
A measurement framework to assess
software maturity models
Reem Alshareef1,2, Mohammad Alshayeb1,3, Mahmood Niazi1,3 and
Sajjad Mahmood1,3

1 Information & Computer Science Department, King Fahd University of Petroleum and Minerals,
Dhahran, Saudi Arabia

2 College of Computer Science & Information Technology, Imam Abdulrahman Bin Faisal
University, Dammam, Saudi Arabia

3 Interdisciplinary Research Center for Intelligent Secure Systems, Dhahran, Saudi Arabia

ABSTRACT
Software maturity models can be utilized by organizations to evaluate and enhance
their development processes. Established and recognized models such as the
Capability Maturity Model Integrated (CMMI) and ISO/IEC 15504 (Software
Process Improvement and Capability Determination (SPICE)) have proven their
value. However, many new software maturity models exist, and their quality and
potential value remain questionable until they are properly assessed before adoption.
Without such an assessment, organizations can implement poor or ineffective
models, resulting in wasted resources and failed improvement initiatives. Our
research aims to address this challenge by developing a measurement framework
based on ISO/IEC 15504-3 standards to assess the quality of developed software
maturity models. We derived our quality assessment criteria through literature
analysis, analyzing four main categories: basic model information, structural design,
assessment methods, and implementation support. After developing this framework,
we validated it with expert reviews to assess its design and usability and through a
series of case studies. Feedback from academics and industry practitioners confirmed
the framework’s utility, especially recognizing its clear structure and
comprehensiveness of evaluation criteria. Case studies also revealed the framework’s
effectiveness in identifying strengths and areas of improvement, finding that
evaluated models had quality scores ranging from 83.3% to 93.2%. Our study
enhances software maturity models’ practical utility and adoption across different
software contexts, providing professionals and academics with a structured way to
evaluate and enhance maturity models.

Subjects Security and Privacy, Theory and Formal Methods, Software Engineering
Keywords A measurement framework, Software maturity models

INTRODUCTION
Organizations often seek ways to improve their practices, and one widely adopted
approach is the use of software maturity models. Maturity models provide frameworks for
organizations to enhance and continuously improve their processes (Dahlin, 2020). The
utilization of these models can help companies in outlining the stages or levels of maturity
in their software development practices (Wendler, 2012). Several capability/maturity
models have been adopted as standards for software processes in organizations. Drawing
from established engineering and process management principles to help assess and refine

How to cite this article Alshareef R, Alshayeb M, Niazi M, Mahmood S. 2025. A measurement framework to assess software maturity
models. PeerJ Comput. Sci. 11:e3183 DOI 10.7717/peerj-cs.3183

Submitted 18 March 2025
Accepted 11 August 2025
Published 4 September 2025

Corresponding author
Mohammad Alshayeb,
Alshayeb@kfupm.edu.sa

Academic editor
James Procter

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.3183

Copyright
2025 Alshareef et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.3183
mailto:Alshayeb@�kfupm.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3183
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

processes by considering process capability and organizational maturity levels (Röglinger,
Pöppelbuß & Becker, 2012), maturity models can be seen as an effective approach for
organizations to enhance their process quality (Wendler, 2012; Pöppelbuß & Röglinger,
2011). The concept of maturity in software organizations focuses on how systematic
processes and practices are implemented. Mature organizations demonstrate this through
standardized work processes, ongoing process improvements, clearly defined roles, and
management oversight of both product quality and the associated processes (Weber, Curtis
& Chrissis, 1993). Moradi-Moghadam, Safari & Maleki (2013) note an important
distinction: mature organizations rely on systematic procedures and established processes,
while immature organizations typically achieve results through individual efforts and
ad-hoc methods.

Software maturity models have been developed across various fields, including
engineering (Tissen et al., 2024), project management (Cooke-Davies & Arzymanow, 2003),
and quality assurance (Al-Qutaish & Abran, 2011). Organizations such as the International
Organization for Standardization (ISO), the International Electrotechnical Commission
(IEC), and the Software Engineering Institute (SEI) have created maturity models to assess
and improve software processes (Pöppelbuß & Röglinger, 2011;Moradi-Moghadam, Safari
& Maleki, 2013). ISO/IEC 15504, known as Software Process Improvement and Capability
Determination (SPICE), stands as one widely adopted standard. This framework helps
organizations evaluate software process capability and maturity in a structured manner,
assisting them in identifying areas for improvement and maintaining quality development
practices. Maturity models serve as guides for determining what improvements to consider
and when to implement them (Weber, Curtis & Chrissis, 1993). This typically involves
evaluating the process against a maturity model. Subsequently, the assessment results are
utilized to determine areas where enhancements are needed to strengthen the process
maturity level. Models like CMMI and the ISO standard, derived from the SPICE project,
have been widely used to enhance software development organizations’ processes. Other
models, such as the eSourcing Capability Model (eSCMs) and Process Reference Model
(PRM), also fall under the software process maturity models (Dahlin, 2020). Furthermore,
several studies have demonstrated that advancements in maturity within business-specific
models positively impact software product quality, project outcomes, and overall
productivity (Cooke-Davies & Arzymanow, 2003; Al-Qutaish & Abran, 2011).
Additionally, the use of software maturity models has been linked to enhancements in
productivity metrics such as lines of code per staff and increased customer satisfaction
(Bruin et al., 2005; von Wangenheim et al., 2010; Lasrado, Vatrapu & Andersen, 2015).

Despite the evolution and widespread use of software maturity models, many available
maturity models need more evidence of following empirical methods for developing and
validating the models; they are merely conceptual. Therefore, several researchers have
emphasized the need for additional empirical validations (Lasrado, Vatrapu & Andersen,
2015; Lahrmann et al., 2011; Lasrado et al., 2016). dos Santos-Neto & Costa (2019)
conducted an extensive systematic literature review examining 409 articles published
between 1973 and 2017. They revealed that only 12 articles addressing the maturity models

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 2/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

discussed in the literature had been validated. This highlights a critical gap, as only 3% of
the articles addressed validation. In line with this work, Wendler criticized the scarcity of
validation studies (Wendler, 2012). Established models like CMMI and SPICE have
demonstrated their value through extensive industry implementation; on the other hand,
newer domain-specific software maturity models often lack sufficient validation before
deployment. The importance of validating software maturity models is underscored by the
principle that they should be usable, complete, and accurate within their intended scope
(Bruin et al., 2005). Newly proposed models, however, are not adequately validated. Robust
validation can be done through case studies, surveys, interviews, and focus group
discussions (Bruin et al., 2005). Additionally, Rosemann & Vessey (2008) suggest checks of
applicability with practitioners, as gathering varied viewpoints and insights from
practitioners in the field aims to enhance the model with a comprehensive spectrum of
knowledge and experiences. Nevertheless, such a process is rather burdensome and
requires significant time and effort. This lack of validation highlights the importance of a
formal method to evaluate the quality and efficacy of software maturity models. In the
absence of such a framework, organizations risk implementing models that may be
inadequate or ineffective, leading to wasted resources and failed improvement initiatives.

The main objective of this work is to develop a framework that can evaluate software
maturity models against a set of criteria. The results of the assessment process identify the
strengths and weaknesses of each evaluated model. We begin by conducting a literature
review to identify existing frameworks and success factors in maturity model development.
We then empirically verify and validate the framework through expert evaluations,
engaging industry practitioners and academics to assess the framework’s design and
effectiveness. We further reinforce this validation with evidence from multiple case studies
by applying the framework to evaluate different types of maturity models across various
domains. Through literature analysis, expert evaluations, and case studies, we aim to
ensure that our framework is theoretically sound and practically applicable. The entire
study is conducted following ISO/IEC 15504-3 standard guidelines to ensure that the
results of the evaluations and assessments are reliable and comparable. Through this
methodologically rigorous approach, we aim to provide a validated and practical method
for assessing software maturity models’ quality.

LITERATURE REVIEW
Creating, applying, and evaluating software maturity models in the software engineering
environment are essential as these activities help guide organizations toward better
software development practices. The first activity we undertook was to survey the literature
in the following domains:

. Software process maturity models

. Software product maturity models

. Design principles for developing maturity models

. Available assessment frameworks

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 3/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

We only considered academic sources from conferences and peer-reviewed journals
that focused on the creation of software maturity models, as well as standards and
technical documentation from reputable organizations such as ISO/IEC and well-known
industry frameworks. The sources had to be directly related to software maturity models,
use rigorous methodological techniques such as empirical validation studies, and come
from credible sources.

Software process maturity models
Several maturity models have been created following the structure and principles of
CMMI. Examples of these models include:

. Software Engineering Maturity Model (SEMM) (Garzás et al., 2013): The AENOR
workgroup has proposed the Software Engineering Maturity Model. SEMM is a process
maturity model based on the ISO/IEC 12207 standard (ISO, 2008). The main goal of this
model is to assess the maturity of software processes in small enterprises by examining
capacity levels corresponding to different maturity levels.

. IT Service Management Maturity Model (Picard, Renault & Barafort, 2015): Picard,
Renault & Barafort (2015) introduced the IT Service Management maturity model. This
model is intended to evaluate IT infrastructure processes and aligns with ISO/IEC
20000-1 standards (ISO, 2011). Organizations can adopt this model to evaluate and
enhance their IT service management capabilities, leading to improved service delivery.

. Test Maturity Model Integration (TMMI): The TMMI model, introduced by the TMMI
Foundation (van Veenendaal & Wells, 2012), aims to enhance testing processes within
organizations (Garousi & van Veenendaal, 2022). The authors suggest that TMMI
complements CMMI and focuses on improving the maturity of the testing process,
which they argue is not adequately addressed by CMMI.

. Software Process Improvement and Capability Determination (SPICE) (Dorling, 1993):
ISO/IEC has proposed this framework, which draws on ISO/IEC 12207 (ISO, 2008).
SPICE enhances processes within software organizations and assesses their capacity to
deliver high-quality software products.

Software product maturity models
Product maturity models aim to define and measure the maturity of software products.
Below are some of the prominent ones:

. Software Product Quality Maturity Model (SPQMM): The Software Product Quality
Maturity Model was proposed by Al-Qutaish & Abran (2011) to assess software product
quality. Initially, it calculates quality levels based on characteristics, sub-characteristics,
and measurements derived from ISO 9126 (ISO/IEC, 1991). These values are then
combined into a single value, converted into a six sigma value, and the software’s
integrity level is determined using ISO 15026. Finally, the overall maturity level is
identified. Assessors are required to use ISO 9126 quality attributes and metrics, making
SPQMM dependent on this specific standard.

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 4/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

. SCOPE: Developed by the EuroScope consortium (Jakobsen, O’Duffy & Punter, 1999),
the SCOPE product maturity model (SMM) evaluates software product maturity across
five levels. Levels 2, 3, and 4 incorporate standards such as ISO 12119, ISO/IEC 9126, and
ISO 14598. SMM evaluates quality by matching the specifications with the specified
requirements. Additionally, SMM requires documentation of the process to ensure that
the final product meets specifications. However, SMM does not focus on the final
product’s quality (i.e., the code).

. Open-Source Maturity Model (OSMM): This model was developed by Golden (2005) to
assist organizations in effectively implementing open-source software through a
three-phase process. The process involves assessing maturity elements by defining
requirements, locating resources, evaluating element maturity, and assigning scores. The
second phase involves applying weighting factors, and the third phase involves
calculating the overall product maturity score. Designed to be lightweight, OSMM can
evaluate an open-source product’s maturity within 2 weeks.

. Technical capability model (TCMMI): TCMMI (Abdellatif et al., 2019) evaluates the
maturity of a software product as an indicator of its quality. The framework is divided
into a reference model and an assessment method. The reference model offers a structure
for collecting product quality indicators as evidence of the product’s capability and
maturity. The assessment method follows standard procedures to evaluate the product’s
maturity by measuring its conformance to the quality attributes defined and agreed upon
by the product’s stakeholders.

Design principles for developing maturity models
Examining the various widely used maturity models reveals that the process of model
design and the specific steps followed in the design are not explicitly detailed (Becker,
Knackstedt & Pöppelbuß, 2009). This raises an issue as the research steps cannot be
followed in terms of repeatability, verifiability, and completeness (Frick, Küttner &
Schubert, 2013). Searching the literature, we will explore significant contributions in this
area, looking at previous attempts to propose methodologies and specific guidelines for
creating maturity models. Various studies that revolved around creating new maturity
models have attempted to develop guidelines to standardize the development of maturity
models. These efforts involved standardizing vocabulary use and adhering to certain
validated procedures. Bruin et al. (2005) developed one of the most important works in this
field by proposing a universally applicable framework for creating such models. The
authors established six essential phases for model development: scope, design, populate,
test, deploy, and maintain. Their work clarifies that following a systematic and phased
process is crucial as it ensures the developed model is robust and can be applied in
real-world environments. The authors state that creating maturity models is an ongoing
process requiring maintenance, regular updates, and adjustments to align with the rapidly
changing practices in software development. Additionally, the authors gathered different
perspectives and insights from domain experts in an attempt to enrich their framework
with a broad range of knowledge and experiences. Becker, Knackstedt & Pöppelbuß (2009)

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 5/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

developed a procedural model for creating IT management maturity models, following
design science guidelines defined by Hevner et al. (2004). The authors proposed the
following steps: comparison with existing models, iterative procedure, evaluation, design
as a search process, design as an artifact, research contributions, targeted presentation of
results, and scientific documentation. Otto, Bley & Harst (2020) proposed a detailed
process model to guide users and developers in creating prescriptive and well-validated
maturity models following eight steps. Additionally, Solli-Sæther & Gottschalk (2010)
proposed a detailed process for developing stage models with methodological
considerations. Their work presented a framework for developing stage models by
theorizing essential topics related to growth stages. Table 1 illustrates the different design
principles for developing maturity models.

Existing assessment frameworks and research gap
Only one assessment method that is related to maturity models was found during our
review of the existing maturity models. A framework for evaluating digital health maturity
models was presented by Woods et al. (2022) and offers a way to compare the various
models that are currently available. The authors acknowledge the importance of evaluating
digital health maturity models since they can eventually help achieve better healthcare
outcomes. The framework has a total of four distinct categories: actionability, completeness,
feasibility, and healthcare context assessments. The healthcare context assessment category
assesses the suitability, practicality, and relevance of the model to health settings. The
feasibility assessment category assesses the vendor’s commitment to improvements, access
to data, the requirements to implement the model, and the resources required. The
completeness assessment category assesses how the model expresses maturity across seven
dimensions and 27 indicators. The actionability assessment category assesses whether the
model’s recommendations are actionable, feasible, and consistent with the organization’s
goals. Our goal of developing a framework to evaluate software maturity models can be
achieved by following the structured approach detailed in the work of Woods et al. (2022).
Their focus on context, feasibility, completeness, and actionability provides us with an
evaluation approach that can be adapted for our framework (Woods et al., 2022).

Although extensive research exists around maturity model creation and the widely
available established guidelines, a notable gap can be observed by examining the current
literature. Missing from this body of work is a unified evaluation approach. Current
literature fails to present an integrative assessment methodology that combines multiple
dimensions of software maturity model development into a single assessment framework.
To the best of our knowledge, no framework in the literature has focused on evaluating the
quality of software maturity models. The absence of a comprehensive assessment
framework clearly supports the opportunity for developing an integrative assessment and
measurement framework that provides a holistic view of the software maturity model’s
overall quality. Assessing software maturity models is critical as it eventually leads
organizations to utilize validated models to improve and evolve their software
development practices. To bridge this identified gap, we aim to develop an assessment
framework for software maturity models that can be both adaptable and comprehensive.

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 6/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

Table 1 The different design principles for developing maturity models.

Author Purpose Design principles Key contributions

Bruin et al.
(2005)

A framework for creating
maturity models relying on
sequential phases.

The methodology is based on
principles that emphasize the
importance of a structured,
iterative process in developing
maturity models.

The model is based on sequential phases:
. Scope
. Design
. Populate
. Test
. Deploy
. Maintain

Becker,
Knackstedt &
Pöppelbuß
(2009)

A procedural model for
creating IT management
maturity models.

Design science research (DSR). Introduced a comprehensive approach to maturity model
development based on the guidelines for design science defined
by Hevner et al. (2004):

. Comparison with existing models.

. Iterative procedure.

. Evaluation.

. Design as a search process.

. Design as an artifact.

. Research contributions.

. Targeted presentation of results.

. Scientific documentation.

Otto, Bley &
Harst (2020)

A detailed process model to
guide users and developers
in creating prescriptive and
well-validated maturity
models.

Design-oriented approach. A detailed process model for creating maturity models structured
around eight steps:

. Define the problem and scope.

. Understand the domain.

. Identify the need for a new model.

. Define levels and dimensions.

. Shift to a prescriptive maturity model.

. Evaluate the final draft.

. Apply the model in a real-world setting.

. Document the final maturity model.

Solli-Sæther &
Gottschalk
(2010)

A detailed process for
developing stage models
with methodological
considerations.

Goal-oriented procedure Develop the following procedure for the stages of the growth
modeling process:

. Suggested Stage Model

. Conceptual Model

. Theoretical Model

. Empirical Model

. Revised Stage Model

Mettler (2011) A phase model for
developing and applying
maturity models that
address theoretical
soundness issues.

Design science research (DSR). A detailed four-phase development cycle for maturity assessment
models that includes the following:

. Define Scope: Setting the model’s breadth and analysis level.

. DesignModel: Creating the model based on a clear definition of
‘maturity’.

. Evaluate Design: Verify and validate the model.

. Reflect Evolution: Considering how changes can be made and
the evolution over time.

Dikhanbayeva
et al. (2020)

Assess industry 4.0 maturity
models based on core
design principles.

A set of measurable and attainable
steps for development according
to Industry 4.0 design principles.

A detailed analysis of 12 maturity models against 8 core Industry
4.0 principles. Identifying gaps for future research and
development strategy.

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 7/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

Our assessment framework will incorporate different criteria and provide a solid approach
for assessing and improving software maturity models. Filling this gap will contribute to
advancing the development of maturity models in the field. This framework will help
navigate the complexity of evaluating and validating software maturity models, improving
the software and process quality.

SOFTWARE MATURITY MODELS ASSESSMENT
FRAMEWORK
In this section, we discuss the research methodology that we adopted in developing our
assessment framework.

Research methodology
Our research methodology consisted of five phases, as shown in Fig. 1:

(1) Literature review: Initially, we conducted a review of existing literature to understand
the characteristics of software maturity models and what indicates a successful model.
To do this, we reviewed several articles and industry reports to acquire insights on the
strengths and weaknesses of current software maturity models. For instance, the work
conducted by Picard, Renault & Barafort (2015) and Otto, Bley & Harst (2020) revealed
some important factors that can be used in evaluating software maturity models.

(2) Framework design and development: Based on the literature review, we created an
assessment framework that involved the elicited evaluation criteria. The framework
consists of the key aspects that we found important in developing high-quality
maturity models. For instance, we considered aspects such as scalability, relevance,
empirical evidence, and practical usability.

(3) ISO/IEC TR 15504-3 integration: We reviewed the ISO/IEC TR 15504-3 assessment
process guidelines to incorporate relevant features into our measurement framework to
aid the assessment process.

(4) Validation: After developing our criteria, we conducted a pilot study to evaluate several
available software maturity models to assess how effectively our criteria capture
maturity model quality. This pilot was carried out by two domain experts who
reviewed the criteria in depth and suggested several refinements, including merging
overlapping items and removing less relevant ones. Based on their feedback, we
adjusted the criteria to reflect the essential aspects of quality more accurately. Once all
researchers reached a consensus on the completeness and clarity of the revised criteria,
we gathered structured feedback from academics and practitioners. The feedback
concentrated on the participants’ overall satisfaction with the framework, its overall
structure, its assessment capabilities, and its ease of use. We conducted four detailed
case studies; participants were selected through purposive sampling, inviting academics
who had developed maturity models in different domains. Each participant assessed
their own developed model using our framework under researcher guidance to ensure
objectivity. These case studies provided comprehensive empirical validation of our
framework’s effectiveness across diverse contexts, helped us identify areas for

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 8/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

improvement, and provided us with insightful information about our developed
framework.

(5) Documentation and guidelines: We present our developed assessment framework and
provide instructions and supporting materials to assist users in implementing it.

The developed measurement framework
We utilized a focused literature search strategy based on the most reliable, established, and
methodologically sound works in maturity model development and evaluation. Instead of
reviewing all existing maturity model publications comprehensively, we aimed to
strategically select foundational and influential sources that represent state-of-the-art
maturity models’ assessment and development principles. The literature selection criteria
were based on identifying the works that significantly contributed to the maturity model
theory, methodology, and assessment practices. Sources were further assessed to select
those that demonstrated impact, methodological rigor, and comprehensive coverage of

Figure 1 The research methodology. Full-size DOI: 10.7717/peerj-cs.3183/fig-1

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 9/29

http://dx.doi.org/10.7717/peerj-cs.3183/fig-1
http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

assessment principles. We carefully considered frameworks and standards such as
ISO/IEC (SPICE) and Capability Maturity Model Integration (CMMI) version 2.0 in this
process. These well-known models were used to understand the key aspects of maturity
and the stages of maturity levels. The identified evaluation criteria capture aspects of the
model’s development and design. These criteria address design elements, such as clarity,
standardization, documentation, and development aspects, including accuracy,
effectiveness, validation, practical implementation, and ongoing support (dos Santos-Neto
& Costa, 2019; Maier, Moultrie & Clarkson, 2012). Furthermore, insights gained from
academic articles such as the work done by Bruin et al. (2005) and Wendler (2012) were
instrumental in extracting several criteria for developing effective maturity models. Their
emphasis on developing maturity models based on sequential phases of development (e.g.,
scope, design, evaluation) influenced the development of criteria such as criterion 1.2.

We aimed to capture comprehensive criteria across scalability, empirical evidence, and
usability in practice. These themes consistently emerged in the literature as essential to
high-quality maturity models. We drew upon the work of Frick, Küttner & Schubert (2013)
for the need for tool support and Bruin et al. (2005) for practical implementation in
real-world scenarios. Our criteria also reflected this since it indicates that support and
real-world application are important in developing a robust maturity model.

The framework development was guided by a comprehensive literature review
complemented by insights derived from the authors’ prior work in developing and
implementing multiple software maturity models (Niazi et al., 2020; Alam et al., 2024).
Combining literature review and domain-specific expertise enabled a comprehensive
approach to criteria formulation. Figure 2 illustrates our framework development
methodology, showing the clear progression from three primary input sources (literature
review, existing maturity models, and authors’ prior knowledge) through systematic
criteria identification and categorization, ultimately resulting in our comprehensive
assessment framework. The assessment criteria were grouped into four categories: model
basic information, model structure, model assessment, and model support. Each of these
categories is important for developing and applying software maturity models. The
categories were derived through thematic analysis of our literature review findings. This
categorization emerged from identifying recurring themes and critical success factors
across the examined sources. This four-category structure captures several aspects of
maturity model development, from conceptual foundation through practical application,
ensuring comprehensive quality assessment across all critical dimensions. Furthermore, an
automated assessment tool is available at https://zenodo.org/records/15834005, allowing
users to evaluate models more efficiently. Each criterion is assessed using a 5-point scale:

0–No
1–Somewhat/Maybe
2–Yes
U–Unknown
NA–Not Applicable
Scores are summed within each category and converted to percentages. We applied

equal weighting to all evaluation criteria to ensure fairness, simplicity, and transparency.

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 10/29

https://zenodo.org/records/15834005
http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

Since there is no established evidence or consensus on which criteria are more important,
treating each equally avoids introducing subjective bias. This approach also makes the
evaluation process easier to understand and replicate.

Table 2 identifies the specific software development contexts in which the maturity
model can be applied. Each of the four categories is detailed below:

. The model’s basic information: This category covers the basic aspects that define the
purpose of a software maturity model. It includes the theories or frameworks on which
the model is built and the application domain. Additionally, this category emphasizes
how the model differs from others and offers unique value. Table 3 contains the criteria
for this category.

Figure 2 The framework development methodology. Full-size DOI: 10.7717/peerj-cs.3183/fig-2

Table 2 The specific software development contextsin which the maturity model can be applied.

What software maturity model is being assessed?

What is the size of the organization that the maturity model is designed for? Yes

Small organizations (10–50 employees) ☐

Medium organizations (51–249 employees) ☐

Large organizations (250 + employees) ☐

What is the main focus of this maturity model? Yes

Web development ☐

Mobile development ☐

Enterprise software ☐

Other ☐

If other, specify:………………………………………………..

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 11/29

http://dx.doi.org/10.7717/peerj-cs.3183/fig-2
http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

. Model structure: Table 4 outlines the key criteria for the model’s structure, focusing on
its architecture and design. This includes the various maturity levels and elements
illustrating different maturity aspects. An important aspect that is addressed in this
category is the necessity for clear and straightforward definitions, as these help
organizations accurately assess their current maturity level. Additionally, it addresses
criteria that emphasize the simplicity and user friendliness of the software maturity
model being evaluated.

. Model assessment: The assessment category’s criteria focus on the methods utilized by
organizations to determine their maturity levels. This involves evaluating the methods
used for assessments, ensuring the reliability of the tools, and validating of the

Table 3 The criteria for model’s basic information.

1 Model basic information Score

0 1 2 U NA

1.1 Are the costs of implementing this maturity model (e.g., initial, implementation, recurring fees) reasonable relative to the value
of applying it?

1.2 Were predefined steps followed in the research design of the maturity model?

1.3 Is the maturity model distinct and unique compared to existing models in the same domain?

1.4 Does the maturity model conform to established industry standards or guidelines?

1.5 Does the model clearly specify its relevance to particular domains or areas?

1.6 Has the model been validated in real-world settings (e.g., peer-reviewed literature, surveys, industry groups), demonstrating its
applicability and effectiveness?

1.7 Does the model have a clear ideological foundation supported by established theories or models?

1.8 Is the model evidence-based (e.g., grounded in the peer-reviewed literature, industry-recognized best practice)?

1.9 Are the model’s practices applicable across different scenarios, cases, and projects?

SECTION SUBTOTAL

Table 4 The criteria for the model’s structure.

2 Model structure criteria Score

0 1 2 U NA

2.1 Is the process of applying the model clear?

2.2 Does the model provide clear definitions of maturity and dimensions of maturity?

2.3 Are maturity levels within the model clearly defined, with each level described by clear criteria and expected outcomes?

2.4 Does the maturity model outline specific levels and the logical progression between these levels?

2.5 Is the maturity model’s structure, including the number of levels and attributes, clear and coherent?

2.6 Does the model propose specific improvement measures or practices for advancing from one maturity level to the next?

2.7 Is there an ability to adjust or alter the model’s structure, components, or processes (e.g., the model can evolve and remain
relevant.)?

2.8 Is there a balance in the model between reflecting the complexities of the domain and maintaining simplicity for
understandability?

2.9 Is the maturity model’s constructs and definitions accurate and precise?

2.10 Is the maturity model easily accessible and usable by practitioners without extensive training?

SECTION SUBTOTAL

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 12/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

assessment instruments. These criteria help guarantee that evaluations are objective and
evidence-based, enabling organizations to measure their progress accurately. Also, the
availability of various assessment methods is considered, for example, self-assessments
or third-party assessments, which may be warranted for a variety of needs and situations.
The criteria for this category are shown in Table 5.

. Model support: This category focuses on the availability of support mechanisms
essential for the effective implementation of the software maturity model. It includes
criteria such as training, documentation, and guidance. These resources help
organizations apply the model to their specific needs and help them understand the
results clearly. Furthermore, it highlights the importance of keeping the model relevant
and regularly updated to maintain its applicability over time. Table 6 includes the criteria
for this category.

Results summary
To ensure we can appropriately and objectively evaluate different maturity models, we
should note the difference between the total and the grand total. the total represents the
raw sum of valid scores across all applicable criteria, excluding items marked as not
applicable (NA) or unknown (U). In contrast, the grand total is a normalized score
calculated using the formula:

TOTAL
Total number of applicable criteria � 2

� �
� 100

Therefore, the model is not penalized for criteria that involve something outside its
intended scope or are insufficiently defined in the source material. By excluding NA and U
scores from the denominator, the grand total reflects only the evaluated dimensions, thus

Table 5 The criteria for the model’s assessment.

3 Model assessment criteria Score

0 1 2 U NA

3.1 Were the model’s assessment instruments validated to ensure accuracy and reliability?

3.2 Are there clear, precise criteria for assessing maturity at each level and dimension, allowing for consistent and objective
evaluations?

3.3 Does the model include a detailed methodology for conducting assessments, providing guidance on evaluating criteria, and
interpreting results?

3.4 Does the assessment methodology outline clear procedures for assessors?

3.5 Is there a logical connection between the model’s design and the chosen assessment methods?

3.6 Does the model support different types of assessments (e.g., self-assessment, third-party assessment)?

3.7 Can support be provided during the assessment using the model?

3.8 Does the maturity model promote transparency and openness in identifying and addressing areas for improvement,
including the possibility of suggesting enhancements?

3.9 Does the maturity model leverage technology and tools for more efficient and accurate assessments?

SECTION SUBTOTAL

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 13/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

preserving the integrity and comparability of the assessment outcomes. Table 7 illustrates
the assessment results per category.

Score interpretation
0–25: Basic—The software maturity model is in the early stages, requiring significant
development.

26–50: Emerging—The software maturity model shows foundational strengths but needs
further refinement for broader applicability and impact.

51–75: Mature—The evaluated criteria demonstrate a functional approach, suggesting a
reasonably developed software maturity model.

76–100: Advanced—The model meets standard maturity expectations, demonstrating
broad applicability and significant impact.

Table 6 The criteria for the model’s support.

4 Model support criteria Score

0 1 2 U NA

4.1 Does the maturity report present the results clearly?

4.2 Is there adequate documentation supporting the application of the assessment, such as a handbook, textual descriptions, or
software assessment tools?

4.3 Is the model designed with enough flexibility to be adapted to different organizational settings?

4.4 Does the model provide actionable insights and guidance for both practitioners and researchers?

4.5 Does the maturity report provide practical, useful recommendations to drive improvements?

4.6 Does the model facilitate benchmarking against industry standards or comparisons with similar organizations?

4.7 Can the maturity report be customized?

4.8 Is training available for effectively implementing and utilizing the maturity model?

4.9 Is there a continuity and evolution plan between different versions of the model with accessible documentation?

4.10 Is there a maintenance plan in place to ensure the model remains relevant and up-to-date?

SECTION SUBTOTAL

Table 7 The assessment results per category.

Section Result

Basic information

Model structure criteria

Model assessment criteria

Model support criteria

Total1

Grand total2 0%

Notes:
1 The sum of valid scores across all categories.
2 TOTAL

Total number of applicable criteria�2

� �
� 100.

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 14/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

Literature analysis revealed common practices in maturity assessment, where a
four-level categorizations are widely used, similar to CMMI’s initial, managed, defined,
and optimizing levels. Expert consultations with three experts confirmed that these
ranges correspond with practical expectations for quality assessment of maturity
models. The ranges were validated through pilot testing with two maturity models to
ensure that the categorizations effectively differentiate between models of varying
quality levels.

ALIGNMENT WITH ISO/IEC TR 15504-3 STANDARD
Our approach to assessing software maturity models is guided by the ISO/IEC TR 15504-3
standard, which outlines clear and structured practices for software process assessments.
Using this framework helps ensure that assessments are consistent, well-balanced, and
reliable. Recognizing that ISO/IEC TR 15504 would enable us to meet our research
objectives for the previously listed reasons, further considerations influenced our decision
to select ISO/IEC TR 15504-3. First, it is an internationally recognised standard for process
assessment methodology, which provides credible and validated information on systematic
evaluation approaches. Second, the standard specifically addresses assessment
methodology, assessment procedures, and quality requirements, all of which relate closely
to our objective of developing a rigorous assessment framework for software maturity
models. Finally, the standard was intended to be applicable to multiple process domains
and organizational contexts, making it particularly suitable for assessing software maturity
models that span diverse software development approaches and organizational structures.
The assessment method is divided into three phases:

. Input phase: This phase determines assessment requirements, including purpose, scope,
constraints, and resources. The result is a clear set of parameters for the assessment
process.

. Processes phase: This phase consists of the actual assessment process, including data
collection, analysis, validation, and scoring against predefined criteria, using
standardized procedures.

. Output phase: This phase consists of documenting, reporting, and communicating
assessment results, including detailed justification for decisions and recommendations
for improvement.

To ensure assessment consistency, all evaluators used defined standardized guidelines in
accordance with ISO/IEC 15504-3 guidelines. The reliability of the assessments is
supported by the structured evaluations and oversight from the researchers. Each phase is
discussed separately below.

Defining the assessment input
Our approach begins by defining the assessment input, which includes the purpose, scope,
and any constraints that may affect execution. We clearly specify the aspects of the models

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 15/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

to be assessed, including their impact on enhancing software development processes and
their relevance for various sizes and types of organizations. The assessment input will be
collected during the initial phase, following these steps:

• Step 1: The developer of the maturity model prepares the maturity model to be assessed.

• Step 2: The developer of the maturity model appoints themselves or another qualified
individual to be responsible for the assessment process of the maturity model.

• Step 3: In consultation with domain experts, the developer selects qualified assessors who
will participate in the assessment.

• Step 4: The developer or the assessor defines the scope and objectives of the assessment:

○ Scope: To evaluate the effectiveness and comprehensiveness of the maturity model.

○ Objectives: Identify strengths, weaknesses, and areas for improvement in the maturity
model.

• Step 5: The developer or the assessor lists the various artifacts of the developed software
maturity model to be evaluated.

• Step 6: The developer ensures that the assessor has access to all required documents
needed for the assessment.

• Step 7: The developer or the assessor defines a clear schedule for the assessment process.

• Step 8: The developer ensures the assessor is available during the assessment period.

Any changes to the assessment input should be approved and documented by the
maturity model developer and assessors.

Structured assessment process
As described above, the framework has four main categories, each evaluated against a set of
predefined criteria. These criteria reflect the software maturity models’ efficiency,
relevance, and thoroughness. Once the assessment input from the previous phase has been
finalized, the assessment process moves to the next phase with the following steps:

. Step 1: The developer confirms that all necessary documents are available and accessible
for the assessment.

. Step 2: The developer or the assessor validates the consistency and sufficiency of the
collected data before proceeding with the assessment.

. Step 3: The developer or the assessor assigns a score to each criterion in the defined
categories.

. Step 4: The developer or the assessor calculates each category’s scores by summing each
criterion’s score.

. Step 5: Convert the total score to a percentage (out of 100).

. Step 6: Based on the overall score, determine the quality of the maturity model.

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 16/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

Assessment output
After completing each phase, it’s important to document and report the findings obtained
during that phase in detail as part of the output process. The developer of the maturity
model is responsible for recording the assessment results in a comprehensive document.
The resulting document provides detailed explanations for each decision made and the
scores given, thus ensuring all supporting evidence is documented.

FRAMEWORK EVALUATION
In this section, we describe how we evaluated the effectiveness and feasibility of our
measurement framework. We aimed to elicit domain experts’ feedback on our proposed
framework. Before the evaluation, we provided the experts with a complete description of
the framework and usage guidelines. The evaluation criteria for the framework included:

. Ease of use: Is the framework simple and intuitive, enabling users with varying levels of
expertise to use it without extensive training?

. Framework structure: Is the framework’s structure comprehensively designed to cover
all critical elements necessary to thoroughly assess software maturity models, ensuring a
holistic evaluation approach?

. Assessment: Does the framework provide robust and reliable metrics for evaluating the
strengths and weaknesses of software maturity models, ensuring detailed analysis and
actionable insights?

. User satisfaction: Does the framework support user satisfaction by evaluating its utility,
ease of use, and overall impact on improving software development practices across
diverse environments?

For each of the criteria outlined above, at least two assessment points were created and
evaluated using a five-point Likert scale that ranged from Strongly Agree to Strongly
Disagree. Expert participants were selected using purposive sampling based on the
following criteria. First, professional relevance was essential, requiring direct experience in
software engineering, software development, or related technical roles. Second,
participants were required to have an appropriate educational background with a
minimum of graduate-level education in software engineering, computer science, or
related fields. Finally, domain expertise was necessary, encompassing knowledge of
software maturity models, process assessment methodologies, and software quality
frameworks. This approach resulted in a diverse expert panel of eleven participants
comprising academic researchers, PhD candidates, software engineers, and a cybersecurity
analyst, with experience ranging from under 3 years to over 10 years in relevant domains,
as detailed in Table 8.

Expert feedback analysis and discussion
The integration of expert feedback served as a critical mechanism for ensuring our
measurement framework’s relevance and effectiveness. We analyzed the survey results

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 17/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

from eleven domain experts, with diverse experience levels in software process assessment,
revealing several critical findings.

The evaluation demonstrated strong positive outcomes. A total of 81.8% of experts
agreed, and 18.2% strongly agreed that the framework is logically structured and easily
understandable, indicating excellent foundational design acceptance. Furthermore, 90.9%
of experts affirmed that the criteria are self-explanatory, with only one expert expressing
concerns. This demonstrates the framework’s clarity and accessibility for users with
varying expertise levels. Expert validation of the framework’s evaluation capabilities
showed positive results, with 72.7% agreeing and 27.3% strongly agreeing that it provides
precise and reliable indicators for identifying areas of weakness and strength in software
maturity models. This confirms the framework’s ability to provide meaningful and
accurate evaluations. The agreement on the framework’s time efficiency is particularly
noteworthy, with all eleven experts agreeing that the assessment process is time-efficient
and resource-conservative. This addresses a critical practical concern for framework
adoption in industry settings.

The framework’s comprehensive coverage received strong validation, with 81.8%
agreeing and 18.2% strongly agreeing that it is thorough and considers all critical elements
vital for assessing software maturity models. Additionally, 90.9% of experts confirmed the
framework’s applicability across diverse software development contexts and organizational
sizes, demonstrating its flexibility and broad utility.

The recommendations criterion produced similarly strong results, with 81.8% agreeing
and 18.2% strongly agreeing to recommend the framework to colleagues and industry
peers as a useful evaluation tool. We had balanced results when asking about the need for
training before utilizing the framework, with 27.3% disagreeing, 27.3% being neutral, and
45.5% agreeing that some training is required. The results indicate that additional training
may enhance users’ confidence, ultimately improving our assessment framework’s
effectiveness. We also plan to supplement our framework with further guidance materials
to increase the practicality of the assessment process. Additionally, to further facilitate
users’ understanding of the criteria, several criteria have been reworded for clarity and
comprehensibility. Table 9 illustrates evaluation scores and expert responses for each
criterion.

Table 8 The expert panel profiles.

Years of experience in software assessment or process improvement

Less than 3 years 3 to 5 years 6 to 10 years More than 10 years Total

Current role Academic researcher 0 1 1 2 4

Project manager 0 0 0 0 0

Software engineer 1 0 0 0 1

PhD candidate 2 2 0 1 5

Other 1 0 0 0 1

Total 4 3 1 3 11

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 18/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

DOMAIN-SPECIFIC FRAMEWORK
The following section serves as a guide for customizing the evaluation criteria for a given
software domain. A domain-specific framework is an adaptation of the original assessment
framework used to evaluate maturity models in specific software domains (e.g., security,
quality, outsourcing). These customized frameworks are adjusted to reflect the target
domain’s characteristics, standards, and requirements. This includes modifying the
evaluation criteria to address aspects applicable to a specific domain, to ensure that the
maturity model accurately assesses and supports improvements relevant to that specific
context. We outline a systematic approach to customize the criteria and develop a
domain-specific framework through the following steps:

. Step 1: Determine unique domain requirements: The user should identify the aspects
unique to the specific domain under consideration (e.g., security, quality, outsourcing,
etc.). This includes standards, practices, and concerns specific to the domain. For
example, one of the security domain requirements is compliance with security standards
(e.g., ISO/IEC 27001). Another example is the relevance to specific security domains
such as cybersecurity, information security, and incident response.

. Step 2: Map domain requirements to existing criteria: For each criterion in the
software maturity model, determine how it can be adapted to fit the unique requirements
of the chosen domain. This involves revising the language and focus of each criterion to
address domain-specific aspects identified in Step 1. For example, for the first elicited
domain requirement, align the need for security standards with the existing criteria. As

Table 9 The evaluation scores and expert responses for each criterion.

No. of participants = 11

Positive Negative Neutral

SA A SD D N

Framework ease of use

The framework is logically structured and understandable by academic researchers and industry practitioners. 2 9 0 0 0

All the criteria in the framework are self-explanatory and require no further clarification. 4 6 0 1 0

The framework is easy to learn, enabling individuals with varying levels of expertise in software maturity models to
utilize it effectively.

3 7 0 0 1

Some kind of training is necessary for the utilization of this framework 0 5 0 3 3

Framework structure

The framework is thorough and considers all critical elements vital for assessing software maturity models. 2 9 0 0 0

The assessment process defined by the framework is time-efficient and resource-conservative. 0 11 0 0 0

Framework assessment capabilities

The framework provides precise and reliable indicators for assessing the quality of software maturity models. 3 8 0 0 0

The framework can identify areas of weakness and areas of strength in a software maturity model. 3 8 0 0 0

User satisfaction

I recommend this framework to colleagues and industry peers as a reliable tool for evaluating software maturity models. 2 9 0 0 0

The framework is applicable across diverse software development contexts and organizational sizes. 1 9 0 0 1

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 19/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

for the second requirement, align the model’s relevance to specific security domains with
the current criteria.

. Step 3: Modify each criterion: Tailor each criterion to reflect the unique requirements of
the chosen domain. For example, based on the previous steps, criterion 1.4 can be
customized to “Does the security maturity model conform to established security
standards and guidelines such as ISO/IEC 27001?”. Similarly, criterion 1.5 can be
adapted to “Does the model clearly specify its relevance to particular security domains or
areas, such as cybersecurity, information security, incident response, etc.,?”

. Step 4: Validate the customization: Ensure that each customized criterion accurately
reflects the unique aspects of the chosen domain.

Following these steps, the framework can be customized for any specific software
domain, ensuring the criteria are relevant, comprehensive, and effective in assessing
maturity models within the chosen context.

CASE STUDY
In order to demonstrate the practicality, usability, and effectiveness of our framework in
assessing maturity models, we conducted four detailed case studies to ensure
comprehensive framework validation. We chose models from various software
engineering domains to highlight our framework’s cross-domain applicability. We aimed
to select models developed in the last 5 years, as these will better indicate current practices
in the field. We also tried to choose models with the authors available and willing to
participate in the assessment process. Accordingly, we invited academic experts who had
developed relevant maturity models to contribute to our study. Four researchers agreed to
participate, allowing us to evaluate maturity models across various domains, including
software outsourcing, security, integration, and sustainable software development. The
case studies were each undertaken by a single experienced researcher. The maturity models
are called maturity models A, B, C, and D to maintain confidentiality. The structured
assessment process, aligned with ISO/IEC 15504-3 protocols, revealed distinct patterns of
strengths and areas for improvement across all models. All models scored highly overall,
placing them in the ‘Advanced’ category. Appendix A summarizes the assessment results
for each of the evaluated maturity models. Below, we will discuss their specific scores and
percentages to provide deeper insights into their unique capabilities and limitations.

Case study results
Maturity model A
Maturity model A provides a framework to assess, manage, and improve security practices
throughout the software development lifecycle, ensuring that security considerations are
integral to the development processes. It comprises seven security assurance levels:
governance and security threat analysis, secure requirement analysis, secure design, secure
coding, secure testing and review, secure deployment, and security improvement. The
levels consist of 46 critical security risks with 388 corresponding practices. This maturity
model was developed by examining previous well-known development models and

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 20/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

carrying out a systematic literature review. It was later validated through practical
implementation in real-world settings.

Maturity model A offers an approach for improving software security practices with a
final score of 66, or 86.8%. The model’s high score of (17 out of 18) in the Basic
Information category indicates that it performs generally well in terms of validation and
compliance. This implies that the model complies with existing security standards and has
been verified in various real-world settings. The model’s robust structure, scoring 19 out of
20 in the Model Structure category, also suggests that security levels and expected
outcomes are well-defined with clear criteria and logical progression between levels.
Additionally, it reveals the model’s flexibility, allowing organizations to tailor the model to
their specific needs. However, the lower scores in the Model Support (15 out of 20) and
Model Assessment categories (15 out of 18) pose some limitations on the maturity model’s
overall quality. This might indicate the need for more refined assessment methodologies
and enhanced support mechanisms in order to enhance applicability and ease of
implementation.

Maturity model B
Maturity model B assists vendor organizations in managing and executing outsourcing
contracts effectively. This is done at various stages of the outsourcing contract life cycle:
precontract, during contract, and post-contract. In order to implement the model
successfully, nine critical success factors (CSFs) and ten barriers (CBs) affecting contract
management were identified. Additionally, practical guidelines were provided for
successfully identifying and resolving barriers. A systematic review of the literature and
empirical studies led to the development of this maturity model.

Maturity model B scored 55, equivalent to 83.3%, with some criteria marked as not
applicable. This model’s strengths lie in its well-defined structure, scoring 15 out of 16 in
the Model Structure category, making it practical for its intended use. However, its
assessment methods, which scored (14 out of 18), are inadequate for assessing maturity
effectively. Looking closely at this category, the assessment instruments were not validated,
and there were no clear, precise criteria for assessing maturity at each level and dimension.
In addition, the model does not support different types of assessments, nor does it outline
clear procedures for the assessors. Addressing these areas would enhance the model’s
overall quality. On the other hand, the Model’s Support category received (13 out of 14),
demonstrating the model’s strength in this area. It provides comprehensive support tools,
including documentation and training materials for the intended users. Similarly, the basic
information category scored (13 out of 18), suggesting that the model could have been
enhanced with further validation and a clear specification of its relevance to particular
domains or areas, ultimately increasing its credibility and applicability.

Maturity model C
Maturity model C was created to help vendors measure their agile maturity for green and
sustainable software development. This maturity model intends to address an emerging
need in the software industry to develop environmentally sustainable software using

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 21/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

limited energy and resources. The model consists of several modules that measure different
dimensions of agile maturity, including critical success factors (CSFs) and critical risk
factors (CRFs) that may help or hinder the implementation of green software engineering.
Maturity model C was built using existing models such as the Capability Maturity Model
Integration (CMMI), Integrated Maturity Model (IMM), and the Software Operational
Viability Risk Model (SOVRM). This maturity model has levels and criteria to assess
organizations’ practices, processes, and capabilities to achieve sustainability goals using
agile methodologies.

Maturity model C achieved an overall score of 69, translating to 93.2%. This
demonstrates that the model performs well in assessing sustainability integration into agile
software development practices. Looking at the model’s scores across the four categories,
we can observe that the model’s strengths lie in its well-organized structure and assessment
capabilities. The model scored (18 out of 20) and (17 out of 18) in the Model Structure and
Assessment categories, respectively. This indicates that the model has a well-defined
structure with clear maturity levels and evaluation criteria to enhance green software
development. However, the model scored lower in the Support category (16 out of 20),
showing that there is a need for tailored support mechanisms, more documentation, and to
enhance the model’s accessibility and usability in different organizational settings.

Maturity model D
Maturity model D was developed to overcome many of the issues associated with the
integration of software components developed by distributed teams. This maturity model
is intended to provide vendors with a systematic way to address integration issues in many
different types of projects and products. The maturity model was developed from an
extensive literature review, which identified critical elements and issues associated with
software integration; this was then validated through an empirical study involving industry
practitioners.

Maturity model D achieved a total score of 69, resulting in a percentage of 91%. This
maturity model was particularly strong in its structural clarity, scoring 20 out of 20, the
highest among all evaluated maturity models. This reflects its well-organized structure,
including the clarity of the maturity model’s levels and attributes. The maturity model
scored (17 out of 18) in the model assessment category, indicating that the maturity model
was effective in evaluating the integration practices with its current assessment methods.
Maturity model D performs well in general but demonstrates weakness in the model
support category, scoring 15 out of 20. This could indicate there are areas for improvement
regarding documentation, customization, and plans for evolution and maintenance.

DISCUSSION
The case studies revealed detailed insights about each model’s quality and implementation
readiness. The evaluation results showed that models A and C scored highly overall,
demonstrating strong theoretical foundations and clear domain specifications. These

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 22/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

models particularly excelled in criteria related to established industry standards and
research design methodology. Similarly, model D’s results were high (17 out of 18),
showing slight limitations in industry standards conformance. Model B’s lowest score
(13 out of 18) highlighted gaps primarily in validation evidence and domain relevance.
Nevertheless, all models successfully followed predefined research steps and maintained
clear ideological foundations.

The Model Structure category emerged as the strongest category with relatively high
scores across all models. Model D scored (20 out of 20), demonstrating clarity in maturity
levels and progression paths. Model A followed closely (19 out of 20) with only minor
limitations regarding the framework’s ease of use, without prior training being needed.
Models C (18 out of 20) and B (15 out of 16) demonstrated well-defined structures but
showed some constraints in adaptability and ease of use. The high scores in this category
indicate mature approaches to model architecture and design.

The Model Assessment category’s criteria revealed important insights. Models C and D
(17 out of 18) demonstrated robust assessment procedures and clear evaluation criteria.
On the other hand, Model A scored lower (15 out of 18) due to limitations in assessment
method variety, lack of support, and misalignment between the model’s design and the
chosen assessment methods. Additionally, model B’s score (14 out of 18) indicated a need
to validate the assessment instrument and to enhance the assessment criteria’s clarity.

Finally, all models achieved lower scores in the Support category. Model C scored the
highest (16 out of 20), followed by models A and D, both scoring 15 out of 20, and model B
(13 out of 14, with several inapplicable criteria). Common limitations among all the
assessed models included insufficient documentation, limited benchmarking capabilities,
the lack of support during the assessment process, and incomplete evolution planning.
However, all models demonstrated strength in results communication and improvement
recommendations.

These findings emphasize that, despite strong structural foundations and theoretical
clarity, practical limitations such as missing support mechanisms, undefined long-term
planning, and partial inapplicability hinder the quality of maturity models. The
comparative analysis confirms that our measurement framework successfully identifies
strengths and weaknesses across various software maturity models. Structural design and
theoretical foundations were identified as key strengths, but significant deficiencies are
evident in areas such as implementation support and assessment rigor. The framework’s
ability to generate actionable insights for model improvement across all case studies
provides pragmatic evidence for construct validity as it identifies improvement
opportunities that align with practitioner needs. The consistent evaluation across diverse
domains demonstrates the framework’s utility as a standardized assessment method.
Although validation efforts concentrated on academically developed models, the
framework’s systematic methodology and comprehensive criteria indicate its promising
applicability within industrial contexts.

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 23/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

Threats to validity
Although our assessment framework was developed using a rigorous methodology, it is
important to acknowledge several threats to its validity:

. Construct validity: The criteria used in the framework are derived mainly from the
literature. However, there may be discrepancies between these criteria and other factors
influencing the quality of software maturity models. Although we tried to ensure that our
criteria comprehensively covered all relevant aspects of software maturity models, we
may have overlooked research articles containing additional important criteria. Another
construct validity concern is whether the framework truly measures maturity model
quality. Even though we did not conduct statistical or qualitative testing for construct
validity, the design of our approach supports the framework’s validity. The criteria were
derived from a literature review, ensuring alignment with established quality indicators
for maturity models. They were further validated by domain experts to confirm their
relevance and coverage of key quality dimensions. Additionally, case studies were
utilized to measure the framework’s practical utility in assessing different models and
identifying meaningful areas for improvement, while aligning with ISO/IEC 15504-3 as a
theoretical framework.

. Internal validity: The validation of our framework involved structured expert evaluations
from industry practitioners and academics. Although their insights are valuable,
potential bias may have influenced their responses due to personal experiences and
perspectives. Moreover, in the case studies, assessors were required to evaluate their own
developed maturity models. This might introduce the risk of bias, as they may
unintentionally evaluate their maturity models positively. To mitigate this threat, we
provided assessment guidelines from ISO/IEC 15504-3 standards to ensure reliable and
comparable assessment results.

. Reliability: The consistency of the assessment using our framework could be affected by
the subjective interpretation of the criteria by different assessors. Although some
subjectivity is inherent in qualitative assessments, training and clear guidelines will be
provided to mitigate this threat.

CONCLUSION AND FUTURE WORK
This article proposes an assessment framework that assesses the quality of software
maturity models. We started with a literature review and used our experience with
software maturity models to develop the framework with criteria that measure software
maturity models’s quality. We integrated ISO/IEC 15504-3 assessment guidelines to
enhance our framework further, and we validated the framework through expert reviews
and case studies to ensure it is practical and works well in real-world applications. The
framework covers all the aspects to be considered when developing software maturity
models. It is organized into four main categories: basic information of the model, model
structure, model assessment, and model support mechanisms. We aligned our work with
ISO/IEC TR 15504-3 standards to ensure the assessment is consistent and reliable. Our
framework provides valuable insights for the software industry and can be used by

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 24/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

professionals and academics to assess and improve maturity model development practices.
Our developed framework demonstrates the need for a systematic approach to assess and
evaluate software maturity models. Furthermore, feedback from experts indicated that the
framework can drive improvements in the development of software maturity models.

This framework represents a structured approach to maturity model assessment and
acknowledges several limitations. The purposive sampling for case studies and the inherent
subjectivity in qualitative assessments represent areas for future improvement. In addition,
our case studies focus primarily on academically developed models, which provide
comprehensive documentation and developer accessibility necessary for thorough
evaluation but may not fully represent the diversity of industry-developed proprietary
models. Future studies should explore partnerships with industry organizations to validate
framework applicability across proprietary models with appropriate measures in place to
maintain confidentiality.

Appendix A Assessment results summary for the evaluated maturity models.

Score
MM
(A)

MM
(B)

MM
(C)

MM
(D)

1 Model basic information

1.1 Are the costs of implementing this maturity model (e.g., initial, implementation, recurring fees) reasonable
relative to the value of applying it?

2 1 2 2

1.2 Were predefined steps followed in the research design of the maturity model? 2 2 2 2

1.3 Is the maturity model distinct and unique compared to existing models in the same domain? 2 2 2 2

1.4 Does the maturity model conform to established industry standards or guidelines? 2 2 2 1

1.5 Does the model clearly specify its relevance to particular domains or areas? 2 1 2 2

1.6 Has the model been validated in real-world settings (e.g., peer-reviewed literature, surveys, industry groups),
demonstrating its applicability and effectiveness?

2 1 2 2

1.7 Does the model have a clear ideological foundation supported by established theories or models? 2 2 2 2

1.8 Is the model evidence-based (e.g., grounded in the peer-reviewed literature, industry-recognized best practice)? 1 1 2 2

1.9 Are the model’s practices applicable across different scenarios, cases, and projects? 2 1 2 2

SECTION SUBTOTAL 17 13 18 17

2 Model structure criteria

2.1 Is the process of applying the model clear? 2 2 2 2

2.2 Does the model provide clear definitions of maturity and dimensions of maturity? 2 2 2 2

2.3 Are maturity levels within the model clearly defined, with each level described by clear criteria and expected
outcomes?

2 2 2 2

2.4 Does the maturity model outline specific levels and the logical progression between these levels? 2 NA 2 2

2.5 Is the maturity model’s structure, including the number of levels and attributes, clear and coherent? 2 2 2 2

2.6 Does the model propose specific improvement measures or practices for advancing from one maturity level to
the next?

2 2 2 2

2.7 Is there an ability to adjust or alter the model’s structure, components, or processes (e.g., the model can evolve
and remain relevant.)?

2 NA 1 2

(Continued)

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 25/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received support provided by the Deanship of Research at King Fahd
University of Petroleum and Minerals, Saudi Arabia. This work was funded by the
Interdisciplinary Research Center for Intelligent Secure Systems under Grant #: INSS2404.

Appendix A (continued)

Score
MM
(A)

MM
(B)

MM
(C)

MM
(D)

2.8 Is there a balance in the model between reflecting the complexities of the domain and maintaining simplicity for
understandability?

2 2 2 2

2.9 Is the maturity model’s constructs and definitions accurate and precise? 2 2 2 2

2.10 Is the maturity model easily accessible and usable by practitioners without extensive training? 1 1 1 2

SECTION SUBTOTAL 19 15 18 20

3 Model assessment criteria

3.1 Were the model’s assessment instruments validated to ensure accuracy and reliability? 2 1 2 2

3.2 Are there clear, precise criteria for assessing maturity at each level and dimension, allowing for consistent and
objective evaluations?

2 1 2 2

3.3 Does the model include a detailed methodology for conducting assessments, providing guidance on evaluating
criteria, and interpreting results?

2 2 2 2

3.4 Does the assessment methodology outline clear procedures for assessors? 2 1 2 2

3.5 Is there a logical connection between the model’s design and the chosen assessment methods? 1 2 2 2

3.6 Does the model support different types of assessments (e.g., self-assessment, third-party assessment)? 1 1 2 2

3.7 Can support be provided during the assessment using the model? 1 2 2 1

3.8 Does the maturity model promote transparency and openness in identifying and addressing areas for
improvement, including the possibility of suggesting enhancements?

2 2 2 2

3.9 Does the maturity model leverage technology and tools for more efficient and accurate assessments? 2 2 1 2

SECTION SUBTOTAL 15 14 17 17

4 Model support criteria

4.1 Does the maturity report communicate results clearly? 2 2 2 2

4.2 Is there adequate documentation supporting the application of the assessment, such as a handbook, textual
descriptions, or software assessment tools?

1 NA 1 1

4.3 Is the model designed with enough flexibility to be adapted to different organizational settings? 2 2 1 2

4.4 Does the model provide actionable insights and guidance for both practitioners and researchers? 2 2 2 2

4.5 Does the maturity report provide practical, useful recommendations to drive improvements? 2 2 2 2

4.6 Does the model facilitate benchmarking against industry standards or comparisons with similar organizations? 1 1 2 1

4.7 Can the maturity report be customized? 1 NA 2 1

4.8 Is training available for effectively implementing and utilizing the maturity model? 1 NA 2 2

4.9 Is there a continuity and evolution plan between different versions of the model with accessible documentation? 1 2 U 1

4.10 Is there a maintenance plan in place to ensure the model remains relevant and up-to-date? 2 2 2 1

SECTION SUBTOTAL 15 13 16 15

Overall total 66 55 69 69

Percentage 86.8% 83.3% 93.2% 91%

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 26/29

http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Deanship of Research at King Fahd University of Petroleum and Minerals, Saudi Arabia.
Interdisciplinary Research Center for Intelligent Secure Systems: INSS2404.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Reem Alshareef performed the experiments, analyzed the data, performed the
computation work, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

. Mohammad Alshayeb conceived and designed the experiments, analyzed the data,
performed the computation work, authored or reviewed drafts of the article, and
approved the final draft.

. Mahmood Niazi conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

. Sajjad Mahmood conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The process automation and supplementary material is available at Zenodo: Alshareef,
R. (2025). Measurement framework for software maturity models survey. Zenodo. https://
doi.org/10.5281/zenodo.15834005.

REFERENCES
Abdellatif A, Alshayeb M, Zahran S, Niazi M. 2019. A measurement framework for software

product maturity assessment. Journal of Software: Evolution and Process 31(4):18
DOI 10.1002/smr.2151.

Al-Qutaish RE, Abran A. 2011. A maturity model of software product quality. Journal of Research
and Practice in Information Technology 43(4):307–327.

Alam G, Mahmood S, Alshayeb M, Niazi M, Zafar S. 2024. Maturity model for secure software
testing. Journal of Software: Evolution and Process 36(5):e2593 DOI 10.1002/smr.2593.

Becker J, Knackstedt R, Pöppelbuß J. 2009. Developing maturity models for IT management.
Business & Information Systems Engineering 1(3):213–222 DOI 10.1007/s12599-009-0044-5.

Bruin TD, Rosemann M, Freeze R, Kaulkarni U. 2005. Understanding the main phases of
developing a maturity assessment model. In: Australasian Conference on Information Systems
(ACIS), Australasian Chapter of the Association for Information Systems, 8–19.

Cooke-Davies TJ, Arzymanow A. 2003. The maturity of project management in different
industries: an investigation into variations between project management models. International
Journal of Project Management 21(6):471–478 DOI 10.1016/s0263-7863(02)00084-4.

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 27/29

https://doi.org/10.5281/zenodo.15834005
https://doi.org/10.5281/zenodo.15834005
http://dx.doi.org/10.1002/smr.2151
http://dx.doi.org/10.1002/smr.2593
http://dx.doi.org/10.1007/s12599-009-0044-5
http://dx.doi.org/10.1016/s0263-7863(02)00084-4
http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

Dahlin G. 2020. What can we learn from process maturity models?–A literature review of models
addressing process maturity. International Journal of Process Management and Benchmarking
10(4):495–519 DOI 10.1504/ijpmb.2020.10027581.

Dikhanbayeva D, Shaikholla S, Suleiman Z, Turkyilmaz A. 2020. Assessment of industry
4.0 maturity models by design principles. Sustainability 12(23):9927 DOI 10.3390/su12239927.

Dorling A. 1993. SPICE: software process improvement and capability determination. Software
Quality Journal 2(4):209–224 DOI 10.1007/bf00403764.

dos Santos-Neto JBS, Costa APCS. 2019. Enterprise maturity models: a systematic literature
review. Enterprise Information Systems 13(5):719–769 DOI 10.1080/17517575.2019.1575986.

Frick N, Küttner TF, Schubert P. 2013. Assessment methodology for a maturity model for
interorganizational systems—the search for an assessment procedure. In: Proceedings of the
Annual Hawaii International Conference on System Sciences, 274–283
DOI 10.1109/HICSS.2013.106.

Garousi V, van Veenendaal E. 2022. Test maturity model integration: trends of worldwide test
maturity and certifications. IEEE Software 39(2):71–79 DOI 10.1109/MS.2021.3061930.

Garzás J, Pino FJ, Piattini M, Fernández CM. 2013. A maturity model for the Spanish software
industry based on ISO standards. Computer Standards & Interfaces 35(6):616–628
DOI 10.1016/j.csi.2013.04.002.

Golden B. 2005. Succeeding with open source. Boston: Addison-Wesley Professional.

Hevner AR, March ST, Park J, Ram S. 2004. Design science in information systems research.MIS
Quarterly 28(1):75–105 DOI 10.2307/25148625.

ISO/IEC. 1991. ISO/IEC 9126:1991 Information technology—Software product evaluation—Quality
characteristics and guidelines for their use. Geneva: International Organization for
Standardization.

ISO. 2008. IEC 12207 systems and software engineering-software life cycle processes. Geneva:
International Organization for Standardization.

ISO. 2011. IEC 20000-1: information technology—service management—part 1: service
management system requirements. Geneva: International Organization for Standardization.

Jakobsen AB, O’Duffy M, Punter T. 1999. Towards a maturity model for software product
evaluations. In: Proceedings of 10th European Conference on Software Cost Estimation
(ESCOM’99).

Lahrmann G, Marx F, Mettler T, Winter R, Wortmann F. 2011. Inductive design of maturity
models: applying the Rasch algorithm for design science research. In: Service-Oriented
Perspectives in Design Science Research: 6th International Conference, DESRIST 2011,
Milwaukee, WI, USA, May 5–6, 2011. Proceedings 6. Cham: Springer, 176–191.

Lasrado LA, Vatrapu R, Andersen KN. 2015. Maturity models development in is research: a
literature review. In: Selected Papers of the IRIS, Issue Nr 6.

Lasrado L, Vatrapu R, Karsgaard HB, Kjaer JF. 2016. Towards sustainable design for maturity
measurement marketplace. In: International SERIES on Information Systems and Management
in Creative eMedia (CreMedia)(2016/2).

Maier AM, Moultrie J, Clarkson PJ. 2012. Assessing organizational capabilities: reviewing and
guiding the development of maturity grids. IEEE Transactions on Engineering Management
59(1):138–159 DOI 10.1109/TEM.2010.2077289.

Mettler T. 2011. Maturity assessment models: a design science research approach. International
Journal of Society Systems Science 3(1–2):81–98 DOI 10.1504/IJSSS.2011.038934.

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 28/29

http://dx.doi.org/10.1504/ijpmb.2020.10027581
http://dx.doi.org/10.3390/su12239927
http://dx.doi.org/10.1007/bf00403764
http://dx.doi.org/10.1080/17517575.2019.1575986
http://dx.doi.org/10.1109/HICSS.2013.106
http://dx.doi.org/10.1109/MS.2021.3061930
http://dx.doi.org/10.1016/j.csi.2013.04.002
http://dx.doi.org/10.2307/25148625
http://dx.doi.org/10.1109/TEM.2010.2077289
http://dx.doi.org/10.1504/IJSSS.2011.038934
http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

Moradi-Moghadam M, Safari H, Maleki M. 2013. A novel model for business process maturity
assessment through combining maturity models with EFQM and ISO 9004: 2009. International
Journal of Business Process Integration and Management 6(2):167–184
DOI 10.1504/IJBPIM.2013.054680.

Niazi M, Saeed AM, Alshayeb M, Mahmood S, Zafar S. 2020. A maturity model for secure
requirements engineering. Computers & Security 95(4):101852 DOI 10.1016/j.cose.2020.101852.

Otto L, Bley K, Harst L. 2020. Designing and evaluating prescriptive maturity models: a design
science-oriented approach. In: 2020 IEEE 22nd Conference on Business Informatics (CBI).
Piscataway: IEEE, 40–47 DOI 10.1109/CBI49978.2020.10056.

Picard M, Renault A, Barafort B. 2015.Amaturity model for ISO/IEC 20000-1 based on the TIPA
for ITIL process capability assessment model. In: Systems, Software and Services Process
Improvement: 22nd European Conference, EuroSPI 2015, Ankara, Turkey, September 30–October
2, 2015. Proceedings 22. Cham: Springer, 168–179.

Pöppelbuß J, Röglinger M. 2011. What makes a useful maturity model? A framework of general
design principles for maturity models and its demonstration in business process management.
In: ECIS 2011 Proceedings, 28. Available at https://aisel.aisnet.org/ecis2011/28.

Rosemann M, Vessey I. 2008. Toward improving the relevance of information systems research to
practice: the role of applicability checks. MIS Quarterly 1–22 DOI 10.2307/25148826.

Röglinger M, Pöppelbuß J, Becker J. 2012. Maturity models in business process management.
Business Process Management Journal 18(2):328–346 DOI 10.1108/14637151211225225.

Solli-Sæther H, Gottschalk P. 2010. The modeling process for stage models. Journal of
Organizational Computing and Electronic Commerce 20(3):279–293
DOI 10.1080/10919392.2010.494535.

Tissen D, Bernijazov R, Koldewey C, Dumitrescu R. 2024. A maturity model for data-driven
model-based systems engineering for producing companies. In: DS 134: Proceedings of the 26th
International DSM Conference (DSM 2024). Stuttgart, Germany, 118–126.

van Veenendaal E, Wells B. 2012. Test maturity model integration TMMi. Hertogenbosch, NLD:
Uitgeverij Tutein Nolthenius.

von Wangenheim CG, Hauck JCR, Salviano CF, von Wangenheim A. 2010. Systematic literature
review of software process capability/maturity models. In: Proceedings of International
Conference on Software Process Improvement and Capability Determination (SPICE). Pisa, Italy,
1–9.

Weber CV, Curtis B, Chrissis MB. 1993. Capability maturity model, version 1.1. IEEE Software
10(4):18–27 DOI 10.1109/52.219617.

Wendler R. 2012. The maturity of maturity model research: a systematic mapping study.
Information and Software Technology 54(12):1317–1339 DOI 10.1016/j.infsof.2012.07.007.

Woods L, Eden R, Duncan R, Kodiyattu Z, Macklin S, Sullivan C. 2022.Which one? A suggested
approach for evaluating digital health maturity models. Frontiers in Digital Health 4:13
DOI 10.3389/fdgth.2022.1045685.

Alshareef et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3183 29/29

http://dx.doi.org/10.1504/IJBPIM.2013.054680
http://dx.doi.org/10.1016/j.cose.2020.101852
http://dx.doi.org/10.1109/CBI49978.2020.10056
https://aisel.aisnet.org/ecis2011/28
http://dx.doi.org/10.2307/25148826
http://dx.doi.org/10.1108/14637151211225225
http://dx.doi.org/10.1080/10919392.2010.494535
http://dx.doi.org/10.1109/52.219617
http://dx.doi.org/10.1016/j.infsof.2012.07.007
http://dx.doi.org/10.3389/fdgth.2022.1045685
http://dx.doi.org/10.7717/peerj-cs.3183
https://peerj.com/computer-science/

	A measurement framework to assess software maturity models
	Introduction
	Literature review
	Software maturity models assessment framework
	Alignment with iso/iec tr 15504-3 standard
	Framework evaluation
	Domain-specific framework
	Case study
	Discussion
	Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

