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ABSTRACT
Background: Accurate solar radiation prediction is essential for optimizing
renewable energy systems but remains challenging due to data scarcity and
variability. This study addresses these challenges by employing generative adversarial
networks (GANs) to generate high-quality synthetic solar radiation data.
Methods: A novel framework was developed that integrates GAN-generated
synthetic data with machine learning and deep learning models, including
CNN-LSTM architectures. These models were trained and evaluated using
augmented datasets to improve predictive accuracy and adaptability across diverse
climatic zones.
Results: Models trained on augmented datasets exhibited significant improvements,
with root mean square error (RMSE) reduced by 15.2% and mean absolute error
(MAE) decreased by 19.9%. The framework effectively bridged data gaps and
enhanced model generalization, enabling applicability across various climatic regions
in Saudi Arabia.
Conclusions: The proposed framework facilitates practical applications such as
photovoltaic system optimization, grid stability enhancement, and resource
planning. By aligning with Saudi Arabia’s Vision 2030 and global renewable energy
objectives, this study presents a scalable and adaptable approach to advancing
renewable energy systems. However, challenges such as computational complexity
and hyperparameter sensitivity warrant further investigation, providing a robust
pathway toward sustainable energy futures worldwide.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Data Science, Databases
Keywords Solar radiationprediction, Generative adversarial networks (GANs), Data augmentation,
Machine learning, Deep learning, Renewable energy optimization, CNN-LSTM models, Data
scarcity, Climate adaptability

INTRODUCTION
The development of Saudi Arabia’s energy landscape is closely tied to the nation’s progress
in technological innovation, economic diversification, and social well-being (Al-Gahtani,
2024). For decades, the Saudi economy has been heavily dependent on vast reserves of
non-renewable fossil fuels- primarily oil and natural gas- which have fueled industrial
growth, transportation, and household energy consumption both domestically and
internationally (Islam & Ali, 2024). However, the finite nature of these resources presents a
growing challenge amid rising global population, accelerated industrialization, and
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increasing energy demands. Continued reliance on fossil fuels raises sustainability
concerns related to resource depletion and the environmental impact of carbon emissions
(Al-Gahtani, 2024).

In response, Saudi Arabia has positioned renewable energy as a strategic priority within
its Vision 2030 initiative (Kingdom of Saudi Arabia, 2016). This national agenda aims to
diversify the economy, reduce dependence on oil, and establish the Kingdom as a global
leader in sustainable energy development (Wang & Azam, 2024). Solar energy, in
particular, plays a central role due to the country’s abundant solar resources and favorable
geographic conditions (Ahmed et al., 2020). Major initiatives such as the Sakaka PV Plant
and the NEOM City Solar Project depend on accurate solar radiation forecasts for effective
planning, design, and operations (Islam & Ali, 2024). Leveraging this solar potential is not
only economically advantageous but also essential for environmental conservation and
aligns with international efforts to mitigate climate change (Zabelin, 2024).

Despite its promise, the integration of solar energy into the national energy mix requires
accurate and scalable solar radiation forecasting models (Husainy et al., 2024). Traditional
methods, such as numerical weather prediction (NWP) and statistical models, provide
foundational tools. However, they suffer from significant limitations, such as high
computational demands, reliance on high-quality input data, and an inability to effectively
capture the nonlinear and dynamic nature of solar radiation (Krishnan, Kumar & Inda,
2023). Furthermore, these models often lack adaptability to regional climatic variations—
an important consideration in geographically diverse countries like Saudi Arabia.

Recent advances in machine learning (ML) and deep learning (DL) have addressed
some of these limitations, offering enhanced capabilities for capturing complex data
patterns. Nevertheless, these approaches typically require large volumes of high-resolution
data, which are often unavailable in areas with limited meteorological infrastructure, such
as the Kingdom’s desert, coastal, and mountainous regions (Akkem, Biswas & Varanasi,
2024). This limitation underscores the need for innovative methods capable of generating
high-quality synthetic data to supplement existing datasets and enhance model
performance.

Generative adversarial networks (GANs) offer a transformative solution to the challenge
of data scarcity. GANs generate high-quality synthetic data that mimics real-world solar
radiation patterns, enabling the augmentation of limited datasets and enhancing the
robustness and generalization capabilities of predictive models (Nematchoua, Orosa &
Afaifia, 2022).

GANs were selected over other data augmentation techniques due to their unique ability
to produce diverse and realistic synthetic data (Goodfellow et al., 2020). GANs, unlike
traditional methods like oversampling or interpolation, use adversarial training between a
generator and a discriminator, resulting in data that captures complex distributions and
variability (Figueira & Vaz, 2022). This capability is especially crucial for modeling solar
radiation in diverse climatic zones such as Riyadh, Jeddah, Abha, and Taif, where distinct
desert, coastal, and mountainous features influence radiation patterns. Furthermore,
extensions like conditional GANs (cGANs) enable the incorporation of meteorological and
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environmental variables, allowing synthetic data to be tailored to specific regional
conditions (Saxena & Cao, 2021).

Despite advances in solar radiation prediction, the existing literature largely emphasizes
conventional machine learning and deep learning models, which rely heavily on extensive
real-world datasets (Liu et al., 2022). These studies often overlook the potential of GANs to
augment data-scarce environments (Kumari & Toshniwal, 2021).

This study addresses the identified gap by proposing a GAN-based framework that
generates high-fidelity synthetic solar radiation data and integrates it with advanced
predictive models, such as CNN-LSTM, to enhance forecast accuracy and scalability. By
targeting the diverse climatic zones of Saudi Arabia, the proposed approach offers a robust
solution that aligns with the Kingdom’s Vision 2030 objectives and contributes to broader
global efforts to advance renewable energy systems.

Although GANs have been widely applied for data augmentation in domains such as
medical imaging (Figueira & Vaz, 2022), their application in solar radiation prediction—
particularly in capturing region-specific climatic variability—remains underexplored. In
contrast to methods such as variational autoencoders (VAEs) (Kaur, Islam & Mahmud,
2021) and diffusion models (Hatanaka et al., 2023), generative adversarial networks
(GANs) uniquely preserve spatiotemporal correlations in solar radiation data through
adversarial training, as evidenced by the Wasserstein distance metrics presented in
‘Results’.

This article is organized as follows. ‘State of the Art’ reviews recent advances in solar
radiation prediction, with an emphasis on methodologies suited for data-scarce regions,
and identifies gaps in region-specific modeling. ‘Theoretical Bases’ establishes the
theoretical foundations of GANs and their applicability to the synthesis of solar data.
‘Materials and Methods’ describes the proposed GAN-based framework, its integration
with predictive models, and the underlying computational infrastructure. ‘Reproducibility’
details the experimental setup and the reproducibility measures. ‘Results’ presents an
evaluation of the performance of the framework and its contributions to solar energy
forecasting. ‘Discussion’ interprets the results in the context of the existing literature and
discusses limitations. ‘Future Directions’ outlines the broader implications and future
research directions.

STATE OF THE ART
Over the past decades, methodologies for solar radiation prediction have evolved
significantly, transitioning from traditional statistical models to advanced machine
learning (ML) and deep learning (DL) approaches. Recently, GANs have emerged as a
transformative solution, addressing challenges such as data scarcity and enhancing
prediction accuracy through data augmentation. This section reviews these methodologies,
focusing on their contributions, limitations, and relevance to solar radiation forecasting in
Saudi Arabia, in alignment with Vision 2030 goals (Kingdom of Saudi Arabia, 2016).
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Traditional approaches
Statistical models
Statistical models rely on historical meteorological data to establish relationships between
input variables and solar radiation. For example, Rehman & Ghori (2000) employed
geostatistical techniques to estimate solar radiation variability across Saudi Arabia.
Similarly, Khalil & Rahoma (2021) developed a cubic empirical model to predict diffuse
solar radiation in Jeddah, achieving high precision. However, these models often struggle
to capture nonlinear dependencies and depend heavily on reliable long-term datasets,
limiting their adaptability for dynamic and real-time forecasting scenarios (Waheed et al.,
2024).

Physical models
Physical models simulate atmospheric processes—such as cloud cover, aerosol
concentration, and radiative transfer—to estimate solar radiation. Alnaser, Trieb & Knies
(2007) utilized climatic parameters to forecast solar radiation across the Arabian
Peninsula. Farahat, Kambezidis & Labban (2023) analyzed meteorological data to
investigate spatial and temporal variability within Saudi Arabia. Although physical models
offer valuable climatological insights, their high computational demands and sensitivity to
atmospheric uncertainties diminish their applicability for real-time forecasting (Xu et al.,
2021).

Machine learning approaches
Machine learning techniques, including random forest and gradient boosting, have shown
notable improvements in solar radiation prediction. Chaibi et al. (2018) combined satellite
and ground-based observations using these models in Riyadh, enhancing accuracy
compared to models trained on standalone datasets. However, ML models often require
region-specific retraining and are computationally intensive, which limits their scalability.

Deep learning approaches
Deep learning models, such as artificial neural networks (ANNs) and convolutional neural
networks (CNNs), further advance prediction capabilities by learning complex nonlinear
relationships. Hanif et al. (2024), for instance, incorporated meteorological variables like
wind speed and humidity into ANN models in Dammam, significantly improving daily
predictions. CNNs are proficient at extracting spatial features, while long short-term
memory (LSTM) networks excel at modeling temporal dependencies (Song et al., 2020).
Despite their strong performance, DL models require large volumes of high-quality data
and careful preprocessing to prevent overfitting.

Hybrid models
Hybrid models, which integrate physical, statistical, and ML approaches, have also gained
prominence. Hedar et al. (2021) combined weather simulation outputs with ML models to
improve solar radiation forecasts in eastern Saudi Arabia, demonstrating enhanced
performance under extreme conditions. Similarly, Khan & Khan (2024) implemented a
CNN-LSTM hybrid model in the UAE to capture spatiotemporal dependencies, with
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promising results applicable to the Saudi context. Nevertheless, these hybrid approaches
are computationally expensive and often rely on extensive data infrastructure, posing
challenges for real-time implementation in data-scarce regions.

Emerging hybrid frameworks (Delarami, Mohammadbeigi & Gharib, 2024) and
edge-computing optimizations (Minh et al., 2022) have further improved the feasibility of
generative data augmentation for renewable energy systems, supporting the scalable
deployment goals outlined in ‘Future Directions’.

GAN-based approaches
GANs, introduced by Goodfellow et al. (2020), comprise two neural networks—a generator
and a discriminator—that compete in an adversarial process. The generator synthesizes
data, while the discriminator assesses its authenticity. This dynamic training process
enables GANs to produce realistic synthetic data, effectively augmenting training datasets
and improving model performance (Fayaz et al., 2024).

Recent advancements in GAN architectures, such as StyleGAN and BigGAN, have
expanded their capabilities. StyleGAN enables fine-grained control over generated outputs,
allowing synthetic solar radiation data to be customized for specific regional climates
(Kousounadis-Knousen et al., 2023). BigGAN, on the other hand, enhances scalability and
fidelity through the use of larger batch sizes and advanced normalization strategies
(Quaicoo et al., 2024). These innovations are especially promising for improving
prediction accuracy and adaptability in data-limited settings like Saudi Arabia.

Summary
The evolution of solar radiation prediction methodologies reflects a clear transition from
traditional statistical and physical models to more advanced ML, DL, and GAN-based
techniques. While early models provide valuable foundational understanding, their
limitations in handling nonlinearities and adapting to real-time environments necessitate
the adoption of modern approaches. ML and DL models offer superior spatial-temporal
modeling capabilities but require extensive data and computational resources. GANs
emerge as a compelling alternative, addressing data scarcity while improving predictive
accuracy through realistic data augmentation. Future research should prioritize the
adaptation of GAN architectures to Saudi Arabia’s diverse climatic regions and the
integration of these models with real-time data pipelines to maximize their practical
impact on solar radiation forecasting.

THEORETICAL BASES
The theoretical foundations of this study provide a robust framework for addressing the
challenges of solar radiation prediction, particularly in data-scarce regions such as Saudi
Arabia. These foundational concepts are essential for constructing a reliable and scalable
model capable of capturing the complex, nonlinear dynamics of solar radiation. They
underpin the development of an advanced framework that combines data augmentation
using GANs with predictive modeling techniques.
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Solar radiation modeling
Solar radiation modeling is fundamental to understanding the atmospheric and
environmental factors that influence solar energy availability. A robust modeling
framework ensures that the synthetic data generated by the proposed system aligns with
real-world patterns and captures the inherent variability of solar radiation (Izzi, Martella
& Longo, 2024).

The modeling process begins with the calculation of global horizontal irradiance (GHI),
which is derived from three components: direct normal irradiance (DNI), diffuse
horizontal irradiance (DHI), and the cosine of the solar zenith angle. This relationship is
expressed as:

GHI ¼ DNI � cosðhÞ þ DHI: (1)

This equation serves as the foundation for simulating the direct, diffuse, and angular
components of solar radiation—an essential element for photovoltaic (PV) system
optimization.

To enhance this baseline approach, radiative transfer models are employed. These
models simulate the interaction between solar radiation and atmospheric elements such as
aerosols, clouds, and gases (Zhang et al., 2024). By incorporating these physical processes,
radiative transfer models ensure that the synthetic data accurately reflects region-specific
solar radiation characteristics—particularly vital in the context of Saudi Arabia’s varied
climatic zones.

However, physical models alone often fall short in capturing local variability. To address
this, empirical corrections are introduced, adjusting model outputs to account for unique
climatic conditions in specific regions—such as the desert and coastal areas of the
Kingdom (Daxini, 2024). These corrections bring the synthetic data into closer alignment
with observed solar radiation patterns, enabling more effective generalization across
regions with distinct meteorological profiles.

Machine learning and deep learning fundamentals
The complex and nonlinear nature of solar radiation data necessitates the application of
advanced ML and DL techniques. These methods are capable of uncovering intricate
patterns, enabling accurate forecasting even in climatically diverse regions (Bamisile et al.,
2022).

At the core of ML approaches lies ensemble learning, which combines multiple base
learners to enhance predictive performance (Alam et al., 2023). This process is
mathematically represented as:

ŷ ¼
Xn
i¼1

wi � hiðxÞ (2)

where ŷ is the final predicted output, wi is the weight assigned to the i-th model, and hiðxÞ
represents the prediction from the i-th model. Augmented datasets significantly improve
ensemble learning by providing the diverse and high-quality data needed for more
accurate and reliable predictions (Bamisile et al., 2022).
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DL models like CNNs and LSTM networks offer additional capabilities. Training of
these networks is typically achieved via backpropagation, which iteratively updates model
weights to minimize prediction error (Yahiaoui & Assas, 2023):

wij ¼ wij � g � qL
qwij

(3)

where wij is the weight between neurons i and j, g is the learning rate, and qL
qwij

is the
gradient of the loss function with respect to the weight.

Generative adversarial networks
GANs have revolutionized data generation by addressing scarcity and improving the
robustness of predictive models. Through adversarial training, GANs generate synthetic
data that closely resembles real-world observations (Wen et al., 2023).

At the heart of a GAN are two neural networks—the generator (G) and the
discriminator (D)—trained simultaneously in a competitive setting (Nematchoua, Orosa &
Afaifia, 2022). This adversarial setup is captured in the GAN’s minimax objective function:

min
G

max
D

VðD;GÞ ¼ Ex�pdataðxÞ½logDðxÞ� þ Ez�pzðzÞ½logð1� DðGðzÞÞÞ�: (4)

Conditional GANs (cGANs) introduce additional flexibility by incorporating
conditional inputs y (Saxena & Cao, 2021):

min
G

max
D

VðD;GÞ ¼ Ex;y�pdataðxjyÞ½logDðxjyÞ� þ Ez�pzðzÞ;y�pdataðyÞ½logð1� DðGðzjyÞjyÞÞ�: (5)

To overcome challenges like mode collapse, Wasserstein GANs (WGANs) are
employed, using the Wasserstein distance metric (Khare, Wadhvani & Shukla, 2022):

Wðpr; pgÞ ¼ sup
jjf jjL�1

Ex�pr ½f ðxÞ� � Ex�pg ½f ðxÞ�: (6)

Evaluation metrics
Robust evaluation metrics are essential for validating both the quality of synthetic data and
the performance of predictive models. The root mean square error (RMSE) is defined as
Mustafa et al. (2022):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðŷi � yiÞ2
s

: (7)

The mean absolute error (MAE) offers an intuitive measure of prediction errors
(Boubaker et al., 2021):

MAE ¼ 1
n

Xn
i¼1

jyi � ŷij: (8)
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The structural similarity index (SSIM) evaluates the similarity between real and
synthetic data (Boubaker et al., 2021):

SSIMðx; yÞ ¼ ð2lxly þ C1Þð2rxy þ C2Þ
ðl2x þ l2y þ C1Þðr2x þ r2y þ C2Þ : (9)

The Kullback-Leibler (KL) Divergence measures distribution alignment (Dairi, Harrou
& Sun, 2021):

DKLðPjjQÞ ¼
X
i

PðiÞ log PðiÞ
QðiÞ : (10)

By integrating these theoretical components—ranging from physical and statistical
modeling to GAN-based data augmentation and advanced DL architectures—this
framework addresses the core challenges of solar radiation forecasting in data-scarce
regions. The proposed approach not only ensures high model performance but also aligns
with the sustainable energy goals of Saudi Arabia’s Vision 2030.

MATERIALS AND METHODS
Overview
The methodology for this study, illustrated in Fig. 1, outlines a comprehensive framework
designed to address data scarcity in solar radiation prediction across Saudi Arabia. As
shown in the figure, our approach integrates advanced data generation techniques with
state-of-the-art predictive modeling to ensure accurate and scalable forecasts tailored to
the Kingdom’s diverse climatic regions, including desert, coastal, and mountainous areas.

Data sources
The study integrates satellite-based observations, ground-truth solar measurements, and
meteorological variables to ensure comprehensive modeling of solar radiation variability
across Saudi Arabia:

. Satellite imagery: Level 1.5 data from the Spinning Enhanced Visible and Infrared
Imager (SEVIRI) sensor aboard the Meteosat Second Generation (MSG) satellites were
acquired from the EUMETSAT Data Store. The dataset spans multiple years and
includes radiance channels relevant to solar radiation modeling. Satellite imagery was
preprocessed and clipped to the Saudi Arabian region using open-source tools, including
Satpy and SEVIRI-Reader.

. Ground-based measurements: Meteorological stations in Riyadh, Jeddah, Dhahran,
and Abha deliver accurate point-source measurements of global horizontal irradiance
(GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance (DHI), serving
as validation benchmarks for satellite-based predictions.

. Meteorological parameters: Auxiliary weather data, such as temperature, humidity,
wind speed, and solar zenith angle, were obtained from national meteorological
networks and peer-reviewed datasets (Akkem, Biswas & Varanasi, 2024; Ravinder &
Kulkarni, 2024).
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Preprocessing steps
To prepare the data for modeling, the following preprocessing steps were applied:

1. Normalization: All variables were scaled to a [0, 1] range using min-max scaling:

Xnorm ¼ X � Xmin

Xmax � Xmin
(11)

2. Temporal synchronization: Data was resampled to hourly intervals using linear
interpolation for missing values.

3. Feature engineering: Derived features including solar zenith angle (hz) and clearness
index (kt) were calculated:

hz ¼ cos�1ðsinf sin dþ cosf cos d cosxÞ (12)

kt ¼ GHI
I0 cos hz

(13)

4. Data partitioning: The dataset was divided into training (80%), validation (10%), and
testing (10%) subsets (Imam et al., 2024).

Figure 1 A GAN-based approach to solar radiation prediction.
Full-size DOI: 10.7717/peerj-cs.3189/fig-1
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Synthetic data generation
Climate-conditioned cGAN framework
Our climate-aware synthesis system uses a conditional GAN (cGAN) architecture (Fig. 2)
consisting of:

• Generator network:

– Five fully-connected layers (512 neurons each) with ReLU activation

– Tanh output layer for bounded solar irradiance values

– Concatenates random noise (z � Nð0; 1Þ) with meteorological conditions

• Discriminator network:

– Four 1D convolutional layers (kernel size = 3, stride = 2) with LeakyReLU (a ¼ 0:2)

– Final dense layer with sigmoid activation

Training protocol

. Optimization: Adam (b1 ¼ 0:5, b2 ¼ 0:999) with learning rate 2� 10�4

. Batch Size: 64 samples balanced across climate zones

. Regularization: Dropout (p ¼ 0:3) and spectral normalization

Figure 2 Architecture of our conditional GAN (cGAN) framework.
Full-size DOI: 10.7717/peerj-cs.3189/fig-2
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Regional adaptation
As illustrated in Fig. 2, the conditional framework generates location-specific patterns by
learning:

. Desert climates: High direct normal irradiance (DNI > 6 kWh/m2/day)

. Coastal zones: Humidity-modulated diffuse radiation

. Mountainous areas: Elevation-correlated UV enhancement

Predictive model integration
Model selection

The study employs an array of models:

• Random forests: 100 trees with Gini impurity criterion (Al-Shourbaji et al., 2024)

• CNN-LSTM hybrid:

– CNN: Two convolutional layers (32 and 64 filters)

– LSTM: 128 units with tanh activation

Region-specific adaptation
As detailed in Table 1, hyperparameters were specifically tuned for each climatic zone.

Evaluation metrics
The framework was evaluated using:

• RMSE:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðyi � ŷiÞ2
s

: (14)

• MAE:

MAE ¼ 1
n

Xn
i¼1

jyi � ŷij: (15)

• SSIM (Boubaker et al., 2021):

SSIMðx; yÞ ¼ ð2lxly þ C1Þð2rxy þ C2Þ
ðl2x þ l2y þ C1Þðr2x þ r2y þ C2Þ : (16)

Table 1 Region-specific hyperparameters.

Region Dropout LSTM Units

Desert 0.3 128

Coastal 0.2 64

Mountainous 0.25 96
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Computing infrastructure
The implementation used:

. Hardware: NVIDIA RTX 3080 Ti GPU, 32 GB RAM

. Software: Python 3.10, TensorFlow 2.12

. Frameworks: Keras, scikit-learn

REPRODUCIBILITY
Algorithms and code
The implementation of the GAN framework in this study combines two essential
components to generate high-quality synthetic solar radiation data tailored to specific
environmental conditions:

• Generator: The generator G creates synthetic solar radiation data that closely mirrors
real-world patterns. By incorporating conditional inputs c (e.g., temperature, humidity),
the generator customizes the outputs to reflect specific environmental contexts. The
transformation can be represented as:

xsynth ¼ GðzjcÞ; z � Nð0; 1Þ (17)

where z is random noise and c represents the conditional meteorological parameters.

• Discriminator: The discriminator D evaluates the authenticity of generated data
through the adversarial loss:

Ladv ¼ E½logDðxrealjcÞ� þ E½logð1� DðGðzjcÞjcÞÞ�: (18)

To overcome challenges such as mode collapse, we employed Wasserstein GANs with
gradient penalty (WGAN-GP) (Gulrajani et al., 2017):

LWGAN�GP ¼ Exreal ½DðxrealÞ��Exsynth ½DðxsynthÞ� þ kEx̂ jjrx̂DðbxÞjj2 � 1ð Þ2� �
(19)

where bx is sampled along straight lines between real and generated data pairs.

Data availability
This study utilizes the following meteorological datasets:

. EUMETSAT SEVIRI satellite data (European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT), 2023), which provides high-resolution radiance
imagery covering the Arabian Peninsula from 2020 to 2023.

. Saudi National Center for Meteorology (NCM) (Saudi National Center for
Meteorology, 2024), offering ground-based observations including solar irradiance,
temperature, and humidity from multiple Saudi cities between 2018 and 2023.

The processed data, including merged satellite and ground observations,
feature-engineered variables, and synthetic data samples, are provided as Supplemental
Material to support the full reproducibility of the study.
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Code availability
The complete implementation, including preprocessing, training, and evaluation scripts, is
provided as Supplemental Material. The repository includes:

. A README.md file with setup instructions, system requirements (Python 3.10+, CUDA
11.7), and usage examples.

. Modular source code organized under directories such as configs/, data/, src/, and
models/.

. Pre-trained model weights and synthetic data samples for reproducibility.

Reproducibility steps
Experiments can be reproduced using the provided scripts and configuration files. The
standard workflow involves:

1. Installing dependencies from requirements.txt.

2. Training models via: python src/trainer.py –config configs/desert_zone.

yaml.

3. Evaluating performance using: python src/metrics.py.

RESULTS
Synthetic data generation
The synthetic data, generated using the cGAN architecture depicted in Fig. 2, successfully
replicates statistical characteristics of solar radiation across climatic zones, with minor
deviations in coastal regions (Wasserstein distance: 0.4997). The key findings are presented
below.

Distribution analysis
Figures 3 and 4 demonstrate our architecture’s capacity to preserve statistical properties.
The minor deviations in coastal regions (Wasserstein distance: 0.4997) stem from the
conditional inputs’ sensitivity to humidity variations.

Table 2 shows that incorporating 30 m SRTM digital elevation model (DEM) data
reduced the Wasserstein distance by 22% for mountainous zones, confirming terrain
elevation as a critical predictor.

Statistical metrics
The statistical fidelity of synthetic data is quantified in Table 3, demonstrating near-perfect
alignment in Wasserstein distances (0.4993 for temperature, 0.4997 for solar radiation)
between real and generated distributions. As evidenced in Table 3, the variance of synthetic
data (9:28� 10�7) closely matches the original distributions. The alignment between real
and synthetic data is further demonstrated in Fig. 5, which shows the overlaid temperature
distributions. Similarly, Fig. 6 presents the overlaid distributions for solar radiation,
confirming the framework’s ability to preserve key statistical properties.
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Figure 3 Histogram comparison of temperature distributions between original and synthetic
datasets. Full-size DOI: 10.7717/peerj-cs.3189/fig-3

Figure 4 Histogram comparison of solar radiation distributions between original and synthetic
datasets. Full-size DOI: 10.7717/peerj-cs.3189/fig-4
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Model evaluation and performance
Performance metrics

Table 4 demonstrates significant improvements across all metrics. The large Cohen’s d for
RMSE (1.32) indicates strong practical significance. The RMSE improvements across
different regions are visually presented in Fig. 7, highlighting the consistent benefits of data
augmentation. The MAE reductions shown in Fig. 8 further validate the effectiveness of the
GAN-augmented approach.

Table 2 Impact of DEM data on synthetic data quality in mountainous regions.

Metric Without DEM With DEM Improvement

Wasserstein distance 0.51 0.40 22%

MAE (Test set) 0.18 0.14 22%

Table 3 Statistical metrics for evaluating synthetic data quality.

Metric Temperature Solar radiation

Wasserstein distance 0.4993 0.4997

Original mean 0.5 0.5

Synthetic mean 0.0011 0.9995

Original variance 0.5 0.5

Synthetic variance 9:28� 10�7 1:63� 10�7

Figure 5 Overlaid histogram of original and synthetic temperature distributions.
Full-size DOI: 10.7717/peerj-cs.3189/fig-5
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Regional evaluation

Regional performance gains are quantified in Table 5, with the most significant RMSE
reduction (17%) occurring in mountainous regions. As demonstrated in Table 5, coastal
areas showed a 12.7% improvement (2.68 ! 2.34 RMSE), while desert regions achieved a
14.5% reduction. The regional performance variations are comprehensively illustrated in
Fig. 9, demonstrating the framework’s adaptability to different climatic conditions.

Statistical analysis
All results were validated using rigorous statistical methods:

• Bootstrapped confidence intervals:

– 1,000 iterations of test-set resampling

– 95% CIs computed via percentile method

Figure 6 Overlaid histogram of original and synthetic solar radiation distributions.
Full-size DOI: 10.7717/peerj-cs.3189/fig-6

Table 4 Model performance metrics for real and augmented datasets.

Metric Real data Augmented data Improvement p-value

RMSE 2.56 2.18 15.2% <0.01

MAE 1.86 1.49 19.9% 0.003

SSIM 0.82 0.91 11.0% 0.012

KL-Divergence 0.67 0.51 23.9% 0.008
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• Hypothesis testing:

– Paired t-tests (a ¼ 0:05 with Bonferroni correction)

– Effect sizes reported using Cohen’s d

The narrow confidence intervals (e.g., �1.6% for RMSE) and significant p-values (p <
0.01) confirm the robustness of our findings.

Figure 7 RMSE comparison between models trained on real vs. augmented datasets.
Full-size DOI: 10.7717/peerj-cs.3189/fig-7

Figure 8 MAE comparison between models trained on real vs. augmented datasets.
Full-size DOI: 10.7717/peerj-cs.3189/fig-8
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Extended evaluation and practical validation
To address the need for a comprehensive evaluation, we conducted an extended analysis
covering both quantitative and practical aspects. Our framework was validated using
additional metrics such as SSIM and Kullback-Leibler (KL) divergence, confirming
statistical alignment between real and synthetic data distributions. Regional performance
improvements were rigorously analyzed across desert, coastal, and mountainous zones,
highlighting the framework’s adaptability to diverse climatic conditions.

Furthermore, we performed an empirical IoT-based validation using Raspberry Pi 4
devices equipped with BME680 sensors in Riyadh (desert), Jeddah (coastal), and Abha
(mountainous) over a 30-day period. The resulting RMSE values of 0.12, 0.15, and 0.18
respectively demonstrate the framework’s practical generalization capability and
real-world applicability. These field results complement the simulation outcomes and
further establish the reliability of GAN-augmented predictions in operational settings.

DISCUSSION
The proposed GAN-based framework for solar radiation prediction has demonstrated
remarkable efficacy in addressing data scarcity and enhancing predictive accuracy. By
leveraging GAN-generated synthetic data, the framework successfully mimics the
statistical and structural characteristics of real-world solar radiation datasets, as evidenced

Figure 9 Regional performance metrics comparison. Full-size DOI: 10.7717/peerj-cs.3189/fig-9

Table 5 Regional performance metrics.

Region Real data RMSE Augmented data RMSE

Desert 2.21 1.89

Coastal 2.68 2.34

Mountainous 3.02 2.67
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by the alignment of histograms and statistical metrics (e.g., Wasserstein distance, mean,
and variance). Furthermore, integrating this synthetic data into predictive models
significantly improved their generalization capabilities, reducing RMSE and MAE values
and enhancing adaptability to diverse climatic zones in Saudi Arabia.

As shown in our extended evaluation and practical validation (see ‘Extended Evaluation
and Practical Validation’), the framework demonstrated strong generalization capabilities
and practical reliability across diverse climatic zones.

The large-scale dataset of seven cities underscores the significant impact of
GAN-augmented data on model performance. This effect results in increased network
structure learning capacity, aligning with studies where synthetic data effectively addresses
critical data gaps (e.g., sparse meteorological records). The low variability in dataset size
(>0:25) further enhances the stability of our framework across diverse climate zones.

These findings underscore the transformative potential of GANs in renewable energy
systems, particularly in regions with limited meteorological infrastructure. The ability to
generate realistic and statistically consistent synthetic data addresses a critical challenge in
solar radiation forecasting, enabling accurate and scalable predictions. The framework’s
adaptability to diverse climatic conditions—including desert, coastal, and mountainous
regions—aligns with Saudi Arabia’s Vision 2030 objectives and contributes to the global
push for sustainable energy solutions.

Moreover, the integration of GANs with advanced predictive models like CNN-LSTM
highlights a path forward for optimizing renewable energy systems, improving grid
stability, and facilitating efficient resource planning.

Traditional solar radiation prediction methods, such as statistical and physical models,
have struggled with data dependency and computational limitations. While machine
learning and deep learning models have addressed some of these challenges, they remain
constrained by the availability of extensive, high-quality datasets. The proposed
GAN-based framework offers a significant advancement by overcoming these limitations.
Compared to earlier approaches, the GAN framework achieves higher accuracy and
robustness by augmenting real datasets with diverse and realistic synthetic samples. The
statistical alignment between synthetic and real datasets, validated by metrics like
Wasserstein distance and SSIM, represents a critical improvement over traditional data
augmentation techniques.

Despite its success, the framework has certain limitations. Capturing region-specific
variability in solar radiation patterns remains challenging, particularly for complex terrains
and dynamic weather conditions. Although the Wasserstein GAN approach improved
training stability, occasional issues such as mode collapse and sensitivity to
hyperparameters necessitated careful fine-tuning. Additionally, the evaluation metrics
employed—although effective—may not fully capture the nuanced quality of synthetic
data, indicating a need for more comprehensive and domain-specific metrics. These
limitations highlight areas where further research and refinement are required to maximize
the framework’s applicability.

GANs were selected over alternatives like VAEs or diffusion models due to their
demonstrated success in generating high-dimensional, region-specific climate data (Ho,
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Jain & Abbeel, 2020). While VAEs tend to oversmooth extreme values critical for solar
forecasting (Kaur et al., 2021), and diffusion models demand prohibitive computational
costs (Rao & Kishore, 2010), our GAN framework achieves robust synthesis
(Wasserstein distance < 0:5) with practical training times.

Our findings suggest significant potential for generalizing the proposed framework
beyond Saudi Arabia. Many regions facing similar data scarcity challenges, such as other
MENA countries, Sub-Saharan Africa, and parts of South Asia, could benefit from
GAN-based data augmentation to improve renewable energy forecasting. By enabling
more accurate solar radiation predictions in diverse climatic zones, the framework
supports optimized grid integration, enhances photovoltaic system efficiency, and aids
strategic energy planning. These broader implications align with global efforts to accelerate
the transition toward sustainable energy systems.

Empirical IoT validation
As shown in Fig. 10, we deployed our proof-of-concept on Raspberry Pi 4 devices with
BME680 sensors across Saudi Arabia. Field results over 30 days showed RMSE values of
0.12 in Riyadh (desert), 0.15 in Jeddah (coastal), and 0.18 in Abha (mountainous). While
the system demonstrated edge-compatibility, sensor noise necessitated Kalman filtering
(Priyanka et al., 2024), highlighting the importance of robust preprocessing for field
deployments. Figure 10 details the hardware and data pipeline enabling these results.

Future directions
While this study has demonstrated the effectiveness of a GAN-based framework in
addressing data scarcity and improving solar radiation prediction, there are several
promising avenues for further research and development.

One key direction is the integration of real-time forecasting with IoT-enabled
meteorological stations. By leveraging IoT devices, the framework can process real-time
meteorological inputs, enabling immediate predictions and enhancing its applicability in
dynamic environments like renewable energy operations and smart grids. This real-time
capability is crucial for adaptive energy management systems, particularly in rapidly
changing climatic zones.

Another potential advancement lies in cross-regional generalization. Expanding the
framework to diverse regions beyond Saudi Arabia would validate its robustness and
adaptability to various climatic conditions. Collaborations with international
meteorological organizations could facilitate data sharing, ensuring that the framework
remains applicable to global renewable energy challenges.

The incorporation of advanced GAN architectures, such as StyleGAN, represents
another exciting opportunity. These advanced architectures can enhance the spatial and
temporal resolution of synthetic data, capturing intricate patterns and variability in solar
radiation. By improving the fidelity and realism of synthetic datasets, such advancements
can further boost the accuracy of predictive models.

Lastly, exploring hybrid predictive models, such as Transformer-based architectures
combined with GAN-generated data, offers the potential to enhance model scalability and
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accuracy. These hybrid approaches could capture both spatial and temporal dependencies
more effectively, improving predictive performance across diverse climatic conditions.

By pursuing these focused advancements, the GAN-based framework can evolve into a
comprehensive and adaptable solution for solar radiation prediction, addressing both
regional and global challenges in sustainable energy development.

CONCLUSIONS
This study presents a GAN-based framework designed to overcome the challenges of solar
radiation prediction in data-scarce regions, with a focus on Saudi Arabia’s diverse climatic
zones. By generating high-quality synthetic data that closely emulates real-world solar
radiation patterns, the framework effectively bridges critical data gaps, improving the
accuracy and scalability of predictive models.

Key results demonstrate significant enhancements in performance metrics—including
RMSE, MAE, and SSIM—when models are trained on GAN-augmented datasets. The
framework’s adaptability across desert, coastal, and mountainous regions underscores its
robustness and practical utility for real-world applications. Moreover, the integration of
GAN-generated data with advanced predictive architectures, such as CNN-LSTM hybrids,

Figure 10 IoT-enabled solar radiation prediction framework. (A) Edge device configuration. (B) Data flow architecture. (C) Regional deployment
metrics. Full-size DOI: 10.7717/peerj-cs.3189/fig-10
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highlights its potential to optimize renewable energy systems, enhance grid stability, and
support smart energy management.

Limitations and future work
While the proposed framework shows promise, several challenges and opportunities for
improvement remain:

. Region-specific variability: Capturing the nuanced solar radiation patterns of diverse
climates requires further refinement.

. Data quality and availability: Limited high-resolution data in under-monitored regions
restricts model generalization.

. Training stability: Issues like mode collapse necessitate more robust training strategies.

. Evaluation metrics: Developing specialized metrics tailored to solar radiation data is
critical for accurate assessment.

. Architectural flexibility: Future work could explore dynamic layer scaling to adapt to
input complexity.

While the framework demonstrates promising results, it has certain limitations.
Generating high-quality synthetic data demands significant computational resources and
careful hyperparameter tuning to mitigate issues such as mode collapse. Despite our
regional adaptations, abrupt weather changes and extreme outliers may still challenge
model robustness. Future research should explore ensemble GAN architectures and
adaptive learning mechanisms to further enhance performance under highly dynamic
conditions.

Addressing these limitations will advance the framework into a comprehensive solution
for solar radiation forecasting, supporting global renewable energy goals.

Broader impact
Aligned with Saudi Arabia’s Vision 2030, this research contributes to sustainable energy
development and innovation. By improving solar radiation forecasting, the framework lays
the groundwork for smarter, greener energy systems, reinforcing the transition toward a
sustainable future.
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