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A large number of clinical concepts are categorized under standardized formats that ease
the manipulation, understanding, analysis, and exchange of information. One of the most
extended codifications is the International Classification of Diseases (ICD) used for
characterizing diagnoses and clinical procedures. With formatted ICD concepts, a patient
profile can be described through a set of standardized and sorted attributes according to
the relevance or chronology of events. This structured data is fundamental to quantify the
similarity between patients and detect relevant clinical characteristics. Data visualization
tools allow the representation and comprehension of data patterns, usually of a high
dimensional nature, where only a partial picture can be projected.
In this paper, we provide a visual analytics approach for the identification of homogeneous
patient cohorts by combining custom distance metrics with a flexible dimensionality
reduction technique. First we define a new metric to measure the similarity between
diagnosis profiles through the concordance and relevance of events. Second we describe a
variation of the STAD (Simplified Topological Abstraction of Data) dimensionality reduction
technique to enhance the projection of signals preserving the global structure of data.
The MIMIC-III clinical database is used for implementing the analysis into an interactive
dashboard, providing a highly expressive environment for the exploration and comparison
of patients groups with at least one identical diagnostic ICD code. The combination of the
distance metric and STAD not only allows the identification of patterns but also provides a
new layer of information to establish additional relationships between patient cohorts. The
method and tool presented here add a valuable new approach for exploring heterogeneous
patient populations. In addition, the distance metric described can be applied in other
domains that employ ordered lists of categorical data.
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ABSTRACT11

A large number of clinical concepts are categorized under standardized formats that ease the manipulation,

understanding, analysis, and exchange of information. One of the most extended codifications is the

International Classification of Diseases (ICD) used for characterizing diagnoses and clinical procedures.

With formatted ICD concepts, a patient profile can be described through a set of standardized and sorted

attributes according to the relevance or chronology of events. This structured data is fundamental to

quantify the similarity between patients and detect relevant clinical characteristics. Data visualization

tools allow the representation and comprehension of data patterns, usually of a high dimensional nature,

where only a partial picture can be projected.
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In this paper, we provide a visual analytics approach for the identification of homogeneous patient cohorts

by combining custom distance metrics with a flexible dimensionality reduction technique. First we define

a new metric to measure the similarity between diagnosis profiles through the concordance and relevance

of events. Second we describe a variation of the STAD (Simplified Topological Abstraction of Data)

dimensionality reduction technique to enhance the projection of signals preserving the global structure of

data.
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The MIMIC-III clinical database is used for implementing the analysis into an interactive dashboard,

providing a highly expressive environment for the exploration and comparison of patients groups with

at least one identical diagnostic ICD code. The combination of the distance metric and STAD not only

allows the identification of patterns but also provides a new layer of information to establish additional

relationships between patient cohorts. The method and tool presented here add a valuable new approach

for exploring heterogeneous patient populations. In addition, the distance metric described can be applied

in other domains that employ ordered lists of categorical data.
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INTRODUCTION33

Patient profiling and selection are a crucial step in the setup of clinical trials. The process involves34

analytical methods to handle the increasing amount of healthcare data but is still extremely labor-intensive35

(Sahoo et al., 2014). Nevertheless, the input from an expert in this selection is important.36

To support the expert in the selection of suitable patients, visual analytics solutions can enable the37

exploration of a patient population, make recruitment consistent across studies, enhance selection accuracy,38

increase the number of selected participants, and significantly reduce the overall cost of the selection39

process (Fink et al., 2003; Damen et al., 2013). Visual analytics relies on interactive and integrated40

visualizations for exploratory data analysis in order to identify unexpected trends, outliers, or patterns. It41

can indicate relevant hypotheses that can be complemented with additional algorithms, and help define42

parameter spaces for these algorithms (Franken, 2009). A major challenge in creating visual solutions43

is to find effective tools which allow the projection of all data dimensions. One popular solution is to44

visualize the relationship between elements rather than raw data through similarity metrics which quantify45

the closeness between data objects (Liu et al., 2016). Similarity metrics are a fundamental part for most46
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of the case-based reasoning algorithms (Kolodner, 2014) such as the detection of consistent cohorts of47

patients within a patient population. One of the remaining open challenges in the analysis of patient48

similarity is to establish relevant and practical ways based on clinical concepts (Jia et al., 2019).49

Many types of information about the patient profile such as diagnosis, procedures, and prescriptions50

are available under standardized categories contained in taxonomies or dictionaries, e.g., the International51

Classification of Diseases (ICD), Medical Dictionary for Regulatory Activities (MedDRA) and the52

Anatomical Therapeutic Chemical (ATC) Classification System. Each patient is for example linked53

to an ordered list of diagnoses, which are semantic concepts that are (in the case of MIMIC (Johnson54

et al., 2016)) ordered from most to least important (as per the MIMIC-III documentation ”ICD diagnoses55

are ordered by priority - and the order does have an impact on the reimbursement for treatment”).56

These standardized formats provide a non-numerical data structure facilitating both understanding and57

management of the data. Several methods have been proposed to define similarity between lists of clinical58

concepts based on presence of absence of specific terms (Gottlieb et al. 2013; Zhang et al. 2014; Brown59

2016; Girardi et al. 2016; Rivault et al. 2017; Jia et al. 2019). However, the diagnostic profile of a patient60

is not merely an independent list of semantic concepts but also includes an intrinsic order indicated by61

the position of the terms in the list reflecting the relevance vis-a-vis the actual patient status. To the best62

of our knowledge, no previous work has combined the categorical and ordinal nature of clinical events63

into a single distance function. This dualism can contribute to improving the detection of cohorts through64

diagnostic and procedural data. This can have a significant impact as diagnoses or procedures are part of65

recruitment criteria in most clinical trials (Boland et al., 2012).66

In this paper, a novel approach for exploring clinical patient data is introduced. In particular, we focus67

on patient profiles represented by a set of diagnosis ICD codes sorted by relevance. The distance metric68

considers the sorted concepts as input, and the resulting pairwise values are projected into a dimensionality69

reduction graph.70

The remaining part of this paper is organized as follows. In the section ‘Background’, we give an71

overview of related work in categorical events and graphical projections of patient similarity. The section72

‘Materials and Methods’ describes the proposed distance metric and modifications applied on the base73

algorithms STAD for visualizing patient population. In ’Results’, we demonstrate the effectiveness of74

the approach in a real-world dataset. The section ’Discussion’ compares other methods and alternative75

metrics for similar data. Finally, the section ‘Conclusion’ presents conclusions and possible directions for76

future work.77

BACKGROUND78

The exploration and analysis of patients through similarity measures has been presented in different areas79

of bioinformatics and biomedicine but also data mining and information visualization. In this section, we80

review the related literature on these areas below, and we focus on the notion of similarity measures for81

categorical events and graphical representation of patient similarity.82

Patient similarity and distance measures for categorical events83

Different distance metrics exist for unordered lists of categorical data, including the overlap coefficient84

(Vijaymeena and Kavitha, 2016), the Jaccard index (Real and Vargas, 1996), and the simple matching85

coefficient (Šulc and Řezanková, 2014). These methods compute the number of matched attributes86

between two lists using different criteria. Although they treat each entry in the list as independent of the87

others, they have been used successfully to measure patient similarity to support clinical decision making88

and have demonstrated their effectiveness in exploratory and predictive analytics (Zhang et al. 2014;89

Lee et al. 2015). Similarly, different ways of computing distances between ordered lists are available90

(Van Dongen and Enright, 2012). The Spearman’s rank coefficient (Corder and Foreman, 2014) is useful91

for both numerical and categorical data and has been used in clinical studies (Mukaka, 2012). However,92

correlation between ordered lists cannot be calculated when the lists are of different lengths (Pereira et al.,93

2009).94

In the context of medical diagnoses, the ICD (International Classification of Diseases) codes have95

been widely used for describing patient similarity. However, these typically consider the hierarchical96

structure of the ICD codes. Gottlieb et al. (2013), for example, proposed a method combining the Jaccard97

score of two lists with the nearest common ancestor in the ICD hierarchy. The similarity measure for the98

ICD ontology was previously presented in Popescu and Khalilia (2011). Each term is assigned to a weight99
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based on its importance within the hierarchy, which was defined as 1−1/n where n corresponded to its100

level in the hierarchy.101

In our work, however, we will not leverage the hierarchical structure of the ICD codes, but employ102

the ICD grouping as described by Healthcare Cost and Utilization Project (2019). Our approach takes103

the position of the term in the list of diagnoses into account, which is a proxy for their relevance for104

the patient status. Inspiration can be drawn from a metric developed by Goodall (1966), which assigns105

different weights to the attributes that are compared according to their frequency in the sample. Pairs of106

less common attributes receive a higher similarity score than pairs of common attributes. This approach107

shows its effectiveness in detecting outliers, as exemplified in Boriah et al. (2008).108

Alternative approaches such as those by Le and Ho (2005) and Ahmad and Dey (2007) consider the109

similarity between two attributes as the shared relationship with the other elements in the sample, i.e.,110

two elements are similar if they appear with a common set of attributes. From a different perspective,111

the latent concept of these metrics is also present in the identification of comorbidity diseases (Moni112

et al. 2014; Ronzano et al. 2019) although these studies aim to find heterogeneous types of diseases113

rather than different profiles of patients. The main drawback of metrics based on co-occurrence is the114

assumption of an intrinsic dependency between attributes without considering their relevance. The work115

presented by Ienco et al. (2012) and Jia et al. (2015) use the notion of context which identifies the set of116

relevant categories to a defined attribute. The similarity measure in Jia et al. (2015) is determined by the117

correlation of their context attributes.118

Graphical projections of patient similarity119

Visually representing pairwise distance matrices remains a challenge. Most often, dimensionality reduction120

techniques are used to bring the number of dimensions down to two so that the data can be represented in121

a scatterplot (Nguyen et al. 2014; Girardi et al. 2016; Urpa and Anders 2019). Such scatterplots can not122

only indicate clusters and outliers, but are also very useful for assessing sample quality. In the case of123

patient data, each point in such plot represents a patient, and relative positions between them in the 2D124

plane correspond to the distance between them in the original higher dimensional space. Multidimensional125

scaling (MDS) is arguably one of the most commonly used dimensionality reduction methods (Mukherjee126

et al., 2018). It arranges points on two or three dimensions by minimizing the discrepancy between the127

original distance space and the distance in the two-dimensional space. Derived MDS methods have been128

presented, proposing modified versions of the minimization function but conserving the initial aim (Saeed129

et al., 2018). Besides MDS, recent methods have been proposed to highlight the local structure of the130

different patterns in high-dimensional data. For example, t-distributed stochastic neighbor embedding131

(t-SNE) (Maaten and Hinton, 2008) and uniform manifold approximation (UMAP) (McInnes et al., 2018)132

have been used in many publications on heterogeneous patient data (Abdelmoula et al. 2016; Simoni et al.133

2018; Becht et al. 2019). Unlike MDS, t-SNE projects the conditional probability instead of the distances134

between points by centering a normalized Gaussian distribution for each point based on a predefined135

number of nearest neighbors. This approach generates robustness in the projection, which allows the136

preservation of local structure in the data. In a similar fashion, UMAP aims to detect the local clusters but137

at the same time generates a better intuition of the global structure of data.138

In addition to scatterplot representations, alternative visual solutions are also possible, for example139

heatmaps (Baker and Porollo, 2018), treemaps (Zillner et al., 2008), and networks. The latter are often140

built using a combination of dimensionality reduction and topological methods (Li et al. 2015; Nielson141

et al. 2015; Dagliati et al. 2019). This approach has for example been used with success to visually142

validate the automated patient classification in analytical pipelines (Pai and Bader 2018; Pai et al. 2019).143

In general, the created network encodes the distance between two datapoints in high-dimensional space144

into an edge between them and the full dataset can therefore be represented as a fully connected graph.145

The STAD method (Alcaide and Aerts, 2020) reduces the number of edges allowing a more scalable146

visualization of distances. The original distance in high-dimensional space between two datapoints is147

correspondent to the path-length in the resulting graph between these datapoints. The main advantage of148

networks to display high-dimensional data is that users not only can perceive patterns by the location of149

points but also by the connection of elements, thereby increasing trust in the data signals.150
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MATERIAL AND METHODS151

The International Classification of Diseases (ICD) is a diagnosis and procedure coding system used by152

hospitals to bill for care provided. They are further used by health researchers in the study of electronic153

medical records (EMR) due to the ease of eliciting clinical information regarding patient status. Although154

these administrative databases were not designed for research purposes, the efficiency compared to the155

manual review have democratized the analysis of health data showing reliable results (Humphries et al.,156

2000). Even though ICD codification is hierarchically organized, some concepts in the database may be157

under-reported (Campbell et al., 2011). To make analysis feasible, the ICD codes are in practice often158

grouped in higher categories to reduce noise and facilitate the comparison and analysis with automatic159

systems (Choi et al. 2016; Miotto et al. 2016; Baumel et al. 2018). In our approach, we adopt the160

ICD generalization introduced by the Clinical Classification Software (CSS) which groups diseases and161

procedures into clinically meaningful sections (Healthcare Cost and Utilization Project, 2019). Here we162

introduce a method to compare unequal sets of ordered lists of categories and explore the different cohorts163

of patients through visual representations of data. This approach employs a new distance metric presented164

in section ’Diagnosis similarity and distances’ within the visual analytics method as presented in section165

’Spanning Trees as Abstraction of Data’.166

Diagnosis similarity and distances167

In the MIMIC dataset which was used for this work (Johnson et al., 2016), each patient’s diagnosis is a168

list of ICD codes, as exemplified in Table 1. The average number of concepts per profile in the MIMIC169

III dataset is 13 with a standard deviation of 5. Diagnoses are sorted by relevance for the patient status.170

This order determines the reimbursement for treatment, and, from an analysis perspective, can help us to171

distinguish similar medical profiles even with different initial causes. The similarity metric presented172

in this work takes this duality into account and provides support for comparing profiles with an unequal173

length of elements.174

Patient A (115057) Patient B (117154)

ICD section Label (ICD9) ICD section Label (ICD9)

1 996-999. Infection and inflammatory

reaction due to other vas-

cular device, implant, and

graft (99662)

1 430-438. Unspecified intracranial

hemorrhage (4329)

2 990-995. Sepsis (99591) 2 430-438. Cerebral artery occlusion,

unspecified with cerebral

infarction (43491)

3 590-599. Urinary tract infection,

site not specified (5990)

3 996-999. Iatrogenic cerebrovascular

infarction or hemorrhage

(99702)

4 401-405. Unspecified essential hy-

pertension (4019)

4 990-995. Sepsis (99591)

5 590-599. Urinary tract infection,

site not specified (5990)

6 401-405. Unspecified essential hy-

pertension (4019)

Table 1. Objective function in STAD and STAD-R. The correlation ρ is computed between the original

distance matrix DX and the distance matrix derived from the shortest path graph in DU . The ratio R is

calculated from the network at each iteration considering the edges included in the network. Note that

distance dnetwork edge are normalized values between zero and one.

The similarity between two patients (diagnosis profiles) A and B is based on which diagnoses (i.e.175

ICD9 codes) are present in both, as well as the position of these elements in the list. Consider a match M176

between two concepts cA and cB, which contributes to the similarity according to the following formula:177

M(cA,cB) = ln

(

1+
1

max( position(cA), position(cB) )

)
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The position mentioned in the formula corresponds to the positional index in the list. As an exam-178

ple, the individual contribution of the concept ”Sepsis” for patients A and B in Table 1 is MSepsis =179

ln
(

1+ 1
max(2,4))

)

= ln 1.25. The total similarity between patients is the sum of individual contributions180

from the matched concepts S(X ,Y ) = ∑
i=1
n M(X

⋂

Y ). Applying this formula to the example in Ta-181

ble 1 gives: S(PatientA,PatientB) = MSepsis + MUrinarytractin f ection + MHypertension = ln 1.25 + ln 1.20 +182

ln 1.17 ≃ 0.56183

To perform the patient analysis in STAD (Section ’Simplified Topological Abstraction of Data’), the184

similarity measure S needs to be converted into a distance measure D = 1−Snormalized where Snormalized =185

S/max(S).186

Distance measures in categorical variables are built based on a binary statement of zero or one. Unlike187

other data types, categorical data generate a bimodal distribution, which can be considered as a normal188

when the element contains multiple dimensions (Schork and Zapala, 2012). The diagnosis metric defined189

is constructed following this idea, although including the order results in an unequal distribution of high190

and low values. The resulting distance distribution tends to be left-skewed (Figure 1a), indicating a high191

dissimilarity. In other words: most patients are very different from other patients.192

Simplified Topological Abstraction of Data193

Simplified Topological Abstraction of Data (STAD) (Alcaide and Aerts, 2020) is a dimensionality194

reduction method which projects the structure of a distance matrix DX into a graph U. This method195

converts datapoints in multi-dimensional space into an unweighted graph in which nearby points in196

input space are mapped to neighboring vertices in graph space. This is achieved by maximizing the197

Pearson correlation between the original distance matrix and a distance matrix based on the shortest198

paths between any two nodes in the graph (which is the objective function to be optimized). A STAD199

projection of multi-dimensional data allows the extraction of complex patterns therein. The input for a200

STAD transformation consists of a distance matrix of the original data, which in this case is based on the201

metric as defined in the previous section.202

As mentioned above, high dissimilarity between datapoints (i.e. patients) results in a left-skewed203

distance distribution. Unfortunately, this skew poses a problem for STAD analysis. As mentioned above,204

the STAD method visualizes the distances between elements by means of the path length between nodes.205

Hence, to represent a big distance between two elements, STAD needs to use a set of intermediate206

connections that help to describe a long path. In case no intermediate nodes can be found, the algorithm207

forces a direct connection between the two nodes. As a result, in a left-skewed distribution, STAD tends to208

generate networks with an excessively high number of links, even when high correlation can be achieved209

as shown in Figure 1b and d. This means that the principle that nodes that are closely linked are also close210

in the original space (i.e. are similar) does not hold anymore (Koffka, 2013).211

Therefore, we propose a modification of the STAD algorithm, named STAD-R (where the R stands for212

”Ratio”), which solves the described problem on datasets of dissimilar items. The modification concerns213

the objective function to avoid connections of dissimilar nodes. To reduce the number of links between214

dissimilar datapoints we alter the STAD method to incorporate the ratio R =
∑ 1−dnetwork edge

∑ 1+dnetwork edge
, in which the215

sum of dnetwork edge refers to the sum of distances of edges included in the network (see Figure 2). Note216

that edges represent the distance between two elements of the dataset and constitute a cell in the pairwise217

distance matrix.218

This ratio R is added to the objective function of the algorithm, which maximizes the correlation ρ219

between the distance matrices DX (of the input dataset) and DU (based on shortest path distances in the220

graph). When including the ratio R, the objective function in STAD-R is not only a maximization problem221

based on the Pearson correlation but also a maximization of ratio R. Table 2 shows the difference between222

STAD and STAD-R.223

The ratio R is the sum of those distances of datapoints in DX that are directly connected in network U .224

Figure 2 provides an intuition of the creation of a STAD-R network during different iterations.225

The result of STAD-R over STAD is presented in Figure 1e. The network has a considerable lower226

number of links (Figure 1c), and patterns in the data are much more apparent.227

The STAD-R algorithm generates networks with considerably lower number of links compared to the228

correlation-based version. The ratio R restricts the inclusion of dissimilarities and therefore, the number229

of edges in the network. This new constraint also alters the number of edges in networks generated from230
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Figure 1. Distance distributions of a population of patients with sepsis, STAD, and STAD-R projections.

The dataset is composed of a selection of 1,271 patients from MIMIC-III diagnosed with sepsis (ICD-9:

99591). Predefined conditions cause more homogeneous populations that mitigate the skewness of the

diagnosis similarity distribution. (a) Distribution of diagnosis distance. (b) Correlation between original

distance matrix and distance matrix based on STAD graph, given different numbers of edges. (c) Idem as

(c) using STAD-R. (d) STAD network. (e) STAD-R network.

STAD STAD-R

max ρ(DX ,DU ) max ρ(DX ,DU )R = max ρ
∑1−dnetwork edges

∑1+dnetwork edges

Table 2. Objective function in STAD and STAD-R. The correlation ρ is computed between the original

distance matrix DX and the distance matrix derived from the shortest path graph in DU . The ratio R is

calculated from the network at each iteration considering the edges included in the network. Note that

distance dnetwork edge are normalized values between zero and one.

other distributions types, e.g., right-skewed or normal. Nevertheless, the general ”shape” of the resulting231

network remains the same. An example is presented in Figure 3a, showing a right-skewed distance232

distribution, leading to networks with different numbers of edges for STAD and STAD-R, respectively.233

However, the structure is still preserved in both networks (Figure 3d and e).234

RESULTS235

We applied this approach to the MIMIC-III database (Johnson et al., 2016), which is a publicly available236

dataset developed by the MIT Lab for Computation Physiology, containing anonymized health data237

from intensive care unit admissions between 2008 and 2014. The MIMIC-III dataset includes the238

diagnosis profiles of 58,925 patients. Their diagnoses are described using the ICD-9 codification and239

sorted according to their relevance to the patient. To reduce the number of distinct terms in the list240

of diagnoses, ICD codes were first grouped as described in the ICD guidelines Healthcare Cost and241

Utilization Project (2019). The proof-of-principle interface as well as the underlying code can be found242

on http://vda-lab.be/mimic.html.243

The interface is composed of two main parts: an overview node-link network visualization including244

all patients (Figure 4a), and a more detailed view of selected profile groups (Figure 4b). Networks for each245

ICD code are precomputed: for each ICD-9 code the relevant patient subpopulations were extracted from246

the data, diagnosis distances and the resulting graph were computed using STAD-R. When the user selects247

an ICD-9 code from the interface (in this case code 2910; alcohol withdrawal delirium), the corresponding248

precomputed network is displayed. The user can subsequently select a cluster in this visualisation or249

individual patients, which will then trigger the display of a barchart which gives more information for that250

particular cluster (Figure 4b). This stacked barchart gives more context on how different ICD codes are251

spread across the different positions in the list of diagnoses: how many patients have code 2910 at the252

first position in the diagnosis list, how many at the second position, etc; the same goes for the other ICD253

codes. Total bar lengths decrease as the position in the list increases due to the fact that different patients254
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Figure 2. Creation of the STAD-R network for different iterations. (a) Distance matrix DX : Pairwise

distances between all elements in a point cloud are calculated using a defined distance metric. (b)

Distance list: Transformation of the matrix into a edges list. Edges are sorted by their distance. Smaller

distances are first candidates to become part of the network U . (c) The Minimum spanning tree connects

all nodes with minimum distance. It guarantees that a path exists between all nodes and becomes the

initial iteration in the evaluation of the optimal STAD network (d) The addition of edges over the MST

may improve the correlation between the two distance matrices. Edges are added in sequential order

following the list in b. (e) The optimal network is found at the iteration with the maximum combination

of correlation between DX and DU and the ratio R.

have different lengths of diagnosis lists.255

DISCUSSION256

The definition of a custom similarity metric together with a flexible dimensionality reduction technique257

constitute the key elements of our approach. In this section, we evaluate the benefits of STAD to detect258

patterns in diagnostic data compared to other popular methods and further discuss the application of the259

presented distance metric in a different but similar context.260

Comparing STAD to other dimensionality reduction methods261

The projection of distances in STAD-R aims to enhance the representation of similarities using networks.262

Similar groups of patients tend to be inter-connected, which are perceived as a homogeneous cohort. The263

outputs of three popular algorithms (MDS, t-SNE, and UMAP) are compared with STAD-R in Figure 5.264

The population used in this example is the collection of MIMIC-III patients with alcohol withdrawal265

delirium (ICD-9 291.0), which was also used for Figure 4. The MDS projection endeavors to approximate266

all distances in data by defining the two most informative dimensions. In contrast, t-SNE and UMAP267

favor the detection of local structures over the global, although UMAP developed a more refined method268

to retain part of the general relations. The abstract graph generated by STAD-R requires of a layout to be269
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Figure 3. Distance distributions of traffic activity, STAD, and STAD-R projections. The dataset contains

the traffic activity in the city of Barcelona from October 2017 until November 2018. The dataset was

presented and analyzed in (Alcaide and Aerts, 2020). (a) Distribution of diagnosis distance. (b)

Correlation between original distance matrix and distance matrix based on STAD graph, given different

numbers of edges. (c) Idem as (c) using STAD-R. (d) STAD network. (e) STAD-R network.

visualized. Different layout algorithms exist to calculate x- and y-positions of the nodes on the screen.270

For example, Kamada-Kaway (Kamada et al., 1989) tries to find a global optimum whereas ForceAtlas2271

(Jacomy et al., 2014) favors local distances. Interactivity is important to be able to drag nodes to better get272

insight in how they are locally connected. The network edges to be drawn are independent of the layout273

algorithm used.274

In the four plots of Figure 5, the same points were highlighted corresponding to three communities275

identified by the Louvain method (De Meo et al., 2011). For instance, community 1 and 3 correspond to276

the patients analyzed in section ’Results’. Community 1 were patients diagnosed with alcohol withdrawal277

delirium as the primary diagnosis (Group A in Figure 4); community 3 are patients with fractures of278

bones as the primary diagnosis (Group B in Figure 4); community 2 are patients with intracranial injuries279

such as concussions. Despite the simple comparison presented, further analysis between these groups280

confirmed qualitative differences between profiles and a closer similarity between communities 2 and 3281

than 1. The initial causes of communities 2 and 3 are associated with injuries while the primary diagnosis282

of patients in community 1 is the delirium itself.283

In Figure 5, we can see that communities that are defined in the network (Figure 5a) are relatively284

well preserved in t-SNE (Figure 5c) but less so in MDS (Figure 5b). However, t-SNE does take the global285

structure into account which is apparent from the fact that communities 2 and 3 are very far apart in t-SNE286

but actually are quite similar (STAD-R and MDS). UMAP (Figure 5d) improves on the t-SNE output and287

results in a view similar to MDS. In Figure 5a there are some points near community 1 that are not part of288

the same (pink) community as defined by the Louvain algorithm. These patients are not similar enough to289

community 1 to be part of it, but - among all other datapoints - their similarity is highest to one of the290

patients in that community. Notice that there is only one connection between such green point and the291

community. Note that the resulting figure may be transformed through rotation, scaling and/or mirroring,292

but will be topologically consistent across multiple executions.293

Similarity measures for ICD procedures294

The diagnosis similarity described in section ’Diagnosis similarity and distances’ is designed for assessing295

distance between diagnosis profiles, but the principles presented here can be generalized to other termi-296

nologies. For example, the procedures which patients receive during a hospital stay are also recorded297

and also follow an ICD codification: they also contain a list of categories similar to diagnosis. Unlike298

diagnoses however, the position of a procedure is equally important across the list as the order corresponds299

to the sequence in which the procedures were performed. Thus the weight distribution in the similarity300

that was used for the diagnosis metric must be adapted to the nature of the procedure data. Therefore, we301

can alter the formula to include the relative distance between positions of matched elements instead of302

the top position in the diagnosis case. Formally, the similarity between two procedure concepts can be303

described as follows:304
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Figure 4. The interface to explore the diagnosis profiles in the MIMIC-III database. [a] Network

visualization of those patients who have alcohol withdrawal delirium as one of their diagnoses. The

network is visualized using a force-directed layout. Node colors are assigned automatically following

Louvain community detection. (b) Bar-charts to compare the diagnosis profiles of selected groups in the

network. Color corresponds to ICD category. In this example Group A contains patients with alcohol

withdrawal delirium as the primary diagnosis; in contrast, Group B lists closed fractures as the most

relevant diagnosis, and alcohol withdrawal delirium is only in the 2nd to 8th position.

M(CA,CB) = ln

(

1+
1

|position(CA)+ position(CB)|+1

)

As with diagnosis similarity, the metric is estimated as the sum of individual contributions of matched305

concepts, S(X ,Y ) = ∑
n
i=1 M(X ∩Y ).306
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Figure 5. Comparison of STAD-R, MDS, t-SNE and UMAP using the population of patients with

patients with alcohol withdrawal delirium (ICD-9 291.0). The three communities were determined by the

Louvain algorithm. Community 1 are patients diagnosed with alcohol withdrawal delirium in the first

positions of the list. Community 2 were patients with intracranial injuries as concussions. Community 3

are patients with fractures of bones as the primary diagnosis.

Figure 6 shows a STAD network generated using this adapted similarity for procedures. This example307

illustrates the population of patients with partial hip replacement (ICD 9: 81.52) in the MIMIC-III308

population. We can identify three clusters which describe three types of patients: group A are patients309

with the largest list of activities and are often characterized by venous catheterization and mechanical310

ventilation; patients in group B are mainly patients with a single procedure of partial hip replacement;311

patients in group C are characterized by the removal of an implanted device and a blood transfusion (data312

not shown).313

CONCLUSIONS314

In this paper, we introduced a new distance metric for lists of diagnoses and procedures, as well as an315

extension to STAD for dissimilar datapoints. The diagnosis similarity measure can be applied to any316

ordered list of categories in a manner that is not possible with the measures available in the literature so far.317

The metric is designed to identify differences between patients through standardized concepts (diagnosis318

and procedures) where the weights of matching concepts are adapted to highlight the most relevant terms.319

As mentioned in Boriah et al. (2008), selecting a similarity measure must be based on an understanding of320

how it handles different data characteristics. The projection of data using STAD-R allows both for the321

detection of local structures and the representation of the global data structure. While no dimensionality322

reduction output from a high-dimensional dataset can completely project all relationships in the data, the323

connection of nodes in the graph allows a granular selection and exploration of cohorts. Furthermore, the324

embedding of the network into an interactive dashboard provides a level of convenience that supports325
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Figure 6. The population of patients who received a partial hip replacement (ICD 9: 81.52). The

network was computed using STAD-R, and distances were estimated using an adapted version of

diagnosis similarity for procedures. Color is based on Louvain community detection.

interpretation of the analysis results of the network.326
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