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ABSTRACT

Medical image classification is essential for contemporary clinical diagnosis and
decision support systems. However, medical images generally have similar inter-class
features and complex structure patterns, making it a challenging task. While both
local and global features are critical for noise reduction and discriminative pattern
extraction in medical images, conventional approaches exhibit limitations.
Specifically, convolutional neural networks (CNNs) focus on local features extraction
but lack a comprehensive understanding of global semantic. Conversely, vision
transformers (ViTs) can model long-range feature dependencies but may cause
disruption to local features. To address these limitations, we propose Hierarchical
Enhanced Multi-attention Feature (HEMF), an adaptive hierarchical enhanced
multi-attention feature fusion framework to synergistically extract and fuse
multi-scale local and global features. It comprises two core components: (1) the
enhanced local and global feature extraction modules to extract multi-scale local and
global features in parallel; (2) the hierarchical enhanced feature fusion module
integrating a novel attention mechanism named Mixed Attention (MA) and a novel
inverted residual block named Squeezed Inverted Residual Multi-Layer Perceptron
(SIRMLP) to effectively fuse multi-scale features. Experimental results demonstrate
that with nearly minimal model parameters compared to other advanced models,
HEMEF achieves the accuracy and F1-score of 87.34% and 78.89% on the ISIC2018
dataset, 87.03% and 87.02% on the Kvasir dataset, and 82.26% and 82.20% on the
COVID-19 CT dataset, which are the state-of-the-art performance. Our code is open
source and available from https://github.com/Esgjgd/HEMF.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Mining and Machine Learning, Neural Networks

Keywords Multi-attention feature fusion, Adaptive feature extraction, Hierarchical enhanced
features, Medical image classification

INTRODUCTION

Medical image classification research focuses on categorizing medical images into
disease-specific patterns to identify specific diseases. As a core technology for clinical
diagnosis and decision support systems, medical image classification is essential to
computer-aided diagnosis, image mining, and retrieval in healthcare.

Recently, convolutional neural networks (CNNs) have exhibited remarkable efficacy in
numerous medical image classification tasks (Shen et al., 2017; Koitka ¢ Friedrich, 2016
Tajbakhsh et al., 2016; Hassan et al., 2020). Although CNNs focus on local features, they
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often lack a comprehensive understanding of global semantic information, which hinders
their performance. Similar to transformer, vision transformer (ViT) (Dosovitskiy et al.,
2020) splits the image into patches with position embedding to capture long-range feature
dependencies and global semantic information. Unlike CNNs, pure ViT-based methods
usually pay insufficient attention to local features and even disrupt low-level details (Azad
et al., 2024). This limitation highlights the necessity of integrating CNN and ViT
paradigms.

CNN-transformer based methods have emerged to synergize local feature extraction
with global context modeling. Recent studies demonstrate that such integration
contributes to reducing noise in medical images (Dai, Gao & Liu, 2021; Zhang, Liu & Hu,
2021; Chen et al., 2022). Furthermore, hierarchical fusion of multi-scale features has also
proved to be essential for medical image analysis, (Wang et al., 2023; Huo et al., 2024; Li,
2023). These works indicate the promising direction of medical image classification
research.

Motivated by the success of previous studies (He et al., 2016; Liu et al., 2022; Sandler
et al., 2018; Fan et al., 2024) and to mitigate the limitations of model complexity and
insufficient feature characterization capabilities, we propose an adaptive Hierarchical
Enhanced Multi-attention Feature fusion framework named HEMF. Specifically, we design
an enhanced local feature (ELF) extraction and enhanced global feature (EGF) extraction
module, which allow the parallel extraction of multi-scale enhanced features. To fuse the
multi-scale local spatial features and global semantic information, a hierarchical enhanced
feature (HEF) fusion module is proposed. Within this module, we design a novel attention
mechanism named Mixed Attention (MA). It includes a multi-head external attention, a
spatial attention as well as a channel attention to learn multiple salient feature relationships
among different samples and further focus on significant features and salient spatial
regions. Moreover, we also introduce a novel inverted residual block named Squeezed
Inverted Residual Multi-Layer Perceptron (SIRMLP) in this module to learn the
high-dimensional representations of the fused features with a relatively low cost. Overall,
unlike the previous works, our approach enables more effective extraction and fusion of
both global and local features, resulting in state-of-the-art performance on three real-world
medical image datasets. Remarkably, our approach achieves this performance with fewer
model parameters and lower floating point operations (FLOPs). As a general module, the
proposed HEF fusion module can be further adopted in other downstream tasks for
efficient feature fusion. To improve readability, Table 1 provides a list of all acronyms used
in this article.

In conclusion, the primary contributions of our article are summarized as follows:

* A novel adaptive hierarchical enhanced multi-attention feature fusion framework for
cross-scale medical image classification named HEMF is proposed. Enhanced local
feature (ELF) and enhanced global feature (EGF) extraction modules are designed to
capture multi-scale local spatial features and global semantic information, providing a
robust semantic representation for classification.
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Table 1 List of acronyms used in this article.

List of acronyms

CNN Convolutional neural network

ViT Vision transformer

ELF Enhanced local feature

EGF Enhanced global feature

HEF Hierarchical enhanced feature

MA Mixed Attention mechanism

MHEA Multi-Head External Attention mechanism
SA Spatial Attention mechanism

CA Channel Attention mechanism

SIRMLP Squeezed Inverted Residual Multi-Layer Perceptron
FLOPs Floating point operations

ML Machine learning

SVM Support vector machine

KNN K-nearest neighbor

LN Layer normalization

BN Batch normalization

e A hierarchical enhanced feature (HEF) fusion module is proposed to effectively fuse
multi-scale enhanced local and global features. Within the module, a Mixed Attention
mechanism and a novel inverted residual block SIRMLP are designed to learn multiple
salient feature relation of different samples. It can further focus on key features and
salient spatial regions, as well as learn high-dimensional representations of the fused
features at low computational cost.

e The proposed HEMF model achieves state-of-the-art performance on three real-world
medical datasets with nearly minimal model parameters compared to other advanced
models. Specifically, HEMF reduces about 47.86% model parameters and 8.75% FLOPs
compared to the advanced model HiFuse_ Base.

RELATED WORK

This section presents a comprehensive survey of medical image classification and related
methodologies, organized into three paradigms: methods based on traditional machine
learning (ML-based), CNN-based approaches, and transformer-based approaches. A
comparative analysis of their strengths and weaknesses is provided in Table 2, along with
related works in each category.

ML-based methods

To classify medical images, traditional machine learning approaches such as support
vector machine (SVM), K-means and K-nearest neighbor (KNN) rely on the extraction of
relevant features such as color, texture, and shape, or feature combinations derived
therefrom. Rani, Mittal ¢» Ritambhara (2016) use SVM classifiers to detect and classify
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Table 2 Comprehensive literature review of three methodologies.

Methodology Strength Weakness Related works

ML-based Fewer computational resources, Rely on manual feature engineering, limited Rani, Mittal ¢ Ritambhara (2016),
high-throughput processing, robust ~ nonlinear modeling capacity, incomplete Iwahori et al. (2015), Manju, Meenakshy
performance on small datasets, high-dimensional features, the curse of & Gopikakumari (2015)
strong interpretability dimensionality

CNN-based Effective image processing, local Lack of global feature modeling, Shen et al. (2017), Koitka & Friedrich
feature modeling, robustness to time-consuming in transfer learning, (2016), Flayeh ¢ Douik (2024),
spatial shift overfitting on small dataset, weak Tajbakhsh et al. (2016), Hassan et al.

interpretability (2020)

Transformer- Both global and local feature modeling, Require more training data, complex model, Dai, Gao ¢ Liu (2021), Zhang, Liu ¢ Hu
based high performance time-consuming, overfitting on small (2021), Dai et al. (2021), Chen et al.
(integrated datasets, weak interpretability (2021), Wang et al. (2024), Huo et al.
with other (2024), Li (2023)
architecture)

focal liver lesions. Iwahori et al. (2015) use Hessian filter and K-means++ to detect the
polyp region. Manju, Meenakshy & Gopikakumari (2015) extract texture features and use
KNN classifier to diagnose prostate disease. These shallow methods typically require fewer
computational resources compared to deep learning methods, making them feasible for
deployment on low-power clinical hardware. Training converges faster due to simpler
architectures, suitable for scenarios with limited time or energy budgets. They often
outperform deep learning methods when labeled training data is scarce, as they rely on
handcrafted features rather than data-hungry feature learning. Besides, they often provide
strong interpretability, aligning with clinical demand for transparency in diagnosis.
However, such approaches also possess inherent limitations. Performance heavily depends
on manual feature engineering, requiring domain expertise to design optimal descriptors
such as texture and shape. Handcrafted features may fail to capture complex spatial
hierarchies in high-dimensional images. Linear models struggle with nonlinear feature
interactions which are common in medical images. Furthermore, they are susceptible to
the curse of dimensionality when dealing with high-dimensional image data.

CNN-based methods

Convolutional neural networks (CNNs) are designed to extract salient features from
structured data as multi-dimensional arrays, enabling a highly effective application on
image data processing. Convolutional operations inherently capture local receptive fields,
ideal for detecting fine-grained pathological features. Weight sharing and pooling
operations provide robustness to small spatial shifts, which is critical for anatomical
structure alignment. Their inherent ability to automatically learn relevant features has
contributed to their effectiveness and widespread use in medical image classification. Shen
et al. (2017) propose a multi-crop convolutional neural network, employing a novel
multi-crop pooling strategy to automatically extract salient lesion information. Koitka ¢
Friedrich (2016) utilize a single CNN for skin lesion classification, achieving end-to-end
training with only images and labels as input. Flayeh ¢» Douik (2024) provide a lightweight
model based on autoencoder and CNN’s to detect breast cancer. Besides, several studies
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conduct transfer learning on CNNss, pre-training on a substantial corpus of medical images
and then fine-tuning for the downstream classification task. Tajbakhsh et al. (2016)
investigate the performance of deep CNNss trained from scratch compared to pre-trained
CNNss with layer-wise fine-tuning. Hassan et al. (2020) utilize a pre-trained

ResNet50 model for feature extraction and optimization, and then classify with linear
discriminator. However, CNNs primarily focus on local spatial feature details, often lack a
comprehensive understanding of global semantic information, which is crucial for
performance enhancement. Furthermore, transfer learning methods can be
time-consuming and necessitate substantial datasets for pre-training. Fine-tuning
pre-trained models on small datasets risks overfitting, especially for rare diseases. Besides,
Black-box decision-making may undermine clinical trust; while saliency maps such as
Gradient-weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al., 2017) and
Grad-CAM++ (Chattopadhay et al., 2018) provide post-hoc explanations, they lack causal
reasoning aligned with medical knowledge. End-to-end training may ignore established
some features, limiting physician acceptance.

Transformer-based methods

In recent years, methods based on self-attention mechanisms, such as vision transformer
(ViT) (Dosovitskiy et al., 2020), have demonstrated remarkable performance in medical
image classification tasks. ViT splits the input image into patches with position embedding
to capture long-range feature dependencies and global semantic information. However, it
usually does not pay enough attention to local features and can even disrupt low-level
details (Azad et al., 2024). Moreover, it typically requires more training data than CNNs to
converge, exacerbating challenges in rare disease classification.

CNN-transformer methods integrate the advantages of CNNs and ViTs, enabling the
extraction and fusion of both local and global features. Dai, Gao ¢ Liu (2021) use CNNs
and ViTs to classify parotid gland tumors and knee injuries. Zhang, Liu ¢» Hu (2021) fuse
transformers and CNNs for medical image segmentation. Dai et al. (2021) combine the
strengths from transformers and CNNs for image classification. Several studies investigate
integrating transformers with other architectures or mechanisms for specific tasks. Chen
et al. (2021) fuse transformers and U-net architecture for medical image segmentation.
Wang et al. (2024) combine transformer with multi-granularity patch embedding and self
attention for medical time-series classification. However, the aforementioned works
perform feature fusion at a single scale of the samples, failing to integrate multi-scale
representations, which hinders their ability to effectively capture the hierarchical and
complex structures present in medical images. Recently, several studies investigate
hierarchically extracting and fusing local and global features to suppress the incorporation
of noise. HiFuse (Huo et al., 2024) designs a hierarchical feature fusion module named
Hierarchical Feature Fusion (HFF) to fuse local and global features from the multi-layer
encoders. However, its feature characterization capabilities can be further enhanced, and
the model also exhibits a relatively large number of parameters and FLOPs. Based on
HiFuse, CAME (Li, 2023) introduces an external attention mechanism to learn the relation
of different samples. However, its attention mechanism is designed as the fourth branch
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Figure 1 The overview structure of HEMF.
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besides the local, global, and feature fusion branches, resulting in a complex model and
disruption on local and global features.

To mitigate the limitations of model complexity and insufficient feature
characterization capabilities, we propose an adaptive hierarchical enhanced
multi-attention feature fusion framework named HEMF. We use enhanced local feature
(ELF) and enhanced global feature (EGF) extraction modules to hierarchically and
parallelly extract multi-scale features. We also design a hierarchical enhanced feature
(HEF) fusion module, which includes Mixed Attention mechanism and Squeezed Inverted
Residual Multi-Layer Perceptron (SIRMLP). The proposed HEF is capable of fusing local
and global representations from various scales, learning the relation of different samples
and high-dimensional representations of the fused features.

METHODOLOGY

Overview

In this section, we describe the details of HEMF. As depicted in Fig. 1, HEMF is built upon
three distinct branches: a local branch (marked with blue), dedicated to extracting
enhanced local features (ELF); a global branch (marked with green), designed to extract
enhanced global features (EGF); and a feature fusion branch (marked with red), to fuse the
hierarchical features obtained from local and global branches.

The model takes as input an image of size 224 x 224 x 3. Initially, the image is
convolved using a convolutional kernel with a stride of 4 and a kernel size of 4, and
increasing to 96 channels. The architecture subsequently employs parallel four-layer local
and global feature extraction branches, each dedicated to capturing the distinct
scale-specific representations. Within each layer of the local and global branches, the
feature maps first undergo a layer normalization (LN) before being fed into four stacked
ELF extraction blocks and three stacked EGF extraction blocks, respectively. We use four
ELF extraction blocks and three EGF extraction blocks in each layer to achieve a
characteristic balance of different scales. In the feature fusion branch, the hierarchical
enhanced feature (HEF) fusion module of each layer receives the outputs from the
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corresponding ELF and EGF extraction blocks, as well as the output from the previous
HEEF layer, to perform enhanced feature fusion. The fusion output serves as the input for
the next HEF block. After each layer, the resolution of the feature map is reduced to 1/4,
while the number of channels is doubled. Following the four-layer feature fusion, the
resulting 7 x 7 x 768 feature map sequentially undergoes a global average pooling, a layer
normalization, and finally a linear layer to obtain the classification result.

Enhanced local feature extraction module

The enhanced local feature (ELF) extraction module is designed to extract local detailed
features from the image, which enables the model to understand the fine-grained details of
the samples and plays a crucial role in image classification. As illustrated on the right of
Fig. 2, the ELF extraction module comprises a 3 x 3 standard convolution, a 3 x 3
depthwise convolution, and a 1 x 1 pointwise convolution. The input feature map
undergoes a 3 x 3 standard convolution, followed by a layer normalization. It sequentially
undergoes the 3 x 3 depthwise convolution and the 1 x 1 pointwise convolution. After
applying the Gaussian Error Linear Unit (GELU) activation function, the resulting feature
map is added to the original input feature map via a skip connection. Compared with the
local feature block in HiFuse (Huo et al., 2024),a 3 x 3 standard convolution is introduced,
as seen in the left of Fig. 2. The ELF extraction module employs the depthwise and
pointwise convolutions to reduce computational cost while utilizing standard convolution
to enhance local feature characterization capability. The skip connection retains detailed
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spatial and semantic information from the input feature map. The ELF extraction module
is formulated as follows:

= LN(f°(Liy)) (1)
L= GELU(flxl(fdepth3><3(li))) +Li, (2)

where f"*" is the convolution operation with a kernel size of #n x n, LN(-) indicates layer
normalization operation, L;_; and L; indicate the input and output of the ELF block,
respectively.

Enhanced global feature extraction module

The enhanced global feature (EGF) extraction module is designed to extract global
semantic features from the image, which facilitates the model to comprehend the global
semantic information of the samples. Due to the significant intra-class variability and
inter-class similarity often observed in medical images, global features are crucial for
medical image classification.

As a powerful computer vision architecture, ViT captures global semantic information
by employing sophisticated spatial transformations and learning long-range feature
dependencies. However, as the core module of ViT, the self-attention mechanism lacks
explicit spatial prior information and exhibits high quadratic complexity. To improve the
performance of ViT, Retentive Networks Meet Vision Transformers (RMT) (Fan et al.,
2024) proposes a novel self-attention mechanism called Manhattan Self-Attention
(MaSA). MaSA transforms the unidirectional and one-dimensional temporal decay into
bidirectional and two-dimensional spatial decay, introducing rich and explicit spatial prior
information into ViT and reducing the computational complexity to linear. The
Manhattan Self-Attention can be formulated as follows:

MaSA(X) = (Softmax(QK") ® D*)V (3)
Di(rin — y‘xn_XM“"l)’n_)’M (4)

where Q, K and V indicate the query matrix, key matrix and value matrix, respectively.
© indicates the hadamard product, y indicates the decay value, and (x,, y,) indicates the
unique two-dimensional position coordinate within the plane of the n-th token.
Inspired by RMT, we propose a transformer-like enhanced global feature (EGF)
extraction module. As illustrated on the right of Fig. 2, the EGF extraction module consists
of a position embedding block, an RMT block, as well as a linear layer. The input feature
map undergoes once position embedding (only once even with multiple stacked EGF
blocks) and is then fed into the RMT block. After a skip connection and layer
normalization, the output is passed to the linear layer, followed by another skip connection
and layer normalization. Compared with the global feature block in HiFuse (Huo et al.,
2024), we add skip connections with layer normalization and use RMT block instead of the
Window-based Multi-head Self-Attention (W-MSA) (Liu et al., 2021) to enhance global
feature characterization capability, as seen in the left of Fig. 2. The EGF extraction module
leverages the RMT block to capture global semantic information and long-range feature
dependencies, while the linear layer enhances global feature characterization. The two skip
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connections combined with layer normalization preserve detailed spatial and semantic
information from the input data, mitigating overfitting to some extent. The EGF extraction
module is formulated as follows:

g = LN(RMT(PosEmb(G;_1)) + PosEmb(G,_,)) (5)
G; = LN(Linear(g;) + &) (6)

where G;_; and G; indicate the input and output of the EGF block, respectively.

Hierarchical enhanced feature fusion module

Feature fusion contributes to enhance model performance and robustness by integrating
features from diverse sources, hierarchical levels, or modalities (Ngiam et al., 2011). To fuse
the enhanced local and global features, as well as utilize the high-dimensional fused
features at each layer, we propose a hierarchical enhanced feature (HEF) fusion module
with the similar three-branch structure of HiFuse (Huo et al., 2024). The core components
of the module are a novel attention mechanism and an inverted residual block named
Mixed Attention and Squeezed Inverted Residual Multi-Layer Perceptron (SIRMLP),
respectively. The HEF fusion module can adaptively fuse the enhanced local and global
features from the same layer and the fused features from the preceding layer. As shown in
Fig. 3, the module consists of a local branch, a global branch, and a main branch. In the
local and global branches, the input feature maps undergo the Mixed Attention, which can
capture the relation of different samples and focus on critical features and spatial regional
information. In the main branch, the input feature map undergoes operations such as
convolution, average pooling, and concatenation. The resultant feature map undergoes the
SIRMLP, which can efficiently learn the high-dimensional representation of the fused
features with a low cost. The HEF fusion module is formulated as follows:

h, = AvgPool(f;x! ,(HEF;_;)) (7)
h, = GELU(f"*! (LN(Concat[hy, f*! (L)), f " (G:)]))) (8)
HEF; = SIRMLP(LN(Concat[MixAttn(G;), MixAttn(L;), hy])) + h, )

where L; and G; indicate the output of multiple stacked ELF and EGF blocks, respectively.
HEF;_, indicates the output of the previous HEF layer and HEF; indicates the output of
the fusion. Additionally, as a general module, the proposed HEF fusion module can be
further adopted in other downstream tasks for efficient feature fusion.

Mixed Attention mechanism

The attention mechanism was first proposed by Bahdanau, Cho ¢ Bengio (2014). It is an
adaptive selection process that mimics the selective focus of human information
processing. It allows models to dynamically adjust their attention weights, highlighting
important information and suppressing irrelevant information. The Spatial Attention (SA)
mechanism enables the network to focus on salient spatial regions, while the Channel
Attention (CA) mechanism enables the network to focus on significant features. Previous
studies have demonstrated the effectiveness of combining these two attention mechanisms
(Woo et al., 2018; Chen et al., 2017). The External Attention (EA) mechanism enables the
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network to capture the relation of different samples, and the Multi-Head External
Attention (MHEA) mechanism extends this capability, allowing the model to
simultaneously capture multiple salient feature relation of different samples (Guo et al.,
2022). SA, CA, EA, MHEA can be formulated as:

SA(x) = Sigmoid(f”*7 (Concat|[AvgPool(x), MaxPool (x)])) (10)
CA(x) = Sigmoid(MLP(AvgPool(x)) + MLP(MaxPool(x))) (11)
EA(x) = Norm(xM] )M, (12)
MHEA (x) = Concat[EA(x),...,EA(xy)], x = Concat|x,x,,...,xH] (13)

where M and M, are external learnable parameters. The Norm(-) indicates
Double-Normalization proposed by Guo et al. (2021), and H indicates the number of
attention heads.

To enable our model to simultaneously learn multiple salient feature relation of
different samples, as well as further focus on important features and salient spatial regions,
we propose a novel attention mechanism named Mixed Attention. As illustrated in Fig. 3,
the Mixed Attention consists of a MHEA, an SA and a CA, along with layer normalization
and multiplicative skip connections. The Mixed Attention is formulated as follows:
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m, = LN(MHEA(LN(M;,)) x LN(M;,)) (14)
m, = m, X SA(my) (15)
Moy = m, x CA(m,) (16)

where M;, and M,,, indicate the input and output of the Mixed Attention module,
respectively.

Squeezed Inverted Residual Multi-Layer Perceptron

The Inverted Residuals was first proposed in MobileNetV2 (Sandler et al., 2018). Tt first

employs lightweight expansion convolutions to increase the channels of the input feature
map, followed by a depthwise separable convolutions for feature extraction and a 1 x 1

convolution to reduce the channels. Skip connections between the input and output of the
inverted residual block maintain the information flow. An inverted bottleneck structure is
established for a smaller number of input and output channels and a larger intermediate
convolutional layer. This allows for effective learning of high-dimensional representations
of the intermediate features.

The feature fusion module called HFF in HiFuse (Huo et al., 2024) employs an inverted
residual multi-layer perceptron (IRMLP) to learn high-dimensional representations of
intermediate features. It consists of a 3 x 3 depthwise convolution with skip connection, a
pointwise convolution for expanding channels, a linear layer, and a GELU activation
function. Through experimentation, we observe that when IRMLP is applied to multi-scale
feature fusion, its high-dimensional input originating from three branches results in a
substantial module parameters and FLOPs when expanding channels, as detailed in
Table 3.

To reduce computational complexity and enable effective intermediate feature fusion
and high-dimensional representation learning, we present SIRMLP, a novel inverted
residual architecture. As depicted in Fig. 3, SIRMLP initially applies a pointwise
convolution to reduce the input channels. Subsequently, an inverted residual structure
similar to IRMLP is implemented, consisting of a 3 x 3 depthwise convolution, a pointwise
convolution, and a linear layer. This design maintains low parameters and FLOPs during
channel expansion. Table 3 presents a comparison of the module parameters and FLOPs
between SIRMLP and IRMLP in four-layer feature fusion, demonstrating that the SIRMLP
achieves a reduction of approximately 84.5% in both parameters and FLOPs. The SIRMLP
is formulated as:

5 = BN(fLi0(S0)) (17)
s, = BN(GELU(f9P"¥3(5.)) + ;) (18)
Sout = BN(f;ianlM(GELU(fJi;lM(sy)))) (19)

where BN(-) indicates batch normalization operation, S;, and S,,, indicate the input and
output of SIRMLP, respectively.
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Table 3 Module parameters and FLOPs of SIRMLP (SIR) and IRMLP (IR) in each layer.

Layer Input size: Parameters (M) FLOPs (G)
[channels, height, width]
SIR IR Decline (%) SIR IR Decline (%)
1 [96 x 3, 56, 56] 0.185 1.190 84.450 0.582 3.733  84.419
2 [192 x 3, 28, 28] 0.739 4.757 84.473 0.580 3.731 84.458
3 [384 x 3, 14, 14] 2.952 19.025  84.484 0.579 3.729 84.477
4 [768 x 3,7, 7] 11.802  76.093  84.490 0.578 3.729  84.487

In this section, we evaluate the performance of the HEMF model on three real-world
datasets including ISIC2018, Kvasir and COVID-19 CT datasets. Diverse datasets facilitate
a more comprehensive assessment of model generalization performance. During the
training phase, the model takes medical images and the corresponding labels as input. In
the inference phase, the model receives medical images as input and outputs predicted
disease categories. We employ a comprehensive set of evaluation metrics to assess model
performance and conduct ablation studies to verify the effectiveness of individual model
components. Finally, we provide heatmap visualization to further demonstrate the
effectiveness of HEMF.

Datasets

ISIC2018 dataset

The ISIC2018 dataset (Codella et al., 2019) consists of 10, 015 images from seven categories
of skin lesions, including melanocytic nevi (NV), dermatofibroma (DF), melanoma (MEL),
actinic keratosis (AKIEC), benign keratosis (BKL), basal cell carcinoma (BCC) and
vascular lesions (VASC). Due to its inter-class similarity and data imbalance, this dataset
serves as an important benchmark for medical image classification tasks. The specific class
distribution is detailed in Table 4. Representative image samples from the ISIC2018 dataset
are displayed in Fig. 4A. The original size of these images is 650 x 450 pixels. For our
experiments, we resize all the images to 224 x 224 pixels. Following the data partition
strategy of HiFuse (Huo et al., 2024) and ResGANet (Cheng et al., 2022), we allocate 70% of
the samples for training and validation, while the remaining 30% for testing.

Kvasir dataset

The Kvasir dataset (Pogorelov et al., 2017) comprises 4,000 images across eight endoscopic
gastrointestinal diseases, annotated and validated by experienced endoscopists. These
categories encompass three anatomical landmarks (Z-line, pylorus, and cecum), three
pathological findings (esophagitis, polyps, and ulcerative colitis), and two categories
related to polyp removal (dyed and lifted polyps and dyed resection margins). Each
category contains 500 images, as detailed in Table 4. Figure 4B shows the example images
of Kvasir. We choose this dataset because it is of great significance to computer aided
gastrointestinal disease detection and widely adopted in medical analysis research. The size
of the original images varies ranging from 720 x 576 to 1,920 x 1,072 pixels. To facilitate
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Table 4 Data distribution of ISIC2018, Kvasir and COVID-19 CT datasets.

ISIC2018 Kvasir COVID-19 CT
NV 6,075 Z-line 500 COVID 349
MEL 1,113 Pylorus 500 NonCOVID 397
BKL 1,099 Cecum 500
BCC 514 Esophagitis 500
AKIEC 327 Polyps 500
VASC 142 Ulcerative colitis 500
DF 115 Dyed and lifted polyps 500
Dyed resection margins 500
Seven classes 10,015 Eight classes 4,000 Two classes 746

(A) ISIC2018

\ .

(B) Kvasir

oo @3 @9 £ €Y 6B

Figure 4 Sample images from the (A) ISIC2018, (B) Kvasir and (C) COVID-19 CT datasets with
standardized preprocessing. All images are resized to 224 x 224 pixels for model input consistency.
Full-size K&l DOT: 10.7717/peerj-cs.3181/fig-4

subsequent experiments, we resize all images to 224 x 224 pixels. Following the data
partition strategy Huo et al. (2024) and Pogorelov et al. (2017), we divide the dataset into
training and test sets with a 0.5 : 0.5 ratio with two-fold cross-validation.

COVID-19 CT dataset

The COVID-19 CT dataset (He et al., 2020) comprises 746 CT scan images, with 349
images positive for COVID-19 and 397 images negative or indicative of other diseases
(NonCOVID), as detailed in Table 4. Figure 4C shows several image samples of the dataset.
We choose this dataset because it is widely adopted and CT scans are promising in
providing accurate, fast, and cheap screening and testing different types of diseases. The
size of the images varies from 143 X 76 to 1,637 x 1,225 pixels. For our experiments, we
resized all the images to 224 x 224 pixels. Following the data partition strategy Huo et al.
(2024) and He et al. (2020), we divide the dataset into training, validation, and test sets with
a ratio of 0.6:0.15:0.25, respectively.
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Metrics

We use accuracy (Acc), precision (Prec), recall, F1-score, Matthews Correlation Coefficient
(MCCQC), kappa, Receiver Operating Characteristic (ROC) curve, and the area under the
ROC curve (AUC) as evaluation metrics. Here, accuracy represents the proportion of
correctly classified instances out of the total number of instances. Precision measures the
correct predicted proportion of all instances predicted as positive. Recall quantifies the
proportion of actual positive instances that are correctly identified. F1-score is the
harmonic mean of precision and recall, with higher values indicating better classification
performance. The Matthews Correlation Coefficient (MCC) is a metric for evaluating
classification performance in binary classification tasks. Its value ranges from -1 to +1,
with higher values indicating better classification performance. MCC incorporates all four
confusion matrix categories to provide a balanced performance measure, making it
particularly suitable for imbalanced datasets. Kappa coefficient is used to measure the
consistency of classifiers. The value of Kappa coefficient ranges from 0 to 1, where 1
indicates perfect consistency and 0 indicates random consistency. The ROC curve is a plot
with the false positive rate (FPR) on the x-axis and the true positive rate (TPR) on the y-
axis, which is less affected by imbalance class distributions. A larger area under the ROC
curve (AUC) indicates superior classification performance. These metrics are formulated

as follows:
TP + TN + FP + FN
Acc = 20
“« TP+ TN (20)
Prec — — % (21)
"= TP {FP
TP
Recall = TPR = ———— (22)
TP + FN
Fl— 2 x (Prec + Recall) (23)
Prec x Recall
TP x TN — FP x FN
MCC = . . (24)
\/(TP + FP)(TP + FN)(TN + FP)(TN + FN)
P, —P
k — o e 25
appa =4 (25)
FPR= 1% (26)
- FP+ TN
n—1
TPR; + TPR;
AUC = Z% x (FPR; + FPR;,,) (27)
i=1

where TP, TN, FP and FN indicate true positive, true negative, false positive, and false
negative, respectively. P, represents the observed agreement rate (the empirical
classification accuracy), and P, denotes the expected chance agreement rate (the accuracy
achievable through random predictions).
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Table 5 Experimental setting.

Training config

Initial learning rate le—4

Final learning rate le-6

Optimizer AdamW
Learning rate schedule CosineAnnealing
Warm up schedule Linear

Warm up epochs 1

Weight decay 0.01

Epochs 150

Batch size 32

Loss function Categorical cross-entropy
Drop path rate 0

Implementation details

The experiments are conducted on the Ubuntu 20.04.6 LTS operating system. GPU
acceleration is provided by an NVIDIA Tesla T4 with 16 GB memory. The software
environment includes Python 3.9, PyTorch 1.13.1, and CUDA 11.7.

The experimental parameters are set as follows. The initial and final learning rates are
le—4 and le-6, respectively. AdamW optimizer with the cosine annealing learning rate
scheduling strategy is adopted. We train 150 epochs with a batch size of 32. We use the
categorical cross-entropy (CCE) loss function defined by the following formula:

N
L=- % > D yilogj (28)

n=1 i=1

where N represents the number of samples, C represents the number of classes, y; is the
true label for sample i, and y; is the predicted label for sample i. To accelerate training,

mixed-precision training is utilized. Our code can be available from https://github.com/
Esgjgd/HEMF. More parameter settings are detailed in Table 5.

Results

To evaluate the classification performance, we compare HEMF with advanced models in
recent years, including Conformer (Peng et al., 2021), ConvNext (Liu et al., 2022), PerViT
(Min et al., 2022), Focal (Yang et al., 2022), UniFormer (Li et al., 2023), BiFormer (Zhu
et al., 2023), HiFuse (Huo et al., 2024) and CAME (Li, 2023). We conduct experiments on
the ISIC2018, Kvasir and COVID-19 CT datasets using identical experimental settings.

Results on ISIC2018 dataset

Following the data partitioning strategy in HiFuse (Huo et al., 2024) and ResGANet
(Cheng et al., 2022), we train our models from scratch, allocating 70% of the samples for
training and validation and 30% for testing. As shown in Table 6, HEMF achieves the
highest accuracy (87.34%) with only 66.64M parameters and 10.01G FLOPs. Notably,
HEMF demonstrates significant improvements over the previous best model HiFuse_Base.
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Table 6 Performance comparison on ISIC2018 dataset. Bold entries indicate the optimal results, whereas underlined entries denote the second-

best results.

Method Params (M) FLOPs (G) Acc (%) F1 (%) Prec (%) Recall (%)
Conformer-base-pl16 (Peng et al., 2021) 83.29 22.89 82.66 72.44 73.31 71.66
ConvNeXt-B (Liu et al., 2022) 88.59 15.36 79.95 63.24 64.90 62.06
PerViT-M (Min et al., 2022) 43.04 9.00 81.64 67.66 68.19 67.29
Focal-B (Yang et al., 2022) 87.10 15.30 79.64 62.88 65.73 60.68
UniFormer-B (Li et al., 2023) 50.02 8.30 82.44 68.41 70.67 66.54
BiFormer-B (Zhu et al., 2023) 56.04 9.80 82.66 68.95 72.66 66.47
HiFuse_Tiny (Huo et al., 2024) 82.49 8.13 82.99 72.99 73.67 72.87
HiFuse_Small (Huo et al., 2024) 93.82 8.84 83.59 72.70 72.70 73.14
HiFuse_Base (Huo et al., 2024) 127.80 10.97 85.85 75.32 74.57 76.58
CAME (Li, 2023) 106.38 11.63 84.17 74.43 74.08 74.98
HEMEF (ours) 66.64 10.01 87.34 78.89 80.42 77.59

Table 7 Performance comparison on Kvasir dataset. Bold entries indicate the optimal results, whereas
underlined entries denote the second-best results.

Method Acc (%) F1 (%) Prec (%) Recall (%)
Conformer-base-pl6 (Peng et al., 2021) 84.25 84.27 84.45 84.37
ConvNeXt-B (Liu et al., 2022) 74.62 74.41 75.69 74.62
PerViT-M (Min et al., 2022) 82.40 82.30 82.88 82.40
Focal-B (Yang et al., 2022) 78.00 77.93 78.19 78.01
UniFormer-B (Li et al., 2023) 83.10 83.04 83.09 83.10
BiFormer-B (Zhu et al., 2023) 84.25 84.26 84.67 84.25
HiFuse_Tiny (Huo et al., 2024) 84.85 84.89 84.96 84.90
HiFuse_Small (Huo et al., 2024) 86.12 86.13 86.25 86.13
HiFuse_Base (Huo et al., 2024) 85.97 86.07 86.29 86.01
CAME (Li, 2023) 85.68 85.68 85.77 85.68
HEMF (ours) 87.03 87.02 87.34 87.03

Specifically, HEMF reduces the number of model parameters by 47.86% and FLOPs by
8.75% while improving 1.74% in accuracy, 7.84% in precision, 1.32% in recall, and 4.74%

in F1-score.

Results on Kvasir dataset

Following the data partitioning strategy in HiFuse (Huo et al., 2024) and (Pogorelov et al.,

2017), we train our models from scratch, dividing the dataset into training and test sets

with a 0.5:0.5 ratio. We performed a two-fold cross-validation experiment and reported the
average results. As shown in Table 7, HEMF achieves the highest accuracy (87.03%).
Compared to the previous best model HiFuse_Small, HEMF achieves improvements of

1.06% in accuracy, 1.26% in precision, 1.04% in recall, and 1.03% in F1-score.
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Table 8 Performance comparison on COVID-19 CT dataset. Bold entries indicate the optimal results,
whereas underlined entries denote the second-best results.

Method Acc (%) F1 (%) Prec (%) Recall (%)
Conformer-base-pl6 (Peng et al., 2021) 75.81 75.60 76.81 77.81
ConvNeXt-B (Liu et al., 2022) 55.38 54.68 54.95 54.81
PerViT-M (Min et al., 2022) 74.75 73.95 75.96 73.93
Focal-B (Yang et al., 2022) 69.36 68.06 70.66 68.35
UniFormer-B (Li et al., 2023) 71.38 71.35 72.18 71.89
BiFormer-B (Zhu et al., 2023) 72.05 71.95 71.94 71.96
HiFuse_Tiny (Huo et al., 2024) 74.73 74.67 74.65 74.73
HiFuse_Small (Huo et al., 2024) 76.88 76.31 77.78 76.19
HiFuse_Base (Huo et al., 2024) 76.34 76.17 76.30 76.11
CAME (Li, 2023) 78.49 78.47 78.49 78.61
HEMEF (ours) 82.26 82.20 82.18 82.22

Results on COVID-19 CT dataset

Following the data partitioning strategy in HiFuse Huo et al. (2024) and He et al. (2020), we
train our models from scratch, allocating 60% of the data for training, 15% for validation,
and 25% for testing. As shown in Table 8, HEMF achieves the highest accuracy (82.26%).
Compared to the previous best model CAME, HEMF achieves improvements of 4.80% in
accuracy, 4.70% in precision, 4.59% in recall, and 4.75% in F1-score, demonstrating a
significant improvement.

ROC curves and confusion matrices
Figure 5 illustrates the ROC curves and confusion matrices for HEMF on the ISIC2018,
Kvasir and COVID-19 CT datasets. As shown, HEMF exhibits remarkable classification
performance across all three datasets. On the ISIC2018 dataset, despite the similarity
between MEL and NV, HEMF can effectively distinguish them. On the Kvasir dataset,
HEMF can validly differentiates two similar types of dyed and lifted polyps and dyed
resection margins.

To further validate consistency, we evaluate the MCC and kappa coefficient on
ISIC2018 and Kvasir datasets. Table 9 shows that HEMF outperforms other models in both
metrics, demonstrating robust classification consistency.

Ablation study

To evaluate the impact of each key component of HEMF and gain a deeper
comprehension, we conduct an ablation study on the ISIC2018 dataset, examining the
contributions of the enhanced local feature (ELF) block, enhanced global feature (EGF)
block, Multi-Head External Attention (MHEA), Channel and Spatial Attention (CA&SA),
and Squeezed Inverted Residual Multi-Layer Perceptron (SIRMLP). As shown in Table 10,
metrics are relatively low when only the ELF block or EGF block is used. The recall
improves significantly when both ELF and EGF blocks are employed. Adding MHEA or
CA&SA results in a moderate increase in accuracy. Further improvements in F1-score,
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Figure 5 The ROC curves and confusion matrices of HEMF on different datasets.
Full-size K&l DOT: 10.7717/peerj-cs.3181/fig-5
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Table 9 MCC and kappa comparison on ISIC2018 and Kvasir datasets. Bold entries indicate the
optimal results, whereas underlined entries denote the second-best results.

ISIC2018 Kvasir

MCC Kappa MCC Kappa
ConvNeXt-B (Liu et al., 2022) 0.6022 0.6005 0.7119 0.7100
PerViT-M (Min et al., 2022) 0.6412 0.6406 0.7998 0.7989
Focal-B (Yang et al., 2022) 0.5964 0.5949 0.7490 0.7486
UniFormer-B (Li et al., 2023) 0.6505 0.6480 0.8070 0.8069
BiFormer-B (Zhu et al., 2023) 0.6604 0.6592 0.8205 0.8200
HiFuse_Tiny (Huo et al., 2024) 0.6639 0.6619 0.8055 0.8051
HiFuse_Small (Huo et al., 2024) 0.6896 0.6892 0.8416 0.8414
HiFuse_Base (Huo et al., 2024) 0.7282 0.7280 0.8402 0.8400
CAME (Li, 2023) 0.6967 0.6960 0.8364 0.8363
HEMF (ours) 0.7553 0.7551 0.8459 0.8580

Table 10 Component ablation study on ISIC2018 dataset.
Key components Acc (%) F1 (%) Prec (%) Recall (%)

ELF EGF MHEA CA&SA SIRMLP

v 81.17 64.70 66.23 63.90

v 81.84 66.61 65.56 69.20
v v 82.14 70.06 73.33 68.27
v v v 84.04 70.80 72.98 69.41
v v v 83.41 70.30 70.98 69.92
v v v v 84.54 72.87 72.97 72.81
v v v v v 87.34 78.89 80.42 77.59

Input

Output

(A) ISIC2018 (B) Kvasir (C) COVID-19 CT

Figure 6 Heatmap visualization of (A) ISIC2018, (B) Kvasir and (C) COVID-19 CT datasets.
Full-size K&] DOT: 10.7717/peerj-cs.3181/fig-6

precision, and recall are observed when all three attention mechanisms are used together
(Mixed Attention). Finally, the addition of SIRMLP (i.e., the complete HEMF model) leads
to a substantial improvement. We believe that SIRMLP can effectively learn and leverage
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the high-dimensional representation of the fused features, significantly enhancing the
characterization capability of HEMF.

Heatmap visualization

To further validate the capability of HEMF in capturing discriminative features, we
employed Grad-CAM++ (Chattopadhay et al., 2018) to generate heatmaps by visualizing
the output of the final layer (excluding the linear layer). Figure 6 presents representative
visualization results across three medical image datasets: (A) ISIC2018, (B) Kvasir, and
(C) COVID-19 CT. The generated heatmaps demonstrate that HEMF consistently
localizes pathological regions with high precision, indicating its effectiveness in
hierarchically integrating both global contextual information and local discriminative
features. Multi-scale fusion mechanism enables the model to reliably identify and
characterize lesion patterns across diverse medical image modalities.

Limitations

The proposed HEMF model achieves state-of-the-art performance in medical image
classification, underscoring the promise of hierarchical multi-scale feature extraction and
fusion. However, several potential limitations should be noted:

o While HEMF demonstrates superior model parameter efficiency and computational
economy relative to existing approaches, further architectural refinements could
potentially enhance its compactness.

e The current HEMF model employs the conventional categorical cross-entropy loss
function. Exploring alternative or adaptive loss functions may lead to further
performance improvements, particularly in response to varying dataset distributions.

e The current HEMF implementation does not incorporate any data augmentation
techniques such as CutMix and MixUp. Integrating advanced augmentation strategies
could enhance model generalization, improve robustness to perturbations, and mitigate
class imbalance.

CONCLUSION

In this article, we propose HEMF, an adaptive hierarchical enhanced multi-attention
feature fusion framework for cross-scale medical image classification. HEMF incorporates
enhanced local feature (ELF) and enhanced global feature (EGF) extraction modules,
enabling the parallel extraction of multi-scale local and global features. To fully fuse and
utilize local and global features from different scales, a hierarchical enhanced feature
(HEF) fusion module is proposed, which includes a novel attention mechanism named
Mixed Attention and a novel inverted residual block named Squeezed Inverted Residual
Multi-Layer Perceptron (SIRMLP). Extensive experiments have demonstrated that HEMF
achieves state-of-the-art performance on the ISIC2018, Kvasir and COVID-19 CT datasets
with a relatively low model parameter. The success of HEMF further validates the
significance of multi-scale local and global features and their effective fusion for medical
image classification tasks.
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In future work, we plan to further refine the HEMF model by exploring practical loss
functions and implementing dynamic hierarchical feature selection mechanisms that can
be adapted to varying input data. Furthermore, we also consider extending the application
of HEMF to other downstream tasks, such as medical image segmentation and
multi-modal medical image fusion, to further improve performance.
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Data Availability
The following information was supplied regarding data availability:

All the data and code are available at GitHub and Zenodo:

- https://github.com/Esgjgd/HEMF.

- Jingdong He. (2025). Esgjgd/HEMF: HEMF New Released (new). Zenodo. https://doi.
0rg/10.5281/zenodo.16275426.

The original datasets are available at:

- ISIC2018: https://challenge.isic-archive.com/data/#2018. (https://doi.org/10.1038/
sdata.2018.161).

- Kvasir: https://datasets.simula.no/kvasir/. (doi.org/10.1145/3083187.3083212)

- COVID-19 CT: https://www.kaggle.com/datasets/luisblanche/covidct. (https://doi.
org/10.34740/kaggle/ds/584020).
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