coding,
etc.), data augmentation, and feature engineering (feature extraction, generation, and
selection). Additionally, the study explored integrated methodologies that consolidate all
processing stages into a cohesive, end-to-end deep learning framework. It also offered an
in-depth analysis of the fundamental features of general AutoML frameworks tailored for
large-scale data applications and critically assessed potential advancements that could
improve the efficiency of automated data analysis (Mumuni & Mumuni, 2024).

AutoML systems automate the following steps:

Data ingestion and preprocessing: Filling in missing values, data normalization, coding
categorical variables.

Feature engineering: Deriving new features and selecting the most meaningful ones.

Model selection: Determining the most appropriate algorithms (e.g., tree-based methods,
deep learning models).

Hyperparameter optimization and fine tuning: Finding the best combination of parameters
that will improve model performance.

Evaluation and validation: Evaluating the performance of the model and making necessary
improvements.

The main use of AutoML is to assist the developer by automating model selection and
hyperparameter optimization. Non-experts can use AutoML with minimal or no code.
Some AutoML systems include meta learning and transfer learning approaches. AutoML
makes it effortless to build machine learning pipeline processes. An AutoML framework
pipeline are shown in Fig. 1.
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The main use of AutoML is to assist the developer by automating model selection and
hyperparameter optimization. Non-experts can use AutoML with minimal or no line of
code. AutoML makes it effortless to create machine learning pipeline processes. In an
AutoML process, incoming data is first processed, then feature engineering is performed to
extract features. Model selection and HPO are performed to reach the result. AutoML tries
to guarantee high accuracy, efficiency, scalability, and flexibility while performing these
processes.

In data preprocessing steps, data collection, data cleaning and data augmentation
(Mumuni &Mumuni, 2022) techniques are used. The basic feature engineering steps in the
AutoML workflow are; selection and preprocessing of features, feature transformation and
encoding, feature generation, feature selection, automatic optimization of features, and
alignment of features with the model (Hutter, Kotthoff & Vanschoren, 2019). Some
automatic feature engineering methods include Autofeat, Deep & Cross Network Version
2 (DCN-V2), Open Feature Engineering (OpenFE), Subsampled Approximate Feature
Engineering (SAFE), Automated Feature Crossing (Autocross), Feature Engineering by
Constrained Optimization Heuristic (FETCH), and Feature Construction Tree (FCTree)
(Mumuni & Mumuni, 2024). By automating feature engineering with minimal human
intervention, AutoML delivers a faster and more efficient model development process.

The final step in AutoML is model selection and hyperparameter optimization. Today,
there are various AutoML approaches developed for different purposes. Table S2 provides

Figure 1 AutoML pipeline. Full-size DOI: 10.7717/peerj-cs.3193/fig-1
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the basic features of these AutoML platforms, tools and are presented in Supplemental
Files (Mustafa & Rahimi Azghadi, 2021; Mumuni & Mumuni, 2024).

This study presents a literature review on the application of AutoML in disease
detection. To this end, a comprehensive search was performed across eleven distinct digital
databases utilizing predefined search strategies to ensure an extensive retrieval of pertinent
studies. The initial pool of studies was refined through the application of clearly defined
inclusion and exclusion criteria, with emphasis placed on publication timeframe, thematic
relevance, methodological soundness, and the integration of AutoML techniques. In the
final phase, the selected studies were subjected to an in-depth analysis, focusing on
elements such as the datasets employed, model efficacy, evaluation methodologies, and the
specific AutoML algorithms implemented. The outcomes of this review offer valuable
insights into prevailing trends, existing challenges, and prospective avenues for future
research within the domain of AutoML-based disease detection. The differences between
AutoML and traditional ML are shown in Fig. 2.

MOTIVATION AND CONTRIBUTIONS
Based on the literature review conducted in this study, it was observed that a
comprehensive assessment encompassing all relevant criteria for evaluating model
performance—specifically in the context of data acquisition and analysis, feature

Figure 2 The differences between AutoML and traditional ML.
Full-size DOI: 10.7717/peerj-cs.3193/fig-2
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extraction and selection, noise reduction, model selection, architectural design, and model
training—remains limited within the current literature on AutoML for disease detection.
To bridge this research gap, a focused investigation was carried out on review articles
addressing AutoML applications. In this regard, seven review articles published in journals
in the Q1 or Q2 quarter between 2020 and 2025 were meticulously examined.

These reviews were evaluated against ten predefined criteria, the outcomes of which are
presented in Table S3 and are presented in Supplemental Files. The selection process was
restricted to English-language review articles published between 2020 and 2025,
specifically targeting the application of AutoML in the detection of human diseases.
During the screening phase, only articles categorized as reviews within academic databases
and available as open-access, full-text documents were considered. The search queries
utilized to retrieve the relevant literature are detailed in Table S4 and are presented in
Supplemental Files.

. Q1: How was the literature search process carried out across relevant databases for the
studies included in the review? Were any statistical details reported regarding the
selection process? In other words, was the review conducted in a systematic manner?

. Q2: Have the studies reviewed been individually summarized, and have the predictive
models proposed in these studies been articulated in general terms, along with a
discussion of their contributions to the existing body of literature?

. Q3: Has there been an extensive investigation on the input features utilized in predictive
models?

. Q4: Has information been provided regarding the feature selection or feature extraction
techniques employed for prediction models?

. Q5: Has there been a significant emphasis on suggested methodologies for mitigating or
minimizing noise in disease-related data?

. Q6: Is there a comprehensive analysis of the various training and testing methodologies
employed in predictive modeling?

. Q7: Has any information been provided regarding the specific AutoML techniques that
the proposed prediction models in the studies emphasize?

. Q8: Are the performance evaluation metrics for the proposed models clearly defined?

. Q9: Has there been a detailed AutoML research on general human diseases?

. Q10: Have searches been conducted in many well-known digital databases?

Preity & Shahnawazuddin (2024) covers automatic AI-based methods for eye vessel
segmentation and disease detection. Diseases diagnosed by retinal vessel analysis are
examined by comparing deep learning with traditional image processing models. The role
of models such as CNN, U-Net and GAN in the detection of eye diseases is discussed. The
study reveals current challenges and future research directions in the context of datasets,
evaluation metrics and clinical applications.

In Yuan et al. (2024), 118 articles were analyzed and AutoML’s data preparation, feature
engineering and model development processes were examined, and its advantages over
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classical ML were demonstrated with case studies. Interpretation methods were
summarized under the titles of feature interaction, data dimensionality reduction, internal
interpretable models and rule extraction, and the use of AutoML in image, text, table,
signal, genome and multimodality data was discussed. While interpretable AutoML
increases the trust in ML in healthcare, it is recommended that issues such as data
preparation and integration of basic models be further investigated in the future.

Mishra, Pandey & Malhotra (2024) examines the role of deep learning in combating
neglected vector-borne diseases. Deep learning techniques have surpassed traditional
methods in disease transmission risk prediction, vector detection, parasite classification,
and treatment optimization. Convolutional neural networks and AutoML algorithms
facilitate early detection and disease surveillance, especially in resource-limited regions.
Interdisciplinary integration and smartphone-based applications have the potential to
improve global health outcomes.

The advantages of codeless deep learning (CFDL) over bespoke DL were evaluated in
five ophthalmological tasks, but it was determined that most of such discussions were
one-dimensional and that there were wide applicability gaps. It was noted that high-quality
assessment of the applicability of CFDL over bespoke DL required a context-specific,
weighted assessment of clinician intent, patient acceptance, and cost-effectiveness. It was
concluded that CFDL and bespoke DL are unique in their own right and cannot be
substituted for each other (Wong et al., 2024).

This review examines the key challenges and best practices in ML approaches in
microbiome research (Papoutsoglou et al., 2023). The high dimensionality, heterogeneity,
and noisy nature of microbiome data complicate the accuracy and generalizability of ML
models. The study highlights issues such as data preprocessing, feature selection, model
evaluation, and XAI. It notes that tools such as JADBio can be used to analyze microbiome
data. It also recommends best practices such as using open data, standardized
methodologies, and reproducibility.

In their article, Mustafa & Rahimi Azghadi (2021) examine the role of AutoML in the
healthcare sector, especially how it is used in the analysis of clinical notes. It emphasizes
the benefits it provides such as interpreting clinical texts with natural language processing
(NLP) techniques, accelerating the diagnostic process and reducing the workload of
healthcare professionals. Challenges such as data complexity, explainability and reliability
are also addressed. Future research areas and opportunities for AutoML to become more
effective in the healthcare field are discussed.

A total of 82 studies conducted in accordance with the PROSPERO protocol and
covering studies in Cochrane, Embase, MEDLINE, and Scopus databases up to July 11,
2022 evaluated 26 different AutoML models. Brain and lung diseases were the most
frequently investigated domains, yet the performance of AutoML systems exhibited
considerable variability (AUCROC: 35.0–100.0%; F1-score: 16.0–99.0%; AUPRC:
51.0–100.0%). In the majority of trials, AutoML systems achieved optimal performance
with an AUCROC of 75.6%, an F1-score of 42.3%, and an AUPRC of 83.3%. Among the
tools evaluated, AutoPrognosis (for structured data) and Amazon Rekognition (for
unstructured data) delivered the best performance outcomes. However, the overall
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reporting quality was suboptimal, with a median DECIDE-AI score of 14 out of 27,
underscoring the need for improved standards in clinical applications (Thirunavukarasu
et al., 2023).

As a result of the reviews, most of the seven review studies summarized the studies one
by one, and the prediction models proposed in these studies were outlined. The evaluation
metrics employed to assess model performance were outlined, and the contributions of the
studies to the existing body of literature were examined. It was observed that the focus was
on model performance evaluation, and different training and testing models were
evaluated. Although the majority of the review studies were systematic, few specifically
addressed many of the most prominent digital databases, and many failed to emphasize
methods for noise removal and reduction. Although most of the studies detected human
diseases with AutoML, some studies detected animal and plant diseases with AutoML.
Some studies were on automated disease detection instead of disease detection with
AutoML.

The audience it is intended for
Healthcare professionals such as doctors, radiologists, and hospital administrators; academic
and clinical researchers such as geneticists and bioinformatics researchers; startups and
medical device manufacturers developing health technologies; businesses in the health sector
such as insurance companies; and patients who want to monitor their individual health and
healthy living enthusiasts. Furthermore, graduate students and postdoctoral researchers
engaged in research related to disease detection and diagnosis modeling may find value in
the thorough review and analysis provided in this work. In conclusion, this study is also
aimed at an academic audience seeking to enhance their comprehension and application of
AutoML methodologies in the field of disease detection.

Organization
The remainder of this study is organized as follows: the ‘Methodology of Survey Research’
section offers a detailed account of the procedures used to identify and select the article
incorporated into this survey. The ‘Findings and Results’ section begins with a critical
synthesis of the reviewed literature, followed by an extensive evaluation aligned with the
predefined research questions. Finally, the ‘Conclusions and Recommendations’ section
offers a synthesis of the studies reviewed and presents recommendations for future
research directions.

METHODOLOGY OF SURVEY RESEARCH
This literature begins with the identification of research questions and advances by
concentrating on the review objectives. Subsequently, database searches are conducted to
select studies that can provide relevant answers to these questions. These searches are
executed using query phrases formulated based on predefined inclusion and exclusion
criteria. In the final phase, the process of reviewing the selected studies and excluding those
that do not meet the criteria is undertaken. This stage involves assessing the studies’
alignment with the established criteria and their relevance to the review’s objectives. With
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this approach, a comprehensive analysis of the literature is presented and a solid
foundation is established for future research studies.

The PRISMA protocol (Moher et al., 2009) was used as a basis when conducting a
literature review on disease detection with AutoML. For this purpose, our research
question was determined first. Then, the literature search strategy was determined with the
databases to be used, search keywords, publication range, language restrictions and
inclusion/exclusion criteria. Inclusion criteria (studies that detect diseases with AutoML,
academic articles excluding review articles, articles containing clinical data) and exclusion
criteria (studies that use only traditional ML, articles that do not provide sufficient
performance metrics) were determined for literature selection. In accordance with the
PRISMA flow chart; the articles found were listed, duplicates were eliminated,
inappropriate ones were removed by title-abstract review, and the final included articles
were determined by full-text analysis. For relevant studies; general information, disease
type, AutoML tool used, comparative methods and performance metrics were
summarized. Risk assessment (bias analysis); Bias (bias) assessment can be performed with
tools such as the Cochrane Risk of Bias Tool or QUADAS-2. The QUADAS-2 method was
used in this literature review (Whiting et al., 2011). Graphs and tables were created
comparing the performance of AutoML methods. Our literature article was written in
accordance with the PRISMA 2020 Reporting Guidelines (Page et al., 2021). The PRISMA
checklist is provided in the Supplemental Files.

QUADAS-2 implementation steps
1. Define study selection criteria

- Determine the characteristics of the studies you will include in your article. (Criteria are
determined by query expressions.)

- Must be related to diagnostic tests and include the use of AutoML. (Studies that did not
use AutoML were eliminated.)

2. Examine the four main areas of QUADAS-2
Patient selection: Has the appropriate patient population been selected for the study?

(Only human diseases were searched; other living beings were not included in the study.)

- Index test: Was the test (e.g., AutoML model) used appropriately in the diagnosis
process?

- Reference standard: Was the diagnostic test compared to a reliable gold standard?

- Flow and timing: Were all patients subjected to the same diagnostic tests and reference
standard?

3. Evaluate risk of bias and applicability

- Determine whether there is low, high or uncertain risk for each area. (Shown with table,
graphic legends and summaries of studies.)

- Show this assessment with a table or graph.
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4. Report results

- QUADAS-2 assessment findings are presented with tables and graphs.

- Explain how bias risk was managed: The most cited studies in the last 5 years that
detected human diseases with AutoML were selected.

The strategy of survey research
This review aims to accomplish the stated objective by addressing the following research
questions:

. RQ1: Which AutoML techniques are most commonly utilized in disease detection
models?

. RQ2: What are the primary input features and datasets emphasized by the proposed
predictive models?

. RQ3: To what extent are feature extraction, feature selection, and feature engineering
techniques employed in disease prediction models, and what impact do these methods
have on model performance?

. RQ4: Which techniques are predominantly recommended for denoising disease-related
data, and how frequently are they preferred in the existing studies?

. RQ5: What is the most commonly employed approach for training-testing data splitting
in AutoML-based prediction models?

. RQ6: What performance evaluation metrics are typically used to assess the effectiveness
of prediction models?

. RQ7: What hyperparameter optimization and model evaluation methods are used?

After identifying the research questions, comprehensive literature searches were
performed across eleven distinct digital repositories: IEEE Xplore, Scopus, PubMed, Web
of Science, ACM Digital Library, Wiley Online Library, ScienceDirect—Elsevier, Google
Scholar, SpringerLink, Hindawi and Taylor & Francis. The search space was broadened by
employing the “AND” operator for various keywords and the “OR” operator for synonyms
of the keywords. The query statements applied in this process, along with details about the
sources where they were searched, are outlined in Table S4 and are presented in
Supplemental Files. It was determined that an effective filtering could not be done in
Google Scholar, SpringerLink, and Taylor & Francis. Because the queries in this database
are very general and do not allow advanced search phrases and query statements. Hindawi
journals have joined Wiley’s open access journal portfolio. Therefore, Google Scholar,
SpringerLink, Hindawi and Taylor & Francis searches were ignored. Searches were
conducted across seven digital repositories based on the data in Table S4 presented in the
Supplemental Files.

As a result, the studies screened in seven different data from January 2020 to March
2025 are filtered by elimination criteria, inclusion and exclusion criteria, summarized in
Table S5, presented in the Supplemental Files. As a result of these screens, 552 studies were
found with queries created in seven different digital databases, 40 studies that were not
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published between 2020–25 were eliminated, 117 studies that were not published in the
journal were eliminated later, 145 studies were eliminated because they were reviews,
books, conference proceedings, posters, editorial notes, etc., and seven studies were
eliminated because they were not on human diseases. At the end of all these elimination
processes, 243 articles were included in the full-text review.

A total of 243 articles were selected, including six conference articles in IEEE Xplore,
18 articles in Scopus, seven articles in Pubmed, 23 articles in WoS, four articles in ACM,
60 articles in Wiley, and 125 articles in ScienceDirect-Elsevier digital libraries. The query
expressions specified in Table S4 were used to select the articles. Then, the title, keyword,
abstract and article content will be read and finally it will be decided how many articles will
be included in this survey content.

Article selection and exclusion
As a result of the queries, inclusion and exclusion criteria were defined to determine
whether the 243 studies obtained were suitable for evaluation within the scope of the
review. A total of 29 studies from seven different databases were deemed worthy of review.
It was determined that some of the studies were included in more than one database.
Therefore, duplicates were removed to ensure that each study was listed only once. A total
of 5 duplicate studies were removed. In the final stage, a total of 24 studies were subjected
to review in our article and abstract, full-text and title readings were performed, and the
scanned and selected articles are shown in Fig. 3 according to the digital databases.
Additionally, the criteria for screening and selection were established as follows to
determine whether the identified studies would be considered for evaluation within the
scope of this review:

• Inclusion criteria

– Research articles published between 2020 and 2025

– Articles published in Q1 (journals ranked in the top 25% based on impact factor) or Q2
(journals with an impact factor between the 25th and 50th percentiles)

– Studies focusing on disease detection, diagnosis, and healthcare with AutoML

– Research articles published in the English language

• Exclusion criteria

– Studies that do not concentrate on disease detection and diagnosis using AutoML.

– Studies such as review articles, conference proceedings, books or chapters, poster
presentations

– Studies not focusing on human diseases

– Duplicate articles

The PRISMA flow diagram depicts the process of study selection, beginning with 552
identified records, narrowing to 243 screened articles, 29 eligible studies after applying
inclusion criteria, and finally including 24 studies in the review. A total of 214 articles were
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read in full and assessed for relevance. A total of 29 articles were considered appropriate for
inclusion in this review on disease detection utilizing AutoML. These selected articles are
distributed across digital databases as follows: IEEE Xplore: 1, Scopus: 4, Web of Science:
11, PubMed: 2, ACM: 0, Wiley: 1, ScienceDirect (Elsevier): 10. Figure 4 shows the number
of articles according to digital databases. The PRISMA flow diagram of our article is shown
in Fig. 5.

FINDINGS AND RESULTS
In this section, a detailed summary of each of the 24 reviewed articles is provided, with an
in-depth explanation of the proposed prediction models. This enables researchers to gain a
thorough understanding of each study, facilitate comparisons, and pinpoint existing gaps
in the literature. Then, the studies are analyzed separately within the framework of each
research question. Detailed articles and dataset information are included in Table S6 in the
Supplemental Files.

Figure 3 Number of studies selected and included in the databases as a result of query expressions. Following the initial search, inclusion and
exclusion criteria were applied to assess the suitability of the 243 retrieved studies for this review. After screening, 29 studies from seven different
databases met the criteria for further evaluation. Since some studies appeared in multiple databases, five duplicates were removed to avoid
redundancy. Ultimately, 24 unique studies were included in the final review. These studies were evaluated based on their titles, abstracts, and full
texts. Full-size DOI: 10.7717/peerj-cs.3193/fig-3
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The annual distribution of publications illustrates a growing research interest in
applying AutoML techniques to disease detection. Beginning with a limited number of
articles in 2020, there is a marked increase in publication frequency, particularly in 2024
and 2025. This upward trend suggests a maturation of the field, likely influenced by both
advancements in AutoML frameworks and increased demand for scalable AI-driven
healthcare solutions in the post-pandemic era. The number of articles by year is
shown in Fig. 6.

A categorization of studies by disease type indicates a predominant focus on
cardiovascular diseases, diabetes, and COVID-19. These conditions are among the most
widespread and clinically significant, which may explain their prioritization in AutoML
applications. Nonetheless, the inclusion of other areas such as oncology, neurology, and
gynecology reflects the adaptability of AutoML methods across diverse clinical domains.
The current distribution also reveals opportunities for further research in
underrepresented disease categories. Figure 7 illustrates the distribution of studies across
various disease categories.

Figure 4 Number of articles according to digital databases.
Full-size DOI: 10.7717/peerj-cs.3193/fig-4
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Analysis of data modalities reveals that tabular datasets are most commonly utilized,
likely due to their structured format and prevalence in clinical records and surveys.
Image-based data also constitutes a significant portion, particularly in studies involving
radiological and ophthalmological diagnostics. Although less frequently used, time-series,
genomic, and multimodal datasets are beginning to emerge, signaling an expansion in the
types of data being leveraged. This trend underscores the necessity for AutoML tools
capable of accommodating a wide variety of biomedical data formats. The distribution
according to data types is shown in Fig. 8.

Figure 5 PRISMA flow chart of our article. Full-size DOI: 10.7717/peerj-cs.3193/fig-5
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Figure 6 Publications by year. Presents the number of articles published each year.
Full-size DOI: 10.7717/peerj-cs.3193/fig-6

Figure 7 Research studies by disease classification. Full-size DOI: 10.7717/peerj-cs.3193/fig-7
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Summaries of articles
Model-Agnostic Meta-Learning (mAML) is an AutoML framework designed for the
classification of human diseases utilizing microbiome data. It generates reproducible,
automated, efficiently optimized, and interpretable models tailored to personalized
microbiome-based classification problems. Implemented as a web-based platform, mAML
features a scalable architecture. The system exhibits robust performance across 13
benchmark datasets, encompassing both binary and multi-class classification tasks.
Furthermore, to support the application of mAML and enhance the microbiome learning
landscape, the GMrepo ML repository has been developed. This resource comprises
120 microbiome-based classification tasks associated with 85 distinct human disease
phenotypes, built upon a comprehensive dataset of 12,429 metagenomic and 38,643
amplicon samples (Yang & Zou, 2020).

Figure 8 Distribution by data type. Presents the distribution based on data types.
Full-size DOI: 10.7717/peerj-cs.3193/fig-8
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COVID-19 remains a persistent global health challenge, associated with considerable
morbidity and mortality. The disease often exhibits distinctive patterns on chest computed
tomography (CT) scans, which can facilitate its early identification. Prompt and precise
diagnosis is critical for the effective clinical management of affected individuals. This study
aimed to assess the diagnostic capabilities of an AutoML algorithm for detecting COVID-
19-related pneumonia based on chest CT imaging. The diagnostic performance was
assessed using the area under the receiver operating characteristic curve (AUC), sensitivity,
and positive predictive value. The method achieved an average precision of 0.932
(Sakagianni et al., 2020).

By investigating the use of ML in time series analysis, the study introduces the automatic
time series (AutoTS) machine learning method. Time series models were created based on
the ICD-10 dataset using Romanian hospitalization data between 2008 and 2018. Highly
accurate predictions were generated for the ten most fatal diseases, and projections for the
years 2019–2020 were developed at the NUTS 2 regional level. AutoTS automatically tries
different models to select the best forecast model and accelerates time series analysis
(Olsavszky et al., 2020).

Coronary artery disease prediction is one of the most complex and critical tasks
encountered in the healthcare field. In this study, a predictive model is developed for the
detection of heart disease. The performance of RF and XGBoost classifiers is enhanced
through the application of three distinct hyperparameter optimization (HPO) techniques:
grid search, random search, and genetic programming, implemented via the TPOT
classifier. Model performances are evaluated using the CHD and Z-Alizadeh Sani dataset.
The RF model optimized with TPOT provided the highest success by achieving 97.52%
accuracy in the CHD dataset. In addition, the random forest model optimized with
random search detected Least Absolute Deviation (LAD), Linear Cross Feature Model
(LCX), and Randomized Clustering Algorithm (RCA) vessel stenoses in the Z-Alizadeh
Sani dataset with 80.2%, 73.6% and 76.9% accuracy, respectively. The obtained results
show that the proposed models provide higher accuracy compared to the studies in the
existing literature. These findings reveal HPO methods play an important role in
improving the performance of heart disease prediction systems (Valarmathi & Sheela,
2021).

This research evaluates the performance of prominent AutoML frameworks—Google
AutoML, H2O.ai AutoML, Auto-Sklearn, and TPOT—for disease prediction tasks using
medical claims data. In the analysis conducted using large-scale insurance claims data,
techniques were applied to address missing data filling, categorical variable
transformation, and imbalanced data problems. In the study where the models were
evaluated with metrics such as accuracy, F1-score, sensitivity, and precision, it was
determined that TPOT provided the highest accuracy on some data sets with genetic
algorithms, Auto-Sklearn was successful in model selection and hyperparameter
optimization, H2O.ai AutoML offered better scalability with large data sets, and Google
AutoML Tables produced robust predictions with minimal user input. The results show
that AutoML frameworks save time compared to manual model development and are an
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effective tool in health data analytics; however, it is emphasized that the most appropriate
framework should be selected according to different usage scenarios (Romero et al., 2022).

In this study (Mallikarachchi et al., 2023), AutoML and traditional machine learning
approaches are compared for the prediction of T2D, CKD, and Ischemic Heart Disease
(IHD). The results show that AutoML frameworks (TPOT, Auto-Sklearn, H2O) provide
superior performance compared to traditional models. Auto-Sklearn provides the best
accuracy (0.868) for T2D, while TPOT achieves high accuracies for CKD (0.99646) and
IHD (0.7456). AutoML simplifies model development by requiring less manual work and
expertise.

CloudAISim is a toolkit that aims to develop effective and explainable machine learning
techniques in the healthcare field. It provides a prototype web application that provides
data visualization and explainability by identifying accurate models for chronic and
infectious diseases. It increases real-time efficiency with cloud computing support. Its
architectural components include data entry, EDA, feature engineering, model building,
hyperparameter tuning, and prediction explanation with LIME. 96–98% accuracy rate was
achieved on breast cancer, heart disease, diabetes, and COVID-19 datasets (Chowdhury
et al., 2022) using Auto-Keras. An interactive web application was developed with
Streamlit to provide a use that does not require technical knowledge (Bhowmik et al.,
2023).

In this study (Paladino et al., 2023), three distinct AutoML frameworks—AutoKeras,
AutoGluon, and PyCaret—were evaluated using heart disease data across three datasets:
the Cleveland dataset, the Hungarian dataset, and a combined dataset integrating both. In
addition, 10 traditional ML models built with sklearn were evaluated as a reference. While
the accuracy rate of these models remained between 55–60%, AutoML tools provided
higher accuracies. The most successful tool was AutoGluon (78–86% accuracy), PyCaret’s
success varied depending on the dataset (65–83%), and AutoKeras gave the most unstable
results (54–83%). These findings show that AutoML is more effective than traditional
methods in heart disease prediction.

This study explores the potential of hematochemical parameters for distinguishing
between SARS-CoV-2 and influenza virus infections through the application of AutoML
techniques. The dataset consists of 268 pediatric patients, including 133 diagnosed with
SARS-CoV-2 and 135 with influenza. Ten distinct hematochemical features were
employed to construct various machine learning models. Traditional algorithms, such as
logistic regression, neural networks, k-nearest neighbors, support vector machines, and
random forests, yielded classification accuracies ranging from 53.8% to 60.7%. In contrast,
the AutoML approach significantly outperformed these methods, attaining an accuracy of
98.4%. These findings underscore the potential of AutoML as a powerful tool for the rapid
and precise identification of SARS-CoV-2 and influenza infections in pediatric populations
(Dobrijević et al., 2023).

It aims to develop an explainable and high-performance machine learning model using
AutoGluon, an AutoML framework, for the prediction of coronary artery disease (CAD).
Five different open data sets were combined, missing and outlier data were cleaned, and
the modeling process with meaningful medical features was started. AutoGluon’s 4-fold
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bagging (four bag-fold) and single-level stacking (one stack-level) structure was used in the
modeling phase, thus combining the outputs of multiple basic models (random forest,
Gradient Boosting Machine (GBM), artificial neural network (ANN), k-nearest neighbors
(KNN), etc.) to form a strong ensemble model. HPO was performed automatically by
AutoGluon, and the model achieved 91.67% accuracy and 0.9562 AUC score. In addition,
the decision processes of the model were made explainable using SHapley Additive
exPlanations (SHAP) analysis, thus presenting a transparent prediction system that
increases reliability in clinical applications (Wang et al., 2024a).

An advanced hybrid strategy combining heuristic and stochastic methods is developed
for the detection of abnormalities in clinical data encountered in patient rehabilitation
processes. In the proposed approach, patients’ routine exercise data were clustered using
the optimal k-means clustering method and then abnormal data points were determined
using an interquartile range (IQR) based stochastic method. In this way, reliable and
effective data was provided to medical experts and the processing of high-dimensional and
inconsistent clinical data was facilitated. In addition, an optimal regression model was
developed using the AutoML paradigm and the effectiveness of the proposed strategy was
evaluated with statistical error measures. Experimental results show that the model
successfully predicts Borg relative prediction error (RPE) and Timed Up and Go (TUG)
health indicators with 98.55% and 98.50% R2 scores, respectively. These findings reveal
that the developed hybrid strategy makes a significant contribution to abnormal data
detection and reliable data analysis in patient rehabilitation (Khan et al., 2024).

This study presents an innovative approach based on ChatGPT and AutoML to
facilitate diabetic retinopathy (DR) diagnosis. Using AutoML techniques in the analysis of
retinal images, 92–95% accuracy, 88–93% sensitivity and 90–94% specificity rates were
achieved. Thanks to ChatGPT integration, model outputs are interpreted with natural
language processing and presented as user-friendly reports, facilitating the clinical use of
the system. The developed method provides early diagnosis, especially in regions with
limited medical resources, and is a more accessible and effective alternative compared to
existing screening methods (Mohammadi & Nguyen, 2024).

This study compares the performance of Ensemble Learning and AutoML methods for
heart disease prediction. A total of 18 different models (eight Ensemble, 10 AutoML) were
tested using the heart disease dataset (303 samples, 14 features). Among the ensemble
models, SVM and logistic regression provided 80% accuracy, while among the AutoML
models, GLM showed the best performance with 88% accuracy. In the study, a deep
learning based ANN model also achieved 89.6% accuracy (Rimal et al., 2024).

This research presents an AutoML-based analysis leveraging patient data collected
during the initial phase of the COVID-19 pandemic in Romania, from January to
September 2020. The dataset, derived from the DRG system, encompasses 825,698
COVID-19 cases and includes detailed sociodemographic characteristics, medical
histories, hospitalization records, and geographic information. Data preprocessing was
performed using the Polars library, where feature engineering included renaming
variables, applying one-hot encoding, and introducing new Boolean indicators relevant to
COVID-19. The AutoMLmodels developed for this period achieved an F1-score of 96.44%
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for predicting discharge outcomes and 75.45% for mortality prediction. Additionally, an
accuracy of 98.84% was recorded in classifying cases as “urgent or acute.” The analysis of
feature importance indicated that older age, specific hospitals, and oncology departments
exhibited a weaker association with patient recovery. Conversely, higher mortality rates
were correlated with abnormal laboratory results and pre-existing cardiovascular
conditions. Additionally, patients admitted without referrals, as well as those from central
and capital regions of Romania, demonstrated a higher likelihood of being classified as
acute cases (Simon et al., 2024).

A total of 1,376 coronal T2-weighted MRI head images from the OASIS-3 dataset were
labeled by expert radiologists as showing sinonasal disease (777 images) or not
(599 images). The dataset was split into training, validation, and testing sets (80/10/10). A
single-label image classification model was trained using Google Cloud Vertex AI with
10-fold cross-validation. The best model achieved 91.3% sensitivity, 92.8% specificity, and
92% accuracy, with 63 true positives, 64 true negatives, five false positives, and six false
negatives. Average training time was 158.5 min. The final model is available upon request
(Cheong et al., 2024).

This study presents a ML-based modeling process to predict cardiovascular health risks
in patients with diabetes. Data cleaning, feature encoding, and scaling were performed on
DSD and DRD datasets using the PyCaret platform. The LightGBM model showed high
performance with AUC 0.8302 and precision 0.7320. The most influential features were
GenHlth, hypertension, BMI, and age. LightGBM is strong in overall accuracy, but
XGBoost outperforms it in F1 and Kappa metrics. This indicates that XGBoost offers a
better balance between recall and precision is more reliable against random agreements.
The model predicted “more than 30-day readmission” 84% correctly, but tends to
underestimate short-term admissions. This indicates that a careful balance should be
struck between false positives and negatives in clinical applications (Jose et al., 2024).

The few-shot learning (FSL) method is employed for the detection of Auto-Encoding
Hyperparameters (AEH), Neural Architecture and Evolutionary Hyperparameter
Optimization (NAEH), and evolutionary computation (EC) using a limited number of
total variation uncertainty (TVU) images. TVU images from pathologically confirmed
NAEH, AEH, and EC patients were split into support (SS) and query (QS) sets.
Eigenvectors of size 1 � 64 were extracted using a dual pre-trained ResNet50 V2 model.
Subsequently, Euclidean distances between each TVU image in the QS and the nine images
in the SS were calculated, and diagnosis was performed using the KNN algorithm. The
results indicate that the overall accuracy and macro precision of the proposed FSL model
are 0.878 and 0.882, respectively. Furthermore, the model achieved the highest
performance in EC recognition, with precision (0.964), recall (0.900), and F1-score (0.931).
Additionally, various models, including the H2O AutoML (ensemble), the traditional
ResNet50 V2 model, the FSL model combining the dual pre-trained ResNet50 V2
eigenvector extractor, and the junior and senior sonographer models, were employed in
the study (Wang et al., 2024b).

The AutoMLModels (Autoprognosis V.2.0) developed to estimate the rapid progress of
the knee osteoarthritis (OA) were examined. Models with all features provide the highest
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accuracy, while only simpler models trained only with clinical data have performed
strongly with AUC-PRC 0.727 in multi-class estimates and AUC-PRC 0.764 in binary
forecasts. Multi-class models have succeeded especially in early stage OA patients, while
binary models have given more reliable results in individuals under 60 years of age.
Patient-reported symptoms and MRI data are identified as the most influential attributes;
web-based tools have also been developed with personalized predictions (Castagno et al.
2025).

Hepatitis C virus (HCV) is a major infection that causes chronic liver diseases
worldwide. Early diagnosis and effective management are critical to prevent
complications. In this study, class imbalances were corrected and additional features were
added to the dataset obtained from the UCI ML Repository for the prediction of HCV.
Then, modeling was performed using seven different AutoML tools and high accuracy
rates between 99.29% and 100% were achieved. The obtained results show that
AutoML-based models are effective tools that can assist physicians in the diagnosis of
HCV (Değer & Can, 2025).

The study proposes a hybrid multi-objective feature selection system called
MOGAHHO, combining genetic algorithm (GA) and Harris hawk optimization (HHO),
to improve disease risk analysis and prediction. Using TPOT AutoML, it selects the most
accurate ML model (e.g., logistic regression (LR), decision tree (DT), multilayer perceptron
(MLP), KNN, and random forest (RF)) across ten datasets. MOGAHHO optimizes feature
selection by balancing GA’s global search with HHO’s exploration-exploitation phases,
aiming to maximize classification accuracy while minimizing feature count. Selected
features are ranked using TOPSIS, highlighting key disease markers. The system
outperforms methods like PCA, SVD, and autoencoders in classification accuracy and
feature reduction across multiple medical datasets (Kuanr & Mohapatra, 2025).

TF-IDF-Kmer and DNA composition components were used to extract effective
features from DNA sequences and these data were combined with physicochemical
information. Feature selection, model determination and HPO processes were automated
via the AutoGluon platform. The developed model was tested on three different datasets
and achieved 97.14%, 79.71% and 98.73% accuracy rates, respectively, outperforming the
existing leading models by 2%, 2.56% and 4%. In addition, the decision processes of the
model were analyzed using interpretability tools such as SHAP and the explainability of
the predictions was increased. Finally, a prediction application was developed to provide
easy access to researchers (Ye et al., 2025).

A comprehensive machine learning and deep learning pipeline for brain age estimation
is presented. T1-weighted MRI images were processed with FastSurfer, converted into a
form suitable for deep learning, and phenotypes were extracted for machine learning
models. The models developed using the UK Biobank, ADNI, and NACC datasets were
evaluated both for age estimation in healthy individuals and as biomarkers for
neurodegenerative diseases. With the designed statistical framework, the age estimation
performance of the models, their consistency across different data sources and
demographic groups, and their ability to distinguish neurodegenerative diseases were
analyzed. The results show that especially the penalized linear models developed with
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Zhang’s methodology perform with high accuracy (<1 year MAE) and generalizability; the
AUROC value is up to 0.90 in distinguishing diseases such as dementia (Capó et al., 2025).

In order to support early and accurate diagnosis of BPH, a nanoparticle-assisted
MALDI-MS based metabolomics platform was used to analyze metabolic profiles obtained
from urine and serum samples. In the two-stage analysis process, healthy individuals were
first separated from those with LUTS by UMP, and then BPH cases in the LUTS group
were identified with high accuracy (AUC = 0.830) by serummetabolic patterns (SMP). The
study also identified eight potential metabolic biomarkers that were distributed
independently of age groups, emphasizing the clinical value of this approach for early
diagnosis and personalized treatment of BPH. In addition, an experimental cohort dataset
was specifically created within the scope of this study, including samples from BPH, LUTS
and healthy individuals (Xu et al., 2025).

A semantic ontology (StrokeOnto) based on TPOT AutoML and OWL is used to
predict stroke deterioration and improve recommendations. Secure and autonomous data
control is provided by adhering to the principle of digital sovereignty in patient data and
compliance with local data privacy laws is supported. In addition, the classifications are
explained with LIME to determine the importance of attributes. The proposed model aims
to provide tailored interventions according to individual patient profiles. The model was
validated using a publicly available stroke dataset, which was also employed in the
development of the associated ontology. Among the supervised machine learning models
tested in TPOT, the pipeline combining a decision tree classifier with a variance threshold
achieved the highest performance, demonstrating an accuracy of 95.2%, surpassing other
models (Chatterjee, 2025).

Summaries of the studies according to the research questions are shown in detail in
Table S7 in the Supplemental Files. The table explains the preprocessing steps, denoising
and cleaning, feature extraction and feature extraction, prediction models, performance
metrics, and hpo methods.

Table S7 presents a comprehensive comparison of recent studies that integrate AutoML
systems into machine learning (ML) pipelines, with specific attention to various
preprocessing strategies, modeling techniques, performance metrics, and optimization
procedures.

Inferences
1. Feature engineering techniques
Feature selection and extraction methods varied widely among the studies. Classical
statistical approaches (e.g., ANOVA, chi-squared, PCA, and recursive feature elimination)
were common in traditional ML workflows (Kuanr & Mohapatra, 2025; Mallikarachchi
et al., 2023), while more advanced AutoML systems employed automated or embedded
techniques, including built-in feature importance assessments (Ye et al., 2025) and SHAP
explainability tools (Castagno et al., 2025;Wang et al., 2024a). A notable trend was the use
of domain-specific methods, such as TF-IDF-Khmer in genomic data (Ye et al., 2025) or
grey-level texture features in imaging studies (Wang et al., 2024b).
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2. Noise removal and data cleaning
Noise removal or denoising, while essential, was not consistently reported. Only a few
studies such as (Mohammadi & Nguyen, 2024) and (Xu et al., 2025) explicitly mentioned
denoising techniques, including CLAHE and wavelet-based methods. Data normalization,
transformation, and imputation were more commonly addressed (Rimal et al., 2024;
Simon et al., 2024) reflecting standard preprocessing in automated pipelines.

3. Prediction models and autoML tools
The diversity of models employed spans traditional ML classifiers (e.g., SVM, RF, logistic
regression), ensemble methods (e.g., XGBoost, Gradient Boosting), and AutoML
frameworks like TPOT, H2O, AutoGluon, and PyCaret. AutoML platforms not only
automated model selection but also facilitated meta-learning strategies (Wang et al.,
2024a), with varying degrees of human intervention.

4. Evaluation metrics
A wide spectrum of performance metrics was employed, indicating the varied nature of
tasks (classification, regression, etc.). Accuracy and F1-score were the most consistently
reported metrics across studies. For classification tasks, recall, precision, specificity, and

Figure 9 Number of times AutoML methods were used in articles.
Full-size DOI: 10.7717/peerj-cs.3193/fig-9
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sensitivity were frequently used, while regression-focused studies emphasized root mean
square error (RMSE), mean absolute error (MAE), Coefficient of Determination (R2),
mean absolute percentage error (MAPE) (Capó et al., 2025; Khan et al., 2024). The use of
area-under-curve metrics (AUC-ROC, AUC-PRC) was common, especially in medical and
high-stakes prediction domains.

5. Hyperparameter optimization
Random search and grid search were still employed, particularly when paired with TPOT
or other genetic programming frameworks (Chatterjee, 2025; Valarmathi & Sheela, 2021).
However, Bayesian optimization (Castagno et al., 2025), ElasticNet regularization, and
AutoML-integrated optimization were increasingly reported. The trend indicates a shift
toward hands-off, scalable optimization embedded directly within AutoML systems.

Based on the analysis of article mentions, TPOT appears as the most frequently cited
AutoML platform, with seven mentions, indicating its popularity and widespread use in
the literature. It is closely followed by H2O, mentioned six times, which also suggests
strong recognition within the research community. AutoGluon, PyCaret, and Vertex AI
have moderate visibility, with four and three mentions, respectively, indicating growing
interest. AutoKeras is mentioned less frequently (two times), while other tools such as
FLAML, Auto-WEKA, and similar platforms collectively account for five mentions. This
distribution highlights the diversity of AutoML tools being explored and suggests that
while a few platforms dominate in popularity, there is ongoing interest in a variety of
alternative solutions. The number of times AutoML methods and models are used in
articles is shown in Fig. 9.

Table S8 in the Supplemental Files shows dataset/data type, disease/task, author (year),
ML/AutoML method, best accuracy/performance.

The highest accuracies reported are generally above 90%, with some datasets reaching as
high as 99–100% accuracy, such as hepatitis C and chronic kidney disease. AutoML
frameworks like TPOT, AutoGluon, Auto-Sklearn, H2O, and AutoKeras have consistently
demonstrated superior performance compared to traditional methods. The most
frequently studied diseases include heart disease, COVID-19, diabetes, kidney disease, and
various types of cancer. Additionally, several studies have enhanced accuracy through
specialized hybrid approaches and hyperparameter optimization techniques, such as
TPOT combined with hyperparameter optimization and genetic algorithms integrated
with Harris hawks optimization (GA + HHO).

CONCLUSIONS AND RECOMMENDATIONS
This binary table provides a structured overview of 24 selected studies focusing on disease
detection using AutoML methods. Each row represents a study, while each column
corresponds to one of seven key research questions (RQ1–RQ7), covering topics such as
AutoML usage, input features, feature engineering, denoising, model validation,
performance metrics, and hyperparameter tuning.

A value of 1 indicates that the study addresses the corresponding research aspect, while
0 indicates that it does not. The table clearly shows that most studies incorporate AutoML
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methods and performance evaluation metrics (RQ1 & RQ6). However, input feature
selection, feature engineering, and data denoising (RQ2–RQ4) are less consistently applied
across the literature.

This analysis helps identify current research trends and highlights areas that are
underexplored, suggesting opportunities for future work to improve robustness and
generalizability in disease prediction models. The binary contributions of the selected
studies according to the research questions are shown in Table S9 presented in the
Supplemental Files.

This review highlights several important trends in the application of AutoML for disease
detection. First, there is a clear increase in the number of relevant publications over time,
with a significant concentration of studies appearing in 2024 and 2025. This rise reflects
both technological advancements in AutoML frameworks and a growing demand for
scalable diagnostic solutions, particularly in the wake of the COVID-19 pandemic. Second,
cardiovascular diseases, diabetes, and COVID-19 emerged as the most frequently studied
conditions. These diseases are highly prevalent and often require timely diagnosis, making
them prime candidates for machine learning applications. Nevertheless, the presence of
research in less-explored areas such as neurology, ophthalmology, and gynecology
demonstrate the flexibility of AutoML methods and reveals opportunities for further
exploration in these domains. Lastly, the review shows that tabular data is the most
commonly used data type, likely due to its widespread availability in structured clinical
records. Image data also features prominently, especially in studies involving radiological
imaging. Although less common, the use of genomic, time-series, and multimodal datasets
is gradually increasing, pointing to a growing need for AutoML tools capable of handling
complex and diverse biomedical data types. Strategies such as data subset selection, model
compression, and low-precision computing make the use of deep learning sustainable,
especially in healthcare institutions with limited resources (Yuan, 2025). Domain‑specific
pretraining provides more effective results compared to foundation models, especially in
cold‑start scenarios (Yuan et al., 2025). This suggests that integrated strategies with lighter
models such as AutoML may be preferred, especially in the field of medical imaging.
As a result of the survey;

. General evaluation: The survey has shown how effective AutoML techniques are in
predicting various diseases in the field of health. Most of the models used for different
diseases have reached high accuracy rates, especially the predictions made on diseases
such as type 2 diabetes, heart diseases, COVID-19 are quite successful.

. AutoML and traditional methods comparison: It has been determined that AutoML
methods generally provide faster and more accurate results compared to traditional
machine learning methods. Especially when the data sets are large and complex, the
automation provided by AutoML provides a great advantage.

. Clinical applications and data integrity: AutoML’s ability to overcome difficulties such as
missing data, class imbalances, and transformation of categorical data is also important
when working on health data. This is a critical element for the processing of clinical data
and the reliability of the results.
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The recommendations of the survey can be listed as follows.

. Expansion of application areas: AutoML’s application areas in the field of health can be
further expanded. Especially when working with rare diseases or small data sets, the
advantages of AutoML may be more pronounced. In this context, it is recommended to
develop AutoML-based models for more diseases.

. Developing user-friendly tools: In order to increase the use of AutoML-based tools,
user-friendly interfaces should be developed where healthcare professionals can get
accurate results with less intervention in model development processes. This will save
time and resources, especially in clinical settings.

. Explainability and transparency: Explainability of models is important for clinical
applications. In order to provide transparent and reliable results, methods such as LIME
and SHAP should be used to increase model explainability.

. Data security and ethics: Data security and patient privacy are of great importance in the
application of AutoML systems in the healthcare field. Therefore, the integration of
secure data management systems that comply with local data privacy laws is important.

. Future research: New algorithms and optimization techniques should be investigated to
make AutoML methods more efficient. In addition, more validation studies can be
conducted in clinical use to increase the accuracy of such systems in a wider patient
group.
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