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ABSTRACT

The demand for robust unsupervised anomaly detection in streaming data has grown
significantly in the era of smart devices, where vast amounts of data are continuously
collected from such devices. Leveraging this data through effective anomaly detection
is essential and necessitates a system that can work in real-time. One of the most
innovative solutions is the Online Evolving Spiking Neural Network (OeSNN). The
OeSNN offers a robust framework for knowledge discovery in streaming data since it
can evolve and adapt to new data patterns in real-time, thereby eliminating the need
for retraining. However, reliance on manual hyperparameter tuning presents notable
challenges for OeSNN that can compromise model accuracy and stability. To address
these challenges, this work introduces a novel hybrid approach (HABCOeSNN)
which combines the Artificial Bee Colony (ABC) algorithm with Online Evolving
Spiking Neural Networks (OeSNN). The HABCOeSNN extensively investigates the
optimization of five key hyperparameters, including window size (Wsize), anomaly
classification factor (), similarity value (SIM), modulation factor (MOD), and
threshold factor (C). The proposed method was thoroughly evaluated on two
benchmark datasets, the Numenta Anomaly Benchmark (NAB) and Yahoo
Webscope, using a comprehensive set of evaluation metrics. To ensure a more
accurate evaluation, we employed a Multi-Criteria Decision-Making (MCDM)
approach to validate performance across multiple criteria, rather than relying on a
single metric. Further comparative analyses were conducted against five
well-established optimization algorithms: Particle Swarm Optimization (PSO),
Flower Pollination Algorithm (FPA), Grey Wolf Optimization (GWO), Whale
Optimization Algorithm (WOA), and Grid Search (GS), as well as traditional
classifiers, Random Forest (RF), Support Vector Machine (SVM), and k-Nearest
Neighbors (k-NN). An ablation study was performed to assess the individual
contributions of the HABCOeSNN components. The experimental results
demonstrate that HABCOeSNN achieves superior performance across diverse time
series, with F1-scores ranging from 0.749 to 0.942 on Yahoo Webscope and from
0.427 to 0.878 on the NAB. The results reveal that HABCOeSNN consistently
outperforms a wide range of baselines in terms of accuracy and reliability, as
confirmed by a statistical one-way analysis of variance (ANOVA) test. These findings
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highlight the crucial role of automated hyperparameter optimization in improving
the performance of OeSNN for unsupervised anomaly detection in streaming data
environments.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and Machine
Learning, Security and Privacy, Neural Networks

Keywords Anomaly detection, Evolving spiking neural networks (eSNN), Artificial bee colony
(ABC), Hyperparameters optimization, Deep learning

INTRODUCTION

Anomaly detection in time series has become increasingly critical across diverse sectors.
Research institutions continuously collect vast amounts of data, requiring real-time
processing to discern irregular patterns or rare events of interest. Similarly, in the
industrial sector, the advent of predictive maintenance systems in manufacturing and the
integration of smart sensors within Internet of Things (IoT) applications has led to the
generation of massive streams of data (Khan et al., 2024). These data are valuable for
identifying potential failures and ensuring the reliability of operations (Bdifler, Kortus ¢
Giihring, 2022; Alomari et al., 2023). Automated anomaly detection procedures are crucial
in this context, enabling rapid, scalable, and reliable differentiation between normal data
points and potential issues. To effectively detect anomalies in streaming data, anomaly
detectors should be able to work and modify relevant parameters in real-time, as streaming
data continuously evolve and arrives in real-time (Tareq et al., 2020).

Traditional static models often fail in dynamic environments because they cannot adapt
to changing data patterns. On the other hand, spiking neural networks (SNNs) offer a
viable alternative, functioning as the third generation of artificial neural networks with a
brain-inspired structure that emulates biological neurons (Lobo et al., 2020). SNNs
transmit information through discrete spikes or action potentials, unlike traditional neural
networks, which have continuous outputs. This spike-based communication enables
highly energy-efficient operation, making SNNs particularly well-suited for real-time
applications, such as online anomaly detection in streaming data, where neurons spike
only when reaching a certain threshold (Lucas ¢ Portillo, 2024). One of the most
promising SNN designs is the evolving spiking neural network (eSNN). The eSNNs are a
feasible method for discovering knowledge in streaming data since they can evolve and
adapt to new data patterns in real-time without the need for retraining (Lobo et al., 2018).

Motivated by these advantages, Lobo et al. (2018) further enhanced the eSNN model and
developed the Online eSNN (OeSNN) to address the evolving demands of online data
processing. Building upon the eSNN architecture, OeSNN is designed to handle
classification tasks in streaming data.

The OeSNN relies on several key hyperparameters, such as window size (Wsize),
anomaly classification factor (¢), similarity value (SIM), modulation factor (MOD), and
threshold factor (C). In the context of time series anomaly detection, the hyperparameters
Wsize and ¢ are crucial in influencing the model’s accuracy (Ahmad et al., 2017;

Rehan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3184 2/39


http://dx.doi.org/10.7717/peerj-cs.3184
https://peerj.com/computer-science/

PeerJ Computer Science

Munir et al., 2019; Macigg et al., 2021). Setting an optimal Wisize is essential, as a Wsize
that is too large can cause the model to miss significant changes in the data, leading to
more false positives (mistaking normal points as anomalies). In contrast, a small Wsize can
make the model too sensitive to short-term fluctuations, thus increasing false positives.
Besides, the anomaly classification factor (¢) helps distinguish normal from anomalous
data points (Clark, Liu & Japkowicz, 2018). A high e may reduce the detection rate of
anomalies (increasing false negatives), while a low & may lead to excessive false positives,
reducing the precision of the model. Proper tuning of these hyperparameters is crucial for
balancing false positive and false negative rates in time series anomaly detection.

The importance of the MOD parameter is derived from its designation as the
connection weight in the OeSNN model. A higher MOD value indicates that early
connections have more weight and importance in determining the output class of a
sample. On the other hand, a lower number indicates that early connections have less
weight. Thus, additional spikes are necessary to determine the output class. Similarly, the
SIM value is of critical importance concerning the functionality of the OeSNN. A higher
SIM value facilitates the merging of neurons within a similar range.

In contrast, a lower value has the effect of inhibiting this process, resulting in a
reduction in the number of neuron merges. Furthermore, the threshold parameter (C)
plays a pivotal role in regulating the postsynaptic potential (PSP) threshold. The varying
values of the (C) parameter across different datasets reflect the influence of both the dataset
itself and the hybrid method, which controls the algorithm’s process. Higher values
indicate a greater number of spikes and a longer decision-making time. Conversely, lower
values require fewer spikes to fire an output spike and find the class of the instance (Saleh,
Shamsuddin ¢ Hamed, 2016).

As aforementioned, finding the right balance for these hyperparameters is crucial to
achieving high accuracy and efficient online learning. However, manual tuning of
hyperparameters through trial and error is often inefficient and impractical when utilizing
the OeSNN for real-time systems. To address this limitation, previous studies have
incorporated swarm intelligence-based optimization algorithms into the OeSNN network
to tackle these challenges and bridge the substantial gap in identifying optimal
hyperparameter values, yielding promising results (Nur, Hamed ¢» Abdullah, 2017,

Ibad et al., 2022).

This study aims to conduct an in-depth analysis of optimizing five key hyperparameters
of OeSNN, including Wsize, &, SIM, MOD, and C to determine the optimal configuration.
The proposed approach integrates the Artificial Bee Colony (ABC) algorithm with the
OeSNN to enhance unsupervised anomaly detection in streaming data. The ABC
algorithm is employed to systematically explore the hyperparameter space, while the
OeSNN evaluates the quality of configurations, ensuring effective performance in real-time
data environments. ABC was selected due to its well-established robustness, efficient
convergence, and its ability to achieve optimal solutions compared to other metaheuristic
algorithms. Additionally, ABC is derivative-free, requiring no gradient information during
the search process, and is recognized for its simplicity, scalability, and adaptability. It’s
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parameter-less, easy-to-use, simple-in-concepts, scalable, adaptable, and sound-and-
complete (Akay et al., 2021).
The contribution of this research can be outlined as follows:

(1) Enhancing anomaly detection accuracy by hybridizing the Artificial Bee Colony (ABC)
algorithm with Online Evolving Spiking Neural Networks (OeSNN) to optimize five
crucial hyperparameters, including the window size (Wsize), anomaly classification
factor (), similarity value (SIM), modulation factor (MOD), and threshold factor (C),
and employing information gain attribute evaluation to identify the most influential
hyperparameter for anomaly detection performance.

(2) Performing a comprehensive comparison against a wide range of state-of-the-art
anomaly detection methods and implementing Multi-Criteria Decision-Making
(MCDM) across 420 diverse time series from Yahoo Webscope and Numenta
Anomaly Benchmark (NAB) datasets, offering a robust, multi-metric evaluation, to
ensure enhanced accuracy in anomaly detection.

(3) Comparing the effectiveness of the proposed HABCOeSNN with five widely
recognized optimization algorithms: Particle Swarm Optimization (PSO), Grey Wolf
Optimization (GWO), Flower Pollination Algorithm (FPA), Whale Optimization
Algorithm (WOA), and Grid Search (GS). Additionally, its effectiveness is analyzed
using classifiers such as Random Forest (RF), Support Vector Machine (SVM), and
k-Nearest Neighbors (kNN).

(4) Conducting an ablation study to identify the contributions of the components in
HABCOeSNN.

The structure of this article is as follows: a summary of prior research is provided,
followed by an overview of the concept of principles relevant to the study. The suggested
method is then introduced, detailing the techniques applied in the research. The
experimental setup and results are subsequently presented and analyzed. Lastly, we
conclude the article with a discussion of future perspectives.

RELATED WORKS

The growing dependence on streaming data in many industries calls for the development
of efficient techniques for anomaly detection in real-time. The dynamic nature of this data
makes it impossible for conventional procedures to adjust, which emphasizes the need for
creative solutions that can react to changing trends. In this regard, eSNNs are becoming
more widely acknowledged for their applicability in streaming data analysis because of
their proficiency to comprehend temporal patterns, which improves their effectiveness in
anomaly detection (Lucas ¢ Portillo, 2024). Following this recognition of the strengths of
eSNN s in streaming data analysis, the literature has progressively addressed their
refinement and application across various aspects.

Numerous studies have focused on improving the core structure, learning processes,
and computational effectiveness of eSNNs. For instance, Demertzis, Iliadis ¢ Bougoudis
(2019) introduced “Gryphon”, an anomaly detection model built on a one-class
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(eSNN-OCC). This semi-supervised approach initializes the network using a limited set of
labeled anomalies. It evolves to learn normal data patterns, demonstrating superior
performance compared to various other methods on real-world datasets. An adaptive
spiking neural network model was presented by Lobo et al. (2018) to handle concept drift
in non-stationary data streams. This model learns adaptively over time without retraining
by utilizing reservoir dynamics, spike-time-dependent plasticity (STDP), and synaptic
weight development. When addressing abrupt and slow drifts, the method performs
competitively, offering insights into biologically plausible mechanisms for reliable online
learning in dynamic data environments. Xing, Demertzis ¢ Yang (2020) developed an
innovative real-time anomaly detection framework known as e-SREBOM, which combines
e-SNN with a restricted Boltzmann machine. This hybrid approach allows for automatic
adaptation to changing data conditions and effectively addresses high-complexity
challenges.

A considerable subset of research emphasizes the deployment of OeSNN for
unsupervised and real-time anomaly detection in streaming environments. In a significant
contribution, Macigg et al. (2021) introduced the OeSNN for unsupervised anomaly
detection (OeSNN-UAD) that enhances the previous OeSNN classifier proposed by Lobo
et al. (2018). The results show that the suggested method outperforms the compared
detectors and reveal that OeSNN-UAD works well and is suitable for settings with memory
constraints. Building on this direction, BdifSler, Kortus ¢ Giihring (2022) employed a
modified OeSNN to detect anomalies in multivariate time series data, utilizing
multidimensional Gaussian Receptive Fields to enhance learning reliability. The proposed
method also offered an alternative rank-order-based autoencoder that improved
classification interpretability by tuning network hyperparameters based on the precise
timing of input spikes, along with a reliable anomaly scoring algorithm. For instance, Li ¢
Ge (2023) introduced a dynamic scoring mechanism for unsupervised anomaly detection
using OeSNN. The approach showed strong results under evolving data distributions and
can adapt as an online time series prediction algorithm for anomaly detection. In a study
conducted by Paluch ¢» Macigg (2024), a new ensemble method for unsupervised anomaly
detection that combines OeSNN with Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN) time series decomposition was presented. A separate
OeSNN-UAD detector analyzes each decomposed component and original series, and
decisions are aggregated using majority or weighted voting. The study demonstrates the
efficacy of integrating signal decomposition with neuromorphic learning models. In the
study by Tessoni, Amoretti ¢ Ollari (2024), the authors applied the OeSNN to predictive
maintenance for industrial filling machines, integrating Remaining Useful Life (RUL)
estimation with low computational overhead. The comparison of the proposed method to
other anomaly detection algorithms reveals that OeSNN may produce better or equivalent
results for all anomaly types evaluated, with less initialization time.

Additionally, researchers have explored novel eSNN-based models for specific domains.
A long-term traffic forecasting model developed by Lafia et al. (2019) that combined
offline clustering with online adaptation, optimizing key eSNN parameters using a genetic
algorithm. Sabri et al. (2022) proposed a scoliosis classification framework that integrates
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eSNN with feature extraction methods, including Local Binary Pattern (LBP), Histogram
of Oriented Gradient (HOG), and Scale-Invariant Feature Transform (SIFT). By tuning
hyperparameters via cross-validation, the model achieved superior accuracy compared to
conventional classifiers. In the same direction, Macigg et al. (2023) present a hybrid
forecasting model integrating Variational Mode Decomposition (VMD) and CEEMDAN
for time series preprocessing, followed by ensemble learning using stacking and bagging of
eSNN. Results on air pollution datasets show superior prediction accuracy, robustness, and
generalization compared to baseline models. Similarly, the evolving Predictive Associative
Memory for Time-series (ePAMeT) model introduced by AbouHassan et al. (2025)
presents a biologically inspired, evolving memory-based system that combines SNN-like
associative learning with predictive modeling. It demonstrates high performance in
time-series forecasting while maintaining computational efficiency.

Given the sensitivity of eSNN performance to hyperparameter tuning, many researchers
have adopted metaheuristic optimization methods to automate and enhance this process.
Kasabov ¢ Hamed (2011) employed the Quantum-inspired Particle Swarm Optimization
(QiPSO) algorithm to identify the most relevant features and the optimal combination of
eSNN parameters, demonstrating improved convergence and classification accuracy
compared to traditional methods. Similarly, Nur, Hamed ¢ Abdullah (2017) illustrated
how Dynamic Population Particle Swarm Optimization (DPPSO) could be leveraged
alongside eSNN to boost accuracy in time-series prediction and classification. Additional
research investigated different metaheuristic methods: Saleh, Shamsuddin ¢» Hamed
(2017) leveraged the Differential Evolution (DE) algorithm to optimize the
hyperparameters, SIM, MOD, and C of eSNN resulting in signiﬁcant improvements in
detection accuracy; Roslan, Hamed ¢ Adham Isa (2017) integrate eSNN with the Firefly
optimization method to improved performance by effectively optimizing critical
hyperparameters such as SIM, MOD, and C factors; Yusuf et al. (2017) adopted Harmony
Search Algorithm (HSA), which revealed promising improvements in performance
compared to both the standard eSNN and Differential Evolution with Evolving Spiking
Neural Network (DE-eSNN); and Ibad et al. (2022) introduced the eSNN-SSA method
which incorporated the Salp Swarm Algorithm to find the best combination of
hyperparameters SIM, MOD, and C of eSNN, demonstrating significantly improves the
accuracy and efficiency of eSNN compared to the standard eSNN.

A series of works have explored multi-objective optimization frameworks. A new
method termed multi-objective K-means evolving spiking neural network (MO-KeSNN)
was proposed by Hamed et al. (2015) to optimize both the structure (pre-synaptic neurons)
and hyperparameters of eSNN for classification problems. Another study by Saleh,
Shamsuddin & Hamed (2015) presents a multi-objective optimization framework that uses
Differential Evolution (DE) with eSNN for classification. The proposed method
simultaneously optimizes classification accuracy and pre-synaptic neurons. Expanding this
research, Saleh, Shamsuddin ¢» Hamed (2016) propose a novel hybrid algorithm called
Memetic Harmony Search Multi-Objective Differential Evolution with eSNN
(MEHSMODE-eSNN) to optimize both the structure and hyperparameters of eSNN for
classification tasks. The outcome demonstrates the efficacy of the suggested method by
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testing it on several standard datasets from the UCI repository, consistently outperforming
standard eSNN models and other multi-objective optimization methods across multiple
datasets. These hybrid approaches consistently demonstrated the value of metaheuristic
strategies in enhancing the performance and convergence behavior of OeSNN across
diverse tasks.

BACKGROUND AND CONCEPTS

In this section, we will define some essential concepts for a better understanding of the
article, highlighting the anomaly detection, SNN, OeSNN and the ABC algorithm.

Anomaly detection

Anomalies are phenomena that significantly deviate from expected patterns or typical
conditions. Anomaly detection, on the other hand, is the method used to identify data
points that fall outside the normal distribution within a dataset, highlighting unusual or
unexpected behavior (Hossen et al., 2024). These anomalies often indicate unusual events,
such as network intrusions, structural defects, medical conditions like seizures, or
disruptions in ecological systems. The anomalies are defined differently depending on the
specific domain of the application. For instance, in the medical field, even a slight
deviation, such as a small change in body temperature, might be considered unusual.
Conversely, a comparable fluctuation in the stock market may be seen as normal.
Therefore, adapting a method designed for one domain to another is not a straightforward
process.

Anomaly detection has emerged as a crucial element in numerous real-world
applications, where identifying unusual trends or behaviors is necessary to preserve system
efficiency, safety, and integrity. As a fundamental tool for early warning and automated
decision-making, anomaly detection can be used to detect a wide range of issues, including
fraudulent transactions in financial systems, intrusions in cybersecurity networks, medical
abnormalities in healthcare diagnostics, and industrial equipment problems (Bldzquez-
Garcia et al., 2021). Recent advancements have introduced a variety of adaptive and
context-aware approaches, including generative modeling (Wang et al., 2023),
self-supervised learning (Wang et al., 2025), and prompt-enhanced architectures (Pu et al.,
2024). These approaches have been successfully applied to domain-specific anomaly
detection tasks in hyperspectral sensing, video surveillance, and medical imaging (Lu et al.,
2024; Bhowmick et al., 2025).

According to Filho et al. (2022), anomaly detection techniques can be categorized based
on their learning methods as follows:

e Supervised Anomaly Detection: in this approach, both normal and anomalous data are
labeled and available during training. The objective is to develop a predictive model that
can distinguish between normal and anomalous instances.

o Semi-Supervised Anomaly Detection: this method trains the model using only normal
data, flagging any data that does not conform to the learned patterns as anomalies.
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Unsupervised Anomaly Detection: this approach does not require labeled training data.
It operates on the assumption that normal data points are significantly more frequent

than anomalies. However, this assumption may lead to a high false positive rate if it does
not hold.

As outlined by Chandola, Banerjee ¢ Kumar (2009), anomalies can be categorized into

three types, which significantly influence the design and effectiveness of anomaly detection

algorithms: point anomalies, contextual anomalies, and collective anomalies. Figure 1,

adapted from Park ¢ Jang (2024), illustrates these three types of anomalies.

Point Anomalies: point anomalies occur when a single instance in a dataset significantly
deviates from the expected pattern. These anomalies are typically detected by observing
whether a data point falls outside the usual range of values. For instance, temperature
data recorded from a building might exhibit a consistent pattern over time, and any
sharp deviation or sudden spike in the temperature readings, which might not align with
known environmental factors, could signal an anomaly. Such anomalies are usually
associated with sensor malfunctions or rare external events.

Contextual Anomalies: contextual anomalies are detected when an observation appears
normal in one context but becomes anomalous in another. The context is crucial in
understanding whether the data behavior is abnormal. For example, heavy traffic during
office hours on a highway is expected and deemed normal. However, the same traffic
pattern observed late at night, when the road is generally less busy, would be abnormal.
Contextual anomalies are often more challenging to detect because they require a deeper
understanding of the underlying context to distinguish normal from anomalous
behavior.

Collective Anomalies: collective anomalies occur when a group of data points, although
individually normal, exhibit abnormal behavior when analyzed collectively. For example,
analyzing individual heartbeats within a single time interval may reveal no signs of

abnormality. However, when several intervals are examined collectively, it might reveal
abnormal heart behavior, such as irregularities in the heart’s rhythm. These anomalies
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often occur in temporal or spatial data and require the consideration of relationships
between data points over time or space.

Spiking neural networks

Spiking neural networks (SNNs), also referred to as “third-generation neural networks,”
use spikes in the form of pulses instead of digital data to represent the input and output of
neurons (Almasri & Sahran, 2014). SNNs have earned considerable attention due to their
ability to model the temporal dynamics of data more effectively than traditional neural
networks. Their event-driven nature, which only activates neurons upon the receipt of
input spikes, allows them to mimic biological neural processes and achieve substantial
energy efficiency (Wang et al., 2024). This characteristic makes SNNs particularly suitable
for low-power applications such as Internet of Things (IoT) devices and edge computing,
where resource constraints and real-time processing are critical (Dan et al., 2024; Lucas ¢
Portillo, 2024).

Unlike the neuron models used in artificial neural networks (ANNs), spiking neurons
do not operate based on matrix-vector multiplication, but fire spikes when their membrane
potential reaches the spiking threshold (Plagwitz et al., 2023). In ANNSs, neurons take
continuous real-valued inputs and outputs. As illustrated in Fig. 2, derived from Yamazaki
et al. (2022), the ANN neurons compute a weighted sum of the input signal, followed by
applying a nonlinear activation function to produce the output signal. In contrast, spiking
neurons in SNN offer a more detailed and realistic representation of biological neurons.
Spiking neurons, similar to their biological counterparts, are connected through synapses,
and the membrane potential and activation threshold primarily govern their behavior. The
spike signal received by the dendrites alters the membrane potential of the neuron, and
once this accumulated potential reaches the threshold, the neuron emits a spike signal
from its axon to the next neuron (Wu et al., 2024). Numerous enhancements and
variations of the spiking neuron model have been introduced, including the evolving
spiking neural network (eSNN), which involves the incremental growth of the number of
spiking neurons over time. This gradual evolution allows eSNNss to efficiently capture and
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interpret temporal patterns from continuous data streams, making them ideal for adaptive
learning in real-time scenarios (Macigg et al., 2021).

Online evolving spiking neural networks

One of the most promising SNN designs is the evolving spiking neural network (eSNN)
(Lobo et al., 2020). By gradually merging the generated neurons to find the pattern in the
given issue, the eSNN improves the flexibility of SNN (Kasabov, 2019). To gather
clusters and patterns from new data, the spiking neurons in this type of network are
created (evolved) and incrementally combined. The eSNN repeatedly generated
repositories for every class to provide new data without retraining the learned dataset
(Schliebs ¢ Kasabov, 2013). The neural model of eSNN facilitates rapid real-time
simulations of large-scale networks with minimal computational overhead. These
characteristics position eSNNs as highly suitable for online learning environments
(Wysoski, Benuskova & Kasabov, 2006).

Motivated by these advantages, Lobo et al. (2018) further enhanced the eSNN model and
developed the Online eSNN (OeSNN) to address the evolving demands of online data
processing. OeSNN networks were developed to handle classification tasks in streaming
data, building upon the eSNN architecture, which was initially designed for classifying
batch data with distinct training and testing phases (Kasabov, 2007). Both eSNN and
OeSNN share a similar structure consisting of input and output layers; however, the
number of output neurons in OeSNN is limited, whereas eSNN permits an unlimited
number of output neurons. This restriction in OeSNN is driven by the demands of
classifying data streams, where vast amounts of input data are typically processed, and
strict memory limitations must be observed (Macigg et al., 2021). The OeSNN constructs a
repository of output neurons corresponding to training patterns. For each class-specific
training pattern, a new output neuron is created and connected to all pre-synaptic neurons
in the preceding layer through synaptic weights wj;. The architecture of OeSNN is
presented in Fig. 3, adapted from Macigg et al. (2021).

To classify real-valued datasets using OeSNN, data samples are transformed into
Spatio-temporal spike patterns using neural encoding techniques. A widely adopted
method is the rank-order population encoding, an extension of the rank-order
encoding proposed by Thorpe ¢» Gautrais (1998). This technique prioritizes spikes
based on their temporal order across synapses, providing additional information to the
network, and utilizes the Gaussian Receptive Field (GRF) encoding scheme, as
described by Bohte, Kok ¢ La Poutré (2002), which distributes continuous input values
across several neurons with overlapping Gaussian activation functions. Each neuron in this
scheme fires only once within the coding interval, ensuring a robust representation of
input features.

The population encoding based on GRF is explained in Fig. 4, derived from Hamed,
Kasabov & Shamsuddin (2011). The intersection points with each Gaussian are calculated
(triangles) with an input value v = 0.75 (thick straight line in the top figure). These
intersection points are then converted into spike time delays (see the lower figure). During
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encoding, Gaussian Receptive Field Neurons (GRFNs) are employed to distribute input
samples with overlapping sensitivity profiles, ensuring each feature is transformed into a
spatio-temporal spike pattern. This approach effectively captures the temporal dynamics
of the input data, facilitating precise and robust classification. The center C; and width W;
of each GRF pre-synaptic neuron are computed as follows:

2j—3(I" —In
C‘ — Iﬂ . max min . 1
1= hnin T (nGRFs - 2> (1)
W = 1 IZLax — Ir}:u‘n 2)
7 B\nGRFs—2)’
Here, I _and I", representing the interval values of the n™ feature in a given window

size, nGRFs is the number of receptive fields (GRF) for each feature. f§ € [1,2] is the
overlap factor parameter, which regulates how much Gaussian Random Fields overlap.
The output of neuron j is represented as:

tput; = exp <(x_cj)2> (3)
output; —mexp - | ————1.
/ 2W?

Here x is the input sample, the firing time for each pre-synaptic neuron j is defined as:
Tj=T- (1 — output)). (4)

Here, T is the spike interval.

The LIF model is utilized to generate initial neurons. The neuron fires only once and

only when the postsynaptic potential (PSP) value is higher than its threshold value. PSP of
the ith neuron is identified as:

PSP, — {0 if fired (5)

> Wi mod°@er(i)  otherwise

Here wj; represents the synaptic weight between pre-synaptic neuron j and output
neuron i, while order(j) denotes the firing rank of the pre-synaptic neuron, and mod
represents the modulation factor, takes a value within the range [0, 1]. For each training
sample belonging to the same class, a new output neuron is created and connected to all
pre-synaptic neurons in the preceding layer, with weights assigned based on their rank
order as follows:

wji = mod° (), (6)
The threshold yi of a newly generated output neuron is defined as:

Vi = PSPmax,i -C. (7)

Here C is a user-fixed value in (0, 1].

The weight vector of a newly produced output neuron is compared with those of
existing neurons in the repository. If the Euclidean Distance between the new neuron’s
weight vector and that of any existing output neuron is less than or equal to the SIM, the
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neurons are merged. In this case, the threshold y; and the weight vector w;; are updated
using the following formulas:

_ Whew + (Wji : M)

) 8

Vi M+1 ®

9, = Vnew—’_ (yi M) (9)
' M+ 1

The variable “M” indicates how many mergers the same output neuron has been
involved in during the OeSNN’s learning phase. Following a merger, the model proceeds
using the updated neuron representation and discards the weight vector of the newly
created neuron. On the other hand, the newly created output neuron is added to the
repository if no existing neuron in the repository meets the similarity criteria (based on the
SIM value).

Building upon the adaptation of the OeSNN by Lobo et al. (2018), Macigg et al. (2021)
recently introduced the OeSNN-UAD method for detecting anomalies in streaming data.
In contrast to the original OeSNN, the OeSNN-UAD operates in an unsupervised manner,
without isolating output neurons into distinct groups. Instead, it integrates three additional
modules: value correction, anomaly classification, and output value generation for
candidate output neurons. The OeSNN-UAD identifies an input as anomalous under two
specific conditions: firstly, when no output neurons in the repository are activated, and
secondly, when the deviation between the predicted and actual input values exceeds the
sum of the prediction error and a user-defined multiple of the recent standard deviation.

Overview of the ABC algorithm

In the present era, the popularity of metaheuristic optimization algorithms has increased
exponentially due to their tangible impact on the resolution of optimization problems.
Numerous metaheuristic algorithms are inspired by the collective intelligence found in
swarms of insects and animals, including ants, whales, lemurs, chimps, and wolves (Abasi
et al., 2022). For instance, the proficient swarm intelligence behaviors displayed by
honeybees have inspired the development of algorithms for problem-solving and
optimization tasks (Hussein, Sahran ¢ Sheikh Abdullah, 2017; Qasem et al., 2022). These
algorithms typically start with a set of randomly generated solutions and iteratively
improve them using intelligent operators designed to balance exploration and exploitation
of the search space. The exploration phase searches to investigate diverse regions of the
solution space, while the exploitation phase focuses on refining existing solutions to
achieve optimality. By combining these phases and leveraging accumulated knowledge
from prior iterations, metaheuristic algorithms have been widely successful in tackling
both global and local optimization challenges (Alorf, 2023).

The ABC algorithm is a metaheuristic optimization algorithm inspired by the intelligent
foraging behaviors observed in honeybee swarms. It has proven effective in solving a range
of optimization issues (Abdullah, Nseef ¢» Turky, 2018; Alrosan et al., 2021). The ABC, first
proposed by Karaboga (2005), models the behaviors of three types of bees: employed bees,
onlooker bees, and scout bees. The employed bees are responsible for locating food sources
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and disseminating this information to the onlooker bees via a waggle dance, which conveys
the quality and location of the food source. Subsequently, onlookers probabilistically select
food sources based on this information, while scout bees explore new areas if a food source
becomes unproductive (Hacilar et al., 2024).

Since its introduction in 2005, the ABC algorithm has gained widespread acceptance
due to its simplicity, flexibility, and efficiency in solving complex optimization problems,
particularly in high-dimensional and multimodal search spaces. One of the key strengths
of ABC is its capacity to effectively balance exploration and exploitation through its three
bee types, employed, onlooker, and scout bees. This balance prevents the algorithm from
becoming trapped in local optima while enabling efficient convergence towards global
solutions. In ABC, the food sources represent potential solutions, and the quality of the
food source is indicative of the fitness of a solution. The algorithm operates in cycles,
whereby solutions are iteratively improved. In each iteration of the algorithm, the
employed bees modify the current solution to produce a new one. This is achieved through
the application of a greedy selection mechanism, whereby the superior solution is retained.
Subsequently, onlooker bees select the superior solutions for further refinement. Suppose a
solution fails to improve after a predefined number of attempts. In that case, it is
abandoned and the scout bees embark on a random search for new candidate solutions,
thereby ensuring diversity within the solution space (Yang et al., 2024).

The ABC algorithm begins by initializing its control parameters. These include the
Solutions Number (SN), which represents the population size or the number of potential
food sources. Maximum Cycles Number (MCN) is the maximum number of iterations or
evaluations that serve as a termination criterion. Limit (abandonment criteria) is the
parameter that defines the maximum number of exploitations allowed before a food source
is abandoned.

In the first foraging cycle, the scout bees are responsible for discovering new food
sources, and they randomly assign initial positions to these food sources using a method
Eq. (10), which helps guide this random placement.

o=, +rand0,1] (xf;m - x’mi,,). (10)
Here,i=1,2,...,SN,j=1,2,...,D, the value of D represents the dimension of the

problem (number of optimization parameters), whereas SN refers to the number of food

SOUTCeS, Xax, x];m-n. The upper and lower boundaries of j;, parameter, respectively.

Each food source is assessed and assigned both a cost function value ( f;) and a counter
value (trail;). The scout bees associated with more profitable food sources transition into
employed bees, tasked with exploring the surrounding areas of these sources using Eq. (11)
to identify superior alternatives for exploitation:

V,‘j :X,J—F(,O,] X (Xij—ij) (11)

where k is a randomly selected neighboring index where
k#ie{1,2,...,SN},j€1,2,...,D represents a randomly chosen dimension index,
and ¢;; € [~1,1] is a random number generated from a uniform distribution.
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If the newly generated solution v;; proves superior to the current solution x;;, the current
solution is replaced, and trail; is reset to zero. Otherwise, the current solution is kept in the
population, and trail; is increased by 1.

During the initial cycle, onlooker bees (who were initially scout bees of less profitable
solutions) remain in the hive. They select a more profitable food source based on the
information provided by the employed bees. This is simulated by assigning a probability to
each food source based on the profitability values using Eqs. (12) and (13) and
implementing a roulette wheel selection method, in which more bees are likely to be
recruited to more profitable sources, and low-quality solutions have a lower chance of
being chosen.

1 if £ >
fitness; = { (1+4£) lfﬁ =0 (12)
L+ [fi| if fi<O
fitness;
= e (13)
P SN Fitness;

where the f; is the objective function and p; the probability of the food source i.

Once an onlooker bee has selected a food source, it proceeds to perform the same search
operation as the employed bee, as described by Eq. (11). A greedy selection process is then
used to update the counter (trail;) associated with the chosen solution. These counters are
compared with the predefined limit parameter during the scout bee phase to identify which
sources have been sufficiently exploited. If the counter (frail;) exceeds the limit, the
corresponding solution x; is considered exhausted, and a new, previously unexplored
solution is generated using Eq. (10) in place of x;. This sequence of operations is repeated
until the termination criterion is met.

PROPOSED METHOD

In this section, comprehensive details regarding the proposed HABCOeSNN are provided.
We extensively investigate the optimization of five key hyperparameters of OeSNN,
including window size (Wsize), anomaly classification factor (¢), similarity value (SIM),
modulation factor (MOD), and threshold factor (C), to determine the optimal
configuration.

To systematically explore the influence of these hyperparameters on anomaly detection
accuracy, we employed an attribute evaluation method, the information gain attribute
evaluation approach, to identify which hyperparameters had the greatest effect on the
performance of the OeSNN.

Based on our previous experiment (Rehan et al., 2025), and the information gain
analysis, we grouped the five hyperparameters into three distinct sets. Set 1 includes two
hyperparameters, Wsize and ¢, selected based on previous experimental findings. Set 2
consists of hyperparameters: SIM, MOD, and C, which were identified by information gain
as the most impactful. Finally, Set 3 combines all five hyperparameters to form a
comprehensive set. Table 1 provides a detailed breakdown of these groupings.
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Table 1 Model hyperparameters overview.

Sets Hyperparameters

Set 1 Wsize and e.

Set 2 SIM, MOD and C.

Set 3 Wesize, €, SIM, MOD, and C

This structured approach enabled a robust and comprehensive investigation of how
different combinations of hyperparameters influence OeSNN performance. The
candidates, each set of hyperparameters, are randomly initialized, and their performance is
continuously refined through iterations. The fitness function, based on the F1-score, guides
the search for the optimal hyperparameter values, and the ABC continues updating the
candidates until the maximum number of iterations is reached.

The proposed HABCOeSNN consists of seven main steps that are thoroughly explained
below.

Initialization hase
The ABC can be formulated as a 2D matrix n X m where n refers to the number of bees
and m refers to the solution size, as expressed in Eq. (14).

1 2 m

X X X Fy | | fity,
ABC = : : (14)
xboxk.L x,’l”f Ey, | |fity,

All the candidate solutions (Set 1, Set 2, or Set 3) in the population are randomly
initiated from the possible ranges of OeSNN hyperparameters using Eq. (10). Further, the
objective function, F1-score, is calculated using OeSNN, and the fitness value for all
solutions is evaluated, which gives the initial global Best solution.

Employee bees phase

In this phase, the employee bees generate new candidate solutions using Eq. (11), compute
the objective function with the OeSNN, and assess the fitness of each solution using

Eq. (12). Then, a greedy selection process is employed to evaluate the newly generated
solutions. If the new solution demonstrates an improvement over the existing one, it
replaces the current solution; otherwise, no changes are made. This process is repeated for
every employee bee in the population to ensure a comprehensive exploration of potential
solutions.

Onlooker bees phase

The onlooker phase commences with the calculation of the probability value (P) for each
food source obtained from the employed bees by using Eq. (13). Subsequently, a single
food source is selected based on its probability value (Pi), resulting in the generation of a
new solution by using Eq. (11). The objective function utilizing OeSNN is then
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calculated, and the fitness value for the novel solution is evaluated using Eq. (12). To assess
the efficacy of the new solution, greedy selection is employed. In the event of an
enhancement being observed, the new solution is updated with the current solution;

conversely, no alterations are made. These procedures are repeated for each onlooker bee
within the population.

Scout bees phase

The Scout Bee Phase starts when a food source has not been updated for a specified
number of cycles, signaling that the food source has been abandoned. At this point, the
abandoned food source is replaced by a randomly chosen one from the search space. The
bee previously associated with the abandoned source becomes a scout bee, and a new
solution is generated for this scout using Eq. (10).

Memories best solution
Updating and retaining the Best Solution found so far.
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Stop criteria

Repeat Steps 2-5 till the termination condition is met.

Return the best solution

These steps will be repeated for each set of the hyperparameters. Furthermore, the results

will be thoroughly analyzed to determine the optimal set of hyperparameters. All the above
steps of the HABCOeSNN are illustrated as a flowchart in Fig. 5.
The pseudocode of the HABCOeSNN is given below:

HABCOeSNN pseudocode.

1. Initialize the ABC parameters: Population size (SN), Maximum Cycles Number (MCN), number of
dimensions (D), Lower Bound (Ib), Upper Bound (ub), and Maximum number of trials (limit).

2. Initialize the OeSNN parameters: Number of Output Neurons (NOsize), Number of Input Neurons

(NIsize), and Output value correction factor (&).

3 {——m—— Generate ABC population ————— }

4.xi,~:x{b+rand(o,1)(xih—;¢{b)7 Vi=1,2,...,SN, and¥j=1,2,...D

5. Calculate the objective function f(x;) using OeSNN
(E=iea) if f(xi)=0
14 abs(f(x:)) if f(x)<0

7. Set trail; =0, VYi=1,2,...,SN

6. fitness(x;) =

8. Find the Best Solution in the initial population
9. Set iter = 1
10. while iter <= MCN do

12. fori=1to SN do
13. Select k, where k € {1,2,...,SN} and k # i
14. Select j, where j € {1,2,...,D}
15. vij = %ij + rand(—1,1) x (xl-_j — ka-)
16. Calculate the objective function f(v;) using OeSNN
{W if flvi)=0
1+ abs(f(vi)) if f(v;)<0

18. {—— Apply greedy selection between v;; and x; ——}

17.  fitness(v;) =

19. if (fitness (v;) > fitness(x;) then

20. X =V;

21. trail; = 0

22. else

23. trail; = trail; + 1

24. endif

25. end for

26, {————— Calculate the probability P for all solutions ————}
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(continued)

27.

29.

30. {—— Select a food source depending on its probability ——}
Select k, where k € {1,2,...,SN}, andk#i

31.
32.
33.
34.

35.

37.
38.
39.
40.
41.
42.
43,
44, {
45,
46.
47.
48.
49.
50.
51.
52,
53.
54,
55.
56.
57.
58.
59.

pi = fitness(x;)/ S5, fitness(x;), Vi=

for i = 1 to SN do

Select j, where j € {1,2,...,D}

vij = Xij + rand(—1,1) x (xij — ;)

Calculate the objective function f(v;) using OeSNN

o o) 20
fztneSS(V,)—{gi(a)bsoc(vi)) if f(v)<0

36. {—— Apply greedy selection between vj; and x; ——}

if (fitness(v;) > fitness(x;) then
X =V
trail; = 0

else
trail; = trail; + 1

endif

end for

Set Max_Trial_Index = 0
Seti=1
while i < SN do
if trail; > trailyay_Trial_tndex then
Max_Trial_Index = i
end if
i=i+1
end while
if trailyrax_Trial_tndex > limit then

forj=1to D do
X

max_Trial _Index

end for
end if
Memories the Best Solution

iter = iter + 1

60. end while

61. Return Best Solution

= xfb + rand(0,1) ( be - xgb)
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RESULTS AND DISCUSSION

The proposed approach is thoroughly evaluated using two well-established benchmark
datasets, Yahoo Webscope (Laptev, Amizadeh ¢ Billawala, 2015) and Numenta (Lavin ¢
Ahmad, 2016), which serve as a foundation for assessing the performance of anomaly
detection systems. Experiments utilize both synthetic and real-time series data from a
variety of domains. The primary objective of this evaluation is to determine the extent to
which the proposed method improves the learning capabilities of the OeSNN. During this
process, the proposed method is compared with 14 anomaly detection algorithms from the
literature. Furthermore, the efficacy of the proposed approach is evaluated against five
successful optimization algorithms alongside a range of other classifiers. This comparative
analysis aims to highlight the superiority of the proposed HABCOeSNN method in
enhancing OeSNN performance and improving accuracy in anomaly detection tasks.

Experimental setup

For the experiments, all evaluation was carried out on a PC with an 11th Gen Intel(R)
Core™ i5-11260H processor at 2.60 GHz and 16 GB of RAM, running Windows 11 64-bit.
The programming language used for the experiments is Dev C++ 6.3.

Evaluation measures

To assess the performance of HABCOeSNN in the anomaly detection task, multiple
evaluation metrics are employed to offer a well-rounded perspective, particularly in
handling imbalanced datasets:

Precision
Precision measures the proportion of true anomalies (true positives, TP) out of all
detected anomalies (TP + false positives, FP). It emphasizes reducing false positives, and its

formula is:

Precision = — % (15)
recision = TP L FP’

Recall

Recall reflects the proportion of correctly identified anomalies from the total actual
anomalies (true positives, TP, and false negatives, FN), highlighting the model’s ability to
detect all anomalies:

TP
Recall = ——. 16
T TP EN {8
F1-score
The F1-score is the harmonic mean of precision and recall, balancing the trade-off between
them:

Precision x Recall
Fl-score = 2 x — . (17)
Precision + Recall
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Table 2 Parameters setting of ABC.

Parameters Initialization values
Colony size (CS) 50
Employee bees 25
Onlooker bees 25
Scout bee 1
Trials limit 0.6 * CS * Dimension
Max iteration 100
Balanced accuracy (BA)

Balanced accuracy (BA) considers both sensitivity (recall) and specificity, providing a more
balanced measure, especially useful in imbalanced datasets:

BA=2 (ot TN (18)
~ 2\TP+FN TN+FP)’

Matthew’s correlation coefficient (MCC)

Matthew’s correlation coefficient (MCC) evaluates the model’s performance across all four
confusion matrix outcomes: true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN). It is particularly suited for imbalanced data:

TP.TN — FP.FN

MCC = :
\/(TP+ FP).(TP + EN).(TN + FP).(TN + FN)

(19)

Parameters setting

Before the experiment, the ABC and OeSNN parameters were established. According to
research on the ABC algorithm, it is observed that increasing the colony size generally
leads to better performance. However, after reaching a certain threshold, further increasing
the colony size does not yield significant improvements in the algorithm’s performance
(Karaboga & Basturk, 2008). The conducted experiments on different test problems
recommended that a colony size of 50 to 100 is sufficient to achieve acceptable convergence
without unnecessarily increasing computational costs. Table 2 lists the ABC parameters
that established before the experimental conditions and were derived from Karaboga ¢
Basturk (2008). The setting of the hyperparameter values for OeSNN is provided based on
the works of Kasabov et al. (2014), Tu, Kasabov ¢ Yang (2017), and Macigg et al. (2021), as
shown in Table 3.

Experimental I: anomaly detection in the Yahoo Webscope dataset
Dataset description

The Yahoo Webscope dataset is divided into four sub-benchmarks: A1, A2, A3, and A4,
comprising 367 time series, both real and synthetic, with data points ranging from 1,420 to
1,680. These series have hourly time-stamps, and anomalies were manually identified
based on the Yahoo S5 guidelines. The Al1Benchmark contains 67 real datasets of Yahoo
login activity, while the A2Benchmark and A3Benchmark each include 100 synthetic
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Table 3 Parameter settings of OeSNN.

Parameter Description Value
Nlsize Input neurons 10
NOsize Output neurons 50

SIM Similarity value (0, 1]
MOD Modulation factor 0, 1)

C Fire threshold fraction (0, 1]

13 Error correction factor 0.9

Wsize Input window size [100-600]
€ Anomaly classification factor [2-7]

Table 4 Yahoo Webscope dataset properties.

Categories Time series Total anomalies Total instances
AlBenchmark real_1-ral67 1,669 94,866
A2Benchmark Synthetic_1-Synthetic_100 466 142,100
A3Benchmark TS 1-TS 100 943 168,000
A4Benchmark TS 1-TS 100 837 168,000

Table 5 Evaluation measures of the HABCOeSNN on the Yahoo Webscope dataset.

Categories Set 1 Set 2 Set 3
Prec. Rec. F1 BA MCC Prec. Rec. F1 BA MCC Prec. Rec. F1 BA MCC
AlBenchmark 0.876 0.828 0.832 0911 0838 0.872 0886 0.852 0.938 0.861 0.761 0.901 0.785 0.946 0.803
A2Benchmark 0.910 0934 0.881 0.966 0.895 0.938 0.997 0.942 0998 0.951 0770 0995 0.786 0.990 0.812
A3Benchmark 0.826 0.477 0571 0.738 0.606 0.968 0.770 0.847 0.885 0.857 0.958 0.743 0.823 0871 0.836
A4Benchmark 0.668 0.450 0.469 0.724 0505 0.894 0.680 0.749 0.840 0.766 0.883 0.638 0.713 0819 0.734
Note:

The bold numbers indicate the best results.

datasets with single anomalies, whereas the A3Benchmark adds features such as trends,
noise, and seasonality. The A4Benchmark comprises 100 synthetic datasets, where
anomalies arise from abrupt shifts in data trends. Across all benchmarks, the time series
are highly imbalanced, with anomalies accounting for less than 1% of the input data
(Macigg et al., 2021). Table 4 presents the properties of these datasets, which include the
total number of data files, the total number of anomalies in each category, and the total
number of observations.

Results

The findings shown in Table 5 and the heatmap analysis in Fig. 6 highlight the differences
in performance between the three sets of hyperparameters (Sets 1, Set 2, and Set 3) when
applied to different benchmark datasets. Set 2 proves to be the most efficient configuration,
achieving the most excellent F1 scores across the majority of datasets, including
A2Benchmark with a value of 0.942 and A1Benchmark with 0.852. This demonstrates the
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Figure 6 Heatmap of Fl-score obtained by the HABCOeSNN for sets of hyperparameters on the
Yahoo dataset. Full-size K&l DOT: 10.7717/peerj-cs.3184/fig-6

resilience of the proposed HABCOeSNN in detecting anomalies, striking a balance
between precision and recall. Although Set 3 has competitive recall values, especially in
A2Benchmark, its lower F1 scores, as seen in A4Benchmark with a value of 0.713, indicate
compromises between precision and recall. Regarding Set 1, it is noticeably less flexible in
most datasets but produces excellent outcomes in some situations, as indicated by its lower
F1 scores in A3Benchmark (0.571) and A4Benchmark (0.469). These variations in
performance are influenced by the inherent characteristics of the datasets, which include
both real and synthetic time series. Overall, Set 2 demonstrates the most balanced and
robust performance across diverse datasets.

Moreover, to evaluate the performance of hyperparameter sets comprehensively across
multiple time series, a complementary Multi-Criteria Decision Making (MCDM)
approach was employed, integrating the Weighted Sum Model (WSM) and the Technique
for Order Preference by Similarity to Ideal Solution (TOPSIS). Table 6 shows the
evaluation of the performance of the hyperparameters: Set 1, Set 2, and Set 3. Set 2
consistently emerges as the best-performing configuration, achieving the highest scores in
the WSM score (e.g., 0.888 in A1Benchmark and 0.967 in A2Benchmark) and being ranked
first across all datasets in TOPSIS, indicating its robustness and balance across evaluation
metrics. Set 1 performs competitively in some cases, such as a WSM score of 0.921 in
A2Benchmark, but is generally ranked second, reflecting slightly less optimization than Set
2. Set 3 exhibits variability, with strong performance in A3Benchmark and A4Benchmark,
but lower rankings in A1Benchmark and A2Benchmark, indicating inconsistent results
across datasets. Overall, Set 2 demonstrates the most balanced and reliable performance,
making it the optimal configuration for these benchmarks.

Table 7 presents a comparative analysis of various anomaly detection methods across
four benchmark datasets (A1Benchmark to A4Benchmark), focusing on the performance
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Table 6 Comparison of weighted sum and TOPSIS for hyperparameter sets across Yahoo Webscope
dataset.

Categories Weighted sum scores TOPSIS ranks
Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
AlBenchmark 0.864 0.888 0.848 2 1 3
A2Benchmark 0.921 0.967 0.878 2 1 3
A3Benchmark 0.660 0.872 0.853 3 1 2
A4Benchmark 0.585 0.796 0.769 3 1 2
Note:

The bold numbers indicate the best results.

Table 7 Average F1-score evaluation of HABCOeSNN compared with the selected unsupervised anomaly detectors on the Yahoo Webscope

dataset.
Categories Yahoo EGADS' Twitter Anomaly’ DeepAnT’ 0eSNN-UAD” 0eSNN-D’ Set 1 Set 2 Set 3
AlBenchmark  0.470 0.470 0.460 0.700 0.405 0.832 0.852 0.785
A2Benchmark  0.580 0.000 0.940 0.690 0.451 0.881 0.942 0.786
A3Benchmark  0.480 0.300 0.870 0.410 0.110 0.571 0.847  0.823
A4Benchmark  0.290 0.340 0.680 0.340 0.147 0.469 0.749 0.713
Notes:

The bold numbers indicate the best results.

' Presented by Munir et al. (2019).
* Presented by Macigg et al. (2021).
® Presented by Biifiler, Kortus & Giihring (2022).

of HABCOeSNN. The proposed method utilizing Set 2 demonstrates superior
effectiveness, consistently outperforming competing techniques. In particular,
HABCOeSNN surpasses popular methods such as Twitter Anomaly and Yahoo EGADS
on the Al, A2, and A4 benchmarks, achieving F1-scores of 0.852, 0.942, and 0.749,
respectively. Although DeepAnT performs well in the A3Benchmark, the proposed
HABCOeSNN with Set 2 consistently succeeds across all datasets.

Performance comparison with other classifiers
Table 8 shows a comparison of the HABCOeSNN model against three widely recognized
classifiers, Random Forest (RF), Support Vector Machine (SVM), and k-Nearest
Neighbors (kNN), as presented in Sina & Thomas (2019). The results indicate that
HABCOeSNN consistently outperforms these conventional machine learning techniques
across all four Yahoo Webscope benchmarks, regardless of the hyperparameter set used.
Set 2 achieves an impressive F1-score across all datasets, underscoring the model’s intense
precision and effectiveness in identifying anomalies with minimal false positives.
Additionally, we employ the MCDM approach to evaluate the performance of the
HABCOeSNN across different classifiers. The results reported in Table 9 demonstrate that
Set 2 consistently exhibits superior performance compared to other classifiers on the
A1-A4 benchmarks, with the highest scores (0.866, 0.955, 0.858, and 0.768, respectively).
The findings demonstrate that Set 2 consistently outperforms other classifiers in TOPSIS
rankings, occupying the top position across all benchmarks. This outcome reflects the
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Table 8 Comparison of the proposed HABCOeSNN against competitive classifiers on the Yahoo
Webscope dataset.

Categories Measure Random forest” SVM* kNN* Set 1 Set 2 Set 3
AlBenchmark Precision 0.40 0.46 0.44 0.88 0.87 0.76
Recall 0.77 0.76 0.76 0.83 0.89 0.90
F1-score 0.52 0.58 0.56 0.83 0.85 0.76
A2Benchmark Precision 0.48 0.82 0.48 0.91 0.94 0.77
Recall 0.98 0.98 0.98 0.93 0.997 0.995
F1-score 0.65 0.90 0.65 0.88 0.94 0.79
A3Benchmark Precision 0.84 0.83 0.87 0.83 0.97 0.96
Recall 0.69 0.64 0.68 0.48 0.77 0.74
F1-score 0.75 0.72 0.76 0.57 0.85 0.82
A4Benchmark Precision 0.69 0.71 0.68 0.67 0.89 0.88
Recall 0.61 0.61 0.59 0.45 0.68 0.64
F1-score 0.65 0.66 0.63 0.47 0.75 0.71
Notes:

The bold numbers indicate the best results.
Result presented by Sina ¢ Thomas (2019).

Table 9 Comparative performance of HABCOeSNN with other classifiers using weighted method
and TOPSIS on the Yahoo Webscope dataset.

Categories Weighted sum scores TOPSIS ranks

Random forest SVM KNN Set2 Random forest SVM KNN  Set 2

AlBenchmark  0.553 0.595 0580 0.866 4 2 3 1

A2Benchmark  0.690 0900 0.690 0.955 4 2 3 1

A3Benchmark  0.758 0.728 0.768 0.858 3 4 2 1

A4Benchmark  0.650 0.660 0.633 0.768 3 2 4 1
Note:

The bold numbers indicate the best results.

superior and balanced performance of Set 2, as evaluated using a multi-criteria approach.
Although models such as SVM and kNN demonstrate efficacy, their inconsistencies across
benchmarks highlight the superiority of Set 2 in terms of reliability and effectiveness. The
TOPSIS rankings, which emphasize proximity to the optimal solution, reinforce the
capacity of Set 2 to deliver optimal results, thereby establishing it as the most reliable
approach for the given benchmarks.

Comparative analysis with other optimization algorithms

Figure 7 illustrates the comparative performance of the HABCOeSNN model against
several optimization algorithms, including PSO, GWO, FPA, WOA, and GS, using three
distinct sets of hyperparameters (Sets 1, Set 2, and Set 3). The results indicate that
HABCOeSNN with Set 2 consistently achieves the highest overall performance across
benchmarks. Set 3 demonstrates strong results in the A3Benchmark, while Set 1 excels in
the Al and A2Benchmarks. In contrast, the PSO and FPA algorithms exhibit varying
degrees of success, with PSO performing well in A1 and A2 benchmarks. However, WOA,
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Figure 7 Fl-score of HABCOeSNN against PSO, GWO, FPA, WOA, and GS optimization
algorithms on Yahoo Webscope dataset. Full-size Kal DOI: 10.7717/peerj-cs.3184/fig-7

GWO, and GS perform poorly, particularly in the more complex A3 and A4 benchmarks.
These findings highlight the robustness of HABCOeSNN, particularly when optimized
with Set 2 hyperparameters across diverse datasets.

Experimental Il: anomaly detection in the NAB dataset

Dataset description

The NAB dataset comprises seven labeled sub-datasets, six of which contain anomalies,
while one contains only normal data and was excluded from the experiments. These
sub-datasets include 58 univariate time series with varying lengths, ranging from 1,000 to
22,000 instances. Each series is time-stamped, and the anomaly labels are stored separately.
The time series exhibits diverse characteristics, including temporal noise, periodic patterns
of varying duration, and concept drift. The data originates from various sources, including
online ad click logs, AWS server metrics, and real-world datasets such as hourly NYC taxi
schedules, CPU usage, and freeway traffic data (speed or travel time).

Additionally, the dataset includes synthetic data designed to test for anomalous
behaviors. Notably, the dataset is imbalanced, with anomalies comprising less than 10% of
the data. Additionally, each record in the dataset contains two data items: a time stamp and
a value. Table 10 provides more specific details regarding NAB (Xie, Tao ¢ Zeng, 2023).

Results
The results presented in Table 11, accompanied by the heatmap visualization in Fig. 8,
underscore the superior performance of the HABCOeSNN when employing the Set 2
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Table 10 The NAB dataset properties.

Categories Time series No. of anomalies  Total instances
ArtificialWith Anomaly  art daily flatmiddle 403 4,032
art daily jumpsdown 403 4,032
art daily jumpsup 403 4,032
art daily nojump 403 4,032
art increase spike density 403 4,032
art load balancer spikes 403 4,032
Real Ad exchange exchange-2 cpc results 163 4,032
exchange-2 cpm results 162 4,032
exchange-3 cpc results 153 4,032
exchange-3 cpm results 153 4,032
exchange-4 cpc results 165 4,032
exchange-4 cpm results 164 4,032
Real AWS cloud watch ec2_cpu utilization_5f5533 402 4,032
ec2 cpu utilization 24ae8d 402 4,032
ec2 cpu utilization 53ea38 402 4,032
ec2 cpu utilization 77clca 403 4,032
ec2 cpu utilization 825cc2 343 4,032
ec2 cpu utilization ac20cd 403 4,032
ec2 cpu utilization c6585a 0 4,032
ec2 cpu utilization fe7f93 405 4,032
ec2 disk write_bytes lef3de 473 4,730
ec2 disk write_bytes c0d644 405 4,032
ec2 network in 5abac? 474 4,730
ec2 network in 257a54 403 4,032
elb request count8c0756 402 4,032
grok asg anomaly 465 4,621
iio us-east-1 i-a2eblcd9 NetworkIn 126 1,243
rds cpu utilization cc0c53 402 4,032
rds cpu utilization e47b3b 402 4,032
Real known cause ambient temperature system failure 726 7,267
cpu utilization asg misconfiguration 1,499 18,050
ec2 request latency system failure 346 4,032
machine temperature system failure 2,268 22,695
nyc taxi 1,035 10,320
rogue agent key hold 190 1,882
rogue agent key updown 530 5,315
Real traffic occupancy 6005 239 2,380
occupancy t4013 250 2,500
speed 6005 239 2,500
speed 7578 116 1,127
speed t4013 250 2,495
travel Time 387 249 2,500
travel Time 451 217 2,162
(Continued)
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Table 10 (continued)

Categories Time series No. of anomalies  Total instances

Real tweets twitter volume AAPL 1,588 15,902
twitter volume AMZN 1,580 15,831
twitter volume CRM 1,593 15,902
twitter volume CVS 1,526 15,853
twitter volume FB 1,582 15,833
twitter volume GOOG 1,432 15,842
twitter volume IBM 1,590 15,893
twitter volume KO 1,587 15,851
twitter volume PFE 1,588 15,858
twitter volume UPS 1,585 15,866

Table 11 Evaluation measures of the proposed HABCOeSNN regarding hyperparameters on the NAB dataset.
Categories Set 1 Set 2 Set 3

Prec. Rec. F1 BA MCC Prec. Rec. F1 BA MCC Prec. Rec. Fl1 BA MCC
ArtificialWithAnomaly 0.758 0.877 0.800 0921 0.790 0.867 0.896 0.878 0.940 0.867 0.864 0.769 0.791 0.877 0.786

RealAdExchange 0.414 0.529 0408 0.706 0370 0476 0503 0473 0.712 0417 0479 0411 0384 0.671 0.358

Real AWSCloudwatch 0.523 0.674 0.540 0.783 0.508 0.488 0.715 0.561 0.811 0.526 0.528 0.673 0.550 0.787 0.517

RealKnownCause 0.443 0.534 0455 0.727 0413 0.463 0.601 0.491 0.759 0.456 0.428 0.600 0477 0.751 0.432

RealTraffic 0.541 0.616 0.545 0.776 0.513 0.620 0.630 0.603 0.790 0.571 0.632 0.590 0.577 0.772 0.553

RealTweets 0.321 0.587 0.395 0.712 0334 0372 0.561 0427 0.724 0.374 0362 0569 0421 0.721 0.365
Note:

The bold numbers indicate the best results.
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Figure 8 Heatmap of F1-score obtained by the HABCOeSNN regarding the hyperparameters on the
NAB dataset. Full-size K&l DOT: 10.7717/peerj-cs.3184/fig-8
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Table 12 Performance evaluation of hyperparameter sets using weighted sum method and TOPSIS
across the NAB dataset.

Time series Weighted sum scores TOPSIS ranks
Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
Artificial WithAnomaly 0.841 0.897 0.818 2 1 3
RealAdExchange 0.521 0.551 0.463 2 1 3
Real AWSCloudwatch 0.633 0.647 0.614 3 1 2
RealKnownCause 0.548 0.585 0.542 3 1 2
RealTraffic 0.626 0.667 0.627 3 1 2
RealTweets 0.509 0.528 0.493 3 1 2
Note:

The bold numbers indicate the best results.

hyperparameter configuration. Across the time series in the NAB dataset, Set 2 consistently
achieves the highest F1-scores, particularly excelling in Artificial WithAnomaly and
RealTraffic, with an F1-score of 0.878 and a Balanced Accuracy (BA) of 0.940. This
highlights its capability to balance precision and recall effectively, which is critical for
robust anomaly detection. In contrast, Set 1 serves as a baseline with modest performance,
while Set 3 exhibits inconsistent results across datasets despite performing well in specific
scenarios. Besides, the heatmap clearly illustrates the robustness and adaptability of the
HABCOeSNN, reinforcing its role as the optimal configuration for diverse anomaly
detection tasks in dynamic streaming environments. Also, the efficacy of various
hyperparameter configurations was analyzed across multiple time series using MCDM
approaches, including WSM and TOPSIS. According to Table 12, Set 2 is consistently the
best arrangement, particularly with datasets such as Artificial WithAnomaly and
RealAdExchange.

To further assess the HABCOeSNN approach, its performance is compared with that of
the state-of-the-art detectors described in Macigg et al. (2021). Table 13 indicates that Set 2
consistently outperforms the other sets across multiple time series datasets. Specifically, Set
2 exhibits superior performance in the RealAWSCloudwatch and RealKnownCause time
series, with consistently higher precision, recall, and balanced accuracy. While Set 3 also
produces competitive results, particularly in the RealKnownCause and RealTraffic time
series, Set 2 remains the most robust. Its resilience in anomaly detection tasks,
demonstrated by consistent performance across all key metrics, provides strong evidence
that Set 2 is the most reliable and effective hyperparameter configuration for
HABCOeSNN.

Performance comparison with other classifiers

The results presented in Table 14 highlight the superior performance of the proposed
model using the three hyperparameter configurations (Sets 1, Set 2, and Set 3) compared to
traditional machine learning models such as Random Forest, SVM, and kNN, provided by
Sina & Thomas (2019), across various real-world datasets. Set 2 consistently outperforms
the other configurations, particularly with their high F1 scores on datasets like

Real AWSCloudwatch (0.561) and RealKnownCause (0.491), demonstrating a balanced
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Table 13 Average F1-score of HABCOeSNN in comparison with the state-of-art algorithms on the NAB dataset.

Time series Bayesian Context EXPoSE HTM KNN Numenta NumentaTM Relative Skyline Twitter Windowed DeepAnT OeSNN-UAD Set1 Set2 Set3
changepoint OSE JAVA CAD entropy ADVec Gaussian
ArtificialWithAnomaly 0.009 0.004 0.004 0.017 0.003 0.012 0.017 0.021 0.043  0.017 0.013 0.156 0.427 0.800 0.878 0.791
RealAdExchange 0.018 0.022 0.005 0.034 0.024 0.040 0.035 0.024 0.005  0.018 0.026 0.132 0.234 0.408 0.473 0.384
Real AWSCloudwatch ~ 0.006 0.007 0.015 0.018 0.006 0.017 0.018 0.018 0.053  0.013 0.060 0.146 0.342 0.540 0.561 0.550
RealKnownCause 0.007 0.005 0.005 0.013  0.008 0.015 0.012 0.013 0.008  0.017 0.006 0.200 0.324 0.455 0.491 0.477
RealTraffic 0.012 0.020 0.011 0.032  0.013 0.033 0.036 0.033 0.091 0.020 0.045 0.223 0.340 0.545 0.603 0.577
RealTweets 0.003 0.003 0.003 0.010 0.004 0.009 0.010 0.006 0.035 0.018 0.026 0.075 0.310 0.395 0.427 0.421
Note:

The bold numbers indicate the best results.

trade-off between precision and recall, which is crucial for effective anomaly detection.
While Set 3 achieves higher precision, such as in RealTraffic with 0.632, Set 2’s superior
recall ensures that more anomalies are successfully detected. In contrast, traditional
models perform poorly, especially on complex datasets like RealTweets, where F1-scores
drop as low as 0.1, revealing their limitations in managing intricate anomaly patterns.
As illustrated in Table 15, a comparison of various classifiers and HABCOeSNN on the
NAB dataset is provided, utilizing the WSM and TOPSIS methods. Set 2 consistently
attains the highest scores and is positioned at the top across all data sets, signifying its
efficacy and capacity to balance multiple evaluation metrics. Set 2 outperforms other
classifiers with WSM scores of 0.880 for ArtificialWithAnomaly and 0.614 for RealTraffic.
kNN ranks second under TOPSIS, highlighting its strong but slightly less balanced
performance compared to Set 2. SVM demonstrates competitive performance, with scores
approaching those of KNN in numerous datasets, attaining 0.320 in Artificial WithAnomaly
and 0.443 in RealTraffic; however, it ranks third overall. Random Forest exhibits poor
performance across all datasets, consistently ranking last under TOPSIS and recording the
lowest WSM scores, such as 0.228 in RealKnownCause and 0.258 in
Artificial WithAnomaly.

Comparative analysis with other optimization algorithms

The results presented in Fig. 9 highlight the comparison of the proposed method, using
hyperparameters (Sets 1, Set 2, and Set 3) against five optimization algorithms: PSO, FPA,
WOA, GWO, and GS. The HABCOeSNN, when utilizing Set 2 hyperparameters,
consistently outperforms the other configurations, achieving the highest F1-scores in most
time series, such as ArtificialWithAnomaly for (0.878) and RealTraffic with (0.603). This
indicates that the hyperparameters in Set 2 significantly enhance the generalization ability
of the suggested method, allowing for more accurate anomaly detection in both synthetic
and real-world data. Although algorithms like PSO and FPA yield competitive results, they
generally underperform compared to the proposed method, particularly in complex
datasets such as RealAdExchange and RealTweets.

Significance analysis
To ascertain the efficacy of the HABCOeSNN, a one-way analysis of variance (ANOVA)
test was conducted to determine whether a statistically significant difference exists between
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Table 14 Comparison of the HABCOeSNN against competitive classifiers on the NAB dataset.

Time series Measure  Random Forced® SVM* KkNN* Setl  Set2 Set 3
ArtificialWithAnomaly ~ Precision  0.04 0.06 0.06 0.76 0.867  0.864
Recall 0.83 1 1 0.88 0.896 0.769
F1-score 0.08 0.11 0.11 0.80 0.878 0.791
realAdExchange Precision  0.26 0.28 0.26 0.41 0476  0.479
Recall 0.71 0.71 0.71 0.53 0.503 0411
F1-score 0.38 0.4 0.38 0.41 0.473 0.384
real AWSCloudwatch Precision  0.11 0.1 0.12 0.52 0.488  0.528
Recall 0.93 0.93 0.93 0.67 0.715 0.673
F1-score 0.19 0.19 0.21 0.54 0.561 0.550
realKnownCause Precision  0.06 0.07 0.05 0.44 0.463  0.428
Recall 0.63 0.63 0.58 0.53 0.601 0.600
F1-score 0.11 0.13 0.1 0.46 0.491 0477
real Traffic Precision  0.22 0.24 0.28 0.54 0.620 0.632
Recall 0.79 0.79 0.79 0.62 0.630 0.590
F1-score 0.34 0.37 0.41 0.55 0.603 0.577
realTweets Precision  0.05 0.05 0.05 0.76 0.372  0.362
Recall 1 0.94 0.97 0.88 0.561 0.569
F1-score 0.1 0.1 0.1 0.80 0.427 0421
Notes:

The bold numbers indicate the best results.
Result presented by Sina & Thomas (2019).

Table 15 Comparative performance of HABCOeSNN with other classifiers using weighted method and TOPSIS on the NAB dataset.

Benchmark Weighted sum scores TOPSIS ranks
Random forest SVM kNN Set 2 Random forest SVM kNN Set 2
Artificial WithAnomaly 0.258 0.320 0.320 0.880 4 3 2 1
RealAdExchange 0.433 0.448 0.433 0.481 4 3 2 1
Real AWSCloudwatch 0.355 0.353 0.368 0.581 4 3 2 1
RealKnownCause 0.228 0.240 0.208 0.512 4 2 3 1
RealTraffic 0.423 0.443 0.473 0.614 4 3 2 1
RealTweets 0.313 0.298 0.305 0.447 3 4 2 1
Note:

The bold numbers indicate the best results.

the HABCOeSNN and other state-of-the-art methods. The high F-statistic and a
corresponding p-value of less than 0.05 imply that the performance differences are
statistically significant (Barbara ¢ Fidell, 2013). As illustrated in Table 16, the
HABCOeSNN utilizing Set 2 hyperparameters demonstrated a pronounced superiority
over a range of benchmark anomaly detectors, as evidenced by high F-statistic values and
extremely low p-values (p < 0.05). These findings support the resilience of the
HABCOeSNN and reliability with Set 2 hyperparameters, establishing it as a novel and
effective solution for unsupervised anomaly detection in streaming data.
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Figure 9 F1-score of HABCOeSNN against PSO, GWO, FPA, WOA, and GS algorithms on the NAB
dataset. Full-size K&] DOT: 10.7717/peerj-cs.3184/fig-9

Table 16 Statistical results of the HABCOeSNN concerning the ANOVA test against other detectors

on the NAB dataset.

Approaches P-value HABCOeSNN
Bayesian changepoint 0.000007 Significant
Context OSE 0.000007 Significant
EXPoSE 0.000007 Significant
HTM JAVA 0.000009 Significant
KNN CAD 0.000007 Significant
Numenta 0.000009 Significant
NumentaTM 0.000009 Significant
Relative Entropy 0.000008 Significant
Skyline 0.000013 Significant
Twitter ADVec 0.000008 Significant
Windowed Gaussian 0.000010 Significant
DeepAnT 0.000136 Significant
OeSNN-UAD 0.006593 Significant

Ablation study

To determine the contribution of the components in HABCOeSNN, an ablation study is

presented across both the Yahoo Webscope and NAB datasets. Three configurations are

assessed in the ablation study: (1) standard OeSNN with default hyperparameters and no
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Table 17 Ablation study on Yahoo Wenscope and NAB datasets.

Data sets Categories Standard  Offline-optimized OeSNN  HABCOeSNN
OeSNN
NAB Artificial with Anomaly  0.568 0.591 0.878
Real Ad Exchange 0.270 0.351 0.473
Real AWS Cloud 0.290 0.385 0.561
Real Known Cause 0.339 0.401 0.491
Real Traffic 0.501 0.557 0.603
Real Tweets 0.288 0.331 0.427
Yahoo AlBenchmark 0.716 0.742 0.852
Webscope  ArBenchmark 0.737 0.838 0.942
A3Benchmark 0.694 0.918 0.847
A4Benchmark 0.438 0.798 0.749

optimization, (2) Offline-Optimized OeSNN, in which hyperparameters are adjusted once
using ABC on a validation subset and then fixed, and (3) the full HABCOeSNN model with
adaptive ABC optimization in real-time. As reported in Table 17, standard OeSNN
achieved an average F1-score of 0.376 across six NAB time series categories, which
improved to 0.436 with Offline-Optimized OeSNN. The HABCOeSNN model
significantly outperformed both, reaching an average F1-score of 0.572. Similarly, in the
Yahoo Webscope benchmark, the average F1-score increased from 0.646 (Standard
OeSNN) to 0.824 (Offline-Optimized OeSNN), with the proposed HABCOeSNN further
improving performance to 0.848.

These results reveal a clear and consistent performance gain at each step of model
enhancement. The notable improvements from static ABC optimization validate that
proper hyperparameter tuning is critical to effective anomaly detection using evolving
spiking neural networks. However, the additional boost achieved by HABCOeSNN
underscores the importance of online, adaptive optimization in non-stationary streaming
contexts. Overall, the ablation results validate that both optimization and adaptivity are
essential, and their combination in HABCOeSNN is key to achieving robust, real-time
anomaly detection in unsupervised streaming environments.

CONCLUSIONS

This study introduced a hybrid Artificial Bee Colony (ABC) algorithm with an Online
Evolving Spiking Neural Network (OeSNN), termed HABCOeSNN, for unsupervised
anomaly detection in streaming data. The ABC was employed to explore the
hyperparameter space and identify the optimal configurations, thereby overcoming the
challenge of manually tuning the hyperparameters of the OeSNN. Three sets of
hyperparameters were investigated: Set 1 (window size (Wsize) and anomaly classification
factor (¢)); Set 2 (similarity value (SIM), modulation factor (MOD), and threshold factor
(C)); and Set 3 (combination of all five parameters).

To ensure robust evaluation, the HABCOeSNN was assessed on two benchmark
datasets, Yahoo Webscope and Numenta Anomaly Benchmark (NAB), using several
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assessment criteria. Furthermore, the study employed Multi-Criteria Decision-Making
(MCDM) to produce performance validation beyond single-metric evaluation, to ensure
enhanced accuracy in anomaly detection. Moreover, HABCOeSNN performance was
compared against five state-of-the-art optimization techniques: PSO, FPA, GWO, WOA,
and Grid Search, along with other well-known classifiers, Random Forest, SVM, and kNN.
Additionally, an ablation study was conducted to determine the contribution of each
component in HABCOeSNN.

The result demonstrated consistent improvements in detection performance with
HABCOeSNN achieving significantly higher F1-scores across both datasets, as confirmed
by statistical validation using one-way ANOVA. These findings emphasize the crucial
importance of precise hyperparameter optimization in enhancing the learning capabilities
of the OeSNN, particularly with respect to the hyperparameters SIM, MOD, and C, which
were identified as the most effective configurations for anomaly detection problems.

The proposed method can be further enhanced in the future by simultaneously refining
the OeSNN architecture and hyperparameters, utilizing a multi-objective optimization
approach to effectively balance accuracy and computational complexity. Following the
“No Free Lunch” theorem, more effort might be focused on hybridized HABCOeSNN with
different metaheuristic algorithms to benefit from the advantages of various optimization
techniques to improve anomaly detection accuracy. The computational cost will also be
investigated further to create a fair comparison with alternative approaches. Finally,
extending the assessment to include real-world, high-volume streaming data scenarios
would provide deeper insights into its practical deployment potential.
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