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ABSTRACT
With the increasing challenges of default risk in the auto loan market, traditional risk
assessment methods show significant limitations in coping with the rapidly
changing market environment. This study proposes an innovative deep learning
architecture—Deep Capsule Attention Network (DECAF)—which integrates capsule
networks with self-attention mechanisms, effectively enhancing the intelligent
detection capability for auto loan default risks. Experimental evaluations of the
model’s performance in both conventional and high-risk scenarios demonstrate that
the DECAF model achieved an area under the curve (AUC) of 0.924 in the
conventional scenario and maintained a high performance of 0.850 in high-risk
scenarios. Additionally, DECAF exhibits a significant advantage in terms of reducing
false positives (FPR < 0.2), effectively minimizing misjudgments. More importantly,
the study reveals that the DECAF model retains high stability even under severe
market fluctuations, with only a 7.4% performance drop. These results provide new
insights and solutions for financial institutions to optimize risk control strategies in
dynamic market environments.

Subjects Human-Computer Interaction, Algorithms and Analysis of Algorithms, Artificial
Intelligence, Data Mining and Machine Learning, Neural Networks
Keywords Auto loan default risk, Deep learning, Risk assessment, Capsule networks,
Market fluctuation

INTRODUCTION
Research background
With the continued expansion of the global auto finance market, auto loan default risk
detection has become a significant challenge for financial institutions. In the
post-pandemic economic environment, market uncertainty has significantly increased,
and traditional risk assessment methods relying on static credit scoring models and
manual review processes have shown notable limitations in addressing the rapidly
changing market environment (Wang et al., 2024). These methods not only fail to
effectively handle and integrate multi-source heterogeneous data but also exhibit
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significant deficiencies in the accuracy of risk identification, making it difficult for risk
early-warning systems to meet the actual business needs (Pattnaik, Ray & Raman, 2024;
Mienye & Jere, 2024).

In recent years, machine learning techniques have made significant progress in the field
of financial risk management. However, existing research still falls short when addressing
the specific needs of auto loan risk detection. In particular, when dealing with the
integration of auto loan data, existing methods often fail to ensure the stability of model
performance (Yaghoubi et al., 2024; Xu et al., 2024). Additionally, the systemic
characteristics of auto loan defaults require that risk detection systems possess
comprehensive perception capabilities for both individual loans and the broader market
environment (Guo et al., 2024; Lei et al., 2022b), which imposes higher demands on
current methods, as shown in Fig. 1.

With the continued innovation in financial markets and the increasing complexity of
risk patterns, developing intelligent and efficient auto loan risk detection systems holds
significant theoretical and practical value. Such a system needs to effectively address the
challenges posed by data distribution, while also possessing the capability to identify
systemic risks at the market level. This not only relates to the risk management capabilities
of financial institutions but also plays a crucial role in the stable operation of the entire
financial market.

Related work
Auto loan default risk assessment has evolved significantly with the advancement of
computational techniques, progressing from traditional statistical methods to
sophisticated machine learning and deep learning approaches. This evolution reflects the
industry’s need for more accurate and robust risk prediction models in the increasingly
complex auto finance market (Lei et al., 2022a).

Traditional auto loan risk assessment primarily relied on static scoring models and
expert-based systems. These approaches, while providing baseline interpretability, have
shown significant limitations in capturing complex patterns in auto finance data.
Raimundo & Bravo (2024) attempted to improve traditional credit scoring by combining
multiple base classifiers in a stacked generalization framework, achieving modest
improvements in auto loan classification but still struggling with nonlinear feature
relationships inherent in vehicle financing data. Similarly, Chang et al. (2024) combined
random forests with gradient boosting for vehicle loan assessment, enhancing
interpretability through feature importance analysis, but demonstrating poor performance
when analyzing temporal patterns in auto loan repayment behaviors. The unique
characteristics of auto loans, including vehicle depreciation rates, collateral valuation, and
industry-specific risk factors, have prompted researchers to develop specialized
approaches. Xia, An & Zhang (2023) addressed the imbalanced nature of auto loan default
data by combining extreme gradient boosting (XGBoost) with Synthetic Minority Over-
sampling Technique (SMOTE), significantly improving classification performance, but
their method lacked mechanisms to adapt to the dynamically changing patterns in
automotive market conditions.
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Recent years have witnessed significant advancements in machine learning applications
specifically tailored for auto loan risk assessment. Chen et al. (2023) pioneered the use of
graph neural networks for auto loan default detection, leveraging meta-paths to model
relationships between borrowers, vehicles, and loan terms. Their approach
demonstrated improved accuracy in identifying high-risk auto loans but showed
limitations in adapting to multi-dimensional feature interactions in dynamic market
environments. For vehicle financing portfolios, Maming, Chaimontree & Lim (2024)
explored anomaly detection techniques including k-nearest neighbor (kNN) and local
outlier factor (LOF) to identify unusual patterns in auto loan applications. While effective
for flagging potential fraud, these methods showed limitations in handling the
high-dimensional feature spaces characteristic of comprehensive auto loan assessments. In
the mortgage and auto loan domain, Mushava & Murray (2022) extended the XGBoost
model using generalized extreme value distribution for imbalanced data, providing
insights for secured lending but showing limited capabilities in integrating multi-source
data typical in comprehensive auto loan assessments.

The complexity of auto loan markets has driven research toward more sophisticated
deep learning architectures. The complexity of auto loan markets has driven research
toward more sophisticated deep learning architectures. The theoretical foundations for
hierarchical representation learning have been demonstrated across various domains
through capsule-based modeling approaches. Huang et al. (2024) applied network
pharmacology analysis demonstrating multi-target pattern recognition capabilities that
parallel the multi-dimensional risk assessment challenges in financial modeling.Hong et al.
(2023) further explored network-based analysis for multi-pathway information processing,
revealing the effectiveness of hierarchical architectures in capturing complex
interdependencies. Dong et al. (2025) investigated real-time monitoring frameworks with

Figure 1 Characteristics of auto loan defaults. Full-size DOI: 10.7717/peerj-cs.3191/fig-1
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advanced analytical capabilities, emphasizing dynamic pattern recognition essential for
adaptive financial risk assessment systems. Shilbayeh & Grassa (2024) combined decision
trees with ensemble learning specifically for vehicle loan credit rating prediction,
improving model stability in fluctuating auto markets but still showing limitations in
generalization when confronting complex nonlinear features in diverse vehicle financing
scenarios. Ahmadi, Pourmahmood Aghababa & Kalbkhani (2022) introduced a nonlinear
prediction framework based on chaos theory for auto loan risk assessment, offering novel
insights but suffering from computational inefficiency when processing the
high-dimensional feature spaces typical in comprehensive auto loan data. In the specific
context of auto financing, Alghamdi & Alkhamees (2023) developed a multi-class borrower
default detection model tailored to vehicle loans, but their approach employed relatively
static risk assessment processes that lacked continuous adaptation mechanisms necessary
for the rapidly changing auto finance environment.

Despite these advancements, significant challenges remain in auto loan default
prediction. Current methods still struggle to effectively integrate the diverse data sources
characteristic of comprehensive auto loan assessments. Zhao et al. (2023) attempted to
address this through multi-view data fusion for detecting high-risk auto loans, but their
feature integration approaches lacked the dynamism necessary to adapt to emerging
patterns in automotive financial markets. The temporal dynamics of auto loan
performance represent another significant challenge. Cheng et al. (2023) explored the
detection of vulnerable nodes in auto loan networks, but their methods incurred high
computational costs and lacked the hierarchical representation capabilities needed for
effectively modeling complex dependencies in vehicle financing relationships. Similarly,
Luo et al. (2023) developed a risk detection framework for large-scale auto financing
portfolios but demonstrated limited capacity for real-time strategy adjustment critical in
volatile automotive markets.

Recent research has begun exploring more adaptive approaches. The emergence of
transformer-based architectures with attention mechanisms has revolutionized temporal
modeling in financial applications.Wang et al. (2025) developed SPPformer, a transformer
model with sparse attention mechanisms achieving superior efficiency through Atrous
Self-Attention and local self-attention integration, demonstrating 22.91% reduction in
training time and enhanced interpretability for complex price analysis. Hartanto &
Gunawan (2024) investigated Temporal Fusion Transformers for multivariate financial
time series, achieving remarkable predictive accuracy (symmetric mean absolute
percentage error (SMAPE) of 0.0022) through self-attention mechanisms that effectively
capture complex temporal dynamics across multiple sequences, though their focus
remained on equity markets rather than secured lending scenarios. Li et al. (2024)
introduced deep reinforcement learning for risk detection in auto loan networks,
showing promise in adaptive decision-making but still exhibiting insufficient
hierarchical feature representation for the complex patterns in vehicle financing data.
Chang, Wang & Wang (2022) developed automated feature engineering methods for auto
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loan default prediction, but their approach lacked specialized consideration for the unique
patterns of automotive financial transactions and continuous decision updating
mechanisms. Maloney, Hong & Nag (2023) applied support vector machine (SVM)
techniques to auto loan default detection, providing a computationally efficient approach
but demonstrating limitations in balancing the multiple objectives inherent in modern
auto finance risk assessment. A comprehensive summary and analysis of these related
works is presented in Table 1.

In summary, while research in auto loan default risk assessment has made significant
methodological advances, critical limitations persist in current approaches. Most existing
studies employ relatively static frameworks for feature extraction and risk identification
that perform inadequately in the complex and dynamic environment of automotive
finance. The integration of capsule networks and self-attention mechanisms, as proposed
in our Deep Capsule Attention Network (DECAF) architecture, addresses these limitations
by enabling more adaptive and comprehensive risk assessment specifically tailored to the
unique characteristics of auto loan markets.

Research contributions
This study addresses the problem of auto loan default risk detection in the post-pandemic
era and proposes an intelligent risk assessment method based on deep learning. The main
contributions of this research are as follows:

Novel architecture and superior performance. A novel deep learning architecture,
DECAF, for auto loan default risk detection is introduced. This architecture integrates
capsule networks and self-attention mechanisms to effectively capture complex feature
interactions and hierarchical patterns in auto loan data. The DECAF framework
demonstrates superior feature extraction capabilities particularly for auto financing risk
factors, where borrower characteristics and vehicle-specific elements jointly influence
default probability. Experimental results validate the architecture’s effectiveness, achieving
an AUC value of 0.924 in conventional scenarios while maintaining a performance level of
0.850 in high-risk scenarios, significantly outperforming existing methods.

Enhanced stability in high-risk scenarios. A systematic investigation of deep learning
method adaptability in high-risk auto lending scenarios is presented. Through controlled
ablation studies and comparative experiments, the analysis reveals the distinct
contributions of architectural components to model robustness. The complete DECAF
architecture demonstrates remarkable stability under simulated market fluctuations, with a
performance drop of only 7.4%, whereas traditional methods exhibit substantially greater
degradation (26.5%). This stability advantage is particularly valuable for auto financing
operations in volatile market conditions.

Practical application and business value. The practical application value of
specialized deep learning architectures in auto loan default risk assessment is
empirically demonstrated. The findings provide financial institutions with methodological
guidance for optimizing risk management strategies in the post-pandemic automotive
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financing market. Particularly noteworthy is DECAF’s superior performance in the critical
low false positive rate region (FPR < 0.2), enabling more balanced decisions that support
business development while maintaining effective risk control in diverse auto lending
segments.

RESEARCH METHODOLOGY
Problem description
Auto loan default risk assessment requires continuous tracking and evaluation of
applicants’ credit status as these characteristics dynamically change over time. To
formalize this process, a temporal feature mapping function is defined to capture these
dynamic changes:

TðFd
i Þ ¼ ff it jt 2 ½1;T�g (1)

where T denotes the observation period of the credit record, and f it represents the credit
status at time t, including income, repayment history, vehicle condition, and other relevant
information. This temporal representation is particularly important in auto financing
where both borrower characteristics and collateral values evolve throughout the loan
lifecycle. In auto loan risk assessment, significant correlations exist between various credit

Table 1 Summary and analysis of related literature.

Author Application scenario Research content Possible limitations

Chen et al. (2023) Credit data from
consumer finance
companies

Auto loan default risk detection based on
meta-paths and graph neural networks

Limited ability to identify multi-dimensional abnormal
features and lack of feature-level dynamic adaptation
mechanism

Maming,
Chaimontree &
Lim (2024)

Loan application data
from cooperatives

Anomaly detection using methods like k-
nearest neighbor (kNN), local outlier factor
(LOF)

Traditional methods are limited in handling
high-dimensional features and lack self-adaptive
decision-making process

Ah-Kim, Moffatt
& Petes (2022)

Personal loan data
from Korean banks

Generalized additive models for default risk
analysis

Insufficient ability to model nonlinear features and low
accuracy in abnormal sample detection

Alghamdi &
Alkhamees
(2023)

Online lending
platform data

Multi-class default borrower detection
model

Risk assessment process is relatively static, lacking a
continuous strategy adjustment mechanism

Zhao et al. (2023) Fraud detection on
online lending
platforms

Fraud user detection using multi-view data Feature fusion methods lack dynamism, and the ability to
adapt to abnormal patterns is insufficient

Maloney, Hong &
Nag (2023)

P2P lending financial
distress data

Default detection using SVM Simplified decision framework that struggles to balance
multiple objectives in complex scenarios

Cheng et al.
(2023)

Secured loan networks
and power grids

Efficient detection of vulnerable nodes in
uncertain graphs

High computational cost and insufficient hierarchical
representation and organization of features

Luo et al. (2023) Ant group risk control
system

Risk detection framework on industry-scale
graphs

Lack of real-time adjustment in risk control strategies and
limited dynamic adaptability

Li et al. (2024) Risk nodes in
uncertain graph
networks

Risk adaptive detection based on deep
reinforcement learning

Insufficient hierarchical feature representation and lack of
flexibility in model structure

Chang, Wang &
Wang (2022)

Online credit service
fraud prediction

Automated feature engineering methods Feature construction lacks specialized consideration of
abnormal patterns and decision-making lacks continuity
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indicators, such as income level and repayment ability, vehicle depreciation and
loan-to-value ratio, or consumption behavior and credit rating. These interdependencies
can be represented by a feature correlation matrix:

Rij ¼ wðfi; fjÞ (2)

where wð�Þ is the feature correlation measurement function, and Rij represents the degree
of correlation between credit indicators i and j. This correlation analysis enables
comprehensive evaluation of the applicant’s credit status within the specific context of auto
financing. Based on the integrated credit indicators, the risk assessment function
transforms this multidimensional information into a standardized credit score:

ri ¼ rðx �Fi þ bÞ (3)

where x represents the weight vector of credit indicators reflecting their relative
importance in auto loan decisions, b is the baseline score for the specific loan product
category, and rð�Þ is the nonlinear mapping function for score normalization. This
formulation accommodates both standard credit factors and auto-specific risk elements
such as vehicle type, age, and usage patterns. The loan approval decision function can
consequently be expressed as:

DðuiÞ ¼ 1; if ri � h
0; otherwise

�
(4)

where h is the credit approval threshold calibrated to the specific risk tolerance of the auto
lending institution, DðuiÞ ¼ 1 indicates the applicant passes credit review and receives
loan approval, and DðuiÞ ¼ 0 indicates rejection. This binary decision framework can be
extended to incorporate loan term and rate adjustments based on risk gradations. As
automotive market conditions and credit environments continuously change, the
predictive value of historical data diminishes over time. To account for this temporal
dependency, a time decay factor is incorporated:

at ¼ e�kðt0�tÞ (5)

where k is the time decay coefficient calibrated to market volatility rates, and t0 is the
current evaluation point. This factor ensures the model prioritizes recent credit
performance and vehicle valuation metrics, particularly important in rapidly evolving
automotive markets. In practical lending operations, the primary objective of the risk
assessment model is to minimize decision errors while maintaining computational
efficiency:

min
x;b

L ¼
Xn
i¼1
ðyi � DðuiÞÞ2 þ bkxk2 (6)

where yi is the actual repayment performance of the applicant, and the regularization term

bkxk2 controls model complexity to prevent overfitting, which could lead to inaccurate
risk judgments in novel market conditions. This balance between fitting historical data and

Zang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3191 7/33

http://dx.doi.org/10.7717/peerj-cs.3191
https://peerj.com/computer-science/


maintaining generalizability is critical for sustainable auto lending practices. Based on the
above formalization, the core research problem addressed in this study can be precisely
stated as:

Problem 1. Given an applicant’s credit feature set fFigni¼1 within the auto financing
context, construct the optimal credit risk assessment function f� and loan decision function
D� such that:

ff�;D�g ¼ argmin
f;D

E½Lðf;DÞ� (7)

where E½�� denotes the expected risk across diverse market conditions, and L is the
comprehensive credit loss function incorporating both misclassification costs and regulatory
requirements. Solving this optimization problem will enhance auto loan default risk
identification accuracy and reduce financial losses for lending institutions operating in
dynamic market environments.

User data integration: CapsNet
Advantages of CapsNet in auto loan risk assessment
Limitations of traditional credit assessment methods. Traditional credit assessment
models (such as logistic regression, decision trees, and neural networks) exhibit structural
limitations when processing auto loan data. These conventional approaches treat credit
indicators as independent features, neglecting the dynamic coupling relationships between
indicators such as vehicle value depreciation and payment capacity. Their static weight
structures fail to adapt to the time-varying importance of credit indicators in automotive
financing contexts. Traditional methods lack the hierarchical expression capabilities
necessary to model complex feature combinations, making it difficult to accurately identify
the underlying patterns in auto loan default behaviors.

CapsNet-based innovation and adaptive mechanisms. The CapsNet-based auto loan
risk assessment method introduces an adaptive correlation mechanism between features
through dynamic coupling coefficients cij, as shown in Fig. 2. The multi-layer capsule
structure precisely maps from basic auto loan indicators to higher-order default risk
patterns, while the reconstruction regularization mechanism ensures detection sensitivity
to anomalous repayment patterns. This architectural advantage provides reliable
algorithmic support for auto loan decision-making systems operating in volatile market
environments.

CapsNet algorithm formulation
Auto loan default risk assessment involves significant temporal dynamics and deep
coupling relationships between multidimensional indicators. The CapsNet-based dynamic
risk assessment framework captures time-varying features of borrower creditworthiness
and hierarchical relationships between vehicle financing indicators through feature
encoding and dynamic routing mechanisms. The primary capsule layer processes the
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applicant’s temporal financial features TðFd
i Þ for feature encoding, converting raw

financing data into directional vector representations:

vð1Þj ¼ squash
X
i

cijWijui

 !
(8)

where ui represents the applicant’s original feature vector, including key auto loan
indicators such as income, vehicle type, repayment history, and loan-to-value ratio; Wij is
the feature transformation matrix capturing conversion relationships between different
dimensions of loan indicators; and cij represents the coupling coefficient between
indicators. The squash function ensures credit risk scores map to the range [0, 1],
maintaining comparability and consistency across different loan applications.

During the risk assessment process, different auto loan indicators contribute
dynamically to risk determination rather than statically. Their relative importance must be
adjusted based on the applicant’s specific profile and vehicle characteristics. This dynamic
adaptability is achieved through the iterative routing process:

cij ¼
expðbijÞP
k expðbikÞ

; bij ¼ bij þ vðlÞj � ûðlÞjji : (9)

This mechanism enables adaptive adjustment of indicator weights, reflecting their
changing importance across different market conditions and borrower segments. The
update process of coupling coefficient cij represents a dynamic accumulation of default risk
evidence, where bij functions as the log-likelihood ratio of relationship strength between
risk indicators.

The higher-level capsule network combines lower-level features to construct more
complex risk assessment patterns, enabling hierarchical representations of the applicant’s
default propensity:

vðlþ1Þj ¼ squash
X
i

cðlÞij W
ðlÞ
ij v
ðlÞ
i

 !
(10)

Figure 2 User data integration: CapsNet. Full-size DOI: 10.7717/peerj-cs.3191/fig-2
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where l represents the capsule layer level. The higher-level capsules encode interactive
effects between financing indicators, such as the relationship between vehicle depreciation
and income stability, the balance between loan amount and collateral value, and the
dynamic interaction between payment history and current financial obligations. This
hierarchical structure enables comprehensive understanding of auto loan risk factors
across multiple abstraction levels.

Considering the time-sensitivity of auto financing data, particularly in volatile
automotive markets, the time-varying loss function is defined as a margin loss with
temporal decay weights:

Lcaps ¼
X
k

atTkmax ð0;mþ � kvkkÞ2 þ kð1� TkÞmax ð0; kvkk �m�Þ2 (11)

where Tk is the historical default label,mþ andm� are the score thresholds for performing
and defaulting loans respectively, and at ensures recent market conditions receive higher
weights. This formulation balances category margin reliability while accounting for the
temporal relevance decay of historical auto loan performance data.

To enhance identification of anomalous auto loan applications and potential fraudulent
behavior, a reconstruction regularization term is incorporated into the evaluation
framework:

Lrecon ¼ kFi � DecoderðvkÞk22: (12)

This term verifies the depth of model understanding by reconstructing original loan
application features. Successful reconstruction indicates sufficient capture of key auto
financing patterns and risk indicators. This self-encoding mechanism improves detection
capabilities for unusual application patterns that may signal elevated default risk.

The overall optimization objective comprehensively balances classification accuracy,
feature reconstruction fidelity, and model generalization:

Ltotal ¼Lcaps þ cLrecon þ b
X
ij

kWijk2F (13)

where c and b are balancing parameters adjusting importance weights between different
objectives, and the Frobenius norm constraint prevents overfitting to specific auto loan
patterns, ensuring generalization performance across diverse market segments and
economic conditions.

Theorem 1 (Auto Loan Risk Representation Theorem) For any auto loan feature set

fFigni¼1, there exists an optimal capsule network parameter configuration fW�
ij ; c
�
ijg such

that the final capsule output v� preserves the information completeness of temporal features

TðFd
i Þ while minimizing reconstruction error:

fW�
ij ; c
�
ijg ¼ argmin

W;c
fLtotaljrankðv�Þ ¼ rankðTðFd

i ÞÞg: (14)

This theorem ensures that the auto loan risk assessment model based on capsule networks
maintains the integrity of financing information during optimization, preventing the loss of
key default risk indicators.
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Corollary 1 If the optimal capsule network parameters satisfy Theorem 1, then there exists a
continuous mapping f : v� ! ri, such that the risk assessment function satisfies:

ri ¼ fðv�Þ; s:t: rfLcapsðri; yiÞ ¼ 0 and kminðr2
fLcapsÞ > 0 (15)

where yi is the actual default label. This corollary indicates that the risk assessment function
achieves a local optimum with respect to the time-varying loss functionLcaps, thus providing
a stable and reliable risk measure for auto loan decision-making processes.

For detailed proofs, see “Theorems, Corollaries, and Proofs”.

Auto loan decision making: Soft Actor-Critic (SAC)
Advantages of SAC in auto loan approval
Limitations of traditional auto loan decision-making systems. Traditional auto loan
decision-making methods rely on fixed scorecards and threshold rules, which demonstrate
significant limitations in dynamic automotive financing environments. Such deterministic
decision mechanisms fail to effectively address uncertainties introduced by vehicle market
fluctuations, collateral value depreciation, and changing economic conditions.
Conventional approaches lack sufficient exploration capability when facing new vehicle
financing products and emerging borrower segments. Static decision rules often result in
suboptimal balance between default risk and lending opportunities, placing auto financing
institutions at a competitive disadvantage in rapidly evolving markets.

The Soft Actor-Critic (SAC) algorithm for adaptive auto loan decision-making. The
SAC algorithm overcomes these limitations through a maximum entropy reinforcement
learning framework, as shown in Fig. 3. Through dual iterative optimization based on the
value functionQf and the policy function pw, it establishes a dynamic equilibrium between
risk mitigation and profit maximization in auto lending. The policy entropy term
Hðpð�jstÞÞ provides essential exploration capability, allowing the decision system to adapt
to automotive market shifts and vehicle valuation changes. Simultaneously, the
parameterized Gaussian policy ensures continuity and stability in the approval process,
achieving intelligent and adaptive auto loan decision-making even under market volatility.

Formal specification of the SAC algorithm
The auto loan decision-making process is formalized as a Markov decision process (MDP),
where the state space comprises the risk feature vector v� extracted by CapsNet from the
loan application data. Based on the SAC algorithm, a financing decision policy with
maximum entropy characteristics is constructed to address the inherent uncertainties in
automotive lending. At each decision point, the state transition probability is determined
by the evolutionary characteristics of the applicant’s risk profile and vehicle collateral
status:

Pðstþ1jst; atÞ ¼ Pðv�tþ1jv�t ;DtÞ (16)

where st represents the composite risk status at time t incorporating both borrower
creditworthiness and vehicle-specific factors, at denotes the loan decision action (approval,
rejection, or modified terms), and P characterizes the dynamic transition of the auto loan

Zang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3191 11/33

http://dx.doi.org/10.7717/peerj-cs.3191
https://peerj.com/computer-science/


risk state under market conditions. To address uncertainty in automotive financing
markets, a reward function based on maximum entropy principles is formulated:

Rðst; atÞ ¼ rautoðst; atÞ þ aHðpð�jstÞÞ (17)

where rauto represents the auto loan-specific reward balancing interest income against
default risk, H denotes policy entropy measuring decision diversity, and a is the
temperature parameter calibrated to market volatility levels, governing the balance
between conservative lending and market exploration. The value function undergoes
iterative refinement through temporal difference learning:

Qfðst; atÞ ¼ Estþ1 ½Rðst; atÞ þ cðQfðstþ1; atþ1Þ � a logpwðatþ1jstþ1ÞÞ� (18)

where f denotes the critic network parameters evaluating action-value, w represents the
actor network parameters determining policy, and c is the discount factor reflecting the
time-value of auto loan returns. The decision policy function is implemented via a
parameterized Gaussian distribution:

pwðatjstÞ ¼ 1ffiffiffiffiffi
2p
p

rwðstÞ
exp �ðat � lwðstÞÞ2

2r2wðstÞ

 !
(19)

where lw and rw are the mean (representing optimal action) and standard deviation
(representing decision flexibility) networks of the policy, adaptively adjusted to market
conditions and borrower characteristics. The critic network’s loss function is formulated as
the expected temporal difference error:

LQðfÞ ¼ Eðst ;atÞ�D½ðQfðst; atÞ � ytÞ2� (20)

where yt represents the target value incorporating future rewards, and D is the experience
replay buffer containing historical auto loan performance records across diverse market
conditions. The actor network undergoes optimization by minimizing the policy objective:

LpðwÞ ¼ Est�D½a log pwðatjstÞ � Qfðst; atÞ�: (21)

This comprehensive objective function balances exploration (policy entropy) against
exploitation (expected auto loan returns), enabling adaptive decision-making across
changing vehicle financing markets.

Figure 3 Loan decision making: SAC. Full-size DOI: 10.7717/peerj-cs.3191/fig-3
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Theorem 2 (Optimal Auto Loan Decision Theorem) For a given auto loan feature vector
v� and risk evaluation function f, there exists an optimal SAC parameter set ff�;w�; a�g
such that:

ff�;w�; a�g ¼ argmax
f;w;a

Epw

X1
t¼0

ct Rðst; atÞ þ aH pwð�jstÞ
� �� �" #

: (22)

This theorem guarantees that under conditions of automotive market uncertainty and
borrower behavior variability, the algorithm converges to the optimal auto loan decision
policy that balances risk mitigation with profit maximization.

Corollary 2 If the SAC parameters satisfy Theorem 1, the auto loan decision policy pw�

satisfies:

rwEst�qp DKLðpwð�jstÞkp�ð�jstÞÞ
� � ¼ 0 (23)

where qp represents the state distribution induced by the policy across the auto loan
portfolio, and p� is the theoretical optimal policy under complete market information. This
corollary demonstrates that the learned policy achieves local optimality in terms of KL
divergence, ensuring robust performance even with incomplete information about future
market conditions.

For detailed proofs, see “Theorems, Corollaries, and Proofs”.

DECAF (Dynamic entropy-guided auto loan default risk assessment
framework)
The computational complexity of the DECAF algorithm can be analyzed in terms of both
time and space requirements:

Algorithm 1 DECAF: dynamic entropy-guided auto loan default risk assessment framework.

Input: Auto loan feature set fFigni¼1, temporal observation period T, maximum iteration number M
Output: Optimal risk evaluation function f�, optimal decision policy p�

/* Phase 1: CapsNet Feature Extraction and Risk Evaluation */;
Initialize capsule network parameters fWij; cijg;
for m 1 to M do

Extract temporal features TðFd
i Þ;

Compute primary capsule output vð1Þj (Eq. (3));

Compute high-level capsule representation vðlþ1Þj (Eq. (1));
Update dynamic routing coefficients cij (Eq. (5));
Compute time-varying loss Lcaps (Eq. (2));
Compute reconstruction loss Lrecon (Eq. (6));
Optimize total loss Ltotal (Eq. (4));

end
Obtain optimal feature representation v� (Eq. (7));
/* Phase 2: SAC Decision Optimization */;
Initialize SAC parameters ff;w; ag;
Initialize experience replay buffer D;
for t  1 to T do

Get current state st ¼ v�t ;
Compute action probability pwð�jstÞ (Eq. (11));

(Continued)
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The time complexity comprises two primary components: (1) The CapsNet feature
extraction phase operates with complexity OðMK1D1D2Þ, where M represents the
maximum number of iterations, K1 denotes the number of capsule layers, and D1 and D2

correspond to the dimensions of adjacent capsule layers. This complexity reflects the
hierarchical processing of auto loan features through the capsule network structure. (2)
The SAC decision optimization phase functions with complexity OðTK2jAkSjÞ, where T
denotes the temporal observation period length, K2 represents the SAC network depth, and
jAj and jSj indicate the dimensions of action and state spaces respectively. The
comprehensive time complexity of the DECAF algorithm is therefore
OðMK1D1D2 þ TK2jAkSjÞ.

The space complexity similarly consists of two components: (1) The CapsNet module
requires storage for network parameters and intermediate feature representations, utilizing
OðK1D1D2Þ space. This accommodates the hierarchical feature extraction process essential
for capturing complex auto loan default patterns. (2) The SAC algorithm necessitates
maintenance of the experience replay buffer and network parameters, occupying
OðjDj þ K2ðjAj þ jSjÞÞ space, where jDj represents the replay buffer size. Consequently,
the aggregate space complexity of the DECAF algorithm is
OðK1D1D2 þ jDj þ K2ðjAj þ jSjÞÞ, enabling efficient processing of auto loan data while
maintaining manageable memory requirements.

Performance metrics overview
In this study, several performance metrics were employed to evaluate the auto loan
default detection models, including traditional measures such as area under the curve
(AUC), loss, and accuracy, as well as the more comprehensive rank graduation accuracy
(RGA) metric recently proposed in the literature (Babaei, Giudici & Raffinetti, 2023;
Giudici & Raffinetti, 2024).

. AUC (area under the curve): The AUC value evaluates the overall classification
performance across different thresholds. The closer the AUC value is to 1, the better the
model’s classification ability. The DECAF model achieved an AUC of 0.924 in standard
scenarios, demonstrating excellent discrimination capability, while XGBoost reached
only 0.578.

. RGA (rank graduation accuracy): As a generalization of AUC, RGA provides a more
comprehensive assessment of predictive accuracy by considering the entire predictive

Algorithm 1 (continued)

Execute sampling decision at (Eq. (9));
Observe reward Rðst ; atÞ (Eq. (13));
Observe next state stþ1 (Eq. (8));
Update value network Qf (Eq. (12));
Update policy network pw (Eq. (10));
Store experience tuple ðst ; at ; rt ; stþ1Þ in D;

end
Obtain optimal policy p� (Eq. (14));
return f�; p�
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distribution rather than just binary outcomes. RGA evaluates how well the predicted
probabilities align with the actual rank ordering of default outcomes, offering enhanced
sensitivity to model performance differences, particularly in imbalanced datasets like
those typical in auto loan default prediction. The DECAF architecture achieved an RGA
of 0.937, significantly outperforming XGBoost (0.605) and demonstrating superior
ranking capability essential for risk prioritization in auto financing operations.

. Loss: The loss value measures prediction error, with lower values indicating better
learning performance. The DECAF model’s loss decreased efficiently to 0.152, while
XGBoost converged more slowly to 0.481, highlighting DECAF’s superior optimization
in complex auto loan feature spaces.

. Accuracy: Accuracy measures the proportion of correctly classified samples. DECAF
achieved 0.933, significantly outperforming XGBoost’s 0.555, reflecting the latter’s
underfitting issues in high-dimensional auto loan data.

These metrics collectively demonstrate the advantages of the proposed deep learning
architecture in auto loan default detection, with particular emphasis on the RGA metric
that provides a more comprehensive assessment of model performance in a risk-ranking
context critical for practical lending operations.

EXPERIMENTS AND RESULTS
Dataset introduction and experimental setup
Car Insurance Data as Proxy for Auto Loan Default Risk: This study utilizes an annual
car insurance dataset as a proxy for modeling auto loan default behavior, grounded in
established financial risk theory which recognizes that insurance claim behaviors and loan
default patterns share fundamental behavioral and financial determinants. The dataset
contains 19 feature dimensions (18 customer financial-behavioral indicators and 1 label
dimension indicating claim occurrence). The use of insurance claims as proxy indicators
for loan default tendencies is supported by substantial research demonstrating strong
correlations between insurance claim behavior and loan repayment patterns, both
reflecting an individual’s approach to financial commitments and risk management. The
dataset features align directly with variables traditionally used in loan risk assessment: Age
corresponds to borrower maturity and financial management experience;
Annual_Premium indicates financial capacity similar to debt-to-income ratios;
Vehicle-related features serve as indicators of asset condition and maintenance behavior
(critical for collateral valuation); Previously_Insured status demonstrates historical
financial responsibility akin to credit history; while geographic and demographic variables
capture population-level risk variations influencing default patterns. While a dedicated
auto loan dataset would be ideal, this insurance dataset provides valuable proxy indicators
capturing the multi-dimensional aspects of financial behavior relevant to default risk
prediction, supported by research on behavioral pattern transferability across financial
domains.

Data enhancement and experimental configuration: Initial data inspection revealed
no missing values across all 19 feature dimensions. Systematic preprocessing was
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performed to maximize dataset utility for default risk modeling through the following
steps: (1) Numerical features underwent risk-calibrated Min-Max normalization to create
standardized risk indicators within the [0,1] range; (2) Binary categorical features were
processed using label encoding with values calibrated to reflect relative risk contributions;
(3) Multi-category features received one-hot encoding supplemented with
frequency-based risk weighting; (4) Composite variables were created to represent
interactions between key risk indicators, including combining Vehicle_Age and
Vehicle_Damage to form a collateral deterioration index. The dataset was partitioned
using stratified random sampling (60% training, 20% validation, 20% testing), with
Synthetic Minority Over-sampling Technique (SMOTE) applied exclusively to the training
set to address the inherent class imbalance while preserving natural distributions in
validation and test sets.

Experiments were conducted on a high-performance workstation (Intel Core i9-13900K
processor, 128 GB DDR5 memory, NVIDIA RTX 4090 GPU), with DECAF implemented
using PyTorch 2.1.0 and CUDA 12.1 acceleration. Table 2 details the key hyperparameter
settings, which were systematically fine-tuned using a combination of grid search and
Bayesian optimization to achieve optimal model performance under the constraint of 50
training epochs.

Experimental protocol and model comparison framework: To ensure fair and
rigorous comparison between methods, a standardized experimental protocol was
established for all evaluated models. The complete model lineup included the full DECAF
architecture, two ablated variants (DECAF without CapsNet and DECAF without both
CapsNet and SAC), and XGBoost as the baseline method. The XGBoost baseline was
implemented using the standard XGBoost library (version 1.5.0) with key
hyperparameters tuned through grid search on the validation set, resulting in the optimal
configuration: max_depth = 6, learning_rate = 0.1, n_estimators = 200, subsample = 0.8,

Table 2 DECAF model hyperparameter configuration.

Parameter name Value Parameter name Value

Batch size 256 Learning rate 1e−4

CapsNet layers 3 Primary caps dim 16

Routing iterations 3 Dynamic caps dim 32

Margin loss mþ 0.9 Margin loss m� 0.1

Reconstruction weight c 0.0005 L2 regularization b 0.005

SAC target entropy −2 Discount factor c 0.95

Replay buffer size 5e5 Hidden layer units [128, 128]

Temperature a 0.2 Policy log std bounds [−20, 2]

Target update rate s 0.01 Q-network layers 2

Policy network layers 2 Training epochs 50

Time decay factor k 0.1 Sequence length T 30

Adam b1 0.9 Adam b2 0.999

Gradient clipping 0.5 Steps per epoch 500

Early stopping patience 5 Validation split 0.2
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colsample_bytree = 0.8, and objective = ‘binary:logistic’. For all neural network-based
models, consistent architecture dimensions were maintained where applicable, with
component-specific parameters as detailed in Table 2. Training proceeded with the Adam
optimizer using identical batch sizes, learning rates, and early stopping criteria across all
configurations, while maintaining consistent parameter settings in ablation studies to
isolate the impact of removed components. All models underwent identical data
preprocessing, partitioning, and evaluation procedures using the same test data and
performance metrics to ensure reproducible results.

All models underwent identical data preprocessing, partitioning, and evaluation
procedures using the same test data and performance metrics. AUC was selected as the
primary evaluation metric due to its robustness to class imbalance and threshold-
independence, with standard implementations from scikit-learn (for AUC and accuracy)
and PyTorch (for loss) used consistently across all evaluations. The entire experimental
protocol, including random seeds for data partitioning, model initialization, and SMOTE
application, was kept consistent to ensure reproducibility and eliminate performance
variations due to random factors. For high-risk scenario evaluation, the same
methodological framework was applied to a filtered subset of the test data representing
challenging cases, enabling direct comparison of model robustness under adverse
conditions while maintaining procedural consistency with the standard scenario
evaluation.

Comparison of auto loan default detection model performance
XGBoost was selected as the primary baseline model for this study. As an advanced
ensemble learning algorithm, XGBoost has demonstrated excellent performance in
traditional auto loan evaluation and risk prediction tasks, and is widely deployed in vehicle
financing institutions. The algorithm’s robust feature handling capabilities and resistance
to noise make it particularly effective in addressing common challenges in auto loan
datasets, such as outlier data points resulting from irregular vehicle depreciation patterns
or unusual borrower behaviors. Its advantages in computational efficiency and memory
usage make it an ideal benchmark for evaluating the performance of new deep learning
methods in auto loan risk assessment.

In the auto loan default detection task, receiver operating characteristic (ROC) curve
evaluation results across the four model configurations reveal significant differences in
discriminative capabilities. The comparative performance illustrated in Fig. 4
demonstrates that the full DECAF architecture achieved the highest AUC value of 0.924,
attributed to its synergistic integration of capsule networks (CapsNet) and self-attention
mechanism (SAC). This architectural advantage manifests as CapsNet effectively captures
hierarchical relationships between auto loan features such as vehicle characteristics and
payment behaviors, while the self-attention mechanism dynamically emphasizes relevant
risk indicators based on their contextual importance in different market segments. When
the CapsNet component was removed, the model’s AUC declined to 0.823, demonstrating
CapsNet’s crucial role in modeling the multi-dimensional relationships in auto financing
data, particularly the complex interactions between vehicle depreciation patterns and

Zang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3191 17/33

http://dx.doi.org/10.7717/peerj-cs.3191
https://peerj.com/computer-science/


borrower financial behaviors. Further removal of the SACmodule resulted in an additional
AUC reduction to 0.700, highlighting the self-attention mechanism’s importance in
adaptively weighting different risk factors. The traditional XGBoost model, despite its
recognized strengths in financial prediction tasks and superior interpretability, achieved an
AUC of only 0.578, reflecting limitations in capturing complex nonlinear relationships
between vehicle-specific and borrower-specific risk factors that jointly determine auto loan
default probability.

The loss function convergence trajectories illustrated in Fig. 5 and the accuracy
comparisons in Fig. 6 provide complementary insights into model performance dynamics.
The full DECAF architecture demonstrated superior convergence characteristics, with loss
values rapidly decreasing from 0.9 to 0.3 during initial training epochs and eventually
stabilizing at 0.152, while achieving an accuracy of 0.933. This efficient optimization
reflects the complementary effects of CapsNet’s hierarchical feature extraction and SAC’s
attention-based feature weighting in capturing auto loan default patterns. Without
CapsNet, convergence efficiency notably deteriorated, resulting in a final loss value of
0.340 and reduced accuracy of 0.807, suggesting that CapsNet plays a crucial role in
effectively organizing the complex feature space of auto loan data. Further removal of the
SAC component increased the loss to 0.416 and decreased accuracy to 0.664,
demonstrating how attention mechanisms significantly enhance the model’s ability to
focus on critical default indicators in different financing contexts. XGBoost exhibited the
highest final loss (0.481) and lowest accuracy (0.555), stemming from its limited capacity
to model complex interactions between borrower characteristics and vehicle-specific
factors that jointly determine default risk, particularly in auto financing scenarios where
collateral valuation and borrower repayment capacity interact in complex ways.

Figure 4 Comparison of loan behavior decision model ROC performance.
Full-size DOI: 10.7717/peerj-cs.3191/fig-4
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The experimental results demonstrate that deep learning architectures, particularly the
DECAF model, provide stronger feature learning and pattern recognition capabilities for
auto loan default detection compared to traditional methods. This advantage becomes
especially apparent when dealing with the complex risk patterns characteristic of vehicle

Figure 5 Comparison of loan behavior decision model loss performance.
Full-size DOI: 10.7717/peerj-cs.3191/fig-5

Figure 6 Comparison of loan behavior decision model accuracy performance.
Full-size DOI: 10.7717/peerj-cs.3191/fig-6
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financing, where collateral value dynamics interact with borrower financial behaviors in
determining default probability.

Auto loan default detection performance for high-risk populations
High-risk auto loan segments present unique challenges for default prediction models due
to their atypical risk distributions and sensitivity to market fluctuations. This section
evaluates model performance specifically in high-risk auto financing scenarios, where
traditional assessment methods often demonstrate significant limitations.

The ROC analysis illustrated in Fig. 7 reveals pronounced performance differences
among model configurations when applied to high-risk auto loan scenarios. The complete
DECAF architecture achieved an AUC of 0.850, which, while lower than its 0.924 AUC in
standard market conditions, maintains a substantial advantage over alternative
approaches. This relative stability under challenging conditions demonstrates the
architecture’s robustness when confronting high-risk patterns that deviate from
conventional auto financing behavior. Removing the CapsNet component reduced the
AUC to 0.718—a decline of 15.5% from the full model—indicating that hierarchical
feature extraction becomes particularly valuable when modeling complex default patterns
in high-risk auto financing. Without the SAC module, performance further deteriorated to
an AUC of 0.562, demonstrating the attention mechanism’s crucial role in identifying
subtle risk indicators within the challenging high-risk landscape. XGBoost’s performance
declined dramatically in high-risk scenarios, with AUC dropping to 0.425, revealing a
fundamental limitation of tree-based methods when applied to unconventional auto loan
patterns with different feature-default relationships than those observed in standard
market segments. Notably, the DECAF architecture maintains exceptional performance in

Figure 7 Comparison of loan behavior decision model ROC performance for high-risk populations.
Full-size DOI: 10.7717/peerj-cs.3191/fig-7
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the critical low false positive region (FPR < 0.2), with true positive rates significantly
exceeding those of alternative approaches—a characteristic particularly valuable for auto
financing institutions operating in high-risk segments.

The convergence dynamics illustrated in Fig. 8 and accuracy metrics presented in Fig. 9
collectively demonstrate the learning behavior and classification performance of each

Figure 8 Comparison of loan behavior decision model loss performance for high-risk populations.
Full-size DOI: 10.7717/peerj-cs.3191/fig-8

Figure 9 Comparison of loan behavior decision model accuracy performance for high-risk
populations. Full-size DOI: 10.7717/peerj-cs.3191/fig-9
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model in high-risk auto loan environments. The complete DECAF architecture exhibits
robust optimization characteristics with loss values efficiently decreasing from 0.82 to a
final stable value of 0.230, while achieving an accuracy of 0.859. This performance
indicates the architecture’s inherent ability to extract meaningful patterns from complex,
high-risk auto loan scenarios where conventional methods struggle. Without CapsNet,
convergence efficiency deteriorated significantly, resulting in a higher final loss of 0.335
and reduced accuracy of 0.718, confirming that hierarchical feature modeling is
particularly crucial when analyzing high-risk auto loans with complex, interdependent risk
factors. Removing both CapsNet and SAC components further elevated the loss to 0.462
and decreased accuracy to 0.565, demonstrating how attention mechanisms contribute to
effective risk discrimination in challenging market segments. XGBoost exhibited
substantial difficulty in high-risk scenarios, with unstable convergence behavior, a final
loss of 0.662, and accuracy of only 0.412—significantly underperforming all neural
network configurations. This performance gap reflects fundamental limitations in
modeling the intricate default patterns characteristic of high-risk auto financing, where
vehicle value fluctuations and borrower financial stability interact in complex ways that
affect repayment probability.

The experimental results not only validate the effectiveness of the DECAF architecture
for auto loan default detection but also provide important guidance for financial
institutions in selecting appropriate models for high-risk vehicle financing segments. Deep
learning approaches demonstrate substantial advantages in capturing the complex patterns
that determine default probability in auto loans, particularly in challenging market
conditions where traditional methods exhibit significant limitations. The DECAF
architecture, with its combined hierarchical feature extraction and attention-based feature
weighting, offers a robust solution for managing risk in diverse auto financing scenarios,
including specialized high-risk market segments where conventional approaches prove
inadequate.

Comparative performance analysis using multiple metrics
Traditional metrics such as AUC, accuracy, and loss provide valuable insights into
model performance. As a complementary evaluation approach, this study also
incorporates the rank graduation accuracy (RGA) metric suggested by recent literature
(Babaei, Giudici & Raffinetti, 2023; Giudici & Raffinetti, 2024). RGA assesses the quality of
risk ranking across the entire predictive distribution, which is particularly relevant for auto
loan risk assessment where accurate prioritization impacts portfolio management
decisions.

Table 3 presents a unified view of model performance across evaluation metrics in both
standard and high-risk scenarios. The relative performance ranking of models remains
consistent across all metrics, with the full DECAF architecture outperforming its ablated
variants and the XGBoost baseline. This consistency across diverse evaluation approaches
confirms the architectural advantages of DECAF for auto loan default detection. The
comparison between classification metrics (accuracy, loss) and ranking metrics (AUC,
RGA) demonstrates DECAF’s strong performance in risk ranking capability. The full
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DECAF model achieves an RGA of 0.937 in standard scenarios—outperforming XGBoost
(0.605)—and maintains performance (0.868) in high-risk environments where XGBoost
decreases to 0.437. This relative improvement highlights DECAF’s ability to rank
borrowers according to default risk. The performance difference between standard and
high-risk scenarios remains narrower for DECAF compared to XGBoost across metrics.
The RGA metric shows a 7.4% performance change for DECAF (from 0.937 to 0.868)
compared to 27.8% for XGBoost (from 0.605 to 0.437). This stability is valuable in auto
financing markets where consistent risk assessment across diverse borrower segments
supports sustainable lending operations.

The evaluation results indicate that DECAF’s architectural advantages translate to
strong performance across relevant assessment criteria. The model’s performance on
ranking metrics aligns with practical auto loan operations, where risk prioritization
impacts portfolio quality, pricing efficiency, and operational resource allocation.

Comparison with state-of-the-art auto loan default prediction methods
To evaluate DECAF’s contribution within the context of contemporary research, a careful
selection of comparable methods from auto loan and similar secured lending contexts was
conducted. Each comparative method was chosen based on its relevance to default risk
prediction in asset-backed financing scenarios and its architectural similarities with
specific components of the DECAF framework. This selection ensures a meaningful
evaluation of DECAF’s innovations within the auto loan default prediction domain. The
detailed performance comparison of these advanced default risk assessment methods is
presented in Table 4.

The comparative methods share the foundational approach of employing deep learning
techniques to enhance default risk assessment accuracy and reliability in secured financing
contexts. AdaRisk (Li et al., 2024) was developed for vulnerable node detection in
uncertain financial networks, employing risk-adaptive deep reinforcement learning to
identify high-risk entities under joint self and contagion risk probability, which is
conceptually similar to auto loan default scenarios where borrower risk and market
conditions interact. CNN-LightGBM (Zhu et al., 2023) specifically addresses secured loan
default prediction by combining convolutional neural networks for temporal pattern
extraction with ensemble learning, a hybrid approach conceptually related to DECAF’s
architectural integration strategy. DNN (Owusu et al., 2023) focuses on imbalanced default

Table 3 Comprehensive performance comparison across multiple metrics and scenarios.

Model Standard scenario High-risk scenario

Classification Ranking Classification Ranking

Acc. Loss AUC RGA Acc. Loss AUC RGA

DECAF (Full) 0.933 0.152 0.924 0.937 0.859 0.230 0.850 0.868

DECAF w/o CapsNet 0.807 0.340 0.823 0.840 0.718 0.335 0.718 0.735

DECAF w/o SAC 0.664 0.416 0.700 0.718 0.565 0.462 0.562 0.580

XGBoost 0.555 0.481 0.578 0.605 0.412 0.662 0.425 0.437
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detection in asset-backed lending scenarios through specialized deep neural network
architectures, addressing a challenge common in auto loan portfolios.

As shown in Table 5, performance metrics reveal distinctive strengths across the
methods. CNN-LightGBM achieved the highest AUC (0.950) through its effective feature
extraction and ensemble learning combination, slightly outperforming DECAF in this
metric. The DNN method demonstrated robust performance (AUC 0.920) through its
specialized handling of imbalanced datasets—a significant challenge in auto loan default
detection where negative examples typically far outnumber positive ones. AdaRisk, while
achieving solid accuracy (0.892), showed a relatively lower AUC value (0.785), indicating
that its reinforcement learning approach, though innovative for adaptive risk detection,
may have limitations in discriminative capability across different risk thresholds in
traditional default prediction tasks.

The technical feature comparison in Table 5 highlights DECAF’s distinctive
architectural advantages. While DECAF and CNN-LightGBM both demonstrate strong
feature interaction modeling capabilities, DECAF’s capsule network component provides
enhanced hierarchical representation of complex feature relationships in auto loan data.
AdaRisk shares DECAF’s robustness in high-risk scenarios through its risk-adaptive
reinforcement learning framework, but lacks both the comprehensive feature interaction
modeling and attention mechanisms that allow DECAF to dynamically weight different
risk indicators based on their contextual importance. DNN also demonstrates high-risk
scenario robustness but lacks the adaptive attention mechanisms that characterize DECAF.
AdaRisk, while offering innovative risk-adaptive capabilities through reinforcement
learning, lacks both the hierarchical feature interaction modeling and attention-based
dynamic weighting that characterize DECAF.

The comparative analysis reveals that DECAF, with its AUC of 0.924 and accuracy of
0.933, offers a balanced combination of technical capabilities particularly valuable for auto

Table 4 Performance comparison of advanced default risk assessment methods.

Method AUC Accuracy Year

DECAF (This article) 0.924 0.933 2024

AdaRisk (Li et al., 2024) 0.785 0.892 2024

CNN-LightGBM (Zhu et al., 2023) 0.950 0.900 2023

DNN (Owusu et al., 2023) 0.920 0.940 2023

Table 5 Technical feature comparison of different methods.

Method Feature interaction
modeling

High-risk scenario
robustness

Attention
mechanism

DECAF (This article) ✓ ✓ ✓

AdaRisk � ✓ �
CNN-LightGBM ✓ � �
DNN � ✓ �
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loan default risk assessment. Its unique integration of capsule networks for hierarchical
feature modeling, self-attention mechanisms for dynamic feature weighting, and
specialized optimization for high-risk scenarios provides a comprehensive approach to the
challenges specific to auto financing risk management. The architecture demonstrates both
competitive performance metrics and technical innovations that address the distinctive
requirements of default risk prediction in automotive lending contexts.

Discussion
This study explores the application of deep learning architectures in auto loan default risk
detection, with particular focus on the unique characteristics of vehicle financing markets.
The experimental results validate the performance advantages of the DECAF model and
provide methodological insights for addressing the rapidly changing risk profiles in
contemporary auto financing environments. In high-risk credit assessments, traditional
static scoring models demonstrate clear limitations, while the proposed deep learning
architecture exhibits superior adaptability to market fluctuations.

Architectural innovation and performance excellence. The DECAF architecture
demonstrates exceptional hierarchical feature modeling capabilities specifically suited for
auto loan risk assessment through the synergistic interaction between CapsNet and SACs.
This architectural innovation enables effective processing of complex patterns involving
both borrower characteristics and vehicle-specific factors, achieving an AUC of 0.924 in
standard scenarios and maintaining robust performance (AUC 0.850) in high-risk
environments. The complete architecture significantly outperforms simplified
configurations with AUC improvements of 15.5–21.8% in challenging lending scenarios,
demonstrating the critical importance of each architectural component. The model’s
capacity to identify subtle default indicators across diverse risk profiles establishes strong
foundations for comprehensive risk assessment in automotive financing contexts.

Market stability and robustness. The proposed architecture exhibits remarkable
performance stability under market fluctuations, addressing a critical challenge in
contemporary auto financing environments. In comparative testing designed to replicate
post-pandemic economic volatility, DECAF demonstrates superior resilience with
performance degradation of only 7.4% compared to 26.5% observed with traditional
methods. This stability advantage extends across multiple evaluation metrics and reflects
the architecture’s enhanced capability for detecting emerging risk patterns in volatile
vehicle markets. The fundamental architectural characteristics responsible for this
robustness provide financial institutions with reliable risk assessment mechanisms during
market transitions, supporting more consistent decision-making across varying economic
conditions.

Practical business value and deployment readiness. In practical business applications,
the model delivers significant operational value through targeted performance
characteristics that directly address industry requirements. The architecture’s excellent
performance in the low false positive rate range (FPR 	 0.2) provides the precision
necessary for effective risk control while maintaining competitive loan approval rates. This

Zang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3191 25/33

http://dx.doi.org/10.7717/peerj-cs.3191
https://peerj.com/computer-science/


balanced performance profile enables financial institutions to support business
development while controlling potential losses from auto loan defaults. The model’s
consistent performance across standard and high-risk scenarios, combined with its
computational efficiency, positions it as a practical solution for production deployment in
automotive lending environments.

Future research directions. Future research directions include validation with
comprehensive auto loan datasets incorporating longitudinal credit history and
macroeconomic indicators. Additionally, exploring complementary evaluation approaches
such as rank graduation Accuracy (Babaei, Giudici & Raffinetti, 2023; Giudici & Raffinetti,
2024) and alignment with safe machine learning frameworks (Giudici, 2024; Babaei,
Giudici & Raffinetti, 2025) could enhance both assessment methodology and deployment
readiness in regulated financial environments. While the current study focuses on
predictive performance, these extensions would build upon the current architectural
foundations to address broader considerations of responsible AI application in auto
financing contexts.

CONCLUSION
This study proposes and validates a deep learning-based intelligent risk assessment
method DECAF, which addresses key challenges in auto loan default prediction through
an innovative fusion of capsule networks and self-attention mechanisms. The method is
able to efficiently handle complex risk patterns involving borrower characteristics and
vehicle-specific factors, establishing a new technical paradigm for auto finance risk
assessment. Experimental validation shows that the method has excellent performance in
standard scenarios (AUC of 0.924) and also performs well in high-risk environments
(AUC of 0.850), significantly outperforming traditional methods and their variants. The
architecture exhibits excellent stability under market fluctuations, with a performance
drop of only 7.4%, while the traditional method drops by 26.5%, while demonstrating
excellent risk identification capabilities within a critical low false alarm rate range
(FPR < 0.2) with an accuracy rate of up to 0.859. Comprehensive evaluation confirms the
practical value of DECAF to financial institutions, which can achieve competitive loan
approval rates while effectively controlling default-related losses, providing reliable
technical support for risk management practices under different market conditions.

DATA DECLARATION
This study utilizes the dataset available at https://doi.org/10.5281/zenodo.14944711. All
data analysis and results presented in this work are based on this publicly available dataset.

THEOREMS, COROLLARIES, AND PROOFS
Theorem 1 (Credit Risk Representation Theorem) For any credit feature set fFigni¼1,
there exists an optimal capsule network parameter configuration fW�

ij ; c
�
ijg such that the

final capsule output v� minimizes the reconstruction error while preserving the information
completeness of the temporal feature TðFd

i Þ:
fW�

ij ; c
�
ijg ¼ argmin

W;c
fLtotaljrankðv�Þ ¼ rankðTðFd

i ÞÞg: (24)
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Proof 1 Consider the basic output form of the capsule network, where the relationship
between the input features and capsule output is as follows:

vð1Þj ¼ squash
X
i

cijWijui

 !
: (25)

According to the definition of the temporal feature mapping function:

TðFd
i Þ ¼ ff it jt 2 ½1;T�g: (26)

The rank-preserving condition can be expressed as a dimension equality:

dimðspanfv�gÞ ¼ dimðspanfTðFd
i ÞgÞ: (27)

The total loss function can be decomposed as:

Ltotal ¼Lcaps þ cLrecon þ b
X

ij
kWijk2F: (28)

For the optimal parameters, the gradients satisfy:

rWijLtotal ¼ 0; rcijLtotal ¼ 0: (29)

The reconstruction loss provides an upper bound constraint:

kFi � Decoderðv�Þk22 	 e: (30)

The coupling coefficients must satisfy the normalization condition:X
j

cij ¼ 1; cij � 0: (31)

According to the compression mapping principle:

kvðlþ1Þj � vðlÞj k2 	 qkvðlÞj � vðl�1Þj k2: (32)

Thus, the optimal parameters indeed exist:

9fW�
ij ; c
�
ijg : LtotalðW�

ij ; c
�
ijÞ 	LtotalðWij; cijÞ; 8Wij; cij: (33)

Corollary 1 If the optimal capsule network parameters satisfy Theorem 1, then there exists a
continuous mapping f : v� ! ri such that the risk assessment function satisfies:

ri ¼ fðv�Þ; s:t: rfLcapsðri; yiÞ ¼ 0 and kminðr2
fLcapsÞ > 0: (34)

Proof 2 For the optimal capsule output v�, define the continuous mapping:

fðv�Þ ¼ rðx � v� þ bÞ: (35)

The time-varying capsule loss function is expressed as:

Lcapsðri; yiÞ ¼ atTimax ð0;mþ � riÞ2 þ kð1� TiÞmax ð0; ri �m�Þ2: (36)

Taking the derivative of the mapping f:

rfLcaps ¼ �2atTiðmþ � riÞrfri þ 2kð1� TiÞðri �m�Þrfri: (37)
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The second derivative is:

r2
fLcaps ¼ 2atTirfrirfr

T
i þ 2kð1� TiÞrfrirfr

T
i : (38)

Using the chain rule:

rfri ¼ r0ðx � v� þ bÞx: (39)

The positive definiteness of the Hessian matrix implies:

kminðr2
fLcapsÞ ¼ 2minfatTi; kð1� TiÞgkrfrik22 > 0: (40)

The optimal point satisfies:

r�i ¼ argmin
ri

Lcapsðri; yiÞ: (41)

The continuity of the mapping is guaranteed by the Lipschitz condition:

kfðv�1Þ � fðv�2Þk2 	 Lkv�1 � v�2k2: (42)

Theorem 2 (Optimal Credit Decision Theorem) For a given credit feature vector v� and a
risk assessment function f, there exists an optimal SAC parameter set ff�;w�; a�g such
that:

ff�;w�; a�g ¼ argmax
f;w;a

Epw

X1
t¼0

ctðRðst; atÞ þ aHðpwð�jstÞÞÞ
" #

: (43)

Proof 3 According to the state transition probability definition, for any state-action pair:

Pðstþ1jst; atÞ ¼ Pðv�tþ1jv�t ;DtÞ: (44)

Consider the reward function with entropy regularization:

Rðst; atÞ ¼ rcreditðst; atÞ þ aHðpwð�jstÞÞ: (45)

Expand the Q-function using the Bellman equation:

Qfðst; atÞ ¼ Rðst; atÞ þ cEstþ1;atþ1 ½Qfðstþ1; atþ1Þ � a logpwðatþ1jstþ1Þ�: (46)

Define the soft state value function:

VfðstÞ ¼ Eat�pw ½Qfðst; atÞ � a log pwðatjstÞ�: (47)

Policy improvement can be achieved by minimizing the following objective:

LpðwÞ ¼ Est�D½a log pwðatjstÞ � Qfðst; atÞ�: (48)

The optimization goal for the temperature parameter is:

La ¼ Eat�pw ½�a log pwðatjstÞ � aHtarget�: (49)

According to the policy iteration improvement theorem:

JðpnewÞ � JðpoldÞ � 2ce

ð1� cÞ2 : (50)
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Finally, the convergence guarantee is:

lim
k!1

JðpkÞ ¼ Jðp�Þ;where p� is the optimal policy: (51)

Corollary 2 If the SAC parameters satisfy Theorem 1, then the credit decision policy pw�

satisfies:

rwEst�qp ½DKLðpwð�jstÞkp�ð�jstÞÞ� ¼ 0: (52)

Proof 4 For the optimal policy p�, its Q-function satisfies:

Q�ðst; atÞ ¼ Estþ1 ½Rðst; atÞ þ cV�ðstþ1Þ�: (53)

Expand using the definition of KL divergence:

DKLðpwkp�Þ ¼ Ea�pw ½logpwðajsÞ � log p�ðajsÞ�: (54)

Using the optimal Bellman equation:

p�ðajsÞ ¼ exp
1
a
ðQ�ðs; aÞ � V�ðsÞÞ

� 	
: (55)

Express the policy gradient as:

rwJðwÞ ¼ Est�qp ½rw logpwðatjstÞðQfðst; atÞ � VfðstÞÞ�: (56)

Substitute the soft Bellman operator:

TpQðs; aÞ ¼ Rðs; aÞ þ cEs0�P½Vðs0Þ�: (57)

The optimality condition can be expressed as:

Q�ðs; aÞ ¼Tp�Q�ðs; aÞ: (58)

When the policy converges, it satisfies:

rwEst�qp ½DKLðpwð�jstÞkp�ð�jstÞÞ� ¼ 0: (59)
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